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The objective of this part is to examine the choice of under uncertainty. We divide 

this chapter in 3 sections. 

The first part begins by developing a formal apparatus for modeling risk. We then 

apply this framework to the study of preferences over risky alternatives. Finally, 

we examine conditions of the preferences that guarantee the existence of a utility 

function that represents these preferences.

In the second part,  we focus on the particular case in which the outcomes are 

monetary payoffs. Obviously, this case is very interesting in the area of finance. In 

this part we present the concept of risk aversion and its measures.

In the last part, we are interested in the comparison of two risky assets in the case 

in  which  we  have  a  limited  knowledge  of  individuals’  preferences.  This 

comparison leads us to the three concepts of stochastic dominance.
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1.1 Expected utility

1.1.1 Description of risky alternatives  

Let us suppose that an agent faces a choice among a number of risky alternatives. 

Each risky alternative may result in one of a number of possible outcomes, but 

which outcome will occur is uncertain at the time that he must make his choice. 

Notation:

X = The set of all possible outcomes.

Examples:

X= A set of consumption bundles.

X= A set of monetary payoffs.

To simplify, in this part we make the following assumptions:

1. The number of possible outcomes of  X is finite.

2. The  probabilities  of  the  different  outcomes  in  a  risky  alternative  are 

objectively known.

The concept used to represent a risky alternative is the lottery.

Definition:

A simple lottery L is a list  ( )nn ppxxxL ,...,;,...,, 121= , where 

i) niXxi ,,1  , =∈  

ii) 0≥ip  and  1
1

=∑
=

n

i
ip ,  where  ip  is  interpreted as the probability of 

outcome ix  occurring.

Generally to represent a lottery, we use a tree
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Notice that in a simple lottery the outcomes are certain. A more general concept, a 

compound  lottery,  allows  the  outcomes  of  a  lottery  themselves  to  be  simple 

lotteries.

Definition: 

Given K simple lotteries kL , Kk ,...1= , and probabilities 0≥kα   with 1
1

=∑
=

K

k
kα , 

the compound lottery ( )KKLL αα ,...;,..., 11  is the risky alternative that yields the 

simple lottery kL  with probability kα , Kk ,...1= .

For any compound lottery, we can calculate its  reduced lottery that is a simple 

lottery that generates the same distribution over the final outcomes. 

Exercise: (Illustration of the derivation of a reduced lottery)
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1.1. 2 Preferences over lotteries

Having  introduced  a  way  to  model  risky  alternatives,  we  now  study  the 

preferences over them corresponding to a fixed agent. In this part we assume that 

for  any  risky  alternative,  only  the  reduced  lottery  over  final  outcomes  is  of 

relevance to the agent. This means that given two different compound lotteries 

with the same reduced lottery, the decision maker is indifferent between them.

Let  denote the set of all simple lotteries over the set of outcomes X. According 

to the previous assumption we assume that the agent’s preferences (≳) are defined 

on . 

We make the following assumptions 

A.1 The decision maker has a preference relation ≳ on  . This means that ≳ 

satisfy the following properties:

1. ≳ is reflexive (  ,∈∀L L≳L)

2. ≳ is complete (  ,, 21 ∈∀ LL we either have L1≳L2  or L2≳L1 )

3. ≳ is transitive  (  ,,, 321 ∈∀ LLL such that L1≳L2  and L2≳L3 , then L1≳L3)

A.2 The Archimedian Axiom:

 ,,, 321 ∈∀ LLL such that L1≻L2 ≻L3 , then there exists ( )1,0, ∈βα  such that 

31 )1( LL αα −+ ≻ L2 ≻ 31 )1( LL ββ −+

Economic intuition:

As  L1≻L2,  no matter  how bad  L3 is,  we can combine  L1 and  L3 with  α  large 

enough (near to one) such that 31 )1( LL αα −+ ≻ L2. 

As  L2≻L3, no matter how good  L1 is, we can combine  L1 and  L3 with  β  small 

enough (near to zero) such that L2 ≻ 31 )1( LL ββ −+ . 

A.3 The Independence Axiom:
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 ,,, 321 ∈∀ LLL and ]1,0(∈α  

L1≻L2  if and only if 31 )1( LL αα −+ ≻ 32 )1( LL αα −+

Economic intuition:

If we combine two lotteries,  L1 and L2, with a third lottery in the same way, the 

preference ordering of the resulting lotteries does not depend on the third lottery.

