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Abstract: We propose a simple criterion to compare generalized median

voter schemes according to their manipulability. We identify three nec-

essary and su¢ cient conditions for the comparability of two generalized

median voter schemes in terms of their vulnerability to manipulation. The

three conditions are stated using the two associated families of monotonic

�xed ballots and depend very much on the power each agent has to unilat-

erally change the outcomes of the two generalized median voter schemes.

We perform a speci�c analysis of all median voter schemes, the anonymous

subfamily of generalized median voter schemes.
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1 Introduction

Consider a set of agents that has to collectively choose an alternative. Each agent

has a preference relation on the set of alternatives. We would like the chosen alter-

native to depend on the preference pro�le (a list of preference relations, one for each

agent). But preference relations are private information and, to be used to choose the

alternative, they have to be revealed by the agents. A social choice function collects

individual preference relations and selects an alternative for each declared preference

pro�le. Hence, a social choice function induces a game form that generates, at every

preference pro�le, a strategic problem to each agent. An agent manipulates a social

choice function if there exist a preference pro�le and a di¤erent preference relation for

the agent such that, if submitted, the social choice function selects a strictly better

alternative according to the preference relation of the agent of the original prefer-

ence pro�le. A social choice function is strategy-proof if no agent can manipulate it.

That is, the game form induced by a strategy-proof social choice function has the

property that, at every preference pro�le, to declare the true preference relation is a

weakly dominant strategy for all agents. Hence, each agent has an optimal strategy

(to truth-tell) independently of the agent�s beliefs about the other agents�declared

preference relations. This absence of any informational hypothesis about the oth-

ers�preference relations is one of the main reasons of why strategy-proofness is an

extremely desirable property of social choice functions.

However, the Gibbard-Satterthwaite Theorem establishes that nontrivial strategy-

proof social choice functions do not exist on universal domains. Strategy-proofness

is a strong requirement since a social choice function is not longer strategy-proof

as soon as there exist a preference pro�le and an agent that can manipulate the

social choice function by submitting another preference relation that if submitted,

the social choice function selects another alternative that is strictly preferred by the

agent. Nevertheless, there are many social choice problems where the structure of the

set of alternatives restricts the set of conceivable preference relations, and hence the

set of strategies available to agents. For instance, when the set of alternatives has a

natural order, in which all agents agree upon. The localization of a public facility, the

temperature of a room, the platform of political parties in the left-right spectrum, or

the income tax rate are all examples of such structure that imposes natural restrictions

on agents�preference relations. Black (1948) was the �rst to argue that in those cases

agents�preference relations have to be single-peaked (relative to the unanimous order

on the set of alternatives). A preference relation is single-peaked if there exists a top

alternative that is strictly preferred to all other alternatives and at each of the two

sides of the top alternative the preference relation is monotonic, increasing in the left
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and decreasing in the right.

A social choice function operating only on a restricted domain of preference pro-

�les may become strategy-proof. The elimination of preference pro�les restricts the

normal form game induced by the social choice function, and strategies (i.e., prefer-

ence relations) that were not dominant may become dominant. Consider any social

choice problem where the set of alternatives can be identi�ed with the interval [a; b]

of real numbers and where single-peaked preference relations are de�ned on [a; b].

For this set up Moulin (1980) characterizes all strategy-proof and tops-only social

choice functions on the domain of single-peaked preference relations as the class of all

generalized median voter schemes.1 In addition, Moulin (1980) also characterizes the

subclass of median voter schemes as the set of all strategy-proof, tops-only and anony-

mous social choice functions on the domain of single-peaked preference relations; and

this is indeed a large class of social choice functions. A median voter scheme can be

identi�ed with a vector x = (x1; :::; xn+1) of n+1 numbers in [a; b]; where n is the car-

dinality of the set of agents N and x1 � ::: � xn+1. Then, for each preference pro�le,

the median voter scheme identi�ed with x selects the alternative that is the median

among the n top alternatives of the agents and the n + 1 �xed numbers x1; :::; xn+1:

Since 2n + 1 is an odd number, this median always exists and belongs to [a; b]: Ob-

serve that median voter schemes are tops-only and anonymous by de�nition. They

are strategy-proof on the domain of single-peaked preference relations because, given

a preference pro�le, each agent can only change the chosen alternative by moving his

declared top away from his true top; thus, no agent can manipulate a median voter

scheme at any preference pro�le. A median voter scheme distributes the power to

in�uence the outcome among agents according to its associated vector x in an anony-

mous way. Generalized median voter schemes constitute non-anonymous extensions

of median voter schemes. A generalized median voter scheme can be identi�ed with

a set of �xed ballots fpSgS�N on [a; b], one for each subset of agents S. Then, for

each preference pro�le, the generalized median voter scheme identi�ed with fpSgS�N
selects the alternative � that is the smallest one with the following two properties:

(i) there is a subset of agents S whose top alternatives are smaller or equal to � and

(ii) the �xed ballot pS associated to S is also smaller or equal to �.

Generalized median voter schemes are strategy-proof on the domain of single-

peaked preference pro�les, but manipulable on the universal domain. There are sev-

eral papers that have identi�ed, in our or similar settings, maximal domains under

which social choice functions are strategy-proof but, as soon as the domain is enlarged

with a preference outside the domain, the social choice function becomes manipula-

ble. Barberà, Massó and Neme (1998), Barberà, Sonnenschein and Zhou (1992),

1A social choice function is tops-only if it only depens on the pro�le of top alternatives.
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Berga and Serizawa (2000), Bochet and Storcken (2009), Ching and Serizawa (1998),

Hatsumi, Berga, and Serizawa (2014), Kalai and Müller (1977), and Serizawa (1995)

are some examples of these papers. Our contribution on this paper builds upon this

literature and has the objective of giving a criterion to compare generalized median

voter schemes according to their manipulability. We want to emphasize the fact that

the manipulability of a social choice function does not indicate the degree of its lack

of strategy-proofness. There may be only one instance at which the social choice

function is manipulable or there may be many such instances. The mechanism design

literature that has focused on strategy-proofness has not distinguished between these

two situations; it has declared both social choice functions as being not strategy-proof,

dot!2

Our criterion to compare two social choice functions takes the point of view of

individual agents. We say that an agent is able to manipulate a social choice function

at a preference relation (the true one) if there exist a list of preference relations, one

for each one of the other agents, and another preference relation for the agent (the

strategic one) such that if submitted, the agent obtains a strictly better alternative

according to the true preference relation. Consider two generalized median voter

schemes, f and g; that can operate on the universal domain of preference pro�les.

Assume that for each agent the set of preference relations under which the agent is able

to manipulate f is contained in the set of preference relations under which the agent is

able to manipulate g: Then, from the point of view of all agents, g is more manipulable

than f: Hence, we think that f is unambiguously a better generalized median voter

scheme than g according to the strategic incentives induced to the agents. Often,

it may be reasonable to think that agents�preferences are single-peaked, but if the

designer foresees that agents may have also non single-peaked preferences, then f

may be a better choice than g if strategic incentives are relevant and important for

the designer.

Before presenting our general result in Theorem 2, we focus on median voter

schemes, the subclass of anonymous generalized median voter schemes. In Theorem

1 we provide two necessary and su¢ cient conditions for the comparability of two

median voter schemes in terms of their manipulability. Let f and g be two (non-

constant) median voter schemes and let x = (x1; :::; xn+1) and y = (y1; :::; yn+1) be

their associated vectors of �xed ballots, x to f and y to g, where x1 � ::: � xn+1 and

y1 � ::: � yn+1. Then, g is at least as manipulable as f if and only if [x1; xn+1] �
[y1; yn+1] and [x2; xn] � [y2; yn]: Using this characterization we are able to establish

2Kelly (1977) is an exemption although, to compare social chocie functions according to their

manipulability, it uses a counting criteria. Pathak and Sönmez (2013) is a recent exemption and we

will refer to it later on.

3



simple comparability tests for the subclass of unanimous and e¢ cient median voter

schemes. Using the partial order �to be equally manipulable as�obtained in Theorem

1 we show that the set of equivalence classes of median voter schemes has a complete

lattice structure with the partial order �to be as manipulable as�; the supremum

is the equivalence class containing all median voter schemes with x1 = x2 = a and

xn = xn+1 = b,3 and the in�mum is the equivalence class with all constant median

voter schemes; i.e., for all k = 1; :::; n+ 1, xk = � for some � 2 [a; b].
In Theorem 2 we provide three necessary and su¢ cient conditions for the com-

parability of two generalized median voter schemes in terms of their manipulability.

The three conditions are stated using the two associated families of monotonic �xed

ballots and depend very much on the power each agent has to unilaterally change

the outcome of the two generalized median voter schemes (i.e., the intervals of al-

ternatives where agents are non-dummies). Obviously, Theorem 2 is more general

than Theorem 1. However, our analysis can be sharper and deeper on the subclass of

anonymous generalized median voter schemes. In addition, Theorem 1 can be seen

as a �rst step to better understand the general characterization of Theorem 2.

Before �nishing this Introduction we want to relate our comparability notion with

another one recently used in centralized matching markets. Pathak and Sönmez

(2013) apply a di¤erent notion to compare the manipulability of some speci�c match-

ing mechanisms in school choice problems. Their notion is based on the inclusion of

preference pro�les at which there exists a manipulation, while our notion is based

on the inclusion of preference relations at which an agent is able to manipulate. In

applications, preference pro�les are not common knowledge while, in contrast, each

agent knows his preference relation (and he may only know that). To use a more ma-

nipulable generalized median voter scheme means that each agent has to worry about

his potential capacity to manipulate in a larger set. Again, the use of the inclusion of

preference relations as a basic criterion to compare generalized median voter schemes

according to their manipulability do not require any informational hypothesis. Thus,

we �nd it more appealing. Moreover, we show that if two generalized median voter

schemes are comparable according to Pathak and Sönmez�s notion, then they are also

comparable according to our notion. Furthermore, Example 1 shows that our notion

is indeed much weaker than Pathak and Sönmez�s notion.

The paper is organized as follows. Section 2 contains preliminary notation and

de�nitions. Section 3 describes the family of anonymous generalized median voter

schemes and compares them according to their manipulability. Section 4 extends the

analysis to all generalized median voter schemes. Section 5 contains a �nal remark

comparing Pathak and Sönmez�s criterion with ours. Sections 6 and 7 contain two

3When n is odd, this class contains the true median voter scheme.
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appendices that collect all omitted proofs.

2 Preliminaries

Agents are the elements of a �nite set N = f1; :::; ng: The set of alternatives is the
interval of real numbers [a; b] � R. We assume that n � 2 and a < b. Generic agents

will be denoted by i and j and generic alternatives by � and �. Subsets of agents will

be represented by S and T:

The (weak) preference of each agent i 2 N on the set of alternatives [a; b] is a

complete, re�exive, and transitive binary relation (a complete preorder) Ri on [a; b].

As usual, let Pi and Ii denote the strict and indi¤erence preference relations induced

by Ri, respectively; namely, for all �; � 2 [a; b]; �Pi� if and only if :�Ri�, and �Ii� if
and only if �Ri� and �Ri�. The top of Ri is the unique alternative �(Ri) 2 [a; b] that
is strictly preferred to any other alternative; i.e., �(Ri)Pi� for all � 2 [a; b]nf�(Ri)g.
Let U be the set of preferences with a unique top on [a; b]. A preference pro�le

R = (R1; :::; Rn) 2 Un is a n-tuple of preferences. To emphasize the role of agent
i or subset of agents S, a preference pro�le R will be represented by (Ri; R�i) or

(RS; R�S), respectively.

A subset bUn � Un of preference pro�les (or the set bU itself) will be called a
domain. A social choice function is a function f : bUn ! [a; b] selecting an alternative

for each preference pro�le in the domain bUn. The range of a social choice function
f : bUn ! [a; b] is denoted by rf . That is,

rf = f� 2 [a; b] j there exists R = (R1; :::; Rn) 2 bUn s.t. f(R1; :::; Rn) = �g:

Social choice functions require each agent to report a preference on a domain bU .
A social choice function is strategy-proof on bU if it is always in the best interest
of agents to reveal their preferences truthfully. Formally, a social choice function

f : bUn ! [a; b] is strategy-proof if for all R 2 bUn, all i 2 N , and all R0i 2 bU ,
f(Ri; R�i)Rif(R

0
i; R�i): (1)

In the sequel we will say that a social choice function f : bUn ! [a; b] is not manipulable

by i 2 N at Ri 2 U if (1) holds for all (R0i; R�i) 2 bUn: To compare social choice
functions according to their manipulability, our reference set of preferences will be

the full set U .
The set of manipulable preferences of agent i 2 N for f : Un ! [a; b] is given by

Mf
i = fRi 2 U j f(R0i; R�i)Pif(Ri; R�i) for some (R0i; R�i) 2 Ung:
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Obviously, a social choice function f : Un ! [a; b] is strategy-proof if and only if

Mf
i = ; for all i 2 N . We say that f : Un ! [a; b] is more manipulable than

g : Un ! [a; b] for i 2 N ifMg
i (M

f
i :

Now, we introduce our criterion to compare social choice functions according to

their manipulability.

De�nition 1 A social function f : Un ! [a; b] is at least as manipulable as social

function g : Un ! [a; b] ifMg
i �M

f
i for all i 2 N:

De�nition 2 A social function f : Un ! [a; b] is equally manipulable as social

function g : Un ! [a; b] if f is at least as manipulable as social function g and vice

versa; i.e.,Mg
i =M

f
i for all i 2 N:

De�nition 3 A social function f : Un ! [a; b] is more manipulable than a social

function g : Un ! [a; b] if f is at least as but not equally manipulable as social function

g; i.e.,Mg
i �M

f
i for all i 2 N and there exists j 2 N such thatMg

j  M
f
j :

Given two social choice functions f : Un ! [a; b] and g : Un ! [a; b] we write (i)

f % g to denote that f is at least as manipulable as g, (ii) f � g to denote that f

is equally manipulable as g, and (iii) f � g to denote that f is more manipulable

than g: Obviously, there are many pairs of social choice functions that can not be

compared according to their manipulability.

Strategy-proofness is not the unique property we will look at. A social choice func-

tion f : bUn ! [a; b] is anonymous if it is invariant with respect to the agents�names;

namely, for all one-to-one mappings � : N ! N and all R 2 bUn, f(R1; :::; Rn) =
f(R�(1); :::; R�(n)). A social choice function f : bUn ! [a; b] is dictatorial if there exists

i 2 N such that for all R 2 bUn, f(R)Ri� for all � 2 rf . A social choice function

f : bUn ! [a; b] is e¢ cient if for all R 2 bUn, there is no � 2 [a; b] such that, for all
i 2 N , �Rif(R) and �Pjf(R) for some j 2 N . A social choice function f : bUn ! [a; b]

is unanimous if for all R 2 bUn such that �(Ri) = � for all i 2 N , f(R) = �. A social

choice function f : bUn ! [a; b] is onto if for all � 2 [a; b] there is R 2 bUn such that
f(R) = � (i.e., rf = [a; b]). A social choice function f : bUn ! [a; b] is tops-only if for

all R;R0 2 bUn such that �(Ri) = �(R0i) for all i 2 N , f(R) = f(R0).

