“Personal Influence”:
Social Context and Political Competition

Andrea Galeotti and Andrea Mattozzi *

Abstract

We propose a model of electoral competition where voters obtain information on candidates’ platforms through campaign advertising and interpersonal communication. We show that when campaign costs are low, an increase in the level of interpersonal communication causes polarization: the more voters exchange political information, the more often extremist candidates are elected. This result is reinforced when interpersonal communication occurs more frequently among ideologically homogeneous individuals and parties can target campaign advertising.

JEL classification: D72, D83, Z13

Keywords: Social Influence, Political Competition, Campaign Advertising, Polarization, Homophily.

*University of Essex, agaleo@essex.ac.uk; California Institute of Technology, andrea@hss.caltech.edu. We thank Antoni Calvo-Armengol, Aureo De Paula, Federico Echenique, Sanjeev Goyal, Leonardo Felli, Steven Matthews, and seminar participants at ESSET-2007 and at several institutions for their helpful comments. Mattozzi acknowledges financial support from the National Science Foundation.
“The mass do not now take their opinions from dignitaries in Church or State, from ostensible leaders, or from books. Their thinking is done for them by men much like themselves, addressing them or speaking in their name, on the spur of the moment.” J. S. Mill (1869). On Liberty.

“Rational citizens will seek to obtain their free political information from other persons if they can. This expectations seems to be borne out by the existing evidence.” A. Downs (1957). An Economic Theory of Democracy.

1 Introduction

In modern societies a large majority of individuals relies on others in order to obtain most of their political information. Evidence for the importance of information sharing among voters in shaping individuals’ political choices dates back to the early fifties’ when, through a series of pioneering field experiments, Columbia sociologist Paul Lazarsfeld and coauthors demonstrated the primacy of face-to-face interaction in spreading political information, and documented that this information was more likely to reach undecided voters.¹

In spite of the predominant role of the mass media in political campaign advertising, recent empirical works show that interpersonal relations are still fundamental in the process of political information sharing and acquisition. For example, in an empirical study of the 1992 American presidential election campaign, Beck et al. [1] conclude that interpersonal discussions outweigh the media in affecting voting behavior. In a recent study on political disagreement within communication networks, Huckfeldt et al. [15] observe that: “Democratic electorates are composed of individually interdependent, politically interconnected decision makers. [...] they depend on one another for

¹See, e.g., Lazarsfeld et al. [18], Berelson et al. [2], and Katz and Lazarsfeld [17]. The work of the Columbia sociologists is the “existing evidence” Downs is referring to in the quotation. See Downs [8] pages 222 and 229.
political information and guidance [...]”\(^2\). Moreover, McPherson et al. [23] document that interpersonal communication occurs more frequently among ideologically similar individuals.

In light of this evidence, understanding the relationship between interpersonal communication, individuals’ voting behavior and political outcomes appears of considerable interest. However, very little theoretical work has been done so far. This paper proposes a framework in which interpersonal communication between voters is embedded in a standard model of electoral competition, and addresses the following questions: How does the level of interpersonal communication between voters affect political equilibrium outcomes? In particular, does it increase the likelihood that moderate policies are implemented or, on the contrary, it increases polarization? How does the tendency of voters to communicate within ideologically homogeneous groups affect strategic electoral competition and political outcomes?

The first part of the paper addresses the first two questions within a citizen-candidate model where the policy space is unidimensional. There are three groups of citizens: leftists and rightists (henceforth the “partisans”), and independent voters. Citizens have distance preferences over policy, independents are decisive in the election, and the identity of the median independent voter is ex-ante uncertain. Two policy-motivated parties, representative of the left and right groups, select a candidate that will run in an election. The candidate that wins a simple majority of votes is elected and implements his preferred policy.

Voters cast their votes on the basis of the information they possess about candidates’ policy position. This information depends on their exposure to political advertising and comes from two channels. First, each party devotes resources to campaign advertising. Advertising is truthful and reaches a random fraction of independents, who become

\(^2\)Apparently, not much has changed since W. Lippmann’s [20] treatise on public opinion where he states: “Inevitably our opinions cover a bigger space, a longer reach of time, a greater number of things, than we can directly observe. They have, therefore, to be pieced together out of what others have reported and what we can imagine.”
informed about candidate’s policy position. We call this information channel direct exposure. The second channel is interpersonal communication, and we call it contextual exposure. In particular, each independent randomly samples a finite number of other independents, who, in turn, truthfully report the information they have obtained, if any, from parties’ advertisement. Clearly, the effectiveness of interpersonal communication in spreading political information depends both on the level of contextual exposure (the sample size of voters) and the intensity of parties’ political advertising.

Our model has a unique symmetric equilibrium. When marginal costs of campaign advertising are high, parties always select extreme candidates and do not disclose any political information. Otherwise, parties select a moderate candidate with positive probability and disclose political information only when their candidate is a moderate. We then show that when marginal costs of advertising are low, an increase in the level of interpersonal communication between voters decreases the amount parties spend on campaign advertising and it increases the expected probability that an extremist is elected. Overall, extreme policies are more likely to be implemented. The intuition behind this result is that, from the viewpoint of a party, interpersonal communications and campaign advertising are substitutes, so that an increase in the former decreases the amount parties spend campaigning. This affects the composition of voters who are informed and uniformed as well as the beliefs of uniformed voters. In particular, average voters’ beliefs of facing an extreme candidate are reinforced, implying that the difference between the probability of winning the election when a

3For evidence about the importance of campaign in providing voters with political information see, e.g., Lodge et al. [21], and Coleman and Manna [6]. See also Zaller [30] for evidence on the effect of media content on policy preferences.

4Our model of acquisition of political information formalizes the idea of “two-step flow communication” which played a central role in the analysis of the Columbia sociologists. They describe the two-step flow communication as a relay function of interpersonal relations, where political information flows directly from mass media to a subset of voters, the “opinion leaders” (which corresponds to direct exposure), and from them to other voters they are in contact with (which corresponds to contextual exposure).
party selects a moderate as compared to an extremist decreases. This is equivalent to say that parties’ political competition decreases, and therefore policy-motivated parties select extremist candidates more often.

The second part of the paper extends our benchmark model to consider the empirically relevant case in which i) parties can target campaign advertising to ideologically similar voters, and ii) interpersonal communication occurs more frequently among ideologically similar individuals. The latter assumption is a very simple form of the so-called “value homophily,” according to the original formulation of Lazarsfeld and Merton [19]. In our framework, absence of homophily corresponds to a situation in which the frequency of interpersonal communication between voters does not depend on their ideological similarity. In contrast, pure homophily characterizes a society in which there are ideologically-homogeneous groups and interpersonal communication only occurs between voters belonging to the same group. In this sense, the level of homophily can also be interpreted as the level of segregation between different ideologically-homogeneous groups.

We show that in the extended model there exists an equilibrium in which parties choose to target only their ideologically closer subset of independents, both parties select a moderate candidate with positive probability and disclose political information.

5The fact that parties target their political advertising to specific subset of the population is well-known. As Ken Mehlman, Chairman of the RNC, recently argued: “[…] does this person have children, owns a gun […] that can be predictive of vote behavior and issues that voters care about […] it helps you figure out the best way to reach out to them. […] one of the reasons we in Ohio doubled our support among African Americans in 2004 is because we were able to reach out in places where before you couldn’t […] before you would mail 10 people and get one […] it was unaffordable […] it becomes affordable if you can find out one family that’s willing to consider voting Republican.” See also Green and Gerber [12] for experimental results on the effectiveness of targeting.

6The word “homophily” literally means “love of the same”. The presence of homophily is a robust observation which applies very broadly. See, e.g., McPherson et al. [23] for a survey of research on homophily, and Currarini et al. [7] for a simple model in which homophily emerges as an equilibrium outcome.
only when the candidate is a moderate. In this equilibrium, an increase in homophily increases the probability that parties select extreme candidates as well as the expected probability that an extremist wins the election. The reason is that, with targeted political advertising, an increase in the level of homophily decreases the probability that voters will observe both parties’ candidates, and therefore decreases electoral competition.

This paper relates to two different strands of theoretical literature. The first strand focuses on the effects of campaign advertising on electoral competition and voters’ welfare, e.g., Coate [4], [5] and Prat [26], [27]. The second strand studies interpersonal communication and learning.\(^7\) We model electoral competition and direct exposure to political information following Coate [5], while the model of interpersonal communication follows the approach of Ellison and Fudenberg [9], [10], and Galeotti and Goyal [11]. To the best of our knowledge, the present paper is the first to embed informal communication between voters in a political economy framework. Our results also connect to the existing empirical literature on polarization in US politics, e.g., Poole and Rosenthal [25] and McCarthy et al. [22]. This literature documents an increase in polarization of the Democratic and Republican parties in the last thirty years, which was not accompanied by a corresponding polarization in the preference of the electorate. Our analysis shows that changes in social context – an increase in the level of interpersonal communication and in the frequency of communication between ideologically similar voters – may be important to understand these empirical findings.

The paper is organized as follows. Section 2 presents the model. Section 3 studies the effect of the level of interpersonal communication on political outcomes. Section 4 extends the model to the case in which interpersonal communication are more frequent between ideologically similar individuals and parties can target political advertising. Section 6 concludes.

\(^7\)For a survey of the existing literature on interpersonal communication and local learning see Goyal [13].
2 Model

Citizens and Parties: Ideologies. There is a continuum of citizens of unit measure. The policy space is unidimensional, and citizens are exogenously divided into three groups: leftists, rightists, and independents. Partisans represent an equal fraction of the population, and their ideology is symmetrically distributed on $[0, m]$ and $[1 - m, 1]$, respectively. The ideology of independents is uniformly distributed on the interval $[\mu - \tau, \mu + \tau]$, where $\tau > 0$, and μ is drawn from a uniform distribution with support $[1/2 - m, 1/2 + m]$. Hence, the identity of the median independent is ex-ante uncertain. We assume that $m < 1/4 - \tau/2$ so that ideologies of independents are always between those of partisans.