1.1.3 The expected utility theorem

THE EXPECTED UTILITY THEOREM

Suppose an agent whose preferences (≳) are defined on  . Then, 

1)                                            (≳) satisfy  (A.1)-(A.3)



There exists ℜ→Xu :   such that 

L1≳L2
⇔

∑∑
==

≥
m

j
jj

n

i
ii xupxup

1

22

1

11 )()(
, where 

( )11
1

11
2

1
11 ,...,;,...,, nn ppxxxL =

 and

                                                            ( )22
1

22
2

2
12 ,...,;,...,, mm ppxxxL =

2) u and v are  two functions that represent these preferences 



v=au+b, where ℜ∈ba, , and a>0

Comments related to this theorem:

1. Consider an individual whose preferences satisfy the previous hypothesis, then 

he has a utility function that represents her preferences, i.e.,

There exists ℜ→:U   such that   L1≳L2 ⇔ U(L1)≥  U(L2), for all L1,L2.

2. This theorem also states that this utility function  ℜ→:U  has a form of a 

expected utility function. 

For any  ( )nn ppxxxL ,...,;,...,, 121=
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U(L)=∑
=

n

i
ii xup

1

)( , where ℜ→Xu : .

Notice that any certain outcome has a utility level and the utility of a lottery is 

measured computing its expected utility level.

3. This utility function is unique, except positive linear transformations.

Notation:

U : the von-Neumann-Morgenstern expected utility function

u:   the Bernoulli utility function
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1.2 Monetary lotteries and risk aversion

In this section, we focus on risky alternatives whose outcomes are amounts of 

money. 

In Economy, generally we consider money as a continuous variable. Until now we 

have stated the expected utility theorem assuming a finite number of outcomes. 

However, this theory can be extended to the case of an infinite domain. Next, we 

briefly discuss this extension.

1.2.1 Monetary lotteries and the expected utility framework

Notation:

x = amounts of money (continuous variable)

We  can  describe  a  monetary  lottery  by  means  of  a  cumulative  distribution 

function, that is, 

[ ]1,0: →ℜF

)~()( xxpxF <=

Therefore, we will take the lottery space to be the set of all distribution functions 

over nonnegative amounts of money ( or more general [ )∞,a )

Expected utility theorem:

Consider an agent whose preferences  ≳ over    satisfy the assumptions of the 

theorem, then  there exists a utility function U that represents these preferences. 

Moreover, U has the form of an expected utility function, that is, 

)) xE(u(xdFxuU(F)Fu ~)()(       tq(.)  ==∀∃ ∫ .

In addition,

u and v are  two functions that represent these preferences
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v=au+b, where ℜ∈ba, , and a>0

Remark: It is important to distinguish U and u. 

 U()  is  defined  on the  space  of  simple  lotteries  and  u()  is  defined  on sure 

amounts of money.

 U : the von-Neumann-Morgenstern expected utility function

u: the Bernoulli utility function

Hypothesis:  We will assume that u() is strictly increasing and differentiable.

1.2.2 Risk aversion

We begin with a definition of risk aversion very general, in the sense that it does 

not require the expected utility formulation.

Definition: 

An individual is risk averse if for any monetary lottery F , the lottery that yields 

∫ )(xxdF  with certainty is at least as good as the lottery F .

An  individual  is risk  neutral if  for  any  monetary  lottery F ,  the  agent  is 

indifferent  between  the  lottery  that  yields  ∫ )(xxdF  with  certainty  and  the 

monetary lottery F .

An individual  is  strictly  risk averse if  for  any monetary  lottery F ,  the agent 

strictly prefers the lottery that yields ∫ )(xxdF  with certainty than the lottery F .1

1 In this assumption we assume that the lottery F represents a risky alternative. Otherwise, the 
individual is indifferent between these two lotteries.
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Suppose that the decision maker has preferences that  admit an expected utility 

function representation. Let u(.) be a Bernoulli utility function corresponding to 

these preferences.

Definition:

An individual is risk averse if and only if 

FxxdFuxdFxu  allfor  ),)(()()( ∫∫ ≤ ( Jensen’s Inequality)

or equivalently , 

))~(())~(( xEuxuE ≤ x~  variablerandom allfor .

