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1 Introduction

Consider a set of agents that has to collectively choose an alternative. Each agent
has a preference relation on the set of alternatives. We would like the chosen alter-
native to depend on the preference profile (a list of preference relations, one for each
agent). But preference relations are private information and, to be used to choose the
alternative, they have to be revealed by the agents. A social choice function collects
individual preference relations and selects an alternative for each declared preference
profile. Hence, a social choice function induces a game form that generates, at every
preference profile, a strategic problem to each agent. An agent manipulates a social
choice function if there exist a preference profile and a different preference relation for
the agent such that, if submitted, the social choice function selects a strictly better
alternative according to the preference relation of the agent of the original prefer-
ence profile. A social choice function is strategy-proof if no agent can manipulate it.
That is, the game form induced by a strategy-proof social choice function has the
property that, at every preference profile, to declare the true preference relation is a
weakly dominant strategy for all agents. Hence, each agent has an optimal strategy
(to truth-tell) independently of the agent’s beliefs about the other agents’ declared
preference relations. This absence of any informational hypothesis about the oth-
ers’ preference relations is one of the main reasons of why strategy-proofness is an
extremely desirable property of social choice functions.

However, the Gibbard-Satterthwaite Theorem establishes that nontrivial strategy-
proof social choice functions do not exist on universal domains. Strategy-proofness
is a strong requirement since a social choice function is not longer strategy-proof
as soon as there exist a preference profile and an agent that can manipulate the
social choice function by submitting another preference relation that if submitted,
the social choice function selects another alternative that is strictly preferred by the
agent. Nevertheless, there are many social choice problems where the structure of the
set of alternatives restricts the set of conceivable preference relations, and hence the
set of strategies available to agents. For instance, when the set of alternatives has a
natural order, in which all agents agree upon. The localization of a public facility, the
temperature of a room, the platform of political parties in the left-right spectrum, or
the income tax rate are all examples of such structure that imposes natural restrictions
on agents’ preference relations. Black (1948) was the first to argue that in those cases
agents’ preference relations have to be single-peaked (relative to the unanimous order
on the set of alternatives). A preference relation is single-peaked if there exists a top
alternative that is strictly preferred to all other alternatives and at each of the two

sides of the top alternative the preference relation is monotonic, increasing in the left



and decreasing in the right.

A social choice function operating only on a restricted domain of preference pro-
files may become strategy-proof. The elimination of preference profiles restricts the
normal form game induced by the social choice function, and strategies (i.e., prefer-
ence relations) that were not dominant may become dominant. Consider any social
choice problem where the set of alternatives can be identified with the interval [a, b]
of real numbers and where single-peaked preference relations are defined on [a, b].
For this set up Moulin (1980) characterizes all strategy-proof and tops-only social
choice functions on the domain of single-peaked preference relations as the class of all
generalized median voter schemes.! In addition, Moulin (1980) also characterizes the
subclass of median voter schemes as the set of all strategy-proof, tops-only and anony-
mous social choice functions on the domain of single-peaked preference relations; and
this is indeed a large class of social choice functions. A median voter scheme can be
identified with a vector x = (z1, ..., £, 4+1) of n+1 numbers in [a, b], where n is the car-
dinality of the set of agents N and z; < ... < x,41. Then, for each preference profile,
the median voter scheme identified with = selects the alternative that is the median
among the n top alternatives of the agents and the n + 1 fixed numbers x1, ..., 1.
Since 2n + 1 is an odd number, this median always exists and belongs to [a, b]. Ob-
serve that median voter schemes are tops-only and anonymous by definition. They
are strategy-proof on the domain of single-peaked preference relations because, given
a preference profile, each agent can only change the chosen alternative by moving his
declared top away from his true top; thus, no agent can manipulate a median voter
scheme at any preference profile. A median voter scheme distributes the power to
influence the outcome among agents according to its associated vector x in an anony-
mous way. Generalized median voter schemes constitute non-anonymous extensions
of median voter schemes. A generalized median voter scheme can be identified with
a set of fixed ballots {ps}scny on [a,b], one for each subset of agents S. Then, for
each preference profile, the generalized median voter scheme identified with {ps}scn
selects the alternative a that is the smallest one with the following two properties:
(i) there is a subset of agents S whose top alternatives are smaller or equal to « and
(ii) the fixed ballot pg associated to S is also smaller or equal to a.