There are two policy-motivated political parties: party L and party R. Party $L(R)$ consists of a representative subgroup of the leftist (rightist) group. A representative of each party is selected to be a candidate in an election and, in the spirit of the citizen-candidate model, the candidate that wins a simple majority of votes is elected and implements her ideology.\footnote{An alternative specification, more in the spirit of the Downsian tradition, considers the case in which parties choose policies instead of candidates, and they can perfectly commit. The citizen-candidate approach (see Besley and Coate [3], and Osborne and Slivinski [24]) provides a natural rationale for the commitment assumption.} For simplicity, we restrict the candidates’ type space to be $T = \{e, m\}$, where $e \equiv m/2$. Let $t = (t_L, t_R) \in T \times T$ be a profile of types, where $t_L \in \{e, m\}$ denotes the ideology of party L’s candidate, and $1 - t_R$ denotes the ideology of party R’s candidate. Henceforth, a candidate is an extremist if her type is $t = e$, while a candidate is a moderate if her type is $t = m$.\footnote{When m is small, the assumption that $t \in \{e, m\}$ is without loss of generality. Indeed, a party, which maximizes the expected utility of its median voter, will never select a candidate that is more extreme than its median member e. Moreover, as the uncertainty about the median voter is sufficiently small, i.e., m is sufficiently small, it is possible to show that a party will never select a candidate with ideology lying in the interior of the interval $[e, m]$.}

Citizens have distance preferences over ideology and, in particular, a citizen with
ideology i gets utility $-|t-i|$ if a candidate of ideology t wins the election. Partisans always vote for their party, while independents cast their votes on the basis of the information they possess about candidates’ types. Independents are *ex-ante* ignorant about candidates’ types, but receive information from two sources: parties’ advertising (direct exposure) and interaction with other voters (contextual exposure).

Direct Exposure. Each party $j = \{L, R\}$, after having selected its candidate, chooses an amount of resources $x_j \in \mathbb{R}_+$ to spend on campaign advertising. Electoral campaign is truthful and fully informative. In particular, if a party spends x_j, then a random fraction x_j of independents observe party j’s candidate position. The cost of campaign advertising x_j is $C(\alpha, x_j) = \alpha x_j$, where α is a positive constant measuring the efficiency of the advertising technology.\footnote{The assumption of linear advertising costs is made for convenience. Indeed, our results hold for cost functions which are increasing and convex in x_j and α, respectively.}

Contextual Exposure. In addition to direct exposure, independents obtain information via interpersonal communication, which we model as follows. Each independent samples a finite number $k > 0$ of other independents and each sampled independent reports truthfully the information, if any, she has obtained directly by parties’ campaign advertising.\footnote{For evidence about the fact that partisans tend to be little affected by campaigns, see, e.g., Zaller [29], and Huckfeldt et al. [15].} Hence, k parameterizes the level of contextual exposure among voters, where higher k is equivalent to greater contextual exposure. In Section 3.3 we generalize the framework to allow for the possibility that k may vary across individuals.\footnote{Two remarks are in order. First, we assume that independents only communicate with other independents. It is easy to extend the model to allow independents to sample other voters from the entire population of citizens. Depending on what we assume about the report of a partisan (truthful or not), this would change the specification of the posterior beliefs of independents, but it would not affect qualitatively the results. Second, we assume that interpersonal communication only travels one step in the underlying social structure. In principle, communication may travel $r \geq 1$ steps. As it is clear in the proof of the results, an increase in the radius of information affects political outcomes similarly to an increase in k.}
As it is common in models of local externalities, we take the communication structure, which in our case simply corresponds to the parameter k, as exogenously given.\footnote{To this end, Huckfeldt and Sprague [14] point out: “People often choose their associates and the content of their conversations, but each of these choices is, in turn, bounded by an environment that for many purposes must be taken as given rather than chosen.” Also, Huckfeldt et al. [15] report that: “[...] individuals exercise limited discretion in the selection of informants. [...] the construction of a communication network occurs with pronounced constraints on supply.”}

We analyze the following Bayesian Game. Parties choose simultaneously their own candidate and their advertising intensity conditional on the candidate selected, in order to maximize the expected utility of their median voter. Independents do not observe these choices, but they may be exposed to campaign advertising either directly or via interpersonal communication. Based on the information received, independents update their beliefs about candidates’ types and cast their vote to maximize their expected utility.

Parties’ Strategies and Parties’ Utilities. A strategy for party j is a probability distribution over candidates’ types and an intensity of campaign advertising for each candidate’s type. Formally, let $\sigma_j : T \rightarrow [0, 1]$, where $\sigma_j(t)$ denotes the probability that party j selects a candidate of type t, and $\sigma_j(e) + \sigma_j(m) = 1$. Analogously, let $x_j : T \rightarrow [0, 1]$, where $x_j(t)$ denotes the intensity of campaign advertising of party j when candidate t is selected. A strategy for party j is denoted by $s_j = (\sigma_j, x_j)$; $s = (s_L, s_R)$ denotes a strategy profile.

Let $\pi_L (s|t)$ denote the expected probability of winning of party L, given that the electoral candidates are specified by the profile t, and that parties are playing according to s. Thus, the expected payoff to party L when its candidate is t_L can be written as follows,

$$U_L(s|t_L) = \sum_{t_R \in \{e,m\}} \sigma_R(t_R) [\pi_L(s|t) (1 - t_R - t_L) - (1 - t_R - e)] - \alpha x_L.$$
Voting Behavior of Independent Voters. *Ex-post,* the information of an independent about party \(j\)'s candidate can be summarized by \(I_{k,j} \in T \cup \emptyset\), where \(I_{k,j} = t\) means that the independent, after having sampled \(k\) other voters, knows that party \(j\)'s candidate is \(t\), while \(I_{k,j} = \emptyset\) indicates that the independent is uniformed about party \(j\)'s candidate.

Let \(\rho_j(t|I_{k,j}, s, k)\) denote the belief of an independent that party \(j\)'s candidate is \(t\), given \(I_{k,j}\) and \(s\). Whenever possible, \(\rho_j(t|I_{k,j}, s, k)\) is derived using Bayes’ rule. Hence,

\[
\rho_j(t|\emptyset, s, k) = \frac{\sigma_j(t)(1 - x_j(t))^{k+1}}{\sum_{t' \in T} \sigma_j(t')(1 - x_j(t'))^{k+1}},
\]

for every \(t \in T\) such that \(\sigma_j(t) > 0\) and \(x_j(t) > 0\). We also assume that the equation (1) holds at zero probability events, i.e., when \(\sigma_j(t') = 0\) and/or \(x_j(t') = 0\).

Each independent votes as if he is pivotal. Hence, an independent with ideology \(i\) and information \((I_{k,L}, I_{k,R})\) votes for party \(L\) if and only if \(i < i^*(I_{k,L}, I_{k,R})\), where \(i^*(I_{k,L}, I_{k,R})\) is the identity of the indifferent independent voter. Given \((t_L, t_R)\) and \(s\), party \(L\)'s candidate gets at least half of the independents’ votes if and only if \(\mu < \mu^*_L(s|t_L, t_R)\).

Political Equilibrium. A political equilibrium consists of (i) parties’ strategies, \(s^* = (s^*_L, s^*_R)\); (ii) voter belief functions \(\rho^*_j(\cdot), j = L, R\) and indifferent independent voters \(i^*(\cdot)\) such that

\[\pi_L(s|t) = \begin{cases} 0 & \text{if } \mu^*_L(s|t) \leq \frac{1}{2} - m \\ \frac{\mu^*_L(s|t) + m - \frac{1}{2}}{2m} & \text{if } \mu^*_L(s|t) \in \left(\frac{1}{2} - m, \frac{1}{2} + m\right) \\ 1 & \text{if } \mu^*_L(s|t) \geq \frac{1}{2} + m. \end{cases}\]

\(^{14}\)Note that this is a necessary condition for a Bayesian equilibrium to be a sequential equilibrium. See also Footnote 16 for a discussion of the role of this condition in the characterization of equilibria.

\(^{15}\)Formally, \(i^*(I_{k,L}, I_{k,R}) = \frac{1}{2} + \sum_{t \in T} \rho_L(t|I_{k,L}, s, k)t - \sum_{t' \in T} \rho_R(t'|I_{k,R}, s, k)t'\) and \(\mu^*_L(s|t_L, t_R) = \sum_{(I_{k,L}, I_{k,R}) \in \{\{t_L\} \cup \emptyset\} \times \{\{t_R\} \cup \emptyset\}} i^*(I_{k,L}, I_{k,R}) \Pr(I_{k,L}|s, t_L) \Pr(I_{k,R}|s, t_R).\)
1 \((s_L^*, s_R^*)\) are mutual best responses given subsequent voting behavior;

2 \(\rho_j^*(\cdot)\) are consistent with \(s^*\) for all \(j = L, R\), and \(i^*(\cdot)\) are consistent with \(\rho_j^*(\cdot)\) and \(s, j = L, R\).

3 Characterization of Political Equilibrium

Our first result provides a complete characterization of symmetric political equilibria. The nature of political equilibria is pinned down by a simple measure of misperception about the types of candidates running for election. Before stating the result formally, we define this measure of misperception.

Consider a symmetric strategy profile, \(s\). We define the misperception of an independent about the candidate \(t\) of a party, say party \(L\), as the probability that a (randomly selected) independent believes that the leftist candidate is \(t' \neq t\) when in fact the candidate is of type \(t\). This is

\[
Q[t'|t, s, k] = (1 - x(t))^{k+1} \rho(t'|\emptyset, s, k),
\]

where \((1 - x(t))^{k+1}\) is the probability that an independent does not observe that the candidate is of type \(t\) and \(\rho(t'|\emptyset, s, k)\) (defined in equation (1)) is the probability that an uniformed independent will place on the event that the leftist candidate is of type \(t'\). We can then define the overall level of misperception as the \(ex-ante\) probability that a randomly selected independent misperceives the type of the candidate running for election. Formally,

\[
\Psi(s, k) \equiv Q[e|m, s, k] + Q[m|e, s, k]
\]

Clearly, in every pure strategy equilibrium the level of misperception is zero; in general, a mixed-strategy equilibrium will always entail some positive level of misperception. We are now ready to provide a complete characterization of symmetric political equilibria.