An individual is risk neutral if and only if 

, allfor  ),)(()()( FxxdFuxdFxu ∫∫ =

or equivalently , 

))~(())~(( xEuxuE = x~  variablerandom allfor .

An individual is (strictly) risk averse if and only if 

FxxdFuxdFxu  allfor  ),)(()()( ∫∫ <

or equivalently , 

))~(())~(( xEuxuE < x~  variablerandom allfor .

Proposition:

Suppose a decision maker with a Bernoulli utility function ( )⋅u . Then,

( )⋅u  exhibits (strict) risk aversion  ⇔  ( )⋅u  is (strictly) concave

Proof:

⇒We have to proof that 

21 , xx∀  and [ ]0,1 ∈∀α  ( ) ( ) ( )2121 )1()1( xuxuxxu αααα −+≥−+ .
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Consider the following monetary lottery:

 

Since Jensen’s inequality holds for all the monetary lotteries, in particular for the 

previous one.

))~(())~(( xEuxuE ≤

Now, we develop both sides of this inequality 

( ) ( )21 )1())~(( xuxuxuE αα −+=

( )21 )1())~(( xxuxEu αα −+=

Therefore, the previous inequality can be written as

( ) ( ) ( )2121 )1()1( xxuxuxu αααα −+≤−+  .

Q.E.D.

⇐  Suppose that u() is concave, then  

))~())(~(('))~((           xExxEuxEuu(x)x −+≤∀

⇓

))~(~))(~(('))~((~       xExxEuxEu)xu( −+≤

                                                       ⇓ (Taking expected values in both 

                                                       sides)

))~(())~(( xEuxuE ≤

Q.E.D.
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Next we introduce two concepts related to risk aversion.

Consider a risk averse agent, with a Bernoulli utility function u(.) and an initial 

wealth 0W . Let z~  denote the outcome of a gamble. By risk aversion, we have that 

the individual prefers )~(zE  to z~ , that is 

))~(())~(( 00 zEWuzWuE +≤+ .

This inequality tells us that to avoid the risk the individual is willing to pay. The 

maximum amount  of money that  the individual  is  willing to  pay is  called the 

Pratt’s risk premium or insurance risk premium.

Definition: 

Given a decision maker with a Bernoulli utility function  u() and a initial wealth 

0W ,  the  Pratt’s  risk premium or  insurance risk premium  of  z~  is  a certain 

amount, denoted by )~(zΠ , such that 

))~()~(())~(( 00 zzEWuzWuE Π−+=+ .

The certain amount )~()~(0 zzEW Π−+  is called certainty equivalent of z~ , since 

it is the amount of money for which the individual is indifferent between z~  and 

this certain amount.

Example:  Let zWx ~~
0 += .  Suppose  that  it  takes  two  values  21  and xx equally 

likely.
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The following example illustrates the use of the risk aversion concept.

Example: Demand for a risky asset

Consider an individual that wants to invest an initial wealth 0W  in financial assets. 
This individual has a Bernoulli utility function, u, that holds 0'>u  and 0'' <u .

Suppose that there exist two assets:

The investor’s problem consists in 

( )( )
0

,

    ..

~
   

WB  Ats

ARBRuEMax f
BA

=+

+

where

A: quantity invested in the risky asset

B: quantity invested in the riskless asset.

We study this problem assuming that .0≥A  It is important to point out that

1) The  fact  that  we do  not  allow  A<0 means  that  we are  assuming  that  the 
investor  cannot  sell  an  asset  that  he  does  not  own  (“short-selling 
constraints”).

2) The fact that A may be greater than 0W  means that the investor may borrow in 
the riskless asset.

Since  ,0WBA =+  then  .0 AWB −=  Substituting  this  expression,  the previous 
individual’s choice problem can be reformulated as:

( )( )( )ARRWRuEMax ff
A

−+ ~
   0 .

Notation: ( )( )( ).~
  )( 0 ARRWRuEAV ff −+=

Property: V  is a strictly concave function.

Derivating with respect to A, we have 
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( )( )( )( )fff RRARRWRuEAV −−+= ~~
'  )(' 0

and

( )( )( )( ) 0
~~

''  )(''
2

0 <−−+= fff RRARRWRuEAV

                     -                 +

 

We distinguish 3 cases:

1) V’(A)>0, 0≥∀A .