Generalized median voter schemes are strategy-proof on the domain of single-
peaked preference profiles, but manipulable on the universal domain. There are sev-
eral papers that have identified, in our or similar settings, maximal domains under
which social choice functions are strategy-proof but, as soon as the domain is enlarged
with a preference outside the domain, the social choice function becomes manipula-
ble. Barbera, Mass6 and Neme (1998), Barbera, Sonnenschein and Zhou (1992),

LA social choice function is tops-only if it only depens on the profile of top alternatives.



Berga and Serizawa (2000), Bochet and Storcken (2009), Ching and Serizawa (1998),
Hatsumi, Berga, and Serizawa (2014), Kalai and Miiller (1977), and Serizawa (1995)
are some examples of these papers. Our contribution on this paper builds upon this
literature and has the objective of giving a criterion to compare generalized median
voter schemes according to their manipulability. We want to emphasize the fact that
the manipulability of a social choice function does not indicate the degree of its lack
of strategy-proofness. There may be only one instance at which the social choice
function is manipulable or there may be many such instances. The mechanism design
literature that has focused on strategy-proofness has not distinguished between these
two situations; it has declared both social choice functions as being not strategy-proof,
dot!?

Our criterion to compare two social choice functions takes the point of view of
individual agents. We say that an agent is able to manipulate a social choice function
at a preference relation (the true one) if there exist a list of preference relations, one
for each one of the other agents, and another preference relation for the agent (the
strategic one) such that if submitted, the agent obtains a strictly better alternative
according to the true preference relation. Consider two generalized median voter
schemes, f and g, that can operate on the universal domain of preference profiles.
Assume that for each agent the set of preference relations under which the agent is able
to manipulate f is contained in the set of preference relations under which the agent is
able to manipulate g. Then, from the point of view of all agents, g is more manipulable
than f. Hence, we think that f is unambiguously a better generalized median voter
scheme than g according to the strategic incentives induced to the agents. Often,
it may be reasonable to think that agents’ preferences are single-peaked, but if the
designer foresees that agents may have also non single-peaked preferences, then f
may be a better choice than g if strategic incentives are relevant and important for
the designer.

Before presenting our general result in Theorem 2, we focus on median voter
schemes, the subclass of anonymous generalized median voter schemes. In Theorem
1 we provide two necessary and sufficient conditions for the comparability of two
median voter schemes in terms of their manipulability. Let f and g be two (non-
constant) median voter schemes and let x = (z1,...,2,11) and y = (y1, ..., Yn11) be
their associated vectors of fixed ballots, x to f and y to g, where z; < ... < x,,; and
y1 < ... < yYps1. Then, g is at least as manipulable as f if and only if [z, z,.1] C

[Y1, Ynt1] and [xe, x,] C [y, yn]. Using this characterization we are able to establish

?Kelly (1977) is an exemption although, to compare social chocie functions according to their
manipulability, it uses a counting criteria. Pathak and Sénmez (2013) is a recent exemption and we

will refer to it later on.



simple comparability tests for the subclass of unanimous and efficient median voter
schemes. Using the partial order “to be equally manipulable as” obtained in Theorem
1 we show that the set of equivalence classes of median voter schemes has a complete
lattice structure with the partial order “to be as manipulable as”; the supremum
is the equivalence class containing all median voter schemes with x1 = x5 = a and
Tp = Tpi1 = b,® and the infimum is the equivalence class with all constant median
voter schemes; i.e., for all k =1,...,n+ 1, x;, = « for some « € [a, b].

