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Computation versus Simulation

Computation

Find solutions to a problem using
computer techniques and/or
algorithms

“Black Box”

The FINAL RESULT is
important

Concern on efficiency,
complexity, convergence, ..

Simulation

Study the behavior of a system
using computer simulations to
emulate its components

“Crystal Box”

The WHOLE PROCESS is
important

Concern on complexity,
convergence, adequateness
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Baking a Pie

Mixing Flour, Eggs, and Sugar and baking it you get more than
a heated dough

The Market

“Mixing” Buyers, Sellers, and Goods and allowing for
interrelations (market) you get more than busy wandering
agents
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All Agents behave strategically

SELLERS offer homogeneous goods that differ on some
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Genetic Algorithms: Concept

Genetic Algorithms

Class of computer routines developed by Holland for
optimization in domains with both complicated search spaces
and objective functions with non-linearities, discontinuities and
high dimensionality

Genetic Algorithm techniques have been broadly used to
simulate the evolution of agent’s behavior
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Genetic Algorithms: Schema

Population at
time t

01100110

10011011

00100101

00011011

Initial Population

Population at
time t + 0.5

00011011

01100110

00100101

10011011

Reorder
According to
performance

Population at
time t + 1

00011011

00111011

00101001

01100111

Operators

Replication,
Crossover,
Mutation
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Population at
time t + 0.5
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Population at
time t + 0.5

00011011

01100110

00100101

10011011

Parents

0001|1011

0010|0101

Offspring
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Finite Automata

Always Cooperate

 0

     1, 0

Always Defect

 1

     1, 0

Tit for Tat

 1 0
    1

     1      0

  0
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Automata Encoding

Automata (strategies) need to be encoded as 0’s and 1’s

Tit for Tat

 1 0
    1

     1      0

  0

Might be encoded as ...

0

Initial state (state 0)
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Automata Encoding

Automata (strategies) need to be encoded as 0’s and 1’s

Tit for Tat

 1 0
    1

     1      0
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State 0: What to do at this state (COOPERATE)
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Automata (strategies) need to be encoded as 0’s and 1’s
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State 0: Where to go if my opponent COOPERATES (state 0)
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Automata (strategies) need to be encoded as 0’s and 1’s

Tit for Tat

 1 0
    1

     1      0

  0

Might be encoded as ...

00011

State 1: What to do at this state (DEFECT)
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Automata Encoding

Automata (strategies) need to be encoded as 0’s and 1’s
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Automata Encoding

Automata (strategies) need to be encoded as 0’s and 1’s

Tit for Tat

 1 0
    1

     1      0

  0

 0 1
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Might be encoded as ...
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Tit for Tat Encoded in two different ways !!
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Canonical Crossover oddities

With this representation, the standard crossover operator poses
two problems:

What is the interpretation ?

Missleading behavior:
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Canonical Crossover oddities: An Example

Two “Always Cooperate” strategies are selected for crossover.
The “cut point” is right after the first bit

0 | 0 0 0 1 1 1
1 | 1 0 0 0 1 1

The outcome of the crossover will be ...

0 | 1 0 0 0 1 1
1 | 0 0 0 1 1 1

Two “Always Defect” strategies !!!
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Modified Crossover: Partial Imitation

Partial Imitation Crossover
1 Randomly generate a history of a given length. For

instance 0010.
2 Determine the move that each of the two parents would

make given the sequence of inputs described by the
history generated.

3 Form two new automata that reproduce the two parents
but “switching” the move reported in step 2. Hence, the
first new automaton will use the move reported by the
second automaton if the sequence of inputs it gets is the
one described by the history considered and vice versa.

Xavier Vilà Genetic Algorithms and Game Theory
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but “switching” the move reported in step 2. Hence, the
first new automaton will use the move reported by the
second automaton if the sequence of inputs it gets is the
one described by the history considered and vice versa.
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Canonical Mutation oddities

Canonical Mutation

In order to complete the population at time t− 1, each “bit”
switches its value according to some probability p. It turns out
that this induces a non-uniform distribution across states

01 →


00 (1− p)p
01 (1− p)2

10 p2

11 (1− p)p
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Modified Mutation

This can be fixed easily making “statewise” mutations

01 →


00 p

3
01 (1− p)
10 p

3
11 p

3
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The Repeated Prisoners’ Dilemma

Parameters

Size of population: 100

Number of Generations: 5000

Number of Rounds: from 10 to 250

Probability of Mutation: from 0.00 to 0.02 (step 0.001)

Four different crossovers and NO Crossover

Automata of size 4
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Different Crossovers

Fifty-Fifty Crossover

Randomly select two parents (as in the “canonical crossover”)
Then each “locus” of the new children will have 50% probability
of coming from each of the parents

Replica Crossover

Randomly select two parents (as in the “canonical crossover”)
Then each children will be a exact replica of each parent
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The Repeated Prisoners’ Dilemma

C D
C 3,3 0,5
D 5,0 1,1
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Interpretation

The Repeated Prisoners’ Dilemma

C D
C 3,3 0,5
D 5,0 1,1

Consider only tree possible strategies

Always Coperate: C

Always Defect: D

Tit for Tat: T
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Interpretation

Play the Prisoners’ Dilemma for R rounds. The results will be
as in the table below