In this case V is strictly increasing →A finite solution does not exist.

Example:

If fRR >~ →  V’(A)>0

Economic Intuition:

If fRR >~
, then the investor will borrow in the riskless asset and will invest all in 

the risky asset. Since there is no restriction on the borrowing level, the investor 
will borrow an infinite quantity to obtain infinite profits.

2) V’(0) ≤ 0

If  V’(0) ≤ 0→  V’(A)<0, 0>∀A →V is strictly decreasing in A→ 0* =A

Notice that V’(0)= ( )( )( ) ( ) ( )( )ffff RREWRuRRWRuE −=− ~
'

~
'  00 . Therefore

V’(0) ≤ 0 ↔ ( ) fRRE ≤~
  

Intuition:

If the expected return of the risky asset is smaller than the return of the riskless 
asset, a risk averse agent will not invest in the risky asset.

3) From the previous two cases, we know that 0* >A  and *A  finite implies that 

( ) fRRE >~
   and fRR >~

 does not hold.

Conclusion:

A risk averse agent will invest in a risky asset   ↔ ( ) fRRE >~
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1.2.3 Measures of Risk Aversion

Now we try to measure the extent of risk aversion. We begin with the most used 

measure of risk aversion which is the coefficient of absolute risk aversion (also 

called the Arrow-Pratt’s coefficient)

The Coefficient of Absolute Risk Aversion

Motivation of the coefficient of absolute risk aversion:

Notice that  risk aversion is equivalent  to the concavity of  u( ),  that  is,  u’’≤ 0. 

Therefore,  it  seems  logical  to  start  considering  one  possible  measure:  u’’. 

However,  this  is  not  an adequate  measure because is  not  invariant  to  positive 

linear  transformations.  To  make  it  invariant,  the  simplest  modification  is  to 

normalize with u’.

Definition:

Given a Bernoulli utility function u( ), the coefficient of absolute risk aversion 

at x is defined as 

)('

)(''
)(

xu

xu
xRA −= .

Comments of this expression:

 This measure is invariant to linear transformations.

 The sign minus makes the expression be positive when u() is increasing and 

concave.

Next, we use this measure in two comparative statics exercises.

1) Comparison of risk attitudes across individuals with different utility functions

2) Comparison of risk attitudes for one individual at different levels of wealth.
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Comparison across individuals

Consider two individuals, individual 1 and individual 2, with two Bernoulli utility 

functions 1u  and 2u , respectively, such that: 

1) 0'1 >u and 0'2 >u , 

2) 0''1 <u  and 0''2 <u .

Next, we want to prove that the coefficient of absolute risk aversion is an effective 

measure, that is, if individual 1 is more risk averse than individual 2, then it holds 

)()( 21 xRxR AA ≥ , x∀ , and vice versa, where 

.2,1 ,
)('

)(''
)( =−= i

xu

xu
xR

i

ii
A .

Notice that individual 1 is more risk averse than individual 2 



∃  G(.),  strictly  increasing  and  concave  such  that  ))(()( 21 xuGxu =  (“u1  is 

more concave than u2”).

Therefore, we want to show 

Lemma 1:

∃  G(.), strictly increasing and concave such that ))(()( 21 xuGxu =

                                                                                              ⇔ )()( 21 xRxR AA ≥ , x∀

⇒  Suppose that ))(()( 21 xuGxu = . Then ,

)('))((')(' 221 xuxuGxu =  and 

( ) )(''))((')('))(('')('' 22
2

221 xuxuGxuxuGxu += .

Therefore, 

( )
)('))(('

)(''))((')('))((''

)('

)(''
)(

22

22
2

22

1

11

xuxuG

xuxuGxuxuG

xu

xu
xRA

+−=−=  =

=
( )

)(
)('

)(''

)('))(('

)(''))(('

)('))(('

)('))(('' 2

2

2

22

22

22

2
22 xR

xu

xu

xuxuG

xuxuG

xuxuG

xuxuG
A=−≥−−  (*)
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⇐  Now we assume that )()( 21 xRxR AA ≥ , x∀ .

Notice that since 1u  and  2u  are strictly increasing, it is true that exits G(.) such 

that ))(()( 21 xuGxu = .  (Notice  that 1
21

−= uuG    and  it  is  differentiable). 

Therefore, )('))((')(' 221 xuxuGxu = , which implies that G’>0. 