Proposition 1 A symmetric political equilibrium always exists and it is unique. For every \(k\), there exists a critical level of the marginal costs of advertising \(\alpha^*(k) > 0\)
such that in the symmetric political outcome (I) if $\alpha \geq \alpha^*(k)$ parties always select an extremist candidate and they never advertise, i.e., $\sigma^*(e) = 1$, and $x^*(e) = 0$; (II) if $\alpha < \alpha^*(k)$ parties randomize between selecting an extremist candidate and a moderate candidate, and they only advertise moderate candidates. In particular, $x^*(e) = 0$, and $x^*(m)$ and $\sigma^*(e)$ jointly solve:

\[
-\frac{\partial Q[e|m, s^*, k]}{\partial x(m)} \frac{2 - 4m + \sigma^*(e) m}{16} = \alpha \tag{4}
\]

\[
1 - \Psi(s^*, k) = \frac{4m + 16\alpha x^*(m)}{2 - 3m}. \tag{5}
\]

When choosing its political strategy, a party faces a fundamental trade-off. Since parties are policy motivated, conditional on winning the election, they enjoy higher utility when selecting an extremist. However, since independents are decisive, a moderate has a higher chance of winning the election relative to an extremist and, intuitively, this advantage is higher the lower is independents’ misperception. Therefore, selecting a moderate candidate is worth only when independents’ misperception is low, which, for a given level of contextual exposure, comes at the cost of higher campaign advertising. Proposition 1 summarizes how these trade-offs are solved in equilibrium.\(^{16}\)

For given level of contextual exposure k, if marginal costs of advertising are sufficiently high, parties always choose extremists and never advertise (Part I of Proposition 1). In line with the intuition above, selecting a moderate is profitable only if independents’ misperception is sufficiently low, which implies that the party must spend enough resources to advertise its moderate candidate. When the advertising technology is very inefficient this is not optimal. In contrast, if the costs of advertising are low and one

\(^{16}\)Proposition 1 characterizes equilibria in which voters’ beliefs are constant at zero probability events. For completeness, we note that there is only one other equilibrium which does not satisfy this condition: parties always select a moderate, they set $x(m) = 1$ and, out-of-equilibrium, an uninformed voter believes that the candidate is an extremist with strictly positive probability. This equilibrium exists for a sufficiently low value of α, and it is not robust to small imperfection of the advertising technology. In particular, it does not survive if there is a small probability that a voter remains uninformed on the equilibrium path.
party always selects an extremist, the opponent party will find it profitable to select a moderate candidate and inform the independents about it. Thus, in equilibrium parties have to randomize between the two candidates’ types and they will choose to advertise only moderate candidates (Part II of Proposition 1).\footnote{It is easy to show that the threshold $\alpha^*(k)$ is increasing in k. Hence, the region where the symmetric equilibrium is in mixed strategies becomes larger as k increases.}

Condition (4) requires that parties advertise moderate candidates so that marginal returns from advertising equal the marginal cost α. By (marginally) increasing the resources spent in electoral campaign, a party lowers the misperception of independents and therefore increases its probability of winning the election. The marginal returns from advertising a moderate equal the decrease in misperception multiplied by the gains of winning the election.

Condition (5) requires that parties are indifferent between selecting a moderate and an extremist candidate. The RHS of this equation represents the expected costs of proposing a moderate instead of an extremist, which are composed of the advertising costs and of the costs of implementing a less preferred policy. The LHS of equation (5) is the benefit for the party of choosing a moderate instead of an extremist, which is materialized in facing a higher probability of winning the election. This is inversely proportional to the level of independents’ misperception. To see this, suppose that the right party follows the strategy prescribed in the second part of Proposition 1. The expected probability of winning of the left party when choosing candidate t is

$$\hat{\pi}_L(s^*|t) = (1 - \sigma^*(e)) \pi_L(s^*|t, m) + \sigma^*(e) \pi_L(s^*|t, e).$$

Since, in a symmetric equilibrium, $\pi_L(s^*|t, t) = 1/2$ and $\pi_L(s^*|m, e) = 1 - \pi_L(s^*|e, m)$, it follows that

$$\hat{\pi}_L(s^*|m) - \hat{\pi}_L(s^*|e) = \frac{1}{2} - \pi_L(s^*|e, m) = \frac{1 - \Psi(s^*, k)}{8},$$

where the last equality is easily checked.
3.1 The Equilibrium Effect of Contextual Exposure

We now investigate the effect of an increase in contextual exposure on the political outcome. In particular, we explore the equilibrium relation between the level of interpersonal communication and policy polarization. In order to do so, we compare the political equilibrium when the level of contextual exposure is k with the political equilibrium when independents communicate with $k + 1$ other voters. We focus on the case $\alpha < \alpha^* (k)$ described in part II of Proposition 1 since this is the only non trivial situation.

As a measure of policy polarization we define the ex-ante expected probability that in equilibrium an extremist candidate is elected. This is denoted by $\Pi(s^*)$ and it is equal to:

$$\Pi(s^*) = \sigma^* (e)^2 + 2\sigma^* (e) (1 - \sigma^* (e)) \pi(s^*|e, m),$$

(6)

where the first term is the probability that two extreme candidates compete in the election, and the last term is the probability that an extreme candidate wins against a moderate.

The next proposition summarizes the results. We denote by $s^*_k = (\sigma^*_k(e), x^*_k)$ the parties’ strategy profile in a symmetric political equilibrium when the level of contextual exposure is equal to k.

Proposition 2 For every k, there exists $\hat{\alpha}(k) \in (0, \alpha^*(k)]$ such that, for every $\alpha < \hat{\alpha}(k)$, it follows that $x^*_{k+1}(m) < x^*_k(m), \sigma^*_{k+1}(e) > \sigma^*_k(e)$, and $\Pi(s^*_{k+1}) > \Pi(s^*_k)$.

Proposition 2 establishes that, for sufficiently low marginal costs of advertising, greater contextual exposure decreases the intensity of campaign advertising for moderates, and it increases the probability that extreme candidates run in an election. Ultimately, as independents can exchange political information with more voters, policy polarization increases, i.e., the likelihood that an extremist candidate is elected increases.\(^\text{18}\)

\(^{18}\)An alternative measure of policy polarization is the probability that in equilibrium an extremist candidate defeats a moderate candidate. Formally, $\pi_L(s^*|e, m) = \pi_R(s^*|m, e) = \frac{1}{2} \cdot \frac{1 - \Psi(s^*, k)}{8}$. When
An increase in contextual exposure decreases marginal returns from campaign advertising because independents are more likely to obtain information via interpersonal communication. That is, in equilibrium advertising and contextual exposure are substitutes and therefore, when interpersonal communication increases, parties cut down their political advertising expenditures. When this substitution effect is strong enough, despite the increase in the level of interpersonal communication, voters are more likely to be uninformed. Hence, voters’ misperception is higher and policy motivated parties find it profitable to select extremists more often. If, on the contrary, the substitution effect is weak, voters’ misperception decreases and parties select moderate candidates more often. Intuitively, the magnitude of the substitution effect is increasing in the amount of parties’ political advertising which is inversely related to the marginal cost of electoral campaigning.

We conclude this section with three observations. First, the comparative static result on polarization is not an artifact of the mixed-strategy nature of the equilibrium. In fact, suppose that each party can be either a “high-cost” type, with probability σ, or a “low-cost” type with the remaining probability. A “high-cost” party has high marginal costs of advertising, say α_H, while the marginal costs of a “low-cost” party is $\alpha << \alpha_H$. Each party observes her own type, but she does not observe the type of the opposite party. For simplicity, let α_H be sufficiently large so that the best response of a “high-cost” party is always to select an extreme candidate. For α sufficiently low a “low-cost” party will always select a moderate and advertise with intensity x^\ast which is the solution to equation (4).\footnote{Alternatively, we can think of two types of parties, with one type always selecting an extreme candidate.} Suppose now that $\alpha = 0.03$, $m = 0.1$ and $\sigma = 0.4$. Simple calculation reveals that an increase of the level of interpersonal communication from $k = 1$ to $k = 2$ leads “low-cost” parties to cut down political advertising from 0.84 to 0.67. In turn, voters’ misperception as well as polarization increases of about $\alpha < \hat{\alpha}(k)$, the effect of an increase in k on $\Pi(s^\ast)$ is equivalent to the effect of an increase in k on $\pi_L(s^\ast|e, m)$.\footnote{19Alternatively, we can think of two types of parties, with one type always selecting an extreme candidate.}
Second, for sufficiently inefficient technology, an increase in the level of contextual exposure can lead to the opposite comparative statics result of Proposition 2. For example, suppose that $\alpha = 0.1$ and $m = 0.1$. For $k = 8$, it is possible to show that in equilibrium parties select extremist candidates with probability $\sigma^*_8(e) = 0.28$, and they advertise moderate candidates with intensity $x^*_8(m) = 0.11$. Consequently, in expectation an extremist candidate is elected with probability $\Pi^*_8 = 0.26$. Suppose now that $k = 9$. Simple calculations show that at the new level of contextual exposure parties select extremist less often, $\sigma^*_9(e) = 0.26$, they advertise moderate candidates less, $x^*_9(m) = 0.10$ and, as a result, the political outcome is less polarized, $\Pi^*_9 = 0.24$.

Our final observation is that the effects of an increase in the level of interpersonal communication on equilibrium are rather different from the effects of a decrease in the marginal costs of advertising α (i.e., direct exposure becomes less expensive). Indeed, it is possible to show that a decrease in the costs of direct exposure unambiguously increases the intensity of advertising. As an illustration, let $k = 8$ and $m = 0.1$. Figure 1 plots the equilibrium advertising intensity, the probability that parties select an extremist and the ex-ante expected probability that in equilibrium an extremist candidate is elected, for different values of $\alpha \in (0, \alpha^*(8)]$. Intuitively, when the costs of campaign advertising become lower, it is always optimal for parties to advertise their moderate candidate with higher intensity. This increases electoral competition and therefore parties find it profitable to select extremists candidates less often. Consequently, political outcomes becomes less polarized.\(^\text{20}\)

3.2 Heterogeneity in Contextual Exposure

So far, voters had the same level of interpersonal communication. However, empirical evidence suggests the structure of interpersonal communication is characterized

\(^{20}\)The formal proof of the comparative static result with respect to α is straightforward and therefore omitted.
by a high level of heterogeneity, with some individuals having few interpersonal relations, while others many. To extend our model in this direction we consider that independents are divided in \(k \) groups, and an independent belonging to group \(l \) samples randomly \(l \) other citizens among the entire set of independents. Formally, let \(I = \{1, 2, ..., k\} \), and let \(P : I \to [0, 1] \), where \(P(l) \) gives the fraction of independent voters that sample \(l \) other voters. The model presented in the previous section is a special case where the distribution \(P \) is such that \(P(k) = 1 \) and \(P(l) = 0 \), for all \(l \in I \setminus \{k\} \), and \(k \in I \).

Proposition 5 (in Appendix A) generalizes the characterization of symmetric political equilibria presented in Proposition 1 to arbitrary distributions \(P \). In summary, for a given distribution \(P \), there exists a threshold \(\alpha_p \) such that if marginal costs of advertising exceed it then parties select extremists and never advertise; otherwise parties randomize between extremists and moderates and advertise only moderate candidates. Figure 2 depicts the equilibrium for particular values of the parameters. The decreasing curve represents the points \((\sigma(e), x(m))\) which equate the marginal costs of advertising a moderate with the marginal benefits (i.e., the solution to equation (8) in Appendix

\[21\text{See Jackson and Rogers [16] for an extensive discussion of the empirical features of a variety of social networks.}\]
A); the increasing curve depicts points \((\sigma(e), x(m))\) which make a party indifferent between selecting either of the two candidates (i.e., the solution to equation (9) in Appendix A). The intersection of the two schedules pins down the equilibrium values of \(\sigma^*(e)\) and \(x^*(m)\).