In our setting the Gibbard-Satterthwaite Theorem states that a social choice func-

tion f : Un ! [a; b]; with #rf 6= 2; is strategy-proof if and only if it is dictatorial

(see Barberà and Peleg (1990)). An implicit assumption is that the social choice

function operates on all preference pro�les on Un, because all of them are reasonable.
However, for many applications, a linear order structure on the set of alternatives

naturally induces a domain restriction in which for each preference Ri in the domain

not only there exists a unique top but also that at each of the sides of the top of Ri the
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preference is monotonic. A well-known domain restriction is the set of single-peaked

preferences on an interval of real numbers.

De�nition 4 A preference Ri 2 U is single-peaked on A � [a; b] if for all �; � 2 A
such that � � � < �(Ri) or �(Ri) < � � �, �(Ri)Pi�Ri�.

We will denote the domain of all single-peaked preferences on [a; b] by SP � U .
Moulin (1980) characterizes the family of strategy-proof and tops-only social choice

functions on the domain of single-peaked preferences. This family contains many non-

dictatorial social choice functions. All of them are extensions of the median voter.

Following Moulin (1980), and before presenting the general result, we �rst compare

in Section 3, the anonymous subclass according to their manipulability on the full

domain of preferences U . In Section 4 we will give a general result to compare accord-
ing to their manipulability all strategy-proof and tops-only social choice functions on

SPn when they operate on the domain Un.

3 Anonymity: Comparing Median Voter Schemes

3.1 Median Voter Schemes

Assume �rst that n is odd and let f : Un ! [a; b] be the social choice function that

selects, for each preference pro�le R = (R1; :::; Rn) 2 Un, the median among the top
alternatives of the n agents; namely, f(R) = medf�(R1); :::; �(Rn)g.4 This social

choice function is anonymous, e¢ cient, tops-only, and strategy-proof on SP. Add
now, to the n agents�top alternatives, n + 1 �xed ballots: n+1

2
ballots at alternative

a and n+1
2
ballots at alternative b. Then, the median among the n top alternatives,

and the median among the n top alternatives and the n + 1 �xed ballots coincide

since the n+1
2
ballots at a and the n+1

2
ballots at b cancel each other; namely, for all

R = (R1; :::; Rn) 2 Un;

f(R) = medf�(R1); :::; �(Rn); a; :::; a| {z }
n+1
2
�times

; b; :::; b| {z }
n+1
2
-times

g = medf�(R1); :::; �(Rn)g:

To proceed, and instead of adding n + 1 �xed ballots at the extremes of the

interval, we can add, regardless of whether n is odd or even, n+1 �xed ballots at any

of the alternatives in [a; b]. Then, a social choice function f : Un ! [a; b] is a median

4Given a set of real numbers fx1; :::; xKg, de�ne its median as medfx1; :::; xKg = y, where y is
such that #f1 � k � K j xk � yg � K

2 and #f1 � k � K j xk � yg �
K
2 . If K is odd the median

is unique and belongs to the set fx1; :::; xKg.
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voter scheme if there exist n + 1 �xed ballots (x1; :::; xn+1) 2 [a; b]n+1 such that for
all R 2 Un,

f(R) = medf�(R1); :::; �(Rn); x1; :::; xn+1g: (2)

Hence, each median voter scheme can be identi�ed with its vector x = (x1; :::; xn+1) 2
[a; b]n+1 of �xed ballots. Moulin (1980) shows that the class of all tops-only, anony-

mous and strategy-proof social choice functions on the domain of single-peaked pref-

erences coincides with all median voter schemes.

Proposition 1 (Moulin, 1980) A social choice function f : SPn ! [a; b] is strategy-

proof, tops-only and anonymous if and only if f is a median voter scheme; namely,

there exist n+ 1 �xed ballots (x1; :::; xn+1) 2 [a; b]n+1 such that for all R 2 SPn,

f(R) = medf�(R1); :::; �(Rn); x1; :::; xn+1g:

Median voter schemes are tops-only and anonymous by de�nition. To see that

they are strategy-proof, let f : SPn ! [a; b] be any median voter scheme and �x

R 2 SPn and i 2 N: If f(R) = �(Ri); i can not manipulate f: Assume �(Ri) < f(R)

(the other case is symmetric). Agent i can only modify the chosen alternative by

declaring a preference R0i 2 SP with the property that f(R) < �(R0i): But then,

either f(R) = f(R0i; R�i) or f(R) < f(R0i; R�i). Hence, �(Ri) < f(R) � f(R0i; R�i):

Since Ri is single-peaked, f(R)Rif(R0i; R�i): Thus, i can not manipulate f: It is less

immediate to see that the set of all median voter schemes (one for each vector of n+1

�xed ballots) coincides with the class of all tops-only, anonymous and strategy-proof

social choice functions on the domain of single-peaked preferences. The key point in

the proof is to identify, given a tops-only, anonymous and strategy-proof social choice

function f : SPn ! [a; b]; the vector x = (x1; :::; xn+1) 2 [a; b]n+1 of �xed ballots. To
identify each xk with 1 � k � n+1; consider any preference pro�le R 2 SPn with the
property that #fi 2 N j �(Ri) = ag = n� k + 1 and #fi 2 N j �(Ri) = bg = k � 1
and de�ne xk = f(R): The proof concludes by checking that indeed f satis�es (2)

with this vector x = (x1; :::; xn+1) 2 [a; b]n+1 of identi�ed �xed ballots.
To see that in the statement of Proposition 1 tops-onlyness does not follow from

strategy-proofness and anonymity consider the social choice function f : SPn ! [a; b]

where for all R 2 SPn,

f(R) =

(
a if #fi 2 N j aRibg � #fi 2 N j bPiag
b otherwise.

Notice that f is strategy-proof and anonymous but it is not tops-only. It also violates

e¢ ciency, unanimity, and ontoness.

We �nish this subsection with a useful remark stating that median voter schemes

are monotonic.
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Remark 1 Let f : Un ! [a; b] be a median voter scheme and let R;R0 2 Un be such
that �(Ri) � �(R0i) for all i 2 N: Then, f(R) � f(R0):

3.2 Main result with anonymity

Median voter schemes are strategy-proof on the domain SPn of single-peaked prefer-
ences. However, when they operate on the larger domain Un they may become manip-
ulable. Then, all median voter schemes are equivalent from the classical manipulabil-

ity point of view. In this subsection we give a simple test to compare two median voter

schemes according to their manipulability. Given a vector x = (x1; :::; xn+1) 2 [a; b]n+1

we will denote by fx its associated median voter scheme on Un; namely, for all R 2 Un,

fx(R) = medf�(R1); :::; �(Rn); x1; :::; xn+1g:

Given x = (x1; :::; xn+1)2[a; b]n+1, we will assume that x1 � ::: � xn+1: This can be

done without loss of generality because the social choice function associated to any

reordering of the components of x coincides with fx: Obviously, the rang of fx is

[x1; xn+1], i.e., rfx = [x1; xn+1]. Any constant social choice function, f(R) = � for all

R 2 Un; can be described as a median voter scheme by setting, for all 1 � k � n+1;

xk = �:We denote it by f�: Trivially, any constant social choice function f� is strategy

proof on Un. Then, for any � 2 [a; b] and any social choice function g : Un ! [a; b]

we have that g is at least as manipulable as f� (i.e., g % f�). Furthermore, all

non-constant median voter schemes are manipulable on Un: Hence, any non-constant
median voter scheme fx is more manipulable than f� (i.e., fx � f�). Theorem

1 below gives an easy and operative way of comparing non-constant median voter

schemes according to their manipulability.

Theorem 1 Let x = (x1; :::; xn+1)2[a; b]n+1 and y = (y1; :::; yn+1)2[a; b]n+1 be two
vectors of �xed ballots such that fx and f y are not constant; i.e., x1 < xn+1 and

y1 < yn+1: Then, f y is at least as manipulable as fx if and only if [x1; xn+1] � [y1; yn+1]
and [x2; xn] � [y2; yn]:

3.3 Proof of Theorem 1

In the proof of Theorem 1 the following option set will play a fundamental role.

De�nition 5 Let f : Un ! [a; b] be a social choice function and let Ri 2 U . The set
of options left open by Ri 2 U is de�ned as follows:

of (Ri) = f� 2 [a; b] j f(Ri; R�i) = � for some R�i 2 Un�1g:

9



If fx is a median voter scheme, we denote of
x
(Ri) by ox(Ri):

Before proving Theorem 1 we state three useful lemmata, whose proofs are in

Appendix 1.

Lemma 1 Let fx : Un ! [a; b] be a median voter scheme associated with x =

(x1; :::; xn+1)2[a; b]n+1: Then, fx is not manipulable by i 2 N at Ri 2 U if and only
if Ri is single-peaked on ox(Ri) [ f�(Ri); �g for all � 2 rfx.

Lemma 2 Let fx : Un ! [a; b] be a median voter scheme associated with x =

(x1; :::; xn+1)2[a; b]n+1: Then,

ox(Ri) =

8>>>>>><>>>>>>:

[x1; xn] if a � �(Ri) < x1

[�(Ri); xn] if x1 � �(Ri) < x2

[x2; xn] if x2 � �(Ri) � xn

[x2; �(Ri)] if xn < �(Ri) � xn+1

[x2; xn+1] if xn+1 < �(Ri) � b:

Lemma 3 Let fx : Un ! [a; b] and f y : Un ! [a; b] be two median voter schemes

associated with x = (x1; :::; xn+1)2[a; b]n+1 and y = (y1; :::; yn+1) 2 [a; b]n+1 such that
[x1; xn+1] � [y1; yn+1] and [x2; xn] � [y2; yn]: Then, ox(Ri) � oy(Ri) for all Ri 2 U .

Lemma 1 plays a key role in the proof of Theorem 1. To understand it notice that

it roughly says that whether or not agent i can manipulate fx at Ri depends on the

fact that Ri should only be like single-peaked on the set of alternatives that may be

selected by fx for some subpro�le R�i; given Ri: The comparison, in terms of Ri, of

pairs of alternatives that will never be selected once Ri is submitted, is irrelevant in

terms of agent i�s power to manipulate fx: To illustrate that, consider the case where

n = 3; x1 = a, x2 = a+b
3
, x3 =

2(a+b)
3

and x4 = b: Then, rfx = [a; b]: Let Ri 2 U
be any preference with �(Ri) 2

�
a+b
3
; 2(a+b)

3

�
. By Lemma 2, ox(Ri) =

h
a+b
3
; 2(a+b)

3

i
:

Lemma 1 says that Ri should be single-peaked on this interval and that the preference

away from �(Ri) towards the direction of a+b3 has to be monotonically decreasing until

alternative a+b
3
and that all alternatives further away have to be worse than a+b

3
but

they can be freely ordered among themselves; and symmetrically from �(Ri) towards

the direction of 2(a+b)
3
. Figure 1 illustrates a preference that is single-peaked on

ox(Ri) [ f�(Ri); �g for all � 2 rfx : It also shows that this set may be signi�cantly

larger than the set of single-peaked preferences.
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Figure 1

Proof of Theorem 1 First, we will prove that if [x1; xn+1] � [y1; yn+1] and

[x2; xn] � [y2; yn]; then f y is at least as manipulable as fx: Suppose that Ri 2 Mfx

i :

By Lemma 1, there exists �� 2 rfx such that Ri is not single-peaked on ox(Ri) [
f�(Ri); ��g: By Lemma 3, ox(Ri) � oy(Ri): Since rfx = [x1; xn+1] � [y1; yn+1] = rfy ;

we have that �� 2 rfy : Hence, Ri is not single-peaked on oy(Ri) [ f�(Ri); ��g; where
�� 2 Rfy . Thus; by Lemma 1, Ri 2Mfy

i : Therefore, f
y is at least as manipulable as

fx:

To prove the other implication assume that f y is at least as manipulable as fx:

Hence,

Mfx

i �M
fy

i for all i 2 N: (3)

To obtain a contradiction assume that [x1; xn+1] * [y1; yn+1] or [x2; xn] * [y2; yn]: We
will divide the proof between two cases.

Case 1: [x1; xn+1] * [y1; yn+1]: In particular, suppose that x1 < y1; the proof for

the case yn+1 < xn+1 proceeds similarly and therefore it is omitted. We will divide

the proof between two cases again, depending on whether x1 < x2 or x1 = x2.

Case 1.1: x1 < x2: Let �; �; 
 2 [a; b] be such that x1 < � < � < 
 < minfx2; y1g
and let Ri 2 U be such that:
i) �(Ri) = �,

ii) 
Pi� and

iii) if �; � 2 [a; b] and y1 < � < �; then �Ri�:

Since x1 < �(Ri) < x2 and x1 < �(Ri) < y1, by Lemma 2,

ox(Ri) = [�(Ri); xn] and oy(Ri) = [y1; yn]:

Hence, and since �(Ri); �; 
 2 ox(Ri) and ii) holds, Ri is not single-peaked on ox(Pi)
and, for all �0 2 rfy , Ri is single-peaked on oy(Ri) [ f�(Ri)g [ f�0g because rfy =

11



[y1; yn+1]. Thus, by Lemma 1, Ri 2Mfx

i nM
fy

i which contradicts (3).

Case 1.2: x1 = x2: Since fx is not constant and x1 < y1, x1 < minfy1; xn+1g: Let
�; �; 
 2 [a; b] be such that x1 < � < � < 
 < minfy1; xn+1g and let Ri 2 U be such
that:

i) �(Ri) = 
,

ii) �Pi� and

iii) if �; � 2 [a; b] and y1 < � < �; then �Pi�:

Since x1 < �(Ri) < y1 and x1 = x2 < �(Ri); by Lemma 2,

ox(Ri) =

(
[x2; xn] if x2 � �(Ri) � xn

[x2; �(Ri)] if xn < �(Ri) � xn+1
and oy(Ri) = [y1; yn]:

Hence, and since �; �; �(Ri) 2 ox(Ri) and ii) holds, Ri is not single-peaked on ox(Ri)
and, for all �0 2 rfy ; Ri is single-peaked on oy(Ri) [ f�(Ri)g [ f�0g because rfy =
[y1; yn+1]. Thus, by Lemma 1, Ri 2Mfx

i nM
fy

i which contradicts (3).

Case 2: [x2; xn] * [y2; yn] and [x1; xn+1] � [y1; yn+1]: In particular, suppose that
x2 < y2; the proof for the case yn < xn proceeds similarly and therefore it is omitted.