In Theorem 2 we provide three necessary and sufficient conditions for the com-
parability of two generalized median voter schemes in terms of their manipulability.
The three conditions are stated using the two associated families of monotonic fixed
ballots and depend very much on the power each agent has to unilaterally change
the outcome of the two generalized median voter schemes (i.e., the intervals of al-
ternatives where agents are non-dummies). Obviously, Theorem 2 is more general
than Theorem 1. However, our analysis can be sharper and deeper on the subclass of
anonymous generalized median voter schemes. In addition, Theorem 1 can be seen
as a first step to better understand the general characterization of Theorem 2.

Before finishing this Introduction we want to relate our comparability notion with
another one recently used in centralized matching markets. Pathak and Soénmez
(2013) apply a different notion to compare the manipulability of some specific match-
ing mechanisms in school choice problems. Their notion is based on the inclusion of
preference profiles at which there exists a manipulation, while our notion is based
on the inclusion of preference relations at which an agent is able to manipulate. In
applications, preference profiles are not common knowledge while, in contrast, each
agent knows his preference relation (and he may only know that). To use a more ma-
nipulable generalized median voter scheme means that each agent has to worry about
his potential capacity to manipulate in a larger set. Again, the use of the inclusion of
preference relations as a basic criterion to compare generalized median voter schemes
according to their manipulability do not require any informational hypothesis. Thus,
we find it more appealing. Moreover, we show that if two generalized median voter
schemes are comparable according to Pathak and Sénmez’s notion, then they are also
comparable according to our notion. Furthermore, Example 1 shows that our notion
is indeed much weaker than Pathak and Sénmez’s notion.

The paper is organized as follows. Section 2 contains preliminary notation and
definitions. Section 3 describes the family of anonymous generalized median voter
schemes and compares them according to their manipulability. Section 4 extends the
analysis to all generalized median voter schemes. Section 5 contains a final remark

comparing Pathak and Sénmez’s criterion with ours. Sections 6 and 7 contain two

3When n is odd, this class contains the true median voter scheme.



appendices that collect all omitted proofs.

2 Preliminaries

Agents are the elements of a finite set N = {1,...,n}. The set of alternatives is the
interval of real numbers [a,b] C R. We assume that n > 2 and a < b. Generic agents
will be denoted by 7 and j and generic alternatives by oo and 3. Subsets of agents will
be represented by S and 7.

The (weak) preference of each agent i € N on the set of alternatives [a,b] is a
complete, reflexive, and transitive binary relation (a complete preorder) R; on [a, b].
As usual, let P; and I; denote the strict and indifference preference relations induced
by R;, respectively; namely, for all «, 5 € [a, b], aP;( if and only if =S R;«, and oI, if
and only if aR;3 and SR;c. The top of R; is the unique alternative 7(R;) € [a, b] that
is strictly preferred to any other alternative; i.e., 7(R;) P« for all a € [a, b)\{7(R;)}.
Let U be the set of preferences with a unique top on [a,b]. A preference profile
R = (Ry,...,R,) € U™ is a n-tuple of preferences. To emphasize the role of agent
i or subset of agents S, a preference profile R will be represented by (R;, R_;) or
(Rs, R_s), respectively.

A subset U" C U" of preference profiles (or the set u itself) will be called a
domain. A social choice function is a function f : U" — [a, b] selecting an alternative
for each preference profile in the domain U". The range of a social choice function
f U™ = [a,b] is denoted by ry. That is,

ry = {a € [a,b] | there exists R = (Ry, ..., R,) € U" s.t. f(Ry,...,Ry) = a}.