The next example shows that the results in Proposition (2) are robust to heterogeneity between voters in contextual exposure.

Example: Effects of greater contextual exposure on political outcomes. Suppose that \(m = 0.2\) and assume that independents sample either one or two other voters, i.e., \(P(1) = p, P(2) = 1 - p\). Note that a decrease of \(p\) implies a first order stochastic dominance shifts in the distribution of contextual exposure, which we interpret as an increase in the level of interpersonal communication.

First, consider a case in which advertising is sufficiently inexpensive, \(\alpha = 0.01\). Figure 3 depicts the political equilibrium for \(p = 0.4\) and \(p = 0.5\), respectively. In the first panel the marginal costs of advertising is low. In this case, a first order stochastic shifts in the distribution of contextual exposure decreases parties advertising, and increases the likelihood that extremist candidates are selected. As a result, the political outcome is more polarized. The second panel illustrates the same exercise
when advertising is sufficiently expensive, $\alpha = 0.1$. In contrast to the previous case, here a first order stochastic shifts decreases the likelihood that extremist candidates are selected. As a result, the political outcome is less polarized.

A new insight that comes from this extension is that, *ex-post*, independents with a different level of interpersonal communication have different beliefs about the candidates running in the election. In other words, heterogeneity in contextual exposure maps into heterogeneity in expectations between otherwise equally informed voters. In particular, the greater the contextual exposure of an independent the more precise are (on average) her beliefs about political candidates. However, conditional on remaining uniformed, independents who are more exposed to interpersonal communication have stronger beliefs that the candidates running for election are extremists.

4 Homophily

A well-known empirical fact is that interpersonal communication occurs more frequently among similar individuals.\(^{22}\) This phenomenon is generally referred as to “value homophily” and, in our context, this would entail a higher probability of interpersonal

\(^{22}\)See, e.g., McPherson et al. [23].
communication between voters with closer political ideologies. Note that, if parties cannot target their political campaign, our results will be unaffected by any form of homophily. However, if parties can target their campaign advertising to ideologically similar voters, homophily will affect electoral campaign and political outcomes. In this section we modify our benchmark model in order to capture these additional features in a simple and parsimonious way.

First, we define group l as the group of independents in the interval $[\mu - \tau, \mu]$; analogously we call group r the remaining group of independents. Each independent samples k other voters. For each draw, a group-l member samples a voter in her own group with probability β, while with the remaining probability she samples a group-r voter. We assume that $\beta \in [1/2, 1)$, and we interpret this parameter as the level of homophily in the society. Absence of homophily corresponds to $\beta = 1/2$. When instead $\beta = 1$, voters only communicate with members of their own group, which exemplifies a society in which ideology-based groups are totally segregated. Since the focus of this section is to study the effect of homophily on political outcomes, we set $k = 1$, hereafter.\(^{23}\)

Second, we assume that a party can choose either to advertise at a cost $\alpha > 0$ or not to advertise.\(^{24}\) If Party L (R) chooses to advertise his candidate, then all members of group l (r) observe perfectly the candidate of party L (R).\(^{25}\) In other words, we are assuming that advertising of a party is targeted to its closer group of independents. A more general model is one where a party can choose to target advertising either to one of the two groups (at a cost α), or to advertise to both groups (for example at a cost 2α). In Appendix B (Proposition (6)) we show that the equilibria we characterize by

\(^{23}\)We assume that $k = 1$ merely for expositional reasons; all the results hold for arbitrary finite k.

\(^{24}\)Note that, abusing notation, we are denoting by α the total cost of advertising, while in the benchmark model α was the marginal cost of advertising.

\(^{25}\)Here, we assume that advertising is discrete, i.e., a party can decide whether or not to advertise but not how much to advertise. This assumption is needed for tractability. The fact that when a party advertises his candidate then all his close independents observe perfectly the candidate is not crucial for our results.
assuming that advertisement of a party is targeted to its closer group of independents (see Proposition (3) below) are indeed equilibria in the more general model where parties can choose where to target advertising. The next proposition characterizes the equilibrium.

Proposition 3 A symmetric political equilibrium always exists and it is unique. For every β, there exists $\bar{\alpha}(\beta) < \bar{\alpha}$ such that in equilibrium: (I) for all $\alpha > \bar{\alpha}$ parties select extremists and they never advertise; (II) for all $\alpha \in (0, \max[0, \bar{\alpha}(\beta)])$, parties select moderates and they advertise; (III) for all $\alpha \in (\max[0, \bar{\alpha}(\beta)], \bar{\alpha})$ parties select extremists with probability

$$\sigma^*(e) = 1 - \frac{2 - 7m - 16\alpha}{\beta(2 - 3m)}$$

and they advertise when they select a moderate. Furthermore, $\bar{\alpha}(\beta) > 0$ if and only if $\beta < (2 - 7m)/(4m)$

Figure 4 provides a graphical illustration of the equilibrium in the $(\alpha, \sigma(e))$ parameter space. The intuitions behind part (I) and part (III) of Proposition (3) are analogous to the intuitions behind Proposition (1). When the level of homophily is sufficiently high these are the only equilibria. However, when the level of homophily
Figure 5: Comparative Statics under Homophily: $\beta^* > \beta$

\[
\frac{\beta^* (1 + \beta^*)}{1 + \beta^*} \quad \frac{\beta^*}{1 + \beta^*}
\]

is low, i.e., $\beta < \frac{(2 - 7m)}{(4m)}$, for low values of α a party cannot be indifferent between selecting the two candidates. In fact, since information travels across groups, it is likely that voters are aware of moderate candidates running. This increases political competition and it reduces the probability that an extreme candidate wins election. Hence, in equilibrium parties always select moderates and they advertise.\footnote{This equilibrium is sustained under specific out-of-the-equilibrium beliefs: when a voter in group l (r) is uninformed about party’s L (R) candidate, then she believes that party L (R) has selected an extremist.}

Our final result shows how the level of homophily affects political outcomes.

Proposition 4 Suppose $\alpha \in (\max[0, \alpha(\beta)], \bar{\alpha}(\beta))$. If β increases then parties select extreme candidates with (strictly) higher probability and the policy outcome is more polarized, i.e., the (ex-ante) expected probability that an extremist wins the election is higher.

Figure 5 illustrates the comparative statics with respect to β. Since parties target their campaign to distinct groups, an increase in homophily leads to a lower probability that a voter will observe both candidates’ types. This decreases political competition and therefore policy motivated parties select extremist more often.
5 Conclusion

The importance of interpersonal communication in affecting voters’ choices is widely documented in economics, political science, and sociology. To the best of our knowledge there is no theoretical model that examines the effects of voters’ communication on electoral competition and consequently on political equilibrium outcomes. This paper proposes a model that provides novel insights on the equilibrium relation between different empirically relevant aspects of interpersonal communication and electoral outcomes.
Appendix A: Proofs of Section 3. In this appendix we provides the results of section 3. We first provide Proposition 5 which is a generalization of Proposition 1. Next, we complete the proof of Proposition 1 by proving uniqueness of symmetric equilibria. Finally, we provide the proof of Proposition 2.

Proposition 5 A symmetric political equilibrium always exists for any distribution \(P \).

In particular, for every \(P \), there exists an \(\alpha^*_P > 0 \) such that

I If \(\alpha \geq \alpha^*_P \) in the unique symmetric political equilibrium parties always select an extremist candidate and they never advertise, i.e., \(\sigma^*(e) = 1 \), and \(x^*(e) = 0 \);

II If \(\alpha < \alpha^*_P \) in every symmetric political equilibrium parties randomize between selecting an extremist candidate and a moderate candidate and they only advertise moderate candidates. In particular, \(x^*(e) = 0 \), and \(x^*(m) \) and \(\sigma^*(e) \) jointly solve:

\[
- \sum_{k=1}^{\bar{k}} P(k) \frac{\partial Q[s^*|e, m, k]}{\partial x(m)} \frac{2 - 4m + \sigma^*(e)m}{16} = \alpha \\
\sum_{k=1}^{\bar{k}} P(k) [1 - \Psi(s^*, k)] = \frac{4m + 16\alpha x^*(m)}{2 - 3m}.
\]

Proof. Proposition 5. We first characterize symmetric political equilibria in pure strategies. Let \(s^* = (s^*_L, s^*_R) \) be part of a symmetric pure-strategy equilibrium. Then \(s^*_j \) prescribes to select a candidate \(t^* \in T \) with probability 1 and to advertise that candidate with intensity \(x^* (t^*) \), \(\forall j \in \{L, R\} \). We start by noticing that for \(s^* \) to be part of an equilibrium it has to be the case that \(x^*(t^*) = 0 \). Hence, \(U_L(s^*|t^*) = -(1-m)/2 \). There are two possibilities, which we now analyze.

One possibility is that \(t^* = m \). Let party \(L \) deviate by selecting \(t_L = e \). It is easy to see that the best advertising strategy is \(x_L(e) = 0 \). Let’s denote this strategy by \(\tilde{s}_L \). Then, \(U_L(\tilde{s}_L, s^*_R|e) = -(2-3m)/4 > U_L(s^*|m) \), which contradicts our hypothesis that \(s^* \) is an equilibrium.