Moreover, using (*), we know that 

)(1 xRA  =
( )

)(
)('))(('

)('))(('' 2

22

2
22 xR

xuxuG

xuxuG
A+− .

Using  the  fact  that  )()( 21 xRxR AA ≥ ,  the  previous  equality  tells  us  that 

( )
0

)('))(('

)('))((''

22

2
22 ≥−

xuxuG

xuxuG
, which implies that   0))(('' 2 ≤xuG  because u2 and G 

are strictly increasing functions.

Note: 

The relation more-risk averse-than relation is a partial ordering of Bernoulli utility 

functions, since it is not complete. Typically, given two Bernoulli utility 

functions )()( 21 xRxR AA ≥ at some x, but the contrary inequality holds for 

other levels.

Lemma 2:

Consider two individuals with strictly increasing and strictly concave Bernoulli 

utility functions 1u  and 2u , and with identical initial wealth 0W . Then 

)()( 21 xRxR AA ≥ x∀ ⇔ )~()~( 21 zz Π≥Π z~∀

Proof:  By Lemma 1, it suffices to show

∃  G(.) strictly increasing and concave such that ))(()( 21 xuGxu =

                                                                                              ⇔ )~()~( 21 zz Π≥Π z~∀

⇒  Using the definition of the Pratt’s risk premium for the individual 1, we have 

=+≤+=+=Π−+ )))~((()))~((())~(())~()~(( 020201101 zWuEGzWuGEzWuEzzEWu

( ) ))~()~(())~()~(( 201202 zzEWuzzEWuG Π−+=Π−+
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Therefore, 

≤Π−+ ))~()~(( 101 zzEWu ))~()~(( 201 zzEWu Π−+ .

Using the fact that u1  is strictly increasing , this inequality implies that 

≤Π−+ )~()~( 10 zzEW )~()~( 20 zzEW Π−+ ,

or equivalently, )~()~( 21 zz Π≥Π .

⇐  Notice that since  1u  and  2u  are strictly increasing, it is true that exits G(.) 

such  that ))(()( 21 xuGxu = (Notice  that  1
21

−= uuG   and  it  is  differentiable). 

Therefore, )('))((')(' 221 xuxuGxu = , which implies that G’>0. 

To show the concavity of G, we will prove Jensen’s inequality, that is,

))~(())~(( xEGxGE ≤ , x~∀ .

Fix x~ . Then there exists z~  such that )~(~
02 zWux += . Therefore,

( )( ) ( )( ) =+=+= zWuEzWuGExGE ~)~())~(( 0102 ≤Π−+ ))~()~(( 101 zzEWu

( ) ( )( )( ) ( )( )xEGzWuEGzzEWuGzzEWu ~~))~()~(())~()~(( 02202201 =+=Π−+=Π−+

Comparison across wealth levels

Typically,  richer  people  are  more  willing  to  accept  risk  than  poorer  people. 

Although this might be due to differences in utility functions across people, it is 

more likely that this is due to differences in the wealth levels. Then, the way to 

formalize this risk attitude is to assume that )(xRA is a decreasing function of x.

Lemma:

)(xRA is a decreasing function of x  0''' >⇒ u
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The Coefficient of Relative Risk Aversion

To understand the concept of relative risk aversion, it is important to point out that 

the concept of absolute risk aversion is used to compare attitudes toward risky 

alternatives whose outcomes are absolute gains or absolute losses. But sometimes 

we consider risky alternatives whose outcomes are percentage gains or losses of 

current  wealth.  In  this  case,  we  measure  the  risk  aversion  by  means  of  the 

coefficient of relative risk aversion.

Definition:

Given a Bernoulli utility function u( ), the coefficient of relative risk aversion at 

x is defined as 

xxRx
xu

xu
xR AR )(

)('

)(''
)( =−= .

Lemma(Relationship between the two coefficients of risk aversion)

 
Consider an individual with a strictly increasing and strictly concave Bernoulli 
utility function u . Then 

00 <⇒≤
dx

dR

dx

dR AR .

Proof:  Directly follows from )()()( xRx
dx

dR
x

dx

dR
A

AR += .
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1.2.4 Risk aversion and portfolio selection

Consider  again  the  portfolio  selection  problem  for  an  agent  with  a  strictly 
increasing and strictly concave Bernoulli  utility function. Moreover we assume 

that ( ) fRRE >~
. Then

( )( )( )ARRWRuEMax ff
A

−+ ~
   0 .