Social choice functions require each agent to report a preference on a domain u.
A social choice function is strategy-proof on U if it is always in the best interest
of agents to reveal their preferences truthfully. Formally, a social choice function
f: ur — [a,b] is strategy-proof if for all R € Z;{\”, all i € N, and all R, € Z/A{,

f(Ri,R_;)R;f(R;, R_;). (1)

In the sequel we will say that a social choice function f : U — [a, b] is not manipulable
by i € N at R; € U if (1) holds for all (R, R_;) € U". To compare social choice
functions according to their manipulability, our reference set of preferences will be
the full set U.

The set of manipulable preferences of agent i € N for f: U™ — [a,b] is given by

M} ={R;cU | f(R,, R_;)P,f(R;, R_;) for some (R}, R_;) € U"}.



Obviously, a social choice function f : U™ — [a,b] is strategy-proof if and only if
M! = @ for all i € N. We say that f : U" — [a,b] is more manipulable than
g :U" — [a,b] forie N if MY C M.

Now, we introduce our criterion to compare social choice functions according to

their manipulability.

Definition 1 A social function f : U™ — [a,b] is at least as manipulable as social
function g : U™ — [a,b] if MY C M for alli e N.

Definition 2 A social function f : U™ — [a,b] is equally manipulable as social
function g : U™ — |a,b] if f is at least as manipulable as social function g and vice
versa; i.e., M? = M/ for alli € N.

Definition 3 A social function f : U™ — [a,b] is more manipulable than a social
function g : U™ — [a, b] if f is at least as but not equally manipulable as social function
g; i.e., M C /\/lfc for alli € N and there exists j € N such that M} & M{

Given two social choice functions f : U" — [a,b] and g : U™ — [a, b] we write (i)
f 7o g to denote that f is at least as manipulable as g, (ii) f ~ g to denote that f
is equally manipulable as ¢, and (iii) f > ¢ to denote that f is more manipulable
than g. Obviously, there are many pairs of social choice functions that can not be
compared according to their manipulability.

Strategy-proofness is not the unique property we will look at. A social choice func-
tion f : ur — [a, b] is anonymous if it is invariant with respect to the agents’ names;
namely, for all one-to-one mappings ¢ : N — N and all R € ﬁ”, f(Ry,....,Ry) =
f(Rs(1), -, Ro(ny)- A social choice function f : U — [a, b] is dictatorial if there exists
1 € N such that for all R € Z?", f(R)R;« for all o € ry. A social choice function
I ur — [a,b] is efficient if for all R € Z;l\”, there is no « € [a, b] such that, for all
i€ N,aR,;f(R)and aP; f(R) for some j € N. A social choice function f : U — [a,b]
is unanimous if for all R € U™ such that T(R;) = aforalli € N, f(R) = a. A social
choice function f : U™ — [a,b] is onto if for all a € [a,b] there is R € U" such that
f(R) =« (i.e., ry = [a,b]). A social choice function f : U™ — [a,b] is tops-only if for
all R, R' € U such that 7(R;) = 7(R]) for all i € N, f(R) = f(R').

In our setting the Gibbard-Satterthwaite Theorem states that a social choice func-
tion f : U™ — [a,b], with #r; # 2, is strategy-proof if and only if it is dictatorial
(see Barbera and Peleg (1990)). An implicit assumption is that the social choice
function operates on all preference profiles on U", because all of them are reasonable.
However, for many applications, a linear order structure on the set of alternatives
naturally induces a domain restriction in which for each preference R; in the domain

not only there exists a unique top but also that at each of the sides of the top of R; the
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preference is monotonic. A well-known domain restriction is the set of single-peaked

preferences on an interval of real numbers.

Definition 4 A preference R; € U is single-peaked on A C [a,b] if for all o, € A
such that f < a < 7(R;) or 71(R;) < a < B, 7(R;) P,aR; 3.