Let �; � 2 [a; b] be such that x2 < � < � < x2+y2
2

< y2 and let Ri 2 U be such that:
i) �(Ri) =

x2+y2
2
,

ii) �Pi� and

iii) if 
; � 2 [a; b] and �(Ri) < 
 < �; then 
Pi�:

Since y1 � x1 � x2 < �(Ri) < y2; by Lemma 2,

ox(Ri) =

8><>:
[x2; xn] if x2 � �(Ri) � xn

[x2; �(Ri)] if xn < �(Ri) � xn+1

[x2; xn+1] if �(Ri) > xn+1

and oy(Ri) = [�(Ri); yn]:

Hence, and since �; �; �(Ri) 2 ox(Ri) and ii) holds, Ri is not single-peaked on ox(Ri)
and, for all �0 2 rfy ; Ri is single-peaked on oy(Ri) [ f�(Ri); �0g. Thus, by Lemma 1,
Ri 2Mfx

i nM
fy

i which contradicts (3). �

For further reference, let MV S denote the set of all median voting schemes from

Un to [a; b]: An immediate consequence of Theorem 1 is that if median voter scheme f
is at least as manipulable as median voter scheme g, then the range of g is contained

in the range of f: The improvement in terms of the strategy-proofness of median

voter schemes necessarily requires the corresponding reduction of their ranges since

smaller ranges reduce agents�power to manipulate. The corollary below, that follows

from Theorem 1 and the fact that for all fx 2 MV S; rfx = [x1; xn+1], states this

observation formally.

Corollary 1 Let f; g 2MV S. If f % g, then rg � rf .
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Consider a problem where the range of the social choice has to be �xed a priori

to be a subinterval [c; d] � [a; b]: Let MV S[c;d] be the set of all median voter schemes

with range [c; d] (i.e., fx 2 MV S[c;d] if and only if x1 = c and xn+1 = d). Theorem 1

gives criteria to compare the elements in MV S[c;d]:

Corollary 2 Let f y; fx 2MV S[c;d]:

a) Then, f y % fx if and only if [x2; xn] � [y2; yn]:
b) If y2 = yn; then there does not exist g 2MV S[c;d] such that f y � g.

Statement b) identi�es the median voter schemes in MV S[c;d] that do not admit

a less manipulable median voter scheme in MV S[c;d]:

3.4 Unanimity

According to Proposition 1 in Moulin (1980), a median voter scheme fx : SPn !
[a; b] is e¢ cient (on the single-peaked domain) if and only if x1 = a and xn+1 = b;

namely, fx can be described as the median of the n top alternatives submitted by

the agents and only n � 1 �xed ballots since x1 = a and xn+1 = b cancel each other

in (2). But this subclass of median voter schemes is appealing because it coincides

with the class of all unanimous median voter schemes (MV S[a;b] using the notation

introduced in the previous subsection).5 Corollary bellow shows that Theorem 1

has clear implications on how unanimous and non-unanimous median voter schemes

can be ordered according to their manipulability. In particular, given a unanimous

median voter scheme there is always a non-unanimous median voter scheme that

is less manipulable. Moreover, if a unanimous median voter scheme and a non-

unanimous median voter scheme are comparable according to their manipulability,

then the former is more manipulable than the later.

Corollary 3 Let f y 2MV S be unanimous.

a) Then, for all fx 2MV S; f y % fx if and only if [x2; xn] � [y2; yn].
b) There exists a non-constant and non-unanimous fx 2MV S such that f y � fx.

c) Let fx 2MV S be non-unanimous and assume fx and f y are comparable according

to their manipulability. Then, f y � fx:

Proof Let f y 2MV S be unanimous. Hence, y1 = a and yn+1 = b:

a) The statement follows immediately from Theorem 1.

5Observe that when unanimous median voter schemes operate on the full domain Un they are not
anymore e¢ cient. In the next subsection we will provide some simple criteria to compare e¢ cient

median voter schemes on the full domain Un according to their manipulability.
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b) We distinguish between two cases.

Case 1 : Assume y2 < yn and let �; �; 
 2 [a; b] be such that y2 < � < � < 
 < yn:

Consider x = (�; �; :::; �; 
) 2 [a; b]n+1: Then, [x2; xn] = f�g � [y2; yn]: By Theorem
1, f y is at least as manipulable as fx and since [y2; yn] * [x2; xn], fx is not at least as
manipulable as f y: Hence, f y is more manipulable than fx and fx is neither constant

nor unanimous since a < x1 < xn+1 < b:

Case 2: Assume y2 = yn. Furthermore, suppose that a < y2; the proof when

yn < b proceeds symmetrically and therefore it is omitted. Let � 2 (a; y2) and

consider x = (�; y2; :::; y2; b) 2 [a; b]n+1: Then, [x2; xn] = fy2g. By Theorem 1, f y is

at least as manipulable as fx and, since [y1; yn+1] = [a; b] * [x1; xn+1], fx is not at

least as manipulable as f y: Hence, f y is more manipulable than fx. Furthermore,

and since a < x1 = ::: = xn < xn+1 = b, fx is neither constant nor unanimous:

c) Assume fx 2 MV S is not unanimous. Then, [x1; xn+1] ( [y1; yn+1] = [a; b]: By

Theorem 1, fx is not at least as manipulable as f y: Furthermore, as fx and f y are

comparable, f y � fx must hold. �

We conclude this subsection with a corollary that identi�es the unanimous median

voter schemes that do not admit a less manipulable unanimous median voter scheme.

The statement also follows immediately from Theorem 1.

Corollary 4 Let f y be a unanimous median voter scheme such that y2 = yn: Then,

there does not exist an unanimous median voting scheme g such that f y � g.

3.5 E¢ ciency

A median voter scheme fx : Un ! [a; b] (operating on the full domain of preferences)

is e¢ cient if and only if x1 = a, xn+1 = b and xk 2 fa; bg for all 2 � k � n.6 This

is because on the larger domain, if a median voter scheme fx has an interior �xed

ballot xk 2 (a; b) it is always possible to �nd a preference pro�le R with fx(R) = xk

such that there exists an alternative y that is unanimously strictly preferred by all

agents; namely, yPifx(R) for all i 2 N: Moreover, all e¢ cient median voter schemes
are unanimous.

We now present simple criteria that are useful to compare e¢ cient median voter

schemes with other unanimous median voter schemes according to their manipulabil-

ity. But before, we need a bit of additional notation.

6Hence, an e¢ cient median voter scheme fx : Un ! [a; b] has the property that for all

(R1; :::; Rn) 2 Un;
fx(R1; :::; Rn) 2 f�(R1); :::; �(Rn)g:

Miyagawa (1998) and Heo (2013) have studied this property under the name of peak-selection.
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Let k be an integer such that 1 � k � n and (�1; :::; �n) 2 [a; b]n: Denote

by �k(�1; :::; �n) the k-th ranked number; namely, #f�i 2 f�1; :::; �ng j �i �
�k(�1; :::; �n)g � n � k + 1 and #f�i 2 f�1; :::; �ng j �i � �k(�1; :::; �n)g � k:

In particular, for k = 1 and k = n,

�1(�1; :::; �n) = maxf�1; :::; �ng
�n(�1; :::; �n) = minf�1; :::; �ng:

Let fx : Un ! [a; b] be an e¢ cient median voter scheme. Then, x = (a; :::; a| {z }
k

; b; :::; b| {z })
n+1�k

for some 1 � k � n and, for all R 2 Un;

fx(R1; :::; Rn) = �k(�(R1); :::; �(Rn)):

We denote the e¢ cient median voter scheme fx with k �xed ballots at a by fk:

Corollary 5 Let fk : Un ! [a; b] be an e¢ cient median voter scheme such that

k =2 f1; ng: Then, the following hold.
a) For any fx 2MV S; fk % fx:

b) If 1 < k0 < n; then fk � fk
0
.

c) fk � f 1 and fk � fn:

d) If fx is non-unanimous, then fk � fx:

e) There exists a non-e¢ cient and unanimous fx 2MV S such that fk � fx.

Corollary 5 says the following. Statement a) states that any e¢ cient median voter

scheme f =2 ff 1; fng belongs to the set of the most manipulable median voter schemes.
Statement c) states that the two e¢ cient median voter schemes f 1 and fn are less

manipulable than any other e¢ cient median voter scheme f =2 ff 1; fng: Statement
d) states that any non-unanimous median voter scheme is less manipulable that any

e¢ cient median voter scheme f =2 ff 1; fng: Statement e) states that given an e¢ cient
median voter scheme f =2 ff 1; fng there is always a (non-e¢ cient) unanimous median
voter scheme that is less manipulable. Moreover, Corollary 5 has the following two

implications when n is odd. First, for any fx 2MV S; f
n+1
2 % fx, and second, for all

non-unanimous fx 2MV S; f
n+1
2 � fx:

Proof Let y be the vector of �xed ballots associated to fk: Since k =2 f1; ng;

y1 = y2 = a and yn = yn+1 = b: (4)

a) It follows from (4) and Theorem 1.

b) It follows from a).

15



c) Let z be the vector of �xed ballots associated to f 1; namely, z1 = a and z2 = ::: =

zn+1 = b: Hence, by (4) and Theorem 1, fk is more manipulable than f 1: Using a

similar argument, it also follows that fk � fn.

d) Let fx be a non-unanimous median voter scheme. Then, either a < x1 or xn+1 < b:

Hence, by (4) and Theorem 1, fk is more manipulable than fx

e) Consider any � 2 (a; b) and de�ne x = (a; �; :::; �| {z }
k�1-times

; b; :::; b): Then, fx is unanimous

but it is not e¢ cient. By (4) and Theorem 1, fk � fx: �

Corollary 6 Let f 2MV S be e¢ cient and such that either f = f 1 or f = fn.

a) Then, there exists a non-e¢ cient and non-constant fx 2MV S such that f � fx.

b) If fx and f are comparable and fx is non-e¢ cient, then f � fx:

Corollary 6 says the following. Statement a) states that there exists a non-e¢ cient

and non-constant median voter scheme that is less manipulable than f 1 (or fn).

Statement b) says that if the e¢ cient median voter scheme f 1 (or fn) and a non-

e¢ cient median voter scheme f are comparable according to their manipulability,

then the former is more manipulable than the later. Corollaries 5 and 6 make clear

the well-known trade-o¤ between strategy-proofness and e¢ ciency.

Proof Consider f 1 2MV S and let y = (a; b; :::; b) be its associated vector of �xed

ballots. The case fn 2MV S proceeds symmetrically.

a) De�ne x = (a; �; b; :::; b); where � 2 (a; b): Then, by Theorem 1, f 1 � fx and it is

clear that fx is non-e¢ cient:

b) Since [y2; yn] = fbg; and fx and f 1 are comparable, Theorem 1 implies that f 1 � fx:

�

3.6 Complete lattice structure

Using Theorem 1 we can partition the set of median voter schemesMV S into equiva-

lence classes in such a way that each equivalence class contains median voter schemes

that are all equally manipulable. Denote the (cocient) set of those equivalence classes

byMV S= �. Furthermore, we can extend % onMV S to the set of equivalence classes

MV S= � in a natural way. Denote this extension by [%]: In this subsection we will
show that the pair (MV S= �; [%]) is a complete lattice; namely, any nonempty subset
of equivalence classes in MV S= � has a supremum and an in�mum according to [%]:
Formally, given fx 2 MV S; denote by [fx] the equivalence class of fx with respect

to �; i.e.,
[fx] = fg 2MV S j g � fxg:
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Let [c] be the class of all constant median voter schemes.7 Assume that [fx] 6= [c].
By Theorem 1, [fx] can be identi�ed with the four-tuple (x1; x2; xn; xn+1):

Denote by MV S= � the set of all equivalence classes induced by � on MV S

and consider the binary relation [%] on MV S= � de�ned as follows. For any pair
[fx]; [f y] 2MV S= �; set

[fx][%][f y] if and only if fx % f y:

Since % is a preorder on MV S; it follows that [%] is a partial order on MV S= � :

Furthermore, by Theorem 1, if [fx] 6= [c] and [f y] 6= [c]; then

[fx][%][f y] if and only if x1 � y1; x2 � y2; xn � yn and xn+1 � yn+1:

We can now state and prove the result of this subsection.

Proposition 2 The pair (MV S= �; [%]) is a complete lattice.

Proof Let ; 6= Z �MV S= �. De�ne

(xSZ1 ; xSZ2 ; xSZn ; xSZn+1) = ( inf
x1:[fx]2Z

x1; inf
x2:[fx]2Z

x2; sup
xn:[fx]2Z

xn; sup
xn+1:[fx]2Z

xn+1)

and

(xIZ1 ; xIZ2 ; xIZn ; xIZn+1) =

8>><>>:
( sup
x1:[fx]2Z

x1; sup
x2:[fx]2Z

x2; inf
xn:[fx]2Z

xn; inf
xn+1:[fx]2Z

xn+1) if [c] =2 Z

[c] if [c] 2 Z:

Observe that if [fx] 2 Z; then xk 2 [a; b] for all k = 1; 2; n; n + 1: Hence,

(xSZ1 ; xSZ2 ; xSZn ; xSZn+1) and (x
IZ
1 ; xIZ2 ; xIZn ; xIZn+1) are well de�ned and x

SZ
k ; xIZk 2 [a; b]

for all k = 1; 2; n; n + 1: Consider the equivalence classes [fSZ ] and [f IZ ] associated

to (xSZ1 ; xSZ2 ; xSZn ; xSZn+1) and (x
IZ
1 ; xIZ2 ; xIZn ; xIZn+1); respectively. That is, f

y 2 [fSZ ] if
and only if yk = xSZk for k = 1; 2; n; n + 1 and f y 2 [f IZ ] if and only if yk = xIZk for

k = 1; 2; n; n+ 1: Since xSZk ; xIZk 2 [a; b] for all k = 1; 2; n; n+ 1; we have that

[fSZ ]; [f IZ ] 2MV S= � : (5)

Moreover, if Z =MV S= � then [fSZ ] = (a; a; b; b) and [f IZ ] = [c]:
Now we show that (MV S= �; [%]) is a complete lattice. Let ; 6= Z � MV S= � :

By (5), [fSZ ]; [f IZ ] 2MV S= �. By Theorem 1 and the de�nition of [fSZ ] and [f IZ ],

lub Z = [fSZ ] and llb Z = [f IZ ] are, respectively, the least upper bound and the

7Remember that all constant median voter schemes (excluded in the statement of Theorem 1)

are equally manipulable since all of them are strategy-proof on Un.
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largest lower bound with respect to [%]. Hence, sup[%] Z = [fSZ ] and inf [%] Z = [f IZ ]:
Thus, (MV S= �; [%]) is a complete lattice. �

Two immediate consequences follow from the proof of Proposition 2. First, and

since [c] is the smallest equivalence class in MV S= � according to [%], all constant
median voter schemes are less manipulable than any other non-constant median voter

scheme (i.e., [c] = inf [%]MSV= �). Second, and since the equivalence class containing
all median voter schemes identi�ed with the four-tuple (a; a; b; b) is the largest equiva-

lence inMV S= � according to [%] (i.e., this equivalence class is the sup[%]MSV= �),
any median voter scheme fx such that x1 = x2 = a and xn = xn+1 = b is more

manipulable than any otherMV S outside this class. Observe that this class includes

all e¢ cient median voting schemes except f 1 and fn.