The other possibility is that \(t^* = e \). Let party \(L \) deviate by selecting \(t_L = m \) and \(x_L(m) \); call this strategy \(\tilde{s}_L \). Observe that such deviation is profitable only if
Thus, assume that \(x_L(m) \not\in \{0,1\} \). We now derive the optimal advertising level, given \(s^*_R \), which we denote by \(x^*_L(m) \). To do this, we start by observing that

\[
\mu^*_L(\tilde{s}_L, s^*_R|m, e) = \frac{1}{2} + \frac{m}{4} - \frac{m}{4} \sum_{k=1}^\kbar \frac{P(k)(1-x_L(m))^{k+1}}{k},
\]

and it is readily seen that \(\mu^*_L(\tilde{s}_L, s^*_R|m, e) \in [1/2 - m, 1/2 + m] \), \(\forall x_L(m) \in \langle 0, 1 \rangle \), which implies that \(\pi_L(\tilde{s}_L, s^*_R|m, e) \in (0, 1), \forall x_L(m) \in (0, 1) \). Next, since \(\pi_L(\tilde{s}_L, s^*_R|m, e) \in (0, 1) \), it follows that the expected utility of party \(L \) by playing \(\tilde{s}_L \) against \(s^*_R \), is,

\[
U_L(\tilde{s}_L, s^*_R|m) = \left[\left(5 - \sum_{k=1}^\kbar \frac{P(k)(1-x_L(m))^{k+1}}{8} \right) \left(1 - \frac{3}{2}m \right) - (1 - m) - \alpha x_L(m) \right].
\]

Hence, the optimal \(x^*_L(m) \in (0, 1) \) solves

\[
\sum_{k=1}^\kbar \frac{P(k)(1-x^*_L(m))^{k+1}}{k} = \frac{16\alpha}{2 - 3m}.
\]

Clearly \(x^*_L(m) \) is decreasing in \(\alpha \). Moreover, \(x^*_L(m) \geq 0 \) if and only if \(\alpha \leq (2 - 3m)(\kbar + 1)/16 \), where \(\kbar = \sum_{k=1}^\kbar P(k)k \), and \(x^*_L(m) = 1 \) if and only if \(\alpha = 0 \). Thus, if \(\alpha \geq (2 - 3m)(\kbar + 1)/16 \), then \(x^*_L(m) = 0 \) and a pure strategy equilibrium exists.

We can then assume that \(\alpha < (2 - 3m)(\kbar + 1)/16 \). In this case, party \(L \) will not deviate from \(s^*_L \) if and only if \(U_L(s^*_L|e) \geq U_L(\tilde{s}_L, s^*_R|m) \), where abusing notation \(\tilde{s}_L \) prescribes to advertise a moderate candidate with intensity \(x^*_L(m) \). The latter inequality is satisfied if and only if

\[
\sum_{k=1}^\kbar \frac{P(k)(1-x^*_L(m))^{k+1}}{k} \geq \frac{2 - 7m - 16\alpha}{2 - 3m}.
\]

As we shall show later, there exists \(\alpha^*_P \in (0,(2-3m)(\kbar+1)/16) \) such that condition (11) holds if and only if \(\alpha \geq \alpha^*_P \). We will also formally derive the expression of \(\alpha^*_P \). These observations show that a symmetric political equilibrium in pure strategies exists if and only if \(\alpha \geq \alpha^*_P \). Furthermore, in a symmetric pure-strategy political equilibrium each party selects an extremist candidate with probability one and the extremist candidate is never advertised.
We now characterize symmetric mixed-strategy equilibria. For convenience we use the notation $\sigma \equiv \sigma(e)$. First, assume that a symmetric mixed-strategy equilibrium exists, and let $s^*_j = (\sigma^*, x^*(e))$, $j = L, R$, denote the equilibrium strategy profile. It is easy to see that in equilibrium $x^*(e) = 0$. Given a profile $s = (s_L, s_R)$ with $x_j(e) = 0$, $j = L, R$, we have that

$$U_L(s|e) = \sigma_R(1-m)[\pi_L(s|e,e) - 1] + (1-\sigma_R)\left(1 - \frac{3m}{2}\right)[\pi(s|e,m) - 1],$$

and

$$U_L(s|m) = \sigma_R\left[\pi_L(s|m,e)\left(1 - \frac{3m}{2}\right) - (1-m)\right] + \sigma_R\left[\pi_L(s|m,m)(1-2m) - \left(1 - \frac{3m}{2}\right)\right] - \alpha x_L(m).$$

Moreover,

$$\frac{\partial \pi_L(s|m,e)}{\partial x_L(m)} = \frac{\partial \pi_L(s|m,m)}{\partial x_L(m)} = \frac{1}{8} \sum_{k=1}^K P(k)(k+1)(1-x_L(m))^k[\rho_L(e|\emptyset, s, k)]^2.$$

Hence, in a symmetric equilibrium, $\frac{\partial U_L(m,x_L(m);s_R)}{\partial x_L(m)}|_{s^*} = 0$ if and only if

$$\sum_{k=1}^K P(k)(k+1)(1-x^*(m))^k[\rho(e|\emptyset, s^*, k)]^2 = \frac{16\alpha}{2 - 4m + \sigma m},$$

where

$$\rho(e|\emptyset, s^*, k) = \frac{\sigma}{\sigma + (1-\sigma)(1-x^*(m))^{k+1}}.$$

It is easy to verify that condition (13) is equivalent to condition (8) stated in Proposition 5.

Next, in a symmetric mixed-strategy political equilibrium each party is indifferent between selecting a moderate candidate and selecting an extremist candidate, i.e.,
\(U_L(s^*|e) = U_L(s^*|m)\). Since in a symmetric equilibrium we have that
\[
\pi_L(s^*|e, e) = \pi(s^*|m, m) = \frac{1}{2}
\]
\[
\pi(s^*|e, m) = \frac{1}{2} + \frac{1}{4m} \sum_{k=1}^{\bar{k}} P(k)(\bar{t}_k - m)(1 - (1 - x^*(m))^{k+1}) = 1 - \pi(s^*|m, e),
\]
where \(\bar{t}_k = m - \frac{m}{2} \rho(e|\emptyset, s^*, k)\), it follows that \(U_L(s^*|e) = U_L(s^*|m)\) if and only if
\[
\sum_{k=1}^{\bar{k}} P(k)\rho(e|\emptyset, s^*, k)(1 - (1 - x^*(m))^{k+1}) = \frac{4m + 16\alpha x}{2 - 3m}. \tag{15}
\]
Note that condition (15) is equivalent to condition (9) stated in Proposition 5. We have then proved that if a symmetric mixed-strategy equilibrium exists then it is characterized by conditions (8) and (9).

The final step of the proof is to show existence of equilibria. Here, we start by showing that a mixed strategy equilibrium exists if and only if \(\alpha < \alpha_p^*\), and we determine the value of \(\alpha_p^*\). For convenience, we use the notation \(p = 1 - x(m)\), hereafter.

Define
\[
f(\sigma, p) = \sum_{k=1}^{\bar{k}} P(k)(k + 1)p^k \frac{\sigma(2 - 4m + \sigma m)}{(\sigma + (1 - \sigma)p^{k+1})^2},
\]
and note that the equilibrium condition (13) holds if and only if \((\sigma, p)\) are such that \(f(\sigma, p) = 16\alpha\). The following properties of \(f(\cdot, \cdot)\) will prove useful for the proof.

Property 1: \(f(0, p) = 0\);

Property 2: \(f(1, p) = \sum_{k=1}^{\bar{k}} P(k)(k + 1)p^k(2 - 3m)\) and it is increasing in \(p\);

Property 3:
\[
\frac{\partial f(\sigma, p)}{\partial \sigma} = \sum_{k=1}^{\bar{k}} P(k)(k + 1)p^k \frac{[2p^{k+1}(2 - 4m + \sigma m) + \sigma m(\sigma + (1 - \sigma)p^{k+1})]}{[\sigma + (1 - \sigma)p^{k+1}]^3} > 0.
\]

Properties 1, 2, and 3 imply that \(\tilde{\sigma}(p) : f(\tilde{\sigma}(p), p) = 16\alpha\) is a well defined function of \(p\) for all \(p \in [\underline{p}, 1]\), where \(\underline{p}\) solves \(f(1, \underline{p}) = 16\alpha\), i.e.,
\[
\sum_{k=1}^{\bar{k}} P(k)(k + 1)p^k = \frac{16\alpha}{2 - 3m}.
\]

26
Note that \(p \in (0, 1) \) if and only if \(\alpha < (2 - 3m)(\hat{k} + 1)/16. \)

We now study how \(\tilde{\sigma}(p) \) behaves in \(p \in [\underline{p}, 1] \). The following properties of \(\tilde{\sigma}(\cdot) \) are useful:

Property 4: \(\tilde{\sigma}(p) = 1; \)

Property 5: \(\tilde{\sigma}(1) \in (0, 1) \) solves

\[
\tilde{\sigma}(1)^2(2 - 4m + \tilde{\sigma}(1)m) = 16\frac{\alpha}{k + 1};
\]

Property 6: \(\partial f(p, \sigma)/\partial p \) may change sign only once, and

\[
\frac{\partial f(p, \sigma)}{\partial p} \bigg|_{p, \tilde{\sigma}(p)} > 0.
\]

Note that Property 6 follows from Property 4 and inspection of

\[
\frac{\partial f(\sigma, p)}{\partial p} = \sum_{k=1}^{\hat{k}} P(k) \frac{(k + 1)p^{k-1}\sigma^2(2 - 4m + \sigma m)(k\sigma - p^{k+1}(1 - \sigma)(k + 2)}{[\sigma + (1 - \sigma)p^{k+1}]^3},
\]

Using the implicit function theorem and invoking properties 3, 4, 5, and 6 it follows that \(\tilde{\sigma}(p) \) is either always decreasing in \(p \) for all \(p \in [\underline{p}, 1] \), or there exists a \(\tilde{p} > p \) such that \(\tilde{\sigma}(p) \) is decreasing in \(p \) for all \(p \in [\underline{p}, \tilde{p}] \), while it is increasing in \(p \) for all \(p \in (\tilde{p}, 1] \).

We now define

\[
g(\sigma, p) = \sum_{k=1}^{\hat{k}} P(k) \frac{(1 - p^{k+1})\sigma}{\sigma + (1 - \sigma)p^{k+1}} + \frac{16\alpha(1 - p)}{2 - 3m},
\]

so that the equilibrium condition (15) holds if and only if \(g(\sigma, p) = 4m/(2 - 3m) \). The following properties of \(g(\cdot, \cdot) \) are useful:

Property 1': \(g(0, p) = -16\alpha p/(2 - 3m); \)

Property 2': \(g(1, p) = \sum_{k=1}^{\hat{k}} P(k)(1 - p^{k+1}) \) is decreasing in \(p \) for all \(p \geq \underline{p}; \)

Property 3':

\[
\frac{\partial g(\sigma, p)}{\partial \sigma} = \sum_{k=1}^{\hat{k}} P(k) \frac{(1 - p^{k+1})p^{k+1}}{[\sigma + (1 - \sigma)p^{k+1}]^2} > 0;
\]

Property 4': \(\partial g(\sigma, p)/\partial p < 0 \), which is easily checked.
Properties 1’, 2’, and 3’ imply that \(\sigma(p) : g(\sigma(p), p) = 4m/(2 - 3m) \) is a well defined function of \(p \) for all \(p \in (0, \overline{p}] \), where \(\overline{p} : g(1, \overline{p}) = 4m/(2 - 3m) \), i.e.
\[
\sum_{k=1}^{\overline{k}} P(k)(1 - \overline{p}^{k+1}) = \frac{4m + 16\alpha(1 - \overline{p})}{2 - 3m}.
\] (16)

It is easy to check that \(\overline{p} \in (0, 1) \). Furthermore, using the implicit function theorem and invoking properties 3’ and 4’ it follows that \(\sigma(p) \) is increasing in \(p \), for all \(p \in (0, \overline{p}] \). Also, \(\sigma(1) = 1 \) and \(\sigma(p) < 1 \).