We will denote the domain of all single-peaked preferences on [a,b] by SP C U.
Moulin (1980) characterizes the family of strategy-proof and tops-only social choice
functions on the domain of single-peaked preferences. This family contains many non-
dictatorial social choice functions. All of them are extensions of the median voter.
Following Moulin (1980), and before presenting the general result, we first compare
in Section 3, the anonymous subclass according to their manipulability on the full
domain of preferences U. In Section 4 we will give a general result to compare accord-
ing to their manipulability all strategy-proof and tops-only social choice functions on

SP" when they operate on the domain ™.

3 Anonymity: Comparing Median Voter Schemes

3.1 Median Voter Schemes

Assume first that n is odd and let f : U™ — [a,b] be the social choice function that
selects, for each preference profile R = (Ry, ..., R,) € U", the median among the top
alternatives of the n agents; namely, f(R) = med{7(R;),...,7(R,)}.* This social
choice function is anonymous, efficient, tops-only, and strategy-proof on SP. Add
now, to the n agents’ top alternatives, n + 1 fixed ballots: ”T“ ballots at alternative
a and ”T“ ballots at alternative b. Then, the median among the n top alternatives,
and the median among the n top alternatives and the n + 1 fixed ballots coincide
since the "T“ ballots at a and the "TH ballots at b cancel each other; namely, for all

R=(Ry,..,R,) €U",

f(R) = med{T(Ry),...,T(Ry), a,....,a , b,....b } =med{r(Ry),....,7(R,)}.

nTﬂftimes "Tﬂ—times

To proceed, and instead of adding n + 1 fixed ballots at the extremes of the
interval, we can add, regardless of whether n is odd or even, n+ 1 fixed ballots at any

of the alternatives in [a, b]. Then, a social choice function f : U™ — [a, b] is a median

4Given a set of real numbers {z1, ..., xx}, define its median as med{x,...,xx} = y, where y is
such that #{1 <k < K | x <y} > % and #{1 <k < K |z > y} > % If K is odd the median

is unique and belongs to the set {z1,...,xx }.



voter scheme if there exist n + 1 fixed ballots (z1,...,¥,41) € [a,b]"™ such that for
all R e U™,
f(R) =med{T(Ry),...;T(Rp), 1, s Trs1}- (2)

Hence, each median voter scheme can be identified with its vector x = (x1, ..., Z,41) €
[a, b]"*1 of fixed ballots. Moulin (1980) shows that the class of all tops-only, anony-
mous and strategy-proof social choice functions on the domain of single-peaked pref-

erences coincides with all median voter schemes.

Proposition 1 (Moulin, 1980) A social choice function f : SP™ — |a, b] is strategy-
proof, tops-only and anonymous if and only if f is a median voter scheme; namely,
there exist n + 1 fized ballots (z1, ..., Tni1) € [a, b such that for all R € SP™,

f(R) =med{T(Ry),...., T(Rp), T1, ooy Tps1}

Median voter schemes are tops-only and anonymous by definition. To see that
they are strategy-proof, let f : SP" — [a,b] be any median voter scheme and fix
R e SP"and i€ N.If f(R) = 7(R;), i can not manipulate f. Assume 7(R;) < f(R)
(the other case is symmetric). Agent i can only modify the chosen alternative by
declaring a preference R, € SP with the property that f(R) < 7(R.). But then,
either f(R) = f(R}, R_;) or f(R) < f(R;,R_;). Hence, 7(R;) < f(R) < f(R],R_;).
Since R; is single-peaked, f(R)R;f(R;, R_;). Thus, i can not manipulate f. It is less
immediate to see that the set of all median voter schemes (one for each vector of n+ 1
fixed ballots) coincides with the class of all tops-only, anonymous and strategy-proof
social choice functions on the domain of single-peaked preferences. The key point in
the proof is to identify, given a tops-only, anonymous and strategy-proof social choice
function f : SP™ — [a,b], the vector x = (1, ..., ,41) € [a, b]"™! of fixed ballots. To
identify each =, with 1 < k < n+1, consider any preference profile R € SP" with the
property that #{i € N | 7(R;) =a} =n—k+land #{i e N | 7(R;) =b} =k — 1
and define x; = f(R). The proof concludes by checking that indeed f satisfies (2)
with this vector z = (21, ..., Zn41) € [a,b]" ™ of identified fixed ballots.