Finally, if n � 3 and fx 2 MV S is non-constant, then [fx] = ffxg: Thus, the
pair (MV S;%) is like a complete lattice (it is not because the equivalence class of
constant median voter schemes is not degenerated).

Figure 2 summarizes the complete lattice structure of the pair (MV S= �; [%]) for
any n � 2; whose properties have been collected along Corollaries 3, 4, 5, and 6.
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4 Comparing All GeneralizedMedian Voter Schemes

4.1 Generalized Median Voter Schemes

Median voter schemes are anonymous. All agents have the same power to in�uence

the outcome of a given median voter scheme fx; although this power depends on

the distribution of its associated �xed ballots x = (x1; :::; xn+1): Generalized median

voter schemes admit the possibility that di¤erent agents may have di¤erent power to

in�uence its outcome. This power will be described by a monotonic family of �xed

ballots, one for each coalition (subset) of agents. To develop a useful intuition to

understand the class of all generalized median voter schemes, consider �rst the case

n = 2: Given a monotonic family of �xed ballots fpf1;2g; pf1g; pf2g; pf;gg, one for each
coalition of agents, such that a � pf1;2g � pf1g � pf2g � pf;g � b, we de�ne the social

choice function f : U2 ! [a; b] as follows: for each R 2 U2;

f(R) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

pf1;2g if �(R1); �(R2) � pf1;2g

�(R2) if �(R1) � pf1;2g � �(R2) � pf1g

pf1g if �(R1) � pf1;2g � pf1g � �(R2)

medf�(R1); �(R2); pf1gg if pf1;2g � �(R1) � pf1g

�(R1) if pf1g � �(R1) � pf2g

medf�(R1); �(R2); pf2gg if pf2g � �(R1) � pf;g

pf2g if pf;g � �(R1) and �(R2) � pf2g

�(R2) if pf2g � �(R2) � pf;g � �(R1)

pf;g if pf;g � �(R1); �(R2):

Observe that rf = [pf1;2g; pf;g]: We can interpret this function as a way of assigning

to agents 1 and 2 the power to select the alternative in the subset rf = [pf1;2g; pf;g]:

For instance, agent 1 can make sure that the outcome is at most pf1g by voting below

pf1g and at most �(R1) by voting above pf1g and agent 1 is a dictator on [pf1g; pf2g]

(i.e., f(R) = �(R1) whenever �(R1) 2 [pf1g; pf2g]). It is easy to check that f can be
rewritten as

f(R) = min
S�f1;2g

max
i2S
f�(Ri); pSg:

To present the characterization of all strategy-proof and tops-only social choice

functions on the domain of single-peaked preferences for all n � 2, we say that a

collection fpSgS22N is a monotonic family of �xed ballots if (i) pS 2 [a; b] for all
S 2 2N and (ii) T � Q implies pQ � pT . The characterization is the following.

Proposition 3 (Moulin, 1980) A social choice function f : SPn ! [a; b] is strategy-

proof and tops-only if and only if there exists a monotonic family of �xed ballots
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fpSgS22N such that for all R 2 SPn,

f(R) = min
S22N

max
i2S
f�(Ri); pSg:

The social choice functions identi�ed in Proposition 3 are called generalized median

voter schemes. A simple way of interpreting them is as follows. Each generalized

median voting scheme (and its associated monotonic family of �xed ballots) can be

understood as a particular way of distributing the power among coalitions to in�uence

the social choice. To see that, take an arbitrary coalition S and its �xed ballot pS.

Then, coalition S can make sure that, by all of its members reporting a top alternative

below pS, the social choice will be at most pS, independently of the reported top

alternatives of the members of the complementary coalition.8 An alternative way of

describing this distribution of power among coalitions is as follows. Fix a monotonic

family of �xed ballots fpSgS22N (i.e., a generalized median voter scheme) and take a
vector of tops (�(R1); :::; �(Rn)): Start at the left extreme of the interval a and push

the outcome to the right until it reaches an alternative � for which the following two

things happen simultaneously: (i) there exists a coalition of agents S such that all

its members have reported a top alternative below or equal to � (i.e., �(Ri) � �

for all i 2 S) and (ii) the �xed ballot pS associated to S is located also below �

(i.e., pS � �). Median voter schemes are the anonymous subclass of generalized

median voter schemes. Hence, the �xed ballots of any two coalitions with the same

cardinality of any anonymous generalized median voter scheme are equal. From a

monotonic family of �xed ballots fpSgS22N associated to an anonymous generalized
median voter scheme f : Un ! [a; b] we can identify the n+ 1 ballots x1 � ::: � xn+1

needed to describe f as a median voter scheme as follows: for each 1 � k � n + 1,

xk = pS for all S 2 2N such that #S = n � k + 1. Moreover, the onto social choice
function f : Un ! [a; b] where agent j 2 N is the dictator (i.e., for all R 2 Un,
f(R) = �(Rj)) can be described as a generalized median voter scheme by setting

pT = a for all T � N such that j 2 T and pS = b for all S � N such that j =2 S:
Then, for any R 2 Un, (i) maxf�(Rj); pfjgg = �(Rj); �(Rj) � maxi2Tf�(Ri); pTg for
any T � N such that j 2 T ; and (iii) maxi2Sf�(Ri); pSg = b for any S � N such

that j =2 S: Thus, minS022N maxi02S0f�(Ri0); pS0g = �(Rj):

Given a monotonic family of �xed ballots p = fpSgS�N ; let fp denote the gener-
alized median voter scheme associated to p:

8See Barberà, Massó, and Neme (1997) for a similar interpretation for the case of a �nite number

of ordered alternatives.
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4.2 Main result

Our main result will provide a systematic way of comparing non-constant and non-

dictatorial generalized median voter schemes according to their manipulability. It

turns out that to perform this comparison it is crucial to identify, for each agent

i 2 N , the subintervals where i is a non-dummy agent; i.e., the subset of alternatives
that are eventually chosen at some pro�le but agent i is able to change the chosen

alternative by reporting a di¤erent preference relation. We de�ne formally below the

general notion of a non-dummy agent at an alternative in a social choice function.

De�nition 6 Let f : Un ! [a; b] be a social choice function. Agent i is non-dummy

at � 2 [a; b] in f if there exists R 2 Un and R0i 2 U such that

f(Ri; R�i) = � and

f(R0i; R�i) 6= �.

The lemma below characterizes non-dummyness at an alternative in a generalized

median voter scheme fp : Un ! [a; b] in terms of the monotonic family of �xed ballots

p: This characterization will be useful in the sequel.

Lemma 4 Let fp : Un ! [a; b] be a generalized median voter scheme. Then, i is

non-dummy at � in fp if and only if there exists S � N such that i 2 S, pS < pSnfig

and pS � � � pSnfig:

Proof See Appendix 2 at the end of the paper.

The set of all � 2 [a; b] such that i is non-dummy at � in fp : Un ! [a; b] is

denoted by NDi
p. By Lemma 4,

NDi
p =

S
fS�N ji2S and pS<pSnfigg

[pS; pSnfig]: (6)

We are now ready to state the main result of the paper.

Theorem 2 Let p = fpSgS�N and �p = f�pSgS�N be two monotonic families of �xed
ballots and assume that the two associated generalized median voter schemes fp :

Un ! [a; b] and f �p : Un ! [a; b] are neither constant nor dictatorial. Then,

[pN ; pfig] \NDi
p � [�pN ; �pfig] \NDi

�p; (7)

[pNnfig; pf;g] \NDi
p � [�pNnfig; �pf;g] \NDi

�p; (8)

and

[pfig; pNnfig] � NDi
�p (9)

hold for all i 2 N if and only if f �p is at least as manipulable as fp:
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Before presenting three lemmata used in the proof of Theorem 2 few remarks are

in order.

First, conditions (7), (8), and (9) say that the relevant information to compare two

generalized median voter schemes according to their manipulability for agent i 2 N
lies in the values of the �xed ballots associated to coalitions N; Nnfig, fig and f;g
and in i�s non-dummy sets.

Second, observe that condition (9) is only relevant when pfig < pNnfig because if

pNnfig < pfig; then [pfig; pNnfig] = ; and if pNnfig = pfig; then (9) follows from (7) and

(8) since fp is not constant and pNnfig = pfig 2 NDi
p.

Third, if the non constant generalized median voter schemes associated to the

monotonic families of �xed ballots p = fpSgS22N and �p = f�pSgS�N are anonymous,
then NDi

p = [pN ; pf;g]; ND
i
�p = [�pN ; �pf;g] (i is non-dummy in the full ranges of f

p and

f �p); pNnfig � pfig and �pNnfig � �pfig for all i 2 N: Therefore, conditions (7), (8), and
(9) are equivalent to

[pN ; pfig] � [�pN ; �pfig]

and

[pNnfig; pf;g] � [�pNnfig; �pf;g]

or

[pN ; pf;g] � [�pN ; �pf;g]

and

[pNnfig; pfig] � [�pNnfig; �pfig]:

Now, if x and y are the n + 1 vectors associated to fp and f �p, respectively, then

x1 = pN ; x2 = pNnfig; xn = pfig; xn+1 = pf;g, y1 = �pN ; y2 = �pNnfig; yn = �pfig and

yn+1 = �pf;g: Thus, conditions (7), (8), and (9) are equivalent to

[x1; xn+1] � [y1; yn+1]

and

[x2; xn] � [y2; yn];

which is what Theorem 1 says. Hence, Theorem 1 can be seen as a corollary of

Theorem 2.

We will say that an interval Ii = [c; d] with c < d is a non-dummy interval for

i in fp if Ii � NDi
p: Whenever we refer to an interval as a non-dummy interval we

exclude the possibility that the interval contains only one alternative. If i 2 S with
pS < pSnfig; then [pS; pSnfig] is a non-dummy interval for i in fp and we denote it by

ISi :We will write �I
S
i when the median voter scheme used as reference is f

�p instead of

fp:
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We state now the three lemmata, whose proofs are in Appendix 2, that will be

used in the proof of Theorem 2. To simplify notation, given p = fpSgS�N and Ri 2 U ;
we denote of

p
(Ri) by op(Ri):

Lemma 5 Let fp : Un ! [a; b] be a non-constant generalized median voter scheme:

Then, fp is not manipulable by i at Ri if and only if, for all ISi ; Ri is single-peaked

on (op(Ri) \ ISi ) [ f�(Ri); ��g for all �� 2 ISi .

Lemma 6 Let p = fpSgS�N be a monotonic family of �xed ballots and Ri 2 U .
If pfig < pNnfig, then

op(Ri) =

8>>>>>><>>>>>>:

[pN ; pfig] if a � �(Ri) � pN

[�(Ri); pfig] if pN < �(Ri) � pfig

f�(Ri)g if pfig < �(Ri) � pNnfig

[pNnfig; �(Ri)] if pNnfig < �(Ri) � pf;g

[pNnfig; pf;g] if pf;g < �(Ri):

If pNnfig � pfig; then

op(Ri) =

8>>>>>><>>>>>>:

[pN ; pfig] if a � �(Ri) � pN

[�(Ri); pfig] if pN < �(Ri) � pNnfig

[pNnfig; pfig] if pNnfig < �(Ri) � pfig

[pNnfig; �(Ri)] if pfig < �(Ri) � pf;g

[pNnfig; pf;g] if pf;g < �(Ri):

Lemma 7 Let p = fpSgS�N and �p = f�pSgS�N be two monotonic families of �xed

ballots such that fp and f �p are not constant. Assume (7), (8), and (9) in Theorem

2 hold. Then, for any non-dummy interval ISi and for all �
� 2 ISi there exists a non

dummy interval Îi for i in f �p such that �� 2 Îi and (op(Ri) \ ISi ) � (o�p(Ri) \ Îi) for
all Ri 2 U .9

De�nition 7 Let f : Un ! [a; b] be a social choice function. Agent i is a dictator at

� 2 [a; b] in f if for all Ri 2 U such that �(Ri) = �,

f(Ri; R�i) = � for all R�i 2 Un�1:

Let fp : Un ! [a; b] be a generalized median voter scheme and i 2 N be an

agent. Denote the set of all � 2 [a; b] such that i is a dictator at � in fp; by DT ip:
By Lemma 6, DT ip = [pfig; pNnfig]: Observe that if pNnfig < pfig; then i is not a

dictator at any � 2 [a; b] in fp: Furthermore, if pfig < pNnfig; then, by monotonicity,

pNnfjg � pfig < pNnfig � pfjg for all j 6= i: Therefore, if pfig < pNnfig; then j is not a

dictator at any � 2 [a; b] in fp for all j 6= i:

9Note that Îi does not have to be necessarily written as �IS
0

i for some S0 3 i:
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De�nition 8 Let p = fpSgS�N and �p = f�pSgS�N be two monotonic families of �xed
ballots. The generalized median voter scheme fp : Un ! [a; b] is at least more (or

more) dictatorial for i than the generalized median voter scheme f �p : Un ! [a; b] if

; 6= DT i�p � DT ip (or ; 6= DT i�p $ DT ip).

Proposition below formalizes the trade-o¤ between dictatorialness and manipula-

bility.

Proposition 4 Let p = fpSgS�N and �p = f�pSgS�N be two monotonic families of �xed
ballots. Assume that fp : Un ! [a; b] and f �p : Un ! [a; b] are non-constant, non-

dictatorial and comparable according to their manipulability. If fp is more dictatorial

for i than f �p, then f �p is more manipulable than fp.