Summarizing \(\tilde{\sigma}(p) \) is first decreasing and then possibly increasing in \(p \) and it is defined for all \(p \in [\underline{p}, 1] \), while \(\sigma(p) \) is increasing in \(p \) and it is defined for all \(p \in (0, \overline{p}] \). Furthermore, \(\tilde{\sigma}(p) = 1 \), while \(\sigma(p) < 1 \). Since a symmetric mixed strategy equilibrium is given by \(p^* \) and \(\sigma^* \) such that \(\sigma^* = \tilde{\sigma}(p^*) = \overline{\sigma}(p^*) \), an equilibrium exists if and only if \(\overline{p} < \overline{p} \). This holds, if and only if \(\alpha < \alpha_p^* \), where \(\alpha_p^* \) is the unique solution to
\[
\sum_{k=1}^{\overline{k}} P(k)(k + 1)p^k = \frac{16\alpha_p^*}{2 - 3m},
\] (17)
\[
\sum_{k=1}^{\overline{k}} P(k)(1 - \overline{p}^{k+1}) = \frac{4m + 16\alpha_p^*(1 - p)}{2 - 3m}.
\] (18)

Note that \(\alpha_p^* \in \left(0, (2 - 3m)(\overline{k} + 1)/16\right) \), and that if \(\alpha = \alpha_p^* \), then \(p = \overline{p} \). In this latter case, \(\sigma^* = 1 \) and condition (11) holds with equality. Similarly, for all \(\alpha > \alpha_p^* \) condition 11 holds with strict inequality. We have proved that a symmetric equilibrium always exists and that if \(\alpha \geq \alpha_p^* \) there is a unique equilibrium in pure strategy, otherwise there exists an equilibrium in mixed strategy. This concludes the proof of Proposition 5.

Proof. Proposition 1 The characterization of equilibria in Proposition 1 is a special case of Proposition 5. So, to complete the proof of Proposition 1 we only need to shows that when \(P \) is such that \(P(k) = 1 \) and \(P(l) = 0 \), for all \(l \in I \setminus \{k\} \), and \(k \in I \), there exists a unique symmetric equilibrium. For such distribution denote \(\alpha_p^* = \alpha^*(k) \). If \(\alpha \geq \alpha^*(k) \) the claim is obviously true. Assume then that \(\alpha < \alpha^*(k) \), and recall that
\[p = 1 - x(m) \text{ and } \sigma(e) = \sigma. \] We can rewrite the equilibrium condition (5) as follows:

\[
\sigma = \frac{p^{k+1}(4m + 16\alpha(1 - p))}{(1 - p^{k+1})(2 - 7m - 16\alpha(1 - p))},
\]

(19)

and we know from the proof of Proposition 5 that, in equilibrium, \(\sigma \) is increasing in \(p \).

Equilibrium condition (4) is equivalent to:

\[
(2 - 4m + \sigma m)(k + 1)p^k \rho(e|\emptyset, s^*, k) = 16\alpha,
\]

(20)

where \(\sigma \) is given by expression (19). To establish uniqueness is then sufficient to prove that, in equilibrium, the LHS of (20) is increasing in \(p \) (where we must take into account that \(\sigma \) is a function of \(p \)). To see this note that since in equilibrium \(\sigma \) is increasing in \(p \) it follows that \((2 - 4m + \sigma m)(k + 1)p^k \) is also increasing in \(p \). Therefore, it is enough to show that in equilibrium \(\rho(e|\emptyset, s^*, k) \) is also increasing in \(p \). In order to prove this, we first use condition (5) to rewrite the expression of \(\rho(e|\emptyset, s^*, k) \) in equilibrium, and we obtain

\[
\rho(e|\emptyset, s^*, k) = \frac{4m + 16\alpha(1 - p^*)}{(2 - 3m)(1 - p^{k+1})}.
\]

Therefore,

\[
\frac{d\rho(e|\emptyset, s^*, k)}{dp} = \frac{(k + 1)p^k(4m + 16\alpha(1 - p^*))}{(2 - 3m)(1 - p^{k+1})^2} - \frac{16\alpha}{(2 - 3m)(1 - p^{k+1})} > 0
\]

if and only if

\[
\frac{(k + 1)p^k(4m + 16\alpha(1 - p^*))}{(1 - p^{k+1})} - 16\alpha > 0.
\]

(21)

Note that the equilibrium condition (20) is the same as

\[(2 - 4m + \sigma m)(k + 1)p^k \left(\frac{4m + 16\alpha(1 - p^*)}{(2 - 3m)(1 - p^{k+1})} \right)^2 = 16\alpha,
\]

which implies that

\[
\frac{(k + 1)p^k[4m + 16\alpha(1 - p^*)]}{(2 - 3m)(1 - p^{k+1})} = \frac{16\alpha(2 - 3m)}{(2 - 4m + \sigma m)(4m + 16\alpha(1 - p^*))}.
\]

Using the last equation, we have that inequality (21) is satisfied if and only if:

\[(1 - p^{k+1})(2 - 3m)^2 - (2 - 4m + \sigma m)(4m + 16\alpha(1 - p^*)) > 0,
\]

29
which is always satisfied for every \(\alpha < \alpha^*(k) \). Indeed,

\[
(1 - p^{*k+1})(2 - 3m)^2 - (2 - 4m + \sigma m)(4m + 16\alpha(1 - p^*)) > (2 - 3m) \left((1 - p^{*k+1})(2 - 3m) - (4m + 16\alpha(1 - p^*)) \right),
\]

because \((1 - p^{*k+1})(2 - 3m)^2 - (2 - 4m + \sigma m)(4m + 16\alpha(1 - p^*))\) is decreasing in \(\sigma \). Further,

\[
(2 - 3m) \left((1 - p^{*k+1})(2 - 3m) - (4m + 16\alpha(1 - p^*)) \right) > (2 - 3m) \left((1 - \bar{p}^{*k+1})(2 - 3m) - (4m + 16\alpha(1 - \bar{p}^*)) \right) = 0,
\]

because for all \(\alpha < \alpha^*(k) \) and for all \(p \in [\underline{p}, \bar{p}] \), the LHS of the inequality is decreasing in \(p \), and the last equality follows by the definition of \(\bar{p} \) (see equation (16)).

Proof. Proposition 2 Let \(A = 4m + 16\alpha(1 - p) \), \(B = 2 - 7m - 16\alpha(1 - p) \) and \(C = 2 - 4m + \sigma m \). Recall that in equilibrium

\[
f(p, \sigma(p)) - \alpha = \frac{(k + 1)p^k A^2 C}{(2 - 3m)^2(1 - p^{k+1})} - 16\alpha = 0
\]

\[
\sigma(p) = \frac{Ap^{k+1}}{B(1 - p^{k+1})}.
\]

We start by showing that if \(k \) increases then \(p \) increases, i.e., \(x(m) \) decreases. We first derive the following expressions:

\[
\frac{\partial f(p, \sigma(p))}{\partial k} = \frac{A^2 p^k \left[C + C(k + 1) \ln(p) + (k + 1)m \frac{\partial \sigma(p)}{\partial k} + \frac{2(k + 1)Cp^{k+1}\ln(p)}{(1 - p^{k+1})} \right]}{(2 - 3d)^2(1 - p^{k+1})^2}.
\]

\[
\frac{\partial \sigma(p)}{\partial k} = \frac{Ap^{k+1}}{B(1 - p^{k+1})^2} \ln(p).
\]

It is easy to see that for \(p \) sufficiently low then \(\partial f(p, \sigma(p))/\partial k < 0 \). Therefore, there exists \(\hat{\alpha} > 0 \) such that for all \(\alpha < \hat{\alpha} \), in equilibrium, \(\partial f(p, \sigma(p))/\partial k < 0 \). Since we know that in equilibrium \(\partial f(p, \sigma(p))/\partial p > 0 \), using the implicit function theorem it follows that for all \(\alpha < \hat{\alpha} \), if \(k \) increases then \(p \) increases, i.e., \(x(m) \) decreases.

Next, we show that if \(k \) increases then \(\sigma \) increases. To see this note that:

\[
\frac{d\sigma}{dk} = \frac{\partial f(p, \sigma(p))}{\partial p} \frac{\partial \sigma(p)}{\partial k} - \frac{\partial f(p, \sigma(p))}{\partial k} \frac{\partial \sigma(p)}{\partial p},
\]

30
where
\[
\frac{\partial f(p, \sigma(p))}{\partial p} = \frac{(k + 1)p^{k-1}\left[kCA^2 - 32pAC\alpha + mpA^2\frac{\partial \sigma(p)}{\partial p} + \frac{2CA^2(k+1)p^{k+1}}{(1-p^{k+1})}\right]}{(2 - 3m)^2(1-p^{k+1})^2}
\]
\[
\frac{\partial \sigma(p)}{\partial p} = \frac{A(k + 1)p^k}{B(1 - p^{k+1})^2} - \frac{16\alpha(2 - 3m)p^{k+1}}{B^2(1 - p^{k+1})}.
\]

Using these expressions, it follows that:
\[
\lim_{p \to 0} \frac{d\sigma}{dk} = \lim_{p \to 0} \left[-\frac{(k + 1)CA^3}{B(2 - 3m)^2(1-p^{k+1})^4}p^{2k}\ln(p)\right] = 0^+,
\]
which implies that for low \(\alpha\) (i.e. low \(p\)), an increase in \(k\) increases \(\sigma\).

We finally show that for sufficiently small \(\alpha\),
\[
\Pi(s^*) = \sigma^{*2} + 2\sigma^*(1 - \sigma^*)\pi(s^*|e, m),
\]
is increasing in \(k\). Note that for small \(\alpha\), \(\sigma < 1/2\) and therefore \(\Pi(s^*, k)\) is increasing in \(\sigma\), keeping constant \(\pi(s^*|e, m)\). So, it is sufficient to show that \(\pi(s^*|e, m)\) is increasing in \(k\). Since \(\pi(s^*|e, m) = 1/2 - (1 - \Psi(s^*, k))/8\), it is sufficient to show that \((1 - \Psi(s^*, k))\) is decreasing in \(k\). This follows immediately by equilibrium condition (5). Indeed, we know that if \(k\) increases, then \(x(m)\) decreases (and so the RHS of condition (5) decreases), which implies that in the new equilibrium \((1 - \Psi(s^*, k))\) must decrease. This concludes the proof of the proposition.