To see that in the statement of Proposition 1 tops-onlyness does not follow from
strategy-proofness and anonymity consider the social choice function f : SP" — |a, b|
where for all R € SP",

f(R)_{ : it #{i € N | aRb} > #{i € N | bPia)
otherwise.

Notice that f is strategy-proof and anonymous but it is not tops-only. It also violates
efficiency, unanimity, and ontoness.
We finish this subsection with a useful remark stating that median voter schemes

are monotonic.



Remark 1 Let f: U™ — [a,b] be a median voter scheme and let R, R' € U™ be such
that 7(R;) < 7(R}) for alli € N. Then, f(R) < f(R').

3.2 Main result with anonymity

Median voter schemes are strategy-proof on the domain SP" of single-peaked prefer-
ences. However, when they operate on the larger domain 4" they may become manip-
ulable. Then, all median voter schemes are equivalent from the classical manipulabil-
ity point of view. In this subsection we give a simple test to compare two median voter
schemes according to their manipulability. Given a vector x = (¥, ..., T4 1) € [a, b]" ™!

we will denote by f? its associated median voter scheme on U™; namely, for all R € U",
fYR) =med{T(R1),.... T(Rp), T1, .cry Tpy1}-

Given x = (71, ..., Tn11)€Ela, "™, we will assume that z; < ... < x,,,1. This can be
done without loss of generality because the social choice function associated to any
reordering of the components of = coincides with f*. Obviously, the rang of f? is
(%1, Tpg1], d.€., 7pe = [T1, Tpt1]. Any constant social choice function, f(R) = « for all
R € U™, can be described as a median voter scheme by setting, for all 1 < k < n+1,
xr = a. We denote it by f*. Trivially, any constant social choice function f is strategy
proof on U™. Then, for any a € [a,b] and any social choice function g : U™ — [a, b]
we have that g is at least as manipulable as f* (i.e., ¢ = f®). Furthermore, all
non-constant median voter schemes are manipulable on /™. Hence, any non-constant
median voter scheme [ is more manipulable than f® (i.e., f* = f®). Theorem
1 below gives an easy and operative way of comparing non-constant median voter

schemes according to their manipulability.

Theorem 1 Let x = (21, ..., Tp11)€[a, 0]"™ and y = (Y1, .., Yni1)€Ela, "™ be two
vectors of fixed ballots such that f* and fY are not constant; i.e., v1 < Tpi1 and
Y1 < Yny1. Then, fY is at least as manipulable as f* if and only if [x1, Tpi1] C (Y1, Yni1]
and [x2, Tn] C [Y2, Yn)-

3.3 Proof of Theorem 1

In the proof of Theorem 1 the following option set will play a fundamental role.

Definition 5 Let f : U" — [a,b] be a social choice function and let R; € U. The set
of options left open by R; € U is defined as follows:

ol (R) ={a€a,b]| f(Ri, R_;) = a for some R_; € U"'}.



If f* is a median voter scheme, we denote o/"(R;) by 0®(R;).

Before proving Theorem 1 we state three useful lemmata, whose proofs are in

Appendix 1.

Lemma 1 Let f* : U™ — [a,b] be a median voter scheme associated with x =
(71, ooy Tpy1)Ela, b, Then, f* is not manipulable by i € N at R; € U if and only
if R; is single-peaked on o*(R;) U{T(R;),a} for all o € 7y=.