Proof Since fp is more dictatorial than f �p for i; ; 6= DT i�p $ DT ip: Then, [�pfig; �pNnfig] $
[pfig; pNnfig] and �pfig � �pNnfig: Therefore, pfig < �pfig and �pNnfig � pNnfig or pfig � �pfig
and �pNnfig < pNnfig: Assume that pfig < �pfig and �pNnfig � pNnfig hold; the proof for

the other case proceeds similarly and therefore it is omitted. Since DT ip 6= ; and
p = fpSgS�N is monotonic, NDi

p = [pN ; pf;g] holds by (6). Thus,

[pN ; pfig] \NDi
p = [pN ; pfig]:

Similarly, and since DT i�p 6= ;,

[�pN ; �pfig] \NDi
�p = [�pN ; �pfig]:

Since fp and f �p are comparable according to their manipulability and pfig < �pfig;

[pN ; pfig] \NDi
p = [pN ; pfig] $ [�pN ; �pfig] = [�pN ; �pfig] \NDi

�p:

Thus, by Theorem 2, f �p is more manipulable than fp: �

5 Final remark

Before moving to the omitted proofs we �nish with a �nal remark relating our com-

parability notion with the one proposed by Pathak and Sönmez. Pathak and Sönmez

(2013) propose an inclusion criterion to compare two social choice functions accord-

ing to their manipulability. In general, the social choice function  is at least as

manipulable as the social choice function ' according to Pathak and Sönmez if '

is manipulable at pro�le R, then  is also manipulable at pro�le R. Proposition 5

shows that in our setting Pathak and Sönmez criterion is weaker than ours.
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Proposition 5 Let f and g be two generalized median voter schemes and assume

that g is at least as manipulable as f according to Pathak and Sönmez�s notion. Then,

g is at least as manipulable as f:

Proof Assume that g is at least as manipulable as f according to Pathak and

Sönmez�s notion. Fix i 2 N and let Ri 2Mf
i : There exists (R

0
i; R�i) 2 Un such that

f(R0i; R�i)Pif(Ri; R�i): (10)

Since f is tops-only, we may assume that R�i 2 SPn�1: By (10), f is manipulable at
pro�le R: Hence, by assumption, g is manipulable at pro�le R: Since R�i 2 SPn�1,
by Lemma 5, agent i manipulates g at pro�le R: Hence, Ri 2Mg

i : Thus, g is at least

as manipulable as f: �

Example 1 below shows that the reverse implication does not hold; that is, Pathak

and Sönmez�s notion is strictly weaker than ours and leaves many pairs of generalized

median voter schemes as being non-comparable while they are according to our notion.

Example 1 Let n = 3 and fx and f y be two median voter schemes associated to

x = (0; 1
2
; 1
2
; 1) and y = (0; 0; 1; 1); respectively. By Theorem 1, and since [x1; xn+1] �

[y1; yn+1] and [x2; xn]  [y2; yn], f y is more manipulable that fx: In one hand, consider
any pro�le R = (R1; R2; R3) 2 U3 and any preference R03 2 U such that (i) �(Ri) = 1
for i = 1; 2, (ii) �(R3) = 1

4
and 3

4
R3

1
2
; and (iii) �(R03) =

3
4
: Therefore, fx(R1; R2; R03) =

3
4
P3

1
2
= fx(R) and hence, fx is manipulable at pro�le R. Moreover, f y(R) = 1

and f y is not manipulable at pro�le R: Hence, f y is not more manipulable than fx

according to Pathak and Sönmez�s notion. On the other hand, consider any pro�lebR = ( bR1; bR2; bR3) 2 U3 and any preference bR03 2 U such that (i) �( bR1) = 1
2
; (ii)

�( bR2) = 1
4
; (iii) �( bR3) = 3

4
and 1

4
bR3 12 ; and (iv) �( bR03) = 1

4
: Therefore, fx( bR) = 1

2
and fx

is not manipulable at pro�le bR:Moreover, f y( bR1; bR2; bR03) = 1
4
bR3 12 = f y( bR) and hence,

f y is manipulable at pro�le bR: Hence, fx is not more manipulable than f y according
to Pathak and Sönmez�s notion. Thus, fx and f y are not comparable according to

Pathak and Sönmez�s notion of manipulability, although they are according to our

notion. �

Example 1 illustrates the fact that our comparability notion is based on the inclu-

sion of the maximal domains of preferences under which each of the two generalized

median voter schemes are strategy-proof. In this case, the maximal domain of prefer-

ences under which f y is strategy-proof is the set of single-peaked preferences on [0; 1]

while fx admits a much larger maximal domain, the union of the following three sets:

fRi 2 U j 0 � �(Ri) <
1
2
, �(Ri) < � < � � 1

2
) �Ri�, and 1

2
< �) 1

2
Ri�g;

fRi 2 U j 12 < �(Ri) � 1, 12 � � < � < �(Ri)) �Ri�, and � < 1
2
) 1

2
Ri�g; and

fRi 2 U j �(Ri) = 1
2
g:
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6 Appendix 1

Proof of Lemma 1
)) Suppose there exists �� 2 rfx such that Ri is not single-peaked on ox(Ri) [

f�(Ri); ��g: We will prove that there exist R0i 2 U and R�i 2 Un�1 such that
fx(R0i; R�i)Pif

x(Ri; R�i). We will divide the proof into three di¤erent cases.

Case 1: Suppose �� 2 ox(Ri) and there exists � 2 ox(Ri) such that �� < � <

�(Ri) and ��Pi�; the other case where �(Ri) < �� < � and �Pi�� is similar and

therefore it is omitted. Let R̂ 2 Un be such that �(R̂j) = �� for all j 2 N . Since

�� 2 ox(Ri); and fx is a median voter scheme, fx(Ri; R̂�i) = ��: Similarly, let
�R 2 Un be such that �( �Rj) = � for all j 2 N: Since � 2 ox(Ri); f

x(Ri; �R�i) = �:

Since fx(Ri; R̂�i) = ��Pi� = fx(Ri; �R�i); by the de�nition of fx, there must exist

S � Nnfig and j0 =2 S such that

fx(Ri; R̂j0 ; R̂S; �R�S[fi;j0g)Pif
x(Ri; �Rj0 ; R̂S; �R�S[fi;j0g): (11)

Now, let R0i 2 U be such that �(R0i) = fx(Ri; R̂j0 ; R̂S; �R�S[fi;jg): Since �(R̂j) = �� <

� = �( �Rj0) for all j 2 N;

�(R̂j0) = �� = fx(Ri; R̂�i) � fx(Ri; R̂j0 ; R̂S; �R�S[fi;j0g)

� fx(Ri; �Rj0 ; R̂S; �R�S[fi;j0g)

� fx(Ri; �R�i)

= �

= �( �Rj0)

< �(Ri):

(12)

Then, by (12) and the de�nition of fx;

fx(R0i;
�Rj0 ; R̂S; �R�S[fi;j0g) = fx(Ri; R̂j0 ; R̂S; �R�S[fi;j0g):

Hence, by (11),

fx(R0i;
�Rj0 ; R̂S; �R�S[fi;j0g)Pif

x(Ri; �Rj0 ; R̂S; �R�S[fi;j0g):

Thus, fx is manipulable by i at Ri with any R0i with the property that �(R
0
i) =

fx(Ri; R̂j0 ; R̂S; �R�S[fi;jg).

Case 2: Suppose �� =2 ox(Ri) and there exists � 2 ox(Ri) such that �� < � <

�(Ri) and ��Pi�; the other case where �(Ri) < � < �� and ��Pi� proceeds similarly

and it is therefore omitted. Let �R 2 Un be such that �( �Rj) = � for all j 2 N: Since
� 2 ox(Ri);

fx(Ri; �R�i) = �: (13)
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Let R̂ 2 Un be such that �(R̂j) = � for all j 2 N: If there exist S � Nnfig and j0 =2 S
such that

fx(Ri; R̂j0 ; R̂S; �R�S[fi;j0g)Pif
x(Ri; �Rj0 ; R̂S; �R�S[fi;j0g) (14)

holds, the proof proceeds as in Case 1. Hence, assume that there do not exist S �
Nnfig and j0 =2 S satisfying (14). Let Nnfig = fj1; :::; jn�1g: Then,

� = fx(Ri; �R�i) by (13)

Rif
x(Ri; R̂j1 ; �R�fi;j1g) consider S1 = ;,

j0 = j1 =2 S1; and :(14)
Rif

x(Ri; R̂j2 ; R̂j1 ; �R�fj1g[fi;j2g) consider S2 = fj1g,
j0 = j2 =2 S2; and :(14)

Rif
x(Ri; R̂j3 ; R̂fj1;j2g;

�R�fj1;j2g[fi;j3g) consider S3 = fj1; j2g,
j0 = j3 =2 S3; and :(14)

...
...

Rif
x(Ri; R̂jn�2 ; R̂fj1;j2;:::;jn�3g;

�R�fj1;j2;:::;jn�3g[fi;jn�2g) consider Sn�1 = fj1; j2; :::; jn�3g,
j0 = jn�2 =2 Sn�1; and :(14)

Rif
x(Ri; R̂jn�1 ; R̂fj1;j2;:::;jn�2g;

�R�fj1;j2;:::;jn�2g[fi;jn�1g) consider Sn = fj1; j2; :::; jn�2g,
j0 = jn�1 =2 Sn; and :(14)

= fx(Ri; R̂�i) fj1; j2; :::; jn�2g [ fi; jn�1g = N:

Hence, as ��Pi�;

��Pif
x(Ri; R̂�i): (15)

Since �� 2 rfx, fx(R̂i; R̂�i) = ��: Thus, by (15), fx(R̂i; R̂�i)Pifx(Ri; R̂�i); which

means that fx is manipulable by i at Ri with any R̂i such that �(R̂i) = ��.

Case 3: Suppose �� =2 ox(Ri) and there exists � 2 ox(Ri) such that � < �� <

�(Ri) and �Pi��; the other case where �(Ri) < �� < � and �Pi�� proceeds similarly

and it is therefore omitted. We will prove that this case is not possible. Consider the

pro�le R̂ such that �(R̂j) = �� for all j 2 N: Since �� =2 ox(Ri), � 2 ox(Ri) and ox(Ri)
is an interval (see Lemma 2), f(Ri; R̂�i) < ��: Furthermore, and since �� � �(Ri);

fx(R̂i; R̂�i) � fx(Ri; R̂�i) < ��: Hence, fx(R̂) < �: Thus, �� =2 rfx which contradicts
the initial hypothesis.

() Suppose fx is manipulable by i at Ri; that is, there exist R0i 2 U and R�i 2
Un�1 such that

fx(R0i; R�i)Pif
x(Ri; R�i): (16)

Consider the case �(R0i) < �(Ri); the other case is similar and therefore it is omitted:

We distinguish among three di¤erent cases.

Case 1: �(Ri) < fx(Ri; R�i): Since fx is a median voter scheme and �(R0i) <

�(Ri), fx(R0i; R�i) = fx(Ri; R�i): But this contradicts (16).
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Case 2: �(Ri) = fx(Ri; R�i): Then, fx(Ri; R�i)Pifx(R0i; R�i) which also contra-

dicts (16).

Case 3: fx(Ri; R�i) < �(Ri): Since �(P 0i ) < �(Ri) and (16), fx(R0i; R�i) <

fx(Ri; R�i):Hence, fx(R0i; R�i) < fx(Ri; R�i) < �(Ri) and �(Ri)Pifx(R0i; R�i)Pif
x(Ri; R�i):

Thus, and since fx(Ri; R�i); �(Ri) 2 ox(Ri) [ f�(Ri)g and fx(R0i; R�i) 2 rfx, Ri is
not single-peaked on ox(Ri) [ f�(Ri); fx(R0i; R�i)g: �

Proof of Lemma 2 We divide the proof into three cases.

Case 1: Suppose �(Ri) < x1: The case xn+1 < �(Ri) is symmetric and its proof

proceeds similarly; therefore, it is omitted. We prove that ox(Ri) = [x1; xn]: Let

� 2 ox(Ri) be arbitrary. Then, there exists R�i 2 Un�1 such that

medf�(R1); :::; �(Rn); x1; :::; xn+1g = �:

Rede�ne y = (y1; :::; y2n+1) � (�(R1); :::; �(Rn); x1; :::; xn+1) 2 [a; b]2n+1: If ys� < x1;

and since �(Ri) < x1 � :::: � xn+1; #fs 2 f1; :::; 2n+ 1g j ys � ys�g � n+ 2: Hence,

� 6= ys� : If xn < ys� ; and since �(Ri) < x1 � x2 � :::: � xn; #fs 2 f1; :::2n + 1g j
ys � ys�g � n + 2: Hence, � 6= ys� : Thus, � 2 [x1; xn]: Now, let � 2 [x1; xn],

R̂i = Ri and for all j 2 Nnfig let R̂j 2 U be such that �(R̂j) = �. Rede�ne

y = (y1; :::; y2n+1) � (�(R̂1); :::; �(R̂n); x1; :::; xn+1) 2 [a; b]2n+1: Since � � xn � xn+1;

#fs 2 f1; :::; 2n + 1g j ys � �g � n + 1: Furthermore, and since �(Ri) < x1 � �;

#fs 2 f1; :::; 2n + 1g j ys � �g � n + 1: Hence, #fs 2 f1; :::; 2n + 1g j ys � �g =
#fs 2 f1; :::; 2n+1g j ys � �g = n+1: Thus, medf�(R̂1); :::; �(R̂n); x1; :::; xn+1) = �.

Since R̂i = Ri, � 2 ox(Ri): Therefore, ox(Ri) = [x1; xn]:
Case 2: Suppose x1 � �(Ri) < x2: The case xn < �(Ri) � xn+1 is symmetric

and its proof proceeds similarly; therefore, it is omitted. We prove that ox(Ri) =

[�(Ri); xn+1]: Let � 2 ox(Ri) be arbitrary. Then, there exists R�i 2 Un�1 such that

medf�(R1); :::; �(Rn); x1; :::; xn+1g = �:

Rede�ne y = (y1; :::; y2n+1) = (�(R1); :::; �(Rn); x1; :::; xn+1) 2 [a; b]2n+1: If ys� <

�(Ri); and since �(Ri) < x2 � :::: � xn+1; #fs 2 f1; :::; 2n + 1g j ys � ys�g � n + 2:

Hence, � 6= ys� : If xn < ys� ; and since �(Ri) < x2 � :::: � xn+1; #fs 2 f1; :::; 2n+1g j
ys � ys�g � n + 2: Hence, � 6= ys� : Thus, � 2 [�(Ri); xn]: Now, let � 2 [�(Ri); xn];
R̂i = Ri and for all j 2 Nnfig let R̂j 2 U be such that �(R̂j) = �. Rede�ne

y = (y1; :::; y2n+1) � (�(R̂1); :::; �(R̂n); x1; :::; xn+1) 2 [a; b]2n+1: Since � � xn � xn+1;

#fs 2 f1; :::; 2n + 1g j ys � �g � n + 1: Furthermore, and since x1 � �(Ri) � �;

#fs 2 f1; :::; 2n + 1g j ys � �g � n + 1: Hence, #fs 2 f1; :::; 2n + 1g j ys � �g =
#fs 2 f1; :::; 2n+1g j ys � �g = n+1: Thus, medf�(R̂1); :::; �(R̂n); x1; :::; xn+1) = �.