C D T
C 3R 0 3R
D 5R R 5 + (R− 1)
T 3R 0 + (R− 1) 3R

Represented by the Matrix

A =

 3R 0 3R
5R R 5 + (R− 1)
3R 0 + (R− 1) 3R
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Interpretation

Let pt the vector consisting of the proportions of each strategy
in the population at time t

pt =

 pt(C)
pt(D)
pt(T )



Then, the expected payoff of strategy s ∈ {C,D, T} at time t is
the product of the s− th row of A and pt:

Et(s) = As.pt
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Interpretation

Consider the replicator dynamics to represent the evolution of
strategies:

pt+1(s) = pt(s)
As · pt

pT
t ·A · pt

s ∈ {C,D, T}

The change in the proportion of each strategy is proportional to
its performance (numerator) relative to the average
performance (denominator)
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Buyers and Sellers

Sellers

Two SELLERS offering the same good compete repeatedly in
some attribute (price in this example)

Buyers

m BUYERS Look for the best attribute and shop from the
corresponding SELLER. In the case the two SELLERS offer the
same attribute, BUYERS can decide to shop from the same
SELLER as before (loyalty) or decide randomly

Xavier Vilà Genetic Algorithms and Game Theory



Motivation
Genetic Algorithms

Application: Imperfect Competition
Summary

The Model
The Deterministic Approach
The Simulation Approach

Buyers and Sellers

Sellers

Two SELLERS offering the same good compete repeatedly in
some attribute (price in this example)

Buyers

m BUYERS Look for the best attribute and shop from the
corresponding SELLER. In the case the two SELLERS offer the
same attribute, BUYERS can decide to shop from the same
SELLER as before (loyalty) or decide randomly

Xavier Vilà Genetic Algorithms and Game Theory



Motivation
Genetic Algorithms

Application: Imperfect Competition
Summary

The Model
The Deterministic Approach
The Simulation Approach

The Model

2 sellers
m buyers
T periods, R rounds per period (Example: 54 weeks, 5
rounds per week)
Sellers’ strategies per period

Set a price for Round = 1
For Round > 1, set a price based on previous rounds of the
period
price ∈ {p̄, p}

Buyers’ strategies per period
Always go to the cheapest seller
If prices are equal:

Randomly split
Be “Loyal”
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System

Parameters

p̄ = 3 (5)

p = 2

m = 2

Payoff Matrix

A =

 3R 0 3R
4R 2R 4 + 2(R− 1)
3R 2(R− 1) 3R



Dynamics

pt+1(s) = pt(s)
As · pt

pT
t ·A · pt
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Strategies

Strategies represented by FINITE AUTOMATA

Sellers

Set a high price (p̄) or a low price (p) depending on the
behavior of your competitor in the past

Buyers

Remain loyal to your current Seller or switch to its competitor
depending on whether the price set by your current Seller is
lower, equal, or higher than that of its competitor
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Sketch of the Algorithm

Two initial populations (Sellers and buyers)

1 Randomly match two strategies in the sellers population
2 Bring each of these pairs to a simulated market

1 The market opens R times
2 At each round, the sellers set prices according to strategies

and buyers decide seller
3 Trade takes place and players get they payoff for the period

3 Form new populations

1 Include the 50% top performers
2 Create the remaining 50%

1 Randomly select two “parents” based on performance
2 Form two new strategies by CROSSOVER
3 Apply MUTATION
4 Repeat the steps above to fill the new population
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Parameters

Case 3A: p = 3 p = 2 c = 0
Case 3B: p = 3 p = 2 c = 1
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Case 4A: p = 4 p = 2 c = 0
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Case 5A: p = 5 p = 2 c = 0
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Results Explained (Cases *A)

The buyers will buy from the cheapest seller and will stay with
their current ones if prices are equal (loyalty strategy). The
sellers will set a low price regardless the price set by the
opponent in the previous round (always defect strategy, D).
The only difference is when the low price is too low compared
to the high price that the sellers are better off by charging
always the high price. (Case 5A).
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Results Explained (Cases *B)

The buyers will buy from the cheapest seller and will stay with
their current ones if prices are equal (loyalty strategy). The
sellers will set a low price regardless the price set by the
opponent in the previous round (always defect strategy, D). In
this case, the fact that consumers have a switching cost equal
to the difference between the two prices , does not make them
“more loyal” in the sense of make them wiling to stick to a seller
given that there is no possible gain by switching to another.
They do not want to do that because then the sellers would
have some sort of monopolistic power as the next case
indicates.
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Results Explained (Cases *C)

The switching cost is so high that the buyers will not switch, not
even in the case that someone else offers a better price. Then,
sellers take advantage of this monopolistic power and set a
high price (always cooperate strategy, C).
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Main conclusion

Same conclusion as before in the analogous case (Case 3A).
Furthermore, other cases are studied and the model can be
handled with much more flexibility
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Comments

Many (26) strategies considered (could be more easily,
nothing changes)
Buyers and Sellers coevolve simultaneously
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Summary

Simulation techniques (Agent-Based Computational
Economics) are increasingly used, but some care should
be taken into account to really understand what we are
simulating

Some Agent-Based Computational Economics techniques
(GA in this case) seem to perform similarly to analytical
techniques yet provide ways to overcome their limitations

Furher work should produce ways to “understand” the
output of simulations
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