Lemma 2 Let f* : U™ — [a,b] be a median voter scheme associated with © =

(%1, .oy Tpy1)Ela, b L. Then,

(21, ] ifa < T1(R;) <1y
[T(R;),x,] if 11 < T(R;) < g
0" (R;) = { [x2, 7] if xa < 7(R;) <y
[xo, T(Ry)] if xp < T(R;) < Tpia
| [T2, Tnpa]  if mnp < T(R;) <0

Lemma 3 Let f* : U" — [a,b] and fY : U™ — [a,b] be two median voter schemes
associated with x = (1, ..., Tpi1)E€la, b]" ™ and y = (Y1, .., Yns1) € [a, 0" such that
(1, Znt1] C (Y1, Yns1] and [zo, x,] C [y2, yn]. Then, o°(R;) C oY(R;) for all R; € U.

Lemma 1 plays a key role in the proof of Theorem 1. To understand it notice that
it roughly says that whether or not agent ¢ can manipulate f* at R; depends on the
fact that R; should only be like single-peaked on the set of alternatives that may be
selected by f* for some subprofile R_;, given R;. The comparison, in terms of R;, of
pairs of alternatives that will never be selected once R; is submitted, is irrelevant in

terms of agent i’s power to manipulate f*. To illustrate that, consider the case where

n:3,x1:a,x2:“—+b, 3:2(GT+bandx4—b Then, rp= = [a,b]. Let R, € U

be any preference with 7(R;) € (“H’ 2 a+b ) By Lemma 2, 0*(R;) = [“TH’, 2(“;b)] :

Lemma 1 says that R; should be smgle—peaked on this interval and that the preference
a+b

away from 7(R;) towards the direction of has to be monotonically decreasing until

a+b
3

they can be freely ordered among themselves; and symmetrically from 7(R;) towards
a+b)

alternative and that all alternatives further away have to be worse than ‘%b but

the direction of Figure 1 illustrates a preference that is single-peaked on
0" (R;) U{T(R;),a} for all & € ry=. It also shows that this set may be significantly

larger than the set of single-peaked preferences.
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Figure 1

Proof of Theorem 1 First, we will prove that if [z1,7,.1] C [y1,Ynr1] and
[, 4] C [Y2,yn], then fY is at least as manipulable as f*. Suppose that R; € M{ ‘)
By Lemma 1, there exists o* € ry. such that R; is not single-peaked on o*(R;) U
{T(R;),a*}. By Lemma 3, 0"(R;) C 0¥(R;). Since 7= = [T1, Tnt1] C [Y1, Ynt1] = Tpv,
we have that a* € ryy. Hence, R; is not single-peaked on o¥(R;) U {7(R;),a*}, where
a* € Ryy. Thus, by Lemma 1, R; € sz ' Therefore, fY is at least as manipulable as
fr.

To prove the other implication assume that fY is at least as manipulable as f*.
Hence,

MITc MIY for alli e N. (3)
To obtain a contradiction assume that (21, Tni1] € [Y1, Ynt1] OF (2, 2] € (Y2, yn]. We
will divide the proof between two cases.

Case 1: [x1,Zn+1] € [Y1,Ynt1]. In particular, suppose that z1 < yi; the proof for
the case y,,11 < x,41 proceeds similarly and therefore it is omitted. We will divide
the proof between two cases again, depending on whether xy < 25 or x; = xs.

Case 1.1: x1 < x9. Let o, 3,y € [a, b] be such that 7 < a < 8 < < min{zs, 11}
and let R; € U be such that:

i) T(R;) = «,

i1) vP;8 and

iii) if p,d € [a,b] and y; < p < 0, then pR;J.

Since r1 < 7(R;) < x9 and z7 < 7(R;) < ¥1, by Lemma 2,

0°(R;) = [T(R;), xp) and 0¥ (R;) = [y1, Yn).

Hence, and since 7(R;), 3,7 € 0°(R;) and ii) holds, R; is not single-peaked on o*(F;)
and, for all o' € 74, R; is single-peaked on 0¥(R;) U {7(R;)} U {c'} because rp =

11



(Y1, Yns1]. Thus, by Lemma 1, R; € M\ M!* which contradicts (3).