Since R̂i = Ri; � 2 ox(Ri): Therefore, ox(Ri) = [�(Ri); xn]:
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Case 3: Suppose x2 � �(Ri) � xn:We prove that ox(Ri) = [x2; xn]: Let � 2 ox(Ri)
be arbitrary. Then, there exists R�i 2 Un�1 such that

medf�(R1); :::; �(Rn); x1; :::; xn+1g = �:

Rede�ne y = (y1; :::; y2n+1) = (�(R1); :::; �(Rn); x1; :::; xn+1) 2 [a; b]2n+1: If ys� < x2;

and since x2 � :::: � xn+1 and x2 � �(Ri), we have that #fs 2 f1; :::; 2n + 1g j ys �
ys�g � n+2: Hence, � 6= ys� : If xn < ys� ; and since x1 � :::: � xn and �(Ri) � xn, we

have that #fs 2 f1; :::; 2n+1g j ys � ys�g � n+2: Hence, � 6= ys� : Thus, � 2 [x2; xn]:
Now, let � 2 [x2; xn]; R̂i = Ri and for all j 2 Nnfig let R̂j 2 U be such that �(R̂j) =
�. Rede�ne y = (y1; :::; y2n+1) � (�(R̂1); :::; �(R̂n); x1; :::; xn+1) 2 [a; b]2n+1: Since � �
xn � xn+1; #fs 2 f1; :::; 2n+1g j ys � �g � n+1: Furthermore, and since x1 � x2 �
�; #fs 2 f1; :::; 2n + 1g j ys � �g � n + 1: Hence, #fs 2 f1; :::; 2n + 1g j ys � �g =
#fs 2 f1; :::; 2n+1g j ys � �g = n+1: Thus, medf�(R̂1); :::; �(R̂n); x1; :::; xn+1) = �.

Since R̂i = Ri; � 2 ox(Ri): Therefore, ox(Ri) = [x2; xn]. �

Proof of Lemma 3 We divide the proof into �ve cases.

Case 1: Suppose �(Ri) < x1: Then, by Lemma 2, ox(Ri) = [x1; xn]. Since �(Ri) <

x1 � xn � yn,

oy(Ri) =

8><>:
[y1; yn] if �(Ri) < y1

[�(Ri); yn] if y1 � �(Ri) < y2

[y2; yn] if y2 � �(Ri) � yn:

Hence, ox(Ri) � oy(Ri):

Case 2: Suppose x1 � �(Ri) < x2: Then, by Lemma 2, ox(Ri) = [�(Ri); xn]. Since

y1 � x1 � �(Ri) < x2 � xn � yn,

oy(Ri) =

(
[�(Ri); yn] if y1 � �(Ri) < y2

[y2; yn] if y2 � �(Ri) � yn:

Hence, ox(Ri) � oy(Ri):

Case 3: Suppose x2 � �(Ri) � xn: Then, y2 � �(Ri) � yn: By Lemma 2,

ox(Ri) = [x2; xn] and oy(Ri) = [y2; yn]: Hence, ox(Ri) � oy(Ri):

Case 4: Suppose xn < �(Ri) � xn+1: Then, by Lemma 2, ox(Ri) = [x2; �(Ri)].

Since y2 � x2 � xn < �(Ri) � xn+1 � yn+1,

oy(Ri) =

(
[y2; yn] if y2 � �(Ri) � yn

[y2; �(Ri)] if yn < �(Ri) � yn+1:

Hence, ox(Ri) � oy(Ri):
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Case 5: Suppose xn+1 < �(Ri): Then, by Lemma 2, ox(Ri) = [x2; xn+1]. Since

y2 � x2 � xn+1 < �(Ri),

oy(Ri) =

8><>:
[y2; yn] if y2 � �(Ri) � yn

[y2; �(Ri)] if yn < �(Ri) � yn+1

[y2; yn+1] if yn+1 < �(Ri):

Hence, ox(Ri) � oy(Ri): �

7 Appendix 2

We start with two preliminary notions and several remarks.

First, a generalized median voter scheme fp : Un ! [a; b] can alternatively be

represented by a monotonic family of right �xed ballots pr = fprSgS22N , where (i) for
all S 2 2N , prS 2 [a; b]; (ii) S � T implies prS � prT ; (iii) for all S 2 2N ; prS = pNnS,

and (iv) for all R 2 Un; fp(R) = maxS22N minj2Sf�(Rj); prSg � fp
r
(R):

Second, a non-dummy interval Ii is a maximal non-dummy interval for i if there

is no non-dummy interval I 0i such that Ii ( I 0i. Since the number of coalitions that

contain a player is �nite, any maximal non-dummy interval Ii can be written as the

union of a family of intervals; namely, Ii = [Kk=1I
Sk
i , where i 2 Sk for all k = 1; :::; K:

Before moving to the proof of the four lemmata used to prove Theorem 2, we state

without proof the following facts.

Remark 2 Let fp : Un ! [a; b] be a generalized median voter scheme and let Ri 2 U .
Then, Ri is single-peaked on (op(Ri)\Ii)[f�(Ri); ��g for all �� 2 Ii, for all maximal
non-dummy interval Ii if and only if Ri is single-peaked on (op(Ri)\ISi )[f�(Ri); ��g
for all �� 2 ISi ; for all non-dummy interval ISi .

Remark 3 If pfig < pf;g; then [pfig; pf;g] is a non-dummy interval for i in fp : Un !
[a; b]: If pN < pNnfig; then [pN ; pNnfig] is a non-dummy interval for i in fp.

Remark 4 If � 2 [pN ; pNnfig], � 2 [pfig; pf;g] and Ii is a maximal non-dummy inter-
val for i in fp : Un ! [a; b] such that �; � 2 Ii; then Ii = [pN ; pf;g]:

Remark 5 If pfig < pNnfig; then [pN ; pf;g] is a (maximal) non-dummy interval for i

in fp : Un ! [a; b]:

Remark 6 If pN = pfig < pNnfig = pf;g; then i is a dictator in fp : Un ! [a; b]:
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Proof of Lemma 4 Let fp : Un ! [a; b] be a generalized median voter scheme.

We will denote fp simply by f:

)) Assume i is non-dummy at � in f: Then, there exist R 2 Un and R0i 2 U such
that f(Ri; R�i) = � and f(R0i; R�i) 6= �: We distinguish between two cases.

Case 1 : Assume f(Ri; R�i) = � < f(R0i; R�i): Since f is a generalized me-

dian voter scheme, �(Ri) � � < �(R0i). Let S = fj 2 N j �(Rj) � �g. Ob-

serve that i 2 S: First, we prove that pS � �: Suppose otherwise, � < pS; then,

maxj2Sf�(Rj); pSg = pS > �: By the de�nition of S and f; f(Ri; R�i) > �; a con-

tradiction with f(Ri; R�i) = �: Now, we prove that � < pSnfig: Suppose otherwise,

pSnfig � �: For all j 2 Snfig; �(R0j) = �(Rj) � �: Hence, maxj2Snfigf�(R0j); pSnfigg �
� . Thus, f(R0i; R�i) � �, a contradiction with f(R0i; R�i) > �. Therefore, pS � � �
pSnfig: Since f(Ri; R�i) < f(R0i; R�i); pS < pSnfig:

Case 2 : Assume f(R0i; R�i) < � = f(Ri; R�i): The proof proceeds symmetrically

to Case 1 using the right phantom representation of f:

() Assume there exists S � N such that i 2 S, pS < pSnfig and pS � � � pSnfig.

We distinguish between two cases.

Case 1 : Assume pS � � < pSnfig. Let R 2 Un be such that �(Rj) = � for all

j 2 S and �(Rj) = b for all j =2 S: Then, f(R) = �. Let R0i 2 U be such that
� < �(R0i) < pSnfig: Hence, f(R0i; R�i) = �(R0i) 6= �: Thus, i is non-dummy at � in f:

Case 2 : Assume pS < � � pSnfig: Let R 2 Un be such that �(Rj) = pS for all

j 2 Snfig; �(Ri) = � and �(Rj) = b for all j =2 S: Then, f(R) = �: Let R0i 2 U be
such that pS < �(R0i) < �: Hence, f(R0i; R�i) = �(R0i) 6= �: Thus, i is non-dummy at

� in f: �

Proof of Lemma 5 We will denote fp and op(Ri) simply by f and o(Ri); respec-

tively.

)) Assume f is not manipulable by i at Ri and let ISi = [pS; pSnfig] be a non

dummy interval for i in f: Fix �� 2 ISi and let � 2 (o(Ri) \ ISi ) [ f�(Ri)g: We
distinguish among four cases.

Case 1 : Assume �� 2 (o(Ri) \ ISi ) [ f�(Ri)g and �� < � � �(Ri) (if � < �� the

proof is similar changing the role of �� and �):We will show that �Ri��: If � = �(Ri)

the statement holds immediately. Assume � < �(Ri): Then, ��; � 2 ISi . Hence, and
since �� < �, pS � �� < pSnfig. Consider any R�i 2 Un�1 with the property that for
every j 2 Nnfig;

�(Rj) =

(
�� if j 2 Snfig
� if j 2 NnS:

(17)
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Let �R 2 Un be such that �( �Rj) = � for all j 2 Nnfig and �( �Ri) = �(Ri). Since

� 2 o(Ri) = o( �Ri); f( �R) = �: As �(Rj) � �( �Rj) for j 2 N; by Remark 1, f(R) �
f( �R) = � . Moreover, �� � f(R). Hence,

�� � f(R) � �:

If S 0 � Snfig; then �� < pSnfig � pS0 because p is monotonic. Hence,max
j2S0
f�(Rj); pS0g >

��: If S 0 " Snfig; then max
j2S0
f�(Rj); pS0g � � > ��: Thus, �� < f(R) � �:We proceed

by distinguishing between two subcases.

Subcase 1.1 : Assume f(R) = �: Consider any R̂i 2 U such that �(R̂i) = ��: Since

�� < f(R); �� � f(R̂i; R�i). Furthermore, since pS � �� = �(R̂i) and �(Rj) = �� for

all j 2 Snfig; f(R̂i; R�i) � ��. Hence, f(R̂i; R�i) = ��: Since f is not manipulable

by i at Ri, �Ri�� holds.

Subcase 1.2 : Assume f(R) < �: Then, f(R) =2 f��; �; �(Ri)g = f�(Rj) j j 2 Ng:
Thus, f(R) 2 fpS j S � Ng. Set R1 � R and ��1 � f(R1): Observe that �� < ��1 < �

and since f is not manipulable by i at Ri; ��1 = f(R1)Ri�
� (because f(R̂i; R1�i) = ��

if �(R̂i) = ��). Since fpS j S � Ng is �nite, we apply successively the previous
argument starting with ��1 < � and obtaining R1; R2; :::; RK where (i) K � 2n, (ii)
Rki = Ri for all k = 1; :::; K, (iii) �� < f(Rk) < f(Rk+1) < � for all k = 1; :::; K � 1,
(iv) f(R1)Ri�� and f(Rk)Rif(Rk�1) for all k = 1; :::; K, (v) f(Rk) 2 fpS j S � Ng
and (vi) f(RK) = �: Then, by transitivity of Ri; �Ri��:

Case 2 : Assume �� 2 (o(Ri) \ ISi ) [ f�(Ri)g and �(Ri) � � < ��: The proof

proceeds as in Case 1 using the right phantom representation of f:

Case 3 : Assume �� =2 o(Ri) and �� < � � �(Ri) (if �(Ri) � � < �� the proof

is similar using the right phantom representation of f). We will show that �Ri��:

If � = �(Ri) the statement holds immediately. Assume � < �(Ri) and consider any

pro�le �R 2 Un where, for every j 2 N; �( �Rj) = ��: Since �� 2 ISi � rf , f( �R) = ��.

We will show that �� � f(Ri; �R�i) � �: Let R̂ = (Ri; �R�i): Since �� � �(R̂j) for all

j 2 N; �� � f(R̂): Consider any subpro�le ~R�i 2 Un�1 where, for every j 2 Nnfig;
�( ~Rj) = �: Since � 2 o(Ri); f(Ri; ~R�i) = �: As �( �Rj) = �� < � = �( ~Rj) for all

j 2 Nnfig; by Remark 1, f(Ri; �R�i) � �. Since f is not manipulable by i at Ri and

f(Ri; �R�i) 6= �� (because �� =2 o(Ri)) we have that f(Ri; �R�i)Rif( �R) = ��: De�ne

�0 = f(Ri; �R�i): Notice that �0 � � � �(Ri) and �0 2 o(Ri) \ ISi : Therefore, by Case
1, �Ri�0. By transitivity of Ri, �Ri��:

Case 4 : Assume �� =2 o(Ri) and � < �� � �(Ri): (if �(Ri) � �� < � the proof

is similar changing the role of �� by �). We will show that this case is not possible.

Consider any pro�le R0 2 Un such that �(R0j) = �� for all j 2 N: Since �� =2 o(Ri),
� 2 o(Ri) and o(Ri) is an interval, f(Ri; R0�i) < ��: Furthermore, as �� � �(Ri) and
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Remark 1 holds, f(R0i; R
0
�i) � f(Ri; R

0
�i) < ��: Hence, f(R0) < ��: Thus, �� =2 rf

which contradicts the fact that �� 2 ISi :
() Assume f is manipulable by i at Ri: Then there exist R0i 2 U and R�i 2 Un�1

such that

f(R0i; R�i)Pif(Ri; R�i): (18)

We assume that �(R0i) < �(Ri) (if �(Ri) < �(R0i) the proof is similar using the right

phantom representation of f). Set R0 = (R0i; R�i):We distinguish among three cases.

Case 1: Assume �(Ri) < f(R): Since f is a generalized median voter scheme and

�(R0i) < �(Ri), f(R0) = f(R), which contradicts (18).

Case 2: Assume �(Ri) = f(R): Then f(R)Rif(R0); which also contradicts (18).

Case 3: Assume f(R) < �(Ri): Since �(R0i) < �(Ri); by Remark 1, f(R0) � f(R)

and (18), f(R0) < f(R) holds. Hence, f(R0) < f(R) < �(Ri) and �(Ri)Pif(R0)Pif(R):

Thus, as f(R); �(Ri) 2 o(Ri)[f�(Ri)g; Ri is not single-peaked on o(Ri)[f�(Ri); f(R0)g:
We will show that there exists S � N such that i 2 S and f(R0); f(R) 2 ISi =

[pS; pSnfig]: Set �� � f(R0) < f(R) � �: Since f(R0) < f(R) and f is a generalized

median voter scheme, �(R0i) � f(R0) = �� De�ne �S = fj 2 N j �(Rj) � ��g: Then,
i =2 �S and because � = f(R);

p �S � �: (19)

Set, S � �S [ fig: Hence, S = fj 2 N j �(R0j) � ��g: Suppose pS > ��: Then, for all

S 0 � S maxj2S0f�(R0j); pS0g � pS0 � pS > �� and for all S� * S;maxj2S�f�(R0j); pS�g >
�� because if j =2 S; then �(R0j) > ��: Thus, �� < f(R0), which is a contradiction.