Appendix B. Proofs of Section 4. This appendix contains the proofs of Section 4. We also provide an additional result in which we show that equilibria in Proposition 3 are robust to a model in which parties can target political ads to different groups of voters (see Proposition (6) below). With some abuse of notation, we denote by \(i_{j, in}\) the indifferent \(j\) group voter that has sampled only voters belonging to group \(j\), \(j = l, r\); analogously, \(i_{j, out}\) is the indifferent \(j\) group voter that has sampled at least one voter in group \(j'\), where \(j, j' = l, r\) and \(j \neq j'\).

Proof. Proposition 3 We start by considering symmetric pure strategy equilibria. Note that in equilibrium a party never advertise an extremist. Also note that a (pure)
strategy profile in which each party selects a moderate and never advertise cannot
be part of equilibrium; for otherwise, a party, by switching to an extreme candidate,
would win the election with the same probability and would obtain a higher expected
benefit, which contradicts optimality. We are then left with two possible candidates:
(1.) parties select extremists and never advertise and (2.) parties select moderates and
do advertise. We now analyze these two possibilities.

(1.) Consider a strategy profile s^* such that $\sigma = 1$ and $x = 0$. In this case the
utility of party L is $U_L^*(s^*) = -\frac{1}{2} - \frac{3m^2}{2}$. It is easy to check that the best deviation
of party L is to select a moderate and to advertise. Let s_L be such strategy profile.
The utility of party L is then

$$U_L(s_L, s_R^*) = \pi_L(s_L, s_R^* | m, e) \left(1 - \frac{3m^2}{2}\right) - (1 - m) - \alpha$$

We now derive $\pi_L(s_L, s_R^* | m, e)$. First, all group l voters observe that $t_L = m$, and,
regardless of the realization of the sampling, they believe that $t_R = e$. Therefore,
$i_{l, in} = i_{l, out} = \frac{1}{2} + \frac{m}{4}$. Second, all group r voters believe that $t_R = e$, a fraction β always
sample group r voters so that they believe that $t_L = e$, while the remaining group r
voters have sampled at least one voter in group l and therefore they know that $t_L = m$.
Thus, $i_{r, in} = \frac{1}{2}$, while $i_{r, out} = \frac{1}{2} + \frac{m}{4} = i_{l, in}$. Putting together these facts it is easy to
see that $\pi_L(s_L, s_R^* | m, e) = \Pr[\mu \leq i_{l, in}] = \frac{5}{8}$. Hence, s^* is equilibrium if and only if

$$U_L(s_L, s_R^*) = \frac{5}{8} \left(1 - \frac{3m^2}{2}\right) - (1 - m) - \alpha \leq U_L^*(s^*) = -(1 - m)/2$$

which is satisfied if and only if

$$\alpha \geq \frac{2 - 7m}{16} = \bar{\alpha} \quad (22)$$

(2.) Next, consider a strategy profile s^* such that $\sigma = 0$ and $x = 1$. In this case
$U_L^*(s^*) = -\frac{1}{2} - \frac{m}{2} - \alpha$. Suppose that if a l group voter does not observe the ads from L
party she believes that $t_L = e$; analogously for group r voters. It is easy to see that
the best deviation of party L is to select an extremist and never advertise. Let s_L be
such strategy; the utility of party L is
\[
U_L(s_L, s^*_R) = \left(1 - \frac{3m}{2}\right)\left[\pi_L(s_L, s^*_R|e, m) - 1\right]
\]

We now derive $\pi_L(s_L, s^*_R|e, m)$. First, all group l voters observe that party L does not advertise and therefore they believe that $t_L = e$; also, regardless of the sampling, all group l voters believe that $t_R = m$. Hence, $i_{l,in} = i_{l,out} = \frac{1}{2} - \frac{m}{4}$. Second, all group r voters believe that $t_R = m$, a fraction β of group r voters believe that $t_L = m$, while the remaining voters believe that $t_L = e$. Hence, $i_{r,in} = \frac{1}{2}$, while $i_{r,out} = \frac{1}{2} - \frac{m}{4} = i_{l,in}$.

Using these considerations, three facts follow. One, for all $\mu \geq i_{r,in}$ party L never win; two, for all $\mu \leq i_{r,out}$ party L wins with probability 1. Three, for all $\mu \in [i_{r,out}, i_{r,in}]$, total votes for party L are
\[
TV_L = \frac{1}{2} + \frac{1}{2\tau} \left(\frac{1}{2} - \mu\right) - \frac{1}{\tau} \frac{m}{4}
\]
and $TV_L > 1/2$ if and only if
\[
\mu \leq \frac{1}{2} - \frac{m}{4} \frac{1}{1 + \beta} = \mu^*,
\]
where it is easy to check that $\mu^* \in [i_{r,out}, i_{r,in}]$. Combining these three facts we have that
\[
\pi_L(s_L, s^*_R|e, m) = \Pr \left[\mu \leq \frac{1}{2} - \frac{m}{4} \frac{1}{1 + \beta}\right] = \frac{3 + 4\beta}{8(1 + \beta)}
\]
Hence, s^* is equilibrium if and only if
\[
U_L(s_L, s^*_R) = \left(1 - \frac{3m}{2}\right)\left(\frac{3 + 4\beta}{8(1 + \beta)} - 1\right) \leq -\frac{1}{2} - \alpha
\]
which is satisfied if and only if
\[
\alpha \leq \frac{2 - 7m - 4m\beta}{16(1 + \beta)} = \bar{\alpha}(\beta)
\]
(23)
It is easy to verify that $\bar{\alpha}(\beta) < \bar{\alpha}$ and that $\bar{\alpha}(\beta) \geq 0$ iff $\beta \leq (2 - 7m)/(4m)$

We now turn to symmetric mixed strategy equilibria. It is clear that the only candidate is a strategy profile s^* in which each party selects an extremist with probability $\sigma \in (0, 1)$ and advertise only moderates. Randomization implies that a party is
indifferent between selecting an extremist and a moderate, which holds if and only if:

\[\pi_L(s^*|m, e) = \frac{1 - m + 2\alpha}{2 - 3m} \]

We now derive the expression for \(\pi_L(s^*|m, e) \). Suppose \(t_L = m \) and \(t_R = e \). First, a fraction \(\beta \) of group \(l \) voters believe that \(t_L = m \) and that \(t_R = e \) with probability \(\sigma \). The remaining fraction \(1 - \beta \) believes that \(t_L = m \) and that \(t_R = e \). Hence, \(i_{l,in} = \frac{1}{2} + \frac{m}{4}\sigma \), while \(i_{l,out} = \frac{1}{2} + \frac{m}{4} \). Second, all group \(r \) voters believe that \(t_R = e \), a fraction \(\beta \) believes that \(t_L = e \) with probability \(\sigma \) and the remaining group \(r \) voters believe that \(t_L = m \). Hence, \(i_{r,in} = \frac{1}{2} + \frac{m}{4}(1 - \sigma) \), while \(i_{r,out} = \frac{1}{2} + \frac{m}{4} = i_{l,out} \).

Given these observations there are two relevant cases to be considered: (1.) \(\sigma \leq \frac{1}{2} \) and (2.) \(\sigma \geq \frac{1}{2} \).

Case 1. Suppose \(\sigma \leq \frac{1}{2} \); then \(i_{l,in} \leq i_{r,in} < i_{l,out} = i_{r,out} \). Four observations are in order. Observation 1: For all \(\mu \leq i_{l,in} \) party \(L \) wins with probability 1. Observation 2: for all \(\mu \in [i_{l,in}, i_{r,in}] \), total votes of party \(L \) are

\[TV_L = \frac{1}{2} + \frac{1}{2\tau} \left(\frac{1}{2} - \mu \right)(1 + \beta) + \frac{1}{2\tau} \frac{m}{4} \geq 1/2 \]

if and only if

\[\mu \leq \frac{1}{2} + \frac{m}{4} \frac{1}{1 + \beta} = \mu^*_1, \]

where \(\mu^*_1 \geq i_{l,in} \iff \sigma \leq 1/(1 + \beta) \), which follows from \(\sigma \leq 1/2 \); also \(\mu^*_1 \leq i_{r,in} \iff \sigma \leq \beta/(1 + \beta) \). Therefore, \(\forall \mu \in [i_{l,in}, i_{r,in}] \), if \(\sigma \leq \beta/(1 + \beta) \) then party \(L \) wins with probability \(\Pr(\mu \leq \mu^*_1) \); if \(\sigma \geq \beta/(1 + \beta) \) then party \(L \) wins with probability 1. Observation 3: \(\forall \mu \in [i_{r,in}, i_{l,out}] \), total votes of party \(L \) are

\[TV_L = \frac{1}{2} + \frac{1}{2\tau} \left(\frac{1}{2} - \mu \right) + \frac{1}{2\tau} \frac{m}{4} (1 - \beta(1 - \sigma)) \geq 1/2 \]

if and only if

\[\mu \leq \frac{1}{2} + \frac{m}{4} (1 - \beta(1 - \sigma)) = \mu^*_2. \]

Clearly, \(\mu^*_2 \leq i_{l,out} \) and \(\mu^*_2 \geq i_{r,in} \iff \sigma \leq \beta /(1 + \beta) \). So, for all \(\mu \in [i_{r,in}, i_{l,out}] \), if \(\sigma \leq \beta/(1 + \beta) \), party \(L \) never win, while if \(\sigma \geq \beta/(1 + \beta) \), party \(L \) wins with probability
Pr(μ ≤ μ*). Observation 4: ∀μ ≥ iL never win. Combining observations 1-4 it follows that: if σ ≤ β/(1 + β) then πL(m, e|Au) = Pr(μ ≤ 1/2 + \(m \ 1_{1+\beta} \)), while if σ ∈ [β/(1 + β), 1/2] then πL(m, e|Au) = Pr(μ ≤ 1/2 + \(m \ (1 - (1 - \sigma)) \)).

Case 2. Suppose σ ≥ 1/2; then iL, in ≤ iL, out = iL. Here note that ∀μ ≤ iL party L wins with probability 1. In contrast, ∀μ ≥ iL, out party L never win. Finally, ∀μ ∈ [iL, in, iL, out], total votes of party L are

\[TV_L = \frac{1}{2} + \frac{1}{2\tau} \left(\frac{1}{2} - \mu \right) + \frac{1}{2\tau} \frac{m}{4} (1 - \beta(1 - \sigma)) \geq 1/2 \]

if and only if

\[\mu \leq \frac{1}{2} + \frac{m}{4} (1 - \beta(1 - \sigma)) = \mu^*_L, \]

and it is easy to check that μ^*_L ∈ [iL, in, iL, out]. Hence, ∀μ ∈ [iL, in, iL, out], party L wins with probability Pr(μ ≤ μ^*_L). Combining these observations it follows that if σ ∈ [1/2, 1) then πL(Au|m, e) = Pr(μ ≤ \(\frac{1}{2} + \frac{m}{4} (1 - \beta(1 - \sigma)) \)).