F.O.C:                              ( )( )( )( ) 0
~~

' 0 =−−+ fff RRARRWRuE

S.O.C:                              ( )( )( )( ) 0
~~

''
2

0 <−−+ fff RRARRWRuE

Next, we perform  some comparative statics exercises.

1) Comparison of the investment in the risky asset of two agents who differ in 
their risk attitude. 

2) Comparison of the investment in the risky asset of an agent with two distinct 
initial wealth levels. 

1) Consider two individuals with strictly increasing and strictly concave Bernoulli 
utility functions 1u  and 2u , and with identical initial wealth 0W .

Proposition 1:

Let iA be the investment in risky asset of agent i, i=1,2. Then,

)()( 21 xRxR AA ≥ x∀ 21 AA ≤⇒

(If individual 1 is more risk averse than individual 2, then the quantity invested in 
the risky asset of agent 1 is smaller than the one of agent 2)
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2) Now, we are interested in studying how vary the investment in the risky asset 
of an agent when her initial wealth varies. 

Proposition 2: 

0 0)(
0

>⇒∀<
dW

dA
xx

dx

dRA

0  0)(
0

=⇒∀=
dW

dA
xx

dx

dRA

0 0)(
0

<⇒∀>
dW

dA
xx

dx

dRA

Suppose that an individual has a Bernoulli utility function that exhibits decreasing 
absolute risk aversion then if the agent becomes richer then he will invest more in 
the risky asset.
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Proposition 3: 

Let  
0W

A
a i=  be the proportion of the initial  wealth  invested in the risky asset. 

Then,

0 0)(
0

>⇒∀<
dW

da
xx

dx

dRR

0  0)(
0

=⇒∀=
dW

da
xx

dx

dRR

0 0)(
0

<⇒∀>
dW

da
xx

dx

dRR

Suppose that an individual has a Bernoulli utility function that exhibits decreasing 
relative risk aversion then if the agent becomes richer then the proportion of the 
initial wealth invested in the risky asset increases.
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1.3 Stochastic dominance

Suppose that there are two risky assets. The following question is addressed in 

this part:

Under  what  conditions  can  we say  that  an  individual  will  prefer  one  asset  to 

another when the only information we have about preferences is that the utility 

function is increasing or is concave? To answer this question we introduce the 

concepts of stochastic dominance that are useful to compare random variables.

1.3.1 First degree stochastic dominance

Definition:

x~ ≳ y~      ⇔     ( )( ) ( )( ) ~~   continuous and increasing  (.) yuExuEu ≥∀ .
  FDSD

Remark: 

We ask continuity in order to take expectations. We do not ask differentiability 

because  a  function  that  is  continuous  and  increasing  is  differentiable  almost 

everywhere.

Property:

x~ ≳ y~      ⇒     ( ) ( ) ~~ yExE ≥
  FDSD

Remark: 

This property is useful in the sense that if we have ( ) ( ) ~~ yExE < , then x~ ≳ y~  
                                                                                                                    FDSD
Proof:

Consider u(z)=z.
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The opposite implication is not true in general. A counter-example is the 
following:

Characterizations:

Let ( ) ( )⋅⋅ yx FF  and  denote the cumulative distribution of  x~  and y~ , respectively. 

1. x~ ≳ y~      ⇔     ( ) ( ) [ ]a,bzFzF yx ∈∀≤ z   ,  .
     FDSD

Intuition:

Proof:
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2. x~ ≳ y~      ⇔ y~ d

= ε~~ +x , with 0~ ≤ε  .
     FDSD

Proof:
⇒  This part is omitted because is very technical.
⇐ ( )( ) ( )( ) ( )( )xuExuEyuE ~~~~ ≤+= ε

1.3.2 Second degree stochastic dominance

Definition:

                   

Properties:

Proof:

In particular, 

( ) ( )
   

 ~~ )( yExEzzu ≥⇒=

( ) ( ) ( ) ( )
   

~~  ~~)( yExEyExEzzu ≤⇒−≥−⇒−=

( ) ( ) ( ) ( ) ( )
   

~var~var  ~var~var)~()( 2 yxyxzEzzu ≤⇒−≥−⇒−−=

The opposite implication is not true. In the Laffont’s book there is a numerical 
counter-example:
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x~ ≳ y~  ⇔ ( )( ) ( )( )
   set) countable aon (except 

 ~~  continuous is derivativefirst   whoseconcave  (.) yuExuEu ≥∀
.