Hence pS � ��. Therefore, i 2 S and

pS � �� < � � pSnfig;

since Snfig = �S and (19) hold. Thus, there exist a non dummy interval [pS; pSnfig]

and �� = f(R0) 2 [pS; pSnfig] such that Ri is not single-peaked on (o(Ri)\[pS; pSnfig])[
f�(Ri); ��g. �

Proof of Lemma 6 The proof is omitted since it consists of verifying that the

option set can be written as stated. �

Proof of Lemma 7 Let i 2 S � N , ISi a non-dummy interval for i in f
p and

�� 2 ISi be arbitrary. The proof proceeds by looking at di¤erent cases that can

be grouped into two main cases depending on whether pNnfig � pfig (Case 1) or

pfig < pNnfig (Case 2).

Case 1 : Assume pNnfig � pfig: Since [pN ; pfig] [ [pNnfig; pf;g] = rf and ISi �
NDi

p � rf , either �� 2 [pN ; pfig] \ NDi
p or �

� 2 [pNnfig; pf;g] \ NDi
p: Hence, by (7)

and (8), either �� 2 [�pN ; �pfig] \NDi
�p or �

� 2 [�pNnfig; �pf;g] \NDi
�p: Thus, there exists
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a non-dummy interval �Ii for i in f �p such that �� 2 �Ii: Let Îi be a maximal non-

dummy interval for i in f �p such that �Ii � Îi: We have that �� 2 Îi: We will show

that (op(Ri) \ ISi ) � (o�p(Ri) \ Îi) for all Ri 2 U , showing that for all � 2 op(Ri) \ ISi
two things happen simultaneously: � 2 Îi (Claim a) and � 2 o�p(Ri) (Claim A), for

all Ri 2 U .
Claim a: � 2 Îi.
Proof of Claim a: We distinguish among �ve cases.

Case a.1 : �� 2 [pN ; pfig]n[pNnfig; p;] and pN � � � pfig: Assume � � �� (the proof

of the other case proceeds similarly). As �; �� 2 [pN ; pfig] \ ISi and ISi is a interval,
[�; ��] � [pN ; pfig] \ ISi : Hence, by (7), [�; ��] � [pN ; pfig] \NDi

p � [�pN ; �pfig] \NDi
�p:

Then, [�; ��] � NDi
�p. As Îi is a maximal non-dummy interval and �

� 2 Îi, [�; ��] �
Îi: Therefore, � 2 Îi:
Case a.2 : �� 2 [pN ; pfig]n[pNnfig; pf;g] and pfig < � � pf;g. As pN � �� < pNnfig;

pfig < � � pf;g and ISi is a non-dummy interval such that �
�; � 2 ISi , we have that

by Remark 4, NDi
p = [pN ; pf;g]. Then, by (7) and (8), [pN ; pfig] � [�pN ; �pfig] \ NDi

�p

and [pNnfig; pf;g] � [�pNnfig; �pf;g]\NDi
�p: Hence, [pN ; pfig][ [pNnfig; pf;g] � NDi

�p. Thus,

[��; �] � NDi
�p: As Îi is a maximal non-dummy interval and �

� 2 Îi, [��; �] � Îi:

Therefore, � 2 Îi:
Case a.3 : �� 2 [pNnfig; pf;g]n[pN ; pfig] and pNnfig � � � pf;g: Assume �� < �

(the proof of the other case proceeds similarly). Since �; �� 2 [pNnfig; pf;g] \ ISi
and ISi is an interval, by (8), [�

�; �] � [pNnfig; pf;g] \ ISi � [pNnfig; pf;g] \ NDi
p �

[�pNnfig; �pf;g] \ NDi
�p: Hence, [�

�; �] � NDi
�p: As Îi is a maximal non-dummy interval

and �� 2 Îi, [��; �] � Îi: Therefore, � 2 Îi:
Case a.4 : �� 2 [pNnfig; pf;g]n[pN ; pfig] and pN � � < pNnfig. Since pfig < �� �

pf;g; pN � � < pNnfig and ISi is a non-dummy interval such that �
�; � 2 ISi , by

Remark 4, NDi
p = [pN ; pf;g]. Hence, by (7) and (8) [pN ; pfig] � [�pN ; �pfig] \ NDi

�p

and [pNnfig; pf;g] � [�pNnfig; �pf;g] \ NDi
�p: Hence, [pN ; pfig] [ [pNnfig; pf;g] � NDi

�p and

[�; ��] � NDi
�p: As Îi is a maximal non-dummy interval and �

� 2 Îi, [�; ��] � Îi:

Therefore, � 2 Îi:
Case a.5 : �� 2 [pNnfig; pf;g] \ [pN ; pfig]: Hence, �� 2 [pNnfig; pfig] \ NDi

p: Thus,

by (7) and (8), �� 2 [�pNnfig; �pf;g] \ [�pN ; �pfig] \ NDi
p. Assume �

� < � (the proof

of the other case proceeds similarly). Since pNnfig < �� < � � pf;g; and ISi is a

an interval, [��; �] � [pNnfig; pf;g] \ ISi . Hence, by (8), [��; �] � [�pNnfig; �pf;g] \NDi
�p:

Thus [��; �] � NDi
�p: As Îi is a maximal non-dummy interval and �

� 2 Îi, [��; �] � Îi:

Therefore, � 2 Îi:
Claim A: � 2 o�p(Ri):
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Proof of Claim A: We proceed by �rst distinguishing between Case A.1 and Case A.2,

and in turn for each one of them, the proof is divided in 5 subcases.

Case A.1 : �pNnfig � �pfig: By Lemma 6,

op(Ri) =

8>>>>>><>>>>>>:

[pN ; pfig] if a � �(Ri) � pN

[�(Ri); pfig] if pN < �(Ri) � pNnfig

[pNnfig; pfig] if pNnfig < �(Ri) � pfig

[pNnfig; �(Ri)] if pfig < �(Ri) � pf;g

[pNnfig; pf;g] if pf;g < �(Ri):

and

o�p(Ri) =

8>>>>>><>>>>>>:

[�pN ; �pfig] if a � �(Ri) � �pN
[�(Ri); �pfig] if �pN < �(Ri) � �pNnfig
[�pNnfig; �pfig] if �pNnfig < �(Ri) � �pfig
[�pNnfig; �(Ri)] if �pfig < �(Ri) � �pf;g
[�pNnfig; pf;g] if �pf;g < �(Ri):

(20)

Case A.1.1 : a � �(Ri) � pN : Then, � 2 [pN ; pfig]: Since � 2 ISi ; � 2 [pN ; pfig] \
NDi

p: By (7), � 2 [�pN ; �pfig]: Then, � 2 [�(Ri); �pfig] and �pN � �: Therefore, by the

�rst three rows in (20), � 2 o�p(Ri) holds:
Case A.1.2 : pN < �(Ri) � pNnfig: Then, � 2 [�(Ri); pfig]: Since � 2 ISi ; � 2

[pN ; pfig]\NDi
p. By (7), � 2 [�pN ; �pfig]: Then, � 2 [�(Ri); �pfig] and �pN � �: Therefore,

by the �rst three rows in (20), � 2 o�p(Ri) holds:
Case A.1.3 : pNnfig < �(Ri) � pfig: Then, � 2 [pNnfig; pfig]: Since � 2 ISi ; � 2

[pNnfig; pfig] \NDi
p. By (7) and (8); � 2 [�pNnfig; �pfig]: By (20), � 2 o�p(Ri):

Case A.1.4 : pfig < �(Ri) � pf;g: Then, � 2 [pNnfig; �(Ri)]: Since � 2 ISi ; � 2
[pNnfig; pf;g] \ NDi

p: By (8), � 2 [�pNnfig; �p;]: Then, � 2 [�pNnfig; �(Ri)] and � � �pf;g:

Therefore, by the last three rows in (20), � 2 o�p(Ri) holds:
Case A.1.5 : pf;g < �(Ri): Then, � 2 [pNnfig; pf;g]: Since � 2 ISi ; � 2 [pNnfig; pf;g]\

NDi
p: By (8), � 2 [�pNnfig; �p;]: Then, � 2 [�pNnfig; �(Ri)] and � � �pf;g: Therefore, by

the last three rows in (20), � 2 o�p(Ri) holds:
Case A.2 : �pfig < �pNnfig: By Lemma 6,

o�p(Ri) =

8>>>>>><>>>>>>:

[�pN ; �pfig] if a � �(Ri) � �pN
[�(Ri); �pfig] if �pN < �(Ri) � �pfig
f�(Ri)g if �pfig < �(Ri) � �pNnfig
[�pNnfig; �(Ri)] if �pNnfig < �(Ri) � �pf;g
[�pNnfig; �pf;g] if �p�f;g < �(Ri):

(21)

Case A.2.1 : a � �(Ri) � pN : The proof proceeds as in Case A.1.1.
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Case A.2.2 : pN < �(Ri) � pNnfig: The proof proceeds as in Case A.1.2.

Case A.2.3 : pNnfig < �(Ri) � pfig: Then, � 2 [pNnfig; pfig]: By (7), (8) and

� 2 NDi
p; � 2 [�pNnfig; �pfig] \ NDi

�p; contradicting that �pfig < �pNnfig: Then, in this

case, ISi \ op(Ri) = ; and the proof is trivial.
Case A.2.4 : pfig < �(Ri) � pf;g: The proof proceeds as in Case A.1.4.

Case A.2.5 : pf;g < �(Ri): The proof proceeds as in Case A.1.5.

Case 2 : Assume pfig < pNnfig: Then, by Remark 5, NDi
p = [pN ; pf;g] and itself is

a maximal non-dummy interval for i in fp. As [pN ; pf;g] = [pN ; pfig] [ [pfig; pNnfig] [
[pNnfig; pf;g]; by (7), (8) and (9), we have that there exists a non-dummy interval for

i in f �p such that [pN ; pf;g] � Îi. Let �� 2 [pN ; pf;g] be arbitrary. Then, �� 2 Îi: We
will show that

(op(Ri) \ [pN ; pf;g]) � (o�p(Ri) \ Îi) for all Ri 2 U : (22)

Then, and since ISi � [pN ; pf;g] for any S � N; the statement of Lemma 7 will follow

immediately since (op(Ri) \ ISi ) � (op(Ri) \ [pN ; pf;g]) � (o�p(Ri) \ Îi): To prove that
(22) holds observe �rst that op(Ri) \ [pN ; pf;g] � Îi. It remains to be proven that if

� 2 op(Ri) \ [pN ; pf;g]; then � 2 o�p(Ri). We proceed by distinguishing between two
cases.

Case 2.1 : �pNnfig � �pfig: By Lemma 6,

op(Ri) =

8>>>>>><>>>>>>:

[pN ; pfig] if a � �(Ri) � pN

[�(Ri); pfig] if pN < �(Ri) � pfig

f�(Ri)g if pfig < �(Ri) � pNnfig

[pNnfig; �(Ri)] if pNnfig < �(Ri) � pf;g

[pNnfig; pf;g] if pf;g < �(Ri)

(23)

and

o�p(Ri) =

8>>>>>><>>>>>>:

[�pN ; �pfig] if a � �(Ri) � �pN
[�(Ri); �pfig] if �pN < �(Ri) � �pNnfig
[�pNnfig; �pfig] if �pNnfig < �(Ri) � �pfig
[�pNnfig; �(Ri)] if �pfig < �(Ri) � �pf;g
[�pNnfig; �pf;g] if �pf;g < �(Ri):

(24)

We distinguish among �ve subcases.

Case 2.1.1 : a � �(Ri) � pN : Then � 2 [pN ; pfig]: Since � 2 ISi ; � 2 [pN ; pfig] \
NDi

p. By (7), � 2 [�pN ; �pfig]: Then, � 2 [�(Ri); �pfig] and �pN � �: Therefore, by the

�rst three rows in (24), � 2 o�p(Ri) holds:
Case 2.1.2 : pN < �(Ri) � pfig: Then, � 2 [�(Ri); pfig]: Since � 2 ISi ; � 2

[pN ; pfig]\NDi
p. By (7), � 2 [�pN ; �pfig]: Then, � 2 [�(Ri); �pfig] and �pN � �: Therefore,

by the �rst three rows in (24), � 2 o�p(Ri) holds:
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Case 2.1.3 : pfig < �(Ri) � pNnfig: Then, � = �(Ri) 2 [pN ; pf;g] � Îi � [�pN ; �pf;g]:
Since � = �(Ri) 2 [�pN ; �p;]; � 2 o�p(Ri) because f �p in unanimous on rf �p = [�pN ; �p;]:
Case 2.1.4 : pNnfig < �(Ri) � pf;g: Then, � 2 [pNnfig; �(Ri)]: Since � 2 ISi ;

� 2 [pNnfig; p;] \ NDi
p. By (8), � 2 [�pNnfig; �pf;g]: Then, � 2 [�pNnfig; �(Ri)] and

� � �pf;g: Therefore, by the last three rows in (24), � 2 o�p(Ri) holds:
Case 2.1.5 : pf;g < �(Ri): Then, � 2 [pNnfig; pf;g]: Since � 2 ISi ; � 2 [pNnfig; pf;g]\

NDi
p. By (8), � 2 [�pNnfig; �pf;g]: Then, � 2 [�pNnfig; �(Ri)] and � � �pf;g: Therefore, by

the last three rows in (24), � 2 o�p(Ri) holds:
Case 2.2 : �pfig < �pNnfig: By Lemma 6,

o�p(Ri) =

8>>>>>><>>>>>>:

[�pN ; �pfig] if a � �(Ri) � �pN
[�(Ri); �pfig] if �pN < �(Ri) � �pfig
f�(Ri)g if �pfig < �(Ri) � �pNnfig
[�pNnfig; �(Ri)] if �pNnfig < �(Ri) � �pf;g
[�pNnfig; �pf;g] if �pf;g < �(Ri):

(25)

The proof follows similar arguments to the ones already used in Case 2.1. �

Proof of Theorem 2
)) Suppose Ri 2 Mfp

i : By Lemma 5, there exist a non-dummy interval I
S
i =

[pS; pSnfig] for i in fp and �� 2 ISi such that Ri is not single-peaked on (op(Ri)\ ISi )[
f�(Ri); ��g: Hence, by Lemma 7, there exists a maximal non-dummy interval Îi for i
in f �p such that �� 2 Îi and (op(Ri) \ ISi ) [ f�(Ri); ��g � (o�p(Ri) \ Îi) [ f�(Ri); ��g:
Thus, Ri is not single-peaked on (o�p(Ri) \ Îi) [ f�(Ri); ��g: Then by Lemma 5 and
Remark 2, Ri 2Mf �p

i .

() Assume f �p is at least as manipulable as fp: Then,

Mfp

i �M
f �p

i for all i 2 N: (26)

To obtain a contradiction assume [pN ; pfig]\NDi
p * [�pN ; �pfig]\NDi

�p or [pNnfig; pf;g]\
NDi

p * [�pNnfig; �pf;g] \ NDi
�p or [pfig; pNnfig] * NDi

�p: We proceed by distinguishing

among the three cases.