By combining case 1 and case 2, it follows that (a) if σ ∈ (0, β/(1 + β)] then πL(Au|m, e) = Pr(μ ≤ \(\frac{1}{2} + \frac{m}{4} (1 - \beta(1 - \sigma)) \)), and (b) If σ ∈ [β/(1 + β), 1) then πL(Au|m, e) = Pr(μ ≤ \(\frac{1}{2} + \frac{m}{4} (1 - \beta(1 - \sigma)) \)).

Next, note that a mixed strategy equilibrium exists only if σ ∈ [β/(1 + β), 1). Indeed, if σ < β/(1 + β), then πL(Au|m, e) = Pr(μ ≤ \(\frac{1}{2} + \frac{m}{4} (1 - \beta(1 - \sigma)) \)), which does not depend on σ. Therefore, equilibrium condition (24) cannot be satisfied generically. Hence, suppose that σ ∈ [β/(1 + β), 1); then πL(Au|m, e) = Pr(μ ≤ \(\frac{1}{2} + \frac{m}{4} (1 - \beta(1 - \sigma)) \)) and equilibrium condition (24) holds if and only if

\[σ^* = 1 - \frac{2 - 7m - 16\alpha}{\beta(2 - 3m)} \quad (25) \]

Note that σ* is increasing in α and if α = \(\alpha \) then σ* = 1. Also if \(\alpha(\beta) \geq 0 \), at α = \(\alpha(\beta) \) we have that σ* = β/(1 + β), while if \(\alpha(\beta) \leq 0 \) then as α goes to 0, σ* goes to 1 - \(\frac{2 - 7m}{\beta(2 - 3m)} \) ≥ β/(1 + β), where the inequality follows from the fact that \(\alpha(\beta) \leq 0 \) (i.e., β < (2 - 7m)/(4m)). This concludes the proof of Proposition (3).

Proof. Proposition 4 It is straightforward to verify that an increase in β, increases the probability that a party selects an extreme candidates. We now show that an
increase in β it increases the ex-ante expected probability that an extremist wins the election. To see this note that:

$$\Pi(s^*) = [\sigma^*]^2 + 2\sigma^*(1 - \sigma^*)\pi(s^*|e,m)$$

and therefore

$$\frac{d\Pi(s^*)}{d\beta} = 2\sigma^* \frac{d\sigma^*}{d\beta} + 2\sigma^*(1 - \sigma^*) \frac{d\pi(s^*|e,m)}{d\beta} + 2\pi(s^*|e,m)(1 - 2\sigma^*) \frac{d\sigma^*}{d\beta}$$

Since at equilibrium $\frac{d\pi(s^*|e,m)}{d\beta} = 0$, it follows that:

$$\frac{d\Pi(s^*)}{d\beta} = 2 \frac{d\sigma^*}{d\beta} (\sigma^* + \pi(s^*|e,m)(1 - 2\sigma^*))$$

$$= 2 \frac{d\sigma^*}{d\beta} (\sigma^*(1 - \pi(s^*|e,m)) + \pi(s^*|e,m)(1 - \sigma^*)) > 0$$

We now allow a party to choose whether to advertise to group l, to group r, to both groups, or not to advertise. Advertising to one group cost α, while advertising to both groups cost 2α. The following proposition shows that the equilibria defined in Proposition 3 are robust to this extension.

Proposition 6 Suppose parties can target advertisement either to group l or group r or to both. The following holds. (I.) If $\alpha > \bar{\alpha}$ there exists an equilibrium where parties select extremists with probability one and they never advertise. (II.) If $\alpha \in (0, \max[0, \alpha(\beta)])$ there exists an equilibrium in which parties select moderates and they only advertise to their closer group of independents. (III.) For every β, there exists a $\alpha^* \in (\max[0, \alpha(\beta)], \bar{\alpha})$, such that if $\alpha \in (\alpha^*, \bar{\alpha})$ in equilibrium parties select extremists with probability σ^* given by equation (7) and they advertise a moderate only to their closer group of independents.

Proof. Proposition ?? Consider strategy s^*: parties select extremists with probability one and they never advertise. From Proposition (3) we know that for all $\alpha > \bar{\alpha}$
the following deviation is not profitable: a party selects a moderate and advertises only to his own group. It is then sufficient to show that this is indeed the best deviation for a party. To see this first note that if party L undertakes this deviation the probability of winning is $\Pr(\mu \leq 1/2 + m/4)$.

Suppose that party L deviates by selecting a moderate and by advertising to group r only. It is easy to check that in this case the probability of winning of party L is lower than $\Pr(\mu \leq 1/2 + m/4)$. Therefore, this deviation is at least as good as the deviation considered above. The other possible deviation is one in which party L selects a moderate and advertise to both groups. It can be checked that the probability of winning under this deviation equals $\Pr(\mu < 1/2 + m/4)$, but since this deviation involves higher costs of advertising, it is dominated by the above deviation.

Consider now the strategy s^* in which parties select moderates and advertise to own group. If $\alpha(\beta) \leq 0$ then Proposition (3) implies that this is not equilibrium. So, assume that $\alpha(\beta) > 0$; Proposition (3) implies that $\forall \alpha \leq \alpha(\beta)$ the following deviation is not profitable: a party selects an extremist and does not advertise. It is also immediate that if a party deviates from s^* by advertising to both groups, then the party will face the same probability of winning as in the postulated strategy but will face an higher costs. So this deviation is not profitable. Hence, we need to check the following deviation s^d: party L selects a moderate and advertises a moderate only to group r voters. Note that s^* and s^d are cost equivalent for party L, but it is easy to see that the probability of winning of party L under s^d are lower than under s^*. Hence, this deviation is not profitable.

We now take up the case of the mixed strategy equilibrium defined in Proposition (3). We already know that for all $\alpha \in (\max[0, \alpha(\beta)], \bar{\alpha})$ there exists a σ defined by equation (7) so that party L (R) is indifferent between selecting an extremist and selecting a moderate and advertise the moderate only to group l (r) voters. Suppose party R follows this strategy. We consider possible deviation of party L.

Deviation 1: consider the following deviation strategy s_L: party L selects a moder-
ate and advertise to group \(r \) only. We first derive \(\pi_L(s_L, s^*_R|m, e) \). So assume that party \(t_R = e \) and \(t_L = m \). Note that a fraction \(\beta \) of group \(l \) voters believe that \(t_L = e \) and that \(t_R = e \) with probability \(\sigma \), while the remaining fraction of group \(l \) voters believe that \(t_L = m \) and \(t_R = e \). Hence, \(i_{l, in} = \frac{1}{2} - \frac{m}{4}(1 - \sigma) \) and \(i_{l, out} = \frac{1}{2} + \frac{m}{4} \). All group \(r \) voters believe that \(t_L = m \) and \(t_R = e \), so that \(i_{r, in} = i_{r, out} = \frac{1}{2} + \frac{m}{4} \). It is now easy to check that \(\pi_L(s_L, s^*_R|m, e) = \Pr(\mu \leq \frac{1}{2} + \frac{m}{4}\frac{1 - \beta(1 - \sigma)}{1 + \beta}) < \pi_L(s^*_L|m, e) = \Pr(\mu \leq \frac{1}{2} + \frac{m}{4}(1 - \beta(1 - \sigma))) \).

Next, we derive \(\pi^d_L(s_L, s^*_R|m, m) \). So assume that \(t_R = t_L = m \). A fraction \(\beta \) of group \(l \) voters believe that \(t_L = e \) and that \(t_R = e \) with probability \(\sigma \). The remaining fraction of group \(l \) voters believe that \(t_L = t_R = m \). Hence \(i_{l, in} = \frac{1}{2} - \frac{m}{4}(1 - \sigma) \) and \(i_{l, out} = \frac{1}{2} \). All group \(r \) voters believe that \(t_L = t_R = m \) and therefore \(i_{r, in} = i_{r, out} = \frac{1}{2} \).

It is now easy to check that \(\pi^d_L(s_L, s^*_R|m, m) \leq 1/2 = \pi_L(s^*_L|m, m) \). Putting together these two facts, it follows that deviation 1 is not profitable.

Deviation 2: consider the following deviation strategy \(s_L \): party \(L \) selects a moderate and advertise to both groups. We first derive \(\pi^d_L(s_L, s^*_R|m, e) \). A fraction \(\beta \) of group \(l \) voters believe that \(t_L = m \) and that \(t_R = e \) with probability \(\sigma \). The remaining fraction believes that \(t_L = m \) and \(t_R = e \). Hence, \(i_{l, in} = \frac{1}{2} + \frac{m}{4}\sigma \) and \(i_{l, out} = \frac{1}{2} + \frac{m}{4} \). All group \(r \) voters believe that \(t_L = m \) and \(t_R = e \); therefore \(i_{r, in} = i_{r, out} = \frac{1}{2} + \frac{m}{4} \). It is now easy to check that \(\pi^d_L(s_L, s^*_R|m, e) = \Pr(\mu \leq \frac{1}{2} + \frac{m}{4}\frac{1 + \beta\sigma}{1 + \beta}) \).

We now derive \(\pi^d_L(s_L, s^*_R|m, m) \). A fraction \(\beta \) of group \(l \) voters believes that \(t_L = m \) and that \(t_R = e \) with probability \(\sigma \). The remaining fraction believe that \(t_L = t_R = m \). Hence, \(i_{l, in} = \frac{1}{2} - \frac{m}{4}\sigma \) and \(i_{l, out} = \frac{1}{2} \). All group \(r \) voters believe that \(t_L = t_R = m \) and therefore \(i_{r, in} = i_{r, out} = \frac{1}{2} \). It is now easy to check that \(\pi^d_L(s_L, s^*_R|m, m) = 1/2 = \pi_L(s^*_L|m, m) \). Using these two facts it follows that deviation 2 is not profitable if and only if

\[
\alpha \geq \sigma \left(1 - \frac{3m}{2} \right) \left[\pi^d_L(m, e) - \pi_L(m, e) \right]
\]

(26)

It is easy to show that there exists a \(\alpha^* \in (\max[0, \alpha(\beta)], \bar{\alpha}) \) such that for all \(\alpha > \alpha^* \) inequality 26 holds.
References