 

x~ ≳ y~  ≡  y~  is riskier than  x~  in the Rothschild-Stiglitz sense
 SDSDS

≳  
SDSD

x~ ≳ y~  ⇔ ( )( ) ( )( )
   set) countable aon (except 

 ~~  continuous is derivativefirst   whoseconcave  (.) yuExuEu ≥∀
.

 

( ) ( )yExE ~~ =⇒



Characterizations:

Let ( ) ( )⋅⋅ yx FF  and  denote the cumulative distribution of  x~  and y~ , respectively. 

1. x~ ≳ y~      ⇔     i) ( ) ( )( ) [ ]a,b,dzzF zF
t

a yx ∈∀≤−∫ t   0 .

     SDSD                  ii) ( ) ( )( ) 0=−∫
b

a yx dzzF zF

Intuition:
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Proof:
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2. x~ ≳ y~      ⇔ y~ d

= ε~~ +x , with ( ) 0~|~ =xE ε  .
     SDSD

y~  is called a mean-preserving spread of x~ .

Intuition:

(If you add noise the new density is more disperse)

Proof:
⇒  This part is omitted because is very technical.
⇐

( )( ) ( )( ) ( )( )( ) ( )( )( ) ( )( ) ( )( )xuExuExxEuExxuEExuEyuE
xxx

~~~|~~~|~~~~~
~~~~~ ==+≤+=+= εεε εε

1.3.3 Second degree stochastic monotonic dominance

Definition:

x~ ≳ y~      ⇔     ( )( ) ( )( ) ~~   concave and increasing  (.) yuExuEu ≥∀ .
  SDSMD

Property:

x~ ≳ y~      ⇒     ( ) ( ) ~~ yExE ≥
 SDSMD

Characterizations:

Let ( ) ( )⋅⋅ yx FF  and  denote the cumulative distribution of  x~  and y~ , respectively. 

1. x~ ≳ y~      ⇔     i) ( ) ( )( ) [ ]a,b,dzzF zF
t

a yx ∈∀≤−∫ t   0 .

     SDSMD                  ii) ( ) ( )( ) 0≤−∫
b

a yx dzzF zF

2. x~ ≳ y~      ⇔ y~ d

= ε~~ +x , with ( ) 0~|~ ≤xE ε  .
     SDSMD
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Application of the concept of stochastic dominance to the simplest portfolio 

selection problem (Rothschild and Stiglitz (1971))

Consider a risk averse investor with an initial wealth W0 to be invested in a risky 

asset, asset 1, with a gross return 1

~
R , and a riskless asset  with a gross return fR . 

Let A1 denote the optimal amount invested in the risky asset 1. Suppose that A1 is 

characterized by the FOC, that is

( )( )( )( ) 0
~~

' 1110 =−−+ fff RRARRWRuE .

Imagine now the following situation. There exists another risky asset, asset 2, that 

is riskier than asset 1 in the Rothschild and Stiglitz sense, 1

~
R ≳ 2

~
R .

                                                                                              SDSD

Question: 

If the same individual can invest in the risky asset 2 and the riskless asset, is he 

going to invest less in the risky asset because now the risky asset is more risky?

Let A2 denote the optimal amount invested in the risky asset 2. Suppose that A2 is 

characterized by the FOC, that is

( )( )( )( ) 0
~~

' 2220 =−−+ fff RRARRWRuE .

Notice that a sufficient condition for having A2 ≤  A1 is 

( )( )( )( ) ( )( )( )( )ffffff RRARRWRuERRARRWRuE −−+=≤−−+ 22202120

~~
'0

~~
' .

Let ( )( )( )fff RxARxWRuxg −−+= 10')( . If )(xg  is concave, then this inequality 

holds. 

Exercise: Prove  that  ( ) ( ) ( )
0 and 0,1 ≤≥≤

dx

xdR

dx

xdR
xR AR

R  implies  that  g  is 

concave.
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A utility function that satisfies the tree conditions is 

( ) .10   with , <<= σ
σ

σz
zu
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