Case 1 : [pN ; pfig] \ NDi
p * [�pN ; �pfig] \ NDi

�p: Then, there exists a maximal non-

dummy interval I for i in fp such that [pN ; pfig] \ I * [�pN ; �pfig] \NDi
�p: Let �1 � �2

be such that [pN ; pfig] \ I = [�1; �2]. Let f�I itgt=1;:::;T be the collection of all maximal
non-dummy intervals for i in f �p; in particular, by the de�nition of NDi

�p and the fact

that they are maximal intervals, NDi
�p =

S
t=1;:::;T

�I it and for all t; t
0 = 1; :::; T such

that t 6= t0; �I it \ �I it0 = ;: Then, for any maximal non-dummy interval �I it for i in f�p we
have that

[�1; �2] * [�pN ; �pfig] \ �I it : (27)

37



We distinguish between two subcases.

Case 1.a: NDi
�p = ;: Two further subcases are possible.

Case 1.a.1 : �1 < �2. Let �; �; 
 2 [a; b] and Ri 2 U be such that �1 < � < � <


 < �2, �(Ri) = �, and 
Pi�:10 Hence, �(Ri) 2 [�1; �2] � [pN ; pfig]: By Lemma 6,

op(Ri) =

(
[pNnfig; pfig] if pNnfig < �(Ri) � pfig

[�(Ri); pfig] otherwise.

Then, and because �; 
 2 [�1; �2] � I and �; 
 2 [�(Ri); �2] � [�(Ri); pfig] � op(Ri);

Ri is not single-peaked on (op(Ri)\I)[f�(Ri)g since 
Pi�. But for all t = 1; :::; T and
all �0 2 �I it ; Ri is single-peaked on (o�p(Ri)\ �I it)[f�(Ri); �0g trivially since o�p(Ri)\ �I it =
;: Thus, by Lemma 5, Ri 2Mfp

i nM
f �p

i which contradicts (26).

Case 1.a.2 : �1 = �2: Since I � [pN ; pf;g], [pN ; pfig] \ I = f�1g and I is a (non
degenerated) interval (since I is a non-dummy interval), pfig = �1 = �2. Therefore,

I = [pfig; pf;g] because I � [pN ; pf;g], I is a maximal non-dummy interval and by

Remark 3, [pfig; pf;g] is a non-dummy interval of i in fp. Hence, as I is a non

degenerated interval,

pfig = �1 < pf;g:

Two subcases are possible.

Case 1.a.2.a: pNnfig < pf;g. Let �; �; 
 2 [a; b] andRi 2 U be such thatmaxfpNnfig; pfigg <
� < � < 
 < pf;g, �(Ri) = 
, and �Pi�.11 Hence, �(Ri) 2 [maxfpNnfig; pfigg; pf;g]:
By Lemma 6,

op(Ri) = [pNnfig; �(Ri)]:

Then, and because �; �; �(Ri) 2 op(Ri) \ I [ f�(Ri)g; Ri is not single-peaked on
op(Ri) \ I [ f�(Ri)g since �Pi�. But for t = 1; :::; T and all � 2 �I it ; Ri is single-

peaked on (o�p(Ri)\ �I it)[ f�(Ri); �0g trivially since o�p(Ri)\ �I it = ;. Thus, by Lemma
5, Ri 2Mfp

i nM
f �p

i which contradicts (26).

Case 1.a.2.b: pfig < pNnfig = pf;g: Then, by Remark 5, [pN ; pf;g] is a non-dummy

interval of i in fp. As I = [pfig; pf;g] is a maximal non-dummy interval of i in fp; we

must have I = [pN ; pf;g]: Therefore, pN = pfig: Hence, pN = pfig and pNnfig = pf;g:

By Remark 6, i is a dictator in fp, which is a contradiction.

Case 1.b: NDi
�p 6= ;: Then, [�pN ; �pfig] \ �I it 6= ; for all t = 1; :::; T . To see that,

observe that it holds immediately if �pfig = �pf;g: Assume �pfig < �pf;g: Then, there exists
�I it0 � �I

fig
i = [�pfig; �pf;g] because, by Remark 3, [�pfig; �pf;g] is a non-dummy interval for

i in f �p: Then, [�pN ; �pfig] \ �I it0 6= ;: Furthermore, for all t 6= t0; [�pN ; �pfig] \ �I it 6= ;; since
10Ri is de�ned in any arbitrary way in [a; b]nf
; �g.
11Ri is de�ned in any arbitrary way in [a; b]nf�; �g.
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�I it \ �I t
0
i = ;: For each t = 1; :::; T; let �t1 � �t2 be such that [�pN ; �pfig] \ �I it = [�t1; �t2].

Then, by (27), [�1; �2] * [�t1; �t2] for all t = 1; :::; T: Hence,

�1 < �t1 or �2 > �t2 for all t = 1; :::; T: (28)

Assume, without loss of generality, that �11 < �21 < ::: < �T1 (and �
1
2 < �22 < ::: < �T2 ):

We distinguish among four di¤erent cases.

Case 1.b.1 : There exists t0 2 f1; :::; Tg such that �1 < �t
0
1 � �2 � �t

0
2 : This t

0 is

unique, because the family f�I itgt=1;:::;T is pair-wise disjoint. Let

�2 =

(
maxf� 2 �I it0�1g if t0 6= 1
a if t0 = 1

and

�1 =

(
minf� 2 �I it0+1g if t0 6= T

b if t0 = T:

Thus, �2 < �t
0
1 (if �2 6= a, then proof is trivial and if �2 = a, then a � �1 < �t

0
1 ) and

�1 � �t
0
2 : Let Ri 2 U and �; �; 
 2 [a; b] be such that (i) maxf�1; �2g < � < � <


 < �t
0
1 , (ii) �(Ri) = �, (iii) 
Pi�, (iv) if �; � 2 [a; b] and �t

0
1 < � < �; then �t

0
1Ri�Ri�;

and (v) if �; � 2 [a; b] and � < � < maxf�1; �2g; then maxf�1; �2gRi�Ri�:12 Hence,
�(Ri) 2 (�1; �2) � [pN ; pfig] and �(Ri) < �t

0
1 < �pfig; where the last inequality follows

from the fact that [�pN ; �pfig] \ �I it0 = [�t
0
1 ; �

t0
2 ]: By Lemma 6, and since if pfig < pNnfig

then pN � �1 � �(Ri) � �2 � pfig < pNnfig; and if �pfig < �pNnfig then � �(Ri) � �t
0
1 �

�pfig < �pNnfig;

op(Ri) =

(
[pNnfig; pfig] if pNnfig < �(Ri) � pfig

[�(Ri); pfig] otherwise
and

o�p(Ri) =

8><>:
[�pN ; �pfig] if �(Ri) < �pN

[�pNnfig; �pfig] if �pNnfig < �(Ri) � �pfig
[�(Ri); �pfig] otherwise.

(29)

Then, Ri is not single-peaked on (op(Ri)\I)[f�(Ri)g because �; 
 2 [�1; �2] � I and

�; 
 2 [�(Ri); �2] � [�(Ri); pfig] � op(Ri). We will now show that, for all t = 1; :::; T ,

Ri is single-peaked on (o�p(Ri)\ �I it)[f�(Ri); �0g for all �0 2 �I it :We distinguish between
two subcases.

Case 1.b.1.a: t 6= t0: By the de�nition of Ri and the fact that either �I it � [�pN ; �2] �
[�pN ;maxf�1; �2g] or �I it � [�1; �pf;g] � [�1; �pf;g] � [�t

0
1 ; �pf;g]; Ri is single-peaked on

�I it [ f�(Ri)g: Thus, Ri is single-peaked on (o�p(Ri) \ �I it) [ f�(Ri); �0g for all �0 2 �I it :
12Ri is de�ned in any arbitrary way in [maxf�1; �2g; �t

0

1 ]nf
; �g.
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Case 1.b.1.b: t = t0: By (29), o�p(Ri) � [�pN ; �pfig]: Hence, o�p(Ri) \ �I it0 � [�t
0
1 ; �

t0
2 ]:

Thus, by its de�nition, Ri is single-peaked on (o�p(Ri) \ �I it0) [ f�(Ri)g: Let �0 2 �I it0 :
Two further subcases are distinguished.

Case 1.b.1.b.1 : �0 2 [�pN ; �pfig]: Then, �0 2 [�t
0
1 ; �

t0
2 ] because �

0 2 �I it0. Hence, by

the de�nition of Ri and the fact that o�p(Ri) \ �I it0 � [�t
0
1 ; �

t0
2 ]; Ri is single-peaked on

(o�p(Ri) \ �I it0) [ f�(Ri); �0g:
Case 1.b.1.b.2 : �0 =2 [�pN ; �pfig]: Then, �0 > �pfig � �t

0
2 � �t

0
1 : Hence, by the de�nition

of Ri and the fact that o�p(Ri) \ �I it0 � [�t
0
1 ; �

t0
2 ]; Ri is single-peaked on (o

�p(Ri) \ �I it0) [
f�(Ri); �0g.
Then, by Lemma 5, Ri 2Mfp

i nM
f �p

i which contradicts (26).

Case 1.b.2 : There exists t0 2 f1; :::; Tg such that �t01 � �1 � �t
0
2 < �2: This t0 is

unique, because the family f�I itgt=1;:::;T is pair-wise disjoint. The proof of this case is
similar to Case 1.b.1, because the problem is symmetric, and therefore it is omitted.

Case 1.b.3 : [�1; �2] \ [�t1�t2] = ; for all t 2 f1; :::; Tg. The proof of this case is
similar to Case 1.a and therefore it is omitted.

Case 1.b.4 : Assume that neither Case 1.b.1 nor Case 1.b.2 nor Case 1.b.3 hold.

By (28), for all t 2 f1; :::; Tg;

�t1 > �1 and �t2 < �2:

Let �1 = �11 and �2 = �T2 : Then,

�1 < �1 � �2 < �2:

Let Ri 2 U and �; �; 
 2 [a; b] be such that (i) �1 < � < � < 
 < �1 (ii) �(Ri) = �,

(iii) 
Pi�, and (iv) if �; � 2 [a; b] and �1 < � < �; then �1Ri�Ri�.
13 Hence, �(Ri) 2

[�1; �2] � [pN ; pfig] and �(Ri) < �1 � �pfig: By Lemma 6, and similarly as in Case

1.b.1,

op(Ri) =

(
[pNnfig; pfig] if pNnfig < �(Ri) � pfig

[�(Ri); pfig] otherwise
and

o�p(Ri) =

8><>:
[�pN ; �pfig] if �(Ri) < �pN

[�pNnfig; �pfig] if �pNnfig < �(Ri) � �pfig
[�(Ri); �pfig] otherwise.

(30)

Then, Ri is not single-peaked on (op(Ri)\ I)[f�(Ri)g because �; 
 2 op(Ri)\ I. We
will now show that, for all t = 1; :::; T , Ri is single-peaked on (o�p(Ri)\ �I it)[f�(Ri); �0g
13Ri is de�ned in any arbitrary way in [a; �1]nf
; �g.
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for all �0 2 �I it : Fix t = 1; :::; T: Since o�p(Ri) � [�pN ; �pfig], o�p(Ri)\ �I it � [�t1; �t2] � [�1; �2]:
Then, by its de�nition, Ri is single-peaked on (o�p(Ri)\ �I it)[f�(Ri)g:We will now show
that Ri is single-peaked on (o�p(Ri) \ �I it) [ f�(Ri); �0g for all �0 2 �I it : We distinguish
between two subcases.

Case 1.b.4.a: �0 2 [�pN ; �pfig]: Then, �0 2 [�t1; �t2] because �0 2 �I it . Hence, �
0 2

[�1; �2]. Therefore, by de�nition of Ri and the fact that o
�p(Ri) \ �I it � [�1; �2]; Ri is

single-peaked on (o�p(Ri) \ �I it) [ f�(Ri); �0g:
Case 1.b.4.b: �0 =2 [�pN ; �pfig]: Then, �0 > �pfig � �2 � �1 because �

0 2 �I it � rf �p).

Hence, by de�nition of Ri and the fact that o�p(Ri)\ �I it � [�1; �2]; Ri is single-peaked
on (o�p(Ri) \ �I it) [ f�(Ri); �0g.
Therefore, by Lemma 5, Ri 2Mfp

i nM
f �p

i which contradicts (26).

Case 2 : [pNnfig; pf;g]\NDi
p * [�pNnfig; �pf;g]\NDi

�p: Since the problem is symmetric,

the proof is similar to the one used in Case 1.

Case 3 : [pfig; pNnfig] * NDi
�p: Then pfig � pNnfig: We proceed by distinguishing

among four subcases.

Case 3.a: pfig = pNnfig: Then, we can apply either Case 1 or Case 2.

Hence, assume pfig < pNnfig and let 
 2 [pfig; pNnfig]nNDi
�p.

Case 3.b: Either pfig = 
 or pNnfig = 
 hold. Then, we can apply either Case 1

or Case 2.

Case 3.c: pfig < 
 < pNnfig and pN < pfig: Let Ri 2 U and �; � 2 [a; b] be such
that (i) pN < � < � < pfig, (ii) �(Ri) = �, (iii) 
Pi� and (iv) if �; � 2 [a; b]nf
g and
� < � < � or � < � < �; then �Ri�: By Lemma 6,

op(Ri) = [�(Ri); pfig]: (31)

Since pfig < pNnfig, ND
p
i = [pN ; pf;g] holds. As Ri is not single-peaked on (o

p(Ri) \
[pN ; pf;g]) [ f�(Ri); 
g and 
 2 [pN ; pf;g] = NDp

i ; by Lemma 5, Ri 2 M
fp

i : Further-

more, as Ri is single-peaked on [a; b]nf
g and 
 =2 NDi
�p, by Lemma 5, Ri =2 M

f �p

i :

Thus, Ri 2Mfp

i nM
f �p

i which contradicts (26).

Case 3d : pfig < 
 < pNnfig and pN = pfig: Then, pNnfig < pf;g (otherwise i is a

dictator). Let Ri 2 U and �; � 2 [a; b] be such that (i) pNnfig < � < � < pf;g, (ii)

�(Ri) = �, (iii) 
Pi� and (iv) if �; � 2 [a; b]nf
g and � < � < � or � < � < �; then

�Ri�: By Lemma 6,

op(Ri) = [pNnfig; �(Ri)]: (32)

Since pfig < pNnfig, ND
p
i = [pN ; pf;g] holds. As Ri is not single-peaked on (o

p(Ri) \
[pN ; pf;g]) [ f�(Ri); 
g and 
 2 [pN ; pf;g] = NDp

i ; by Lemma 5, Ri 2 M
fp

i : Further-

41



more, as Ri is single-peaked on [a; b]nf
g and 
 =2 NDi
�p, by Lemma 5, Ri =2 M

f �p

i :

Thus, Ri 2Mfp

i nM
f �p

i which contradicts (26). �
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