Case 1.2: x1 = x9. Since f% is not constant and x; < y1, 1 < min{y;, x,41}. Let
a, 3,7 € [a,b] be such that 1 < o < f <y < min{y;, 41} and let R; € U be such
that:
i) (1) =7,
i1) aP;f3 and
iii) if p,d € [a,b] and y; < p < 4, then pP;d.
Since r1 < 7(R;) < y1 and x; = 29 < 7(R;), by Lemma 2,

and oY(R;) = [y1, Yn)-

o (R) = [T2, Ty] if xo <7(R;) <z
Yo (2o, T(Ry)] if 2, < T(R;) < Tpiq

Hence, and since «, 3, 7(R;) € 0*(R;) and i7) holds, R; is not single-peaked on o”(R;)
and, for all o/ € rpy, R; is single-peaked on o¥(R;) U {7(R;)} U {a'} because rs =
[41, Yns1). Thus, by Lemma 1, R; € M \M!" which contradicts (3).

Case 2: [, 2,] € [Yo2,yn) and [z1, Zpi1] C [y1,Ynt1). In particular, suppose that
Zo < yo; the proof for the case vy, < x,, proceeds similarly and therefore it is omitted.
Let a, B € [a,b] be such that xo < a < < % < yp and let R; € U be such that:
i) T(R;) = 2232,
i1) aP;fB and
i) if 7,0 € [a,b] and T(R;) <y <, then yP;J.
Since y; < 71 < 29 < 7(R;) < Yo, by Lemma 2,

[Tg, ] if xo <7(R;) <y
0" (R;) = [0, T(Ry)] if z, < 7(R;) < xpy1  and 0Y(R;) = [T(R;), ynl.

(T2, Tny1] I T(R) > 2na

Hence, and since «, 3, 7(R;) € 0*(R;) and i7) holds, R; is not single-peaked on o*(R;)
and, for all o’ € rpy, R; is single-peaked on o¥(R;) U{7(R;),a’}. Thus, by Lemma 1,
R; € MI\M!" which contradicts (3). |

For further reference, let MV'S denote the set of all median voting schemes from
U" to [a, b]. An immediate consequence of Theorem 1 is that if median voter scheme f
is at least as manipulable as median voter scheme g, then the range of g is contained
in the range of f. The improvement in terms of the strategy-proofness of median
voter schemes necessarily requires the corresponding reduction of their ranges since
smaller ranges reduce agents’ power to manipulate. The corollary below, that follows
from Theorem 1 and the fact that for all f* € MV'S, rp= = [21,2,41], states this
observation formally.

Corollary 1 Let f,ge MV S. If f =~ g, thenr, C ry.

12



Consider a problem where the range of the social choice has to be fixed a priori
to be a subinterval [c,d] C [a,b]. Let MV S|, 4 be the set of all median voter schemes
with range [c,d] (ie., f* € MV Sy q if and only if 21 = ¢ and x,,41 = d). Theorem 1

gives criteria to compare the elements in MV S| 4.

Corollary 2 Let f¥, f* € MV S| q.
a) Then: fy r>\: fx Zf and Only Zf [‘7;27xn] - [y27 yn]
b) If yo = yn, then there does not exvist g € MV Sq such that f¥ - g.

Statement b) identifies the median voter schemes in MV S| q that do not admit

a less manipulable median voter scheme in MV'S. 4.

3.4 Unanimity

According to Proposition 1 in Moulin (1980), a median voter scheme f* : SP" —
la,b] is efficient (on the single-peaked domain) if and only if ;7 = @ and 2,41 = b;
namely, f* can be described as the median of the n top alternatives submitted by
the agents and only n — 1 fixed ballots since 1 = a and x,,.1 = b cancel each other
in (2). But this subclass of median voter schemes is appealing because it coincides
with the class of all unanimous median voter schemes (MV S|,y using the notation

5 Corollary bellow shows that Theorem 1

introduced in the previous subsection).
has clear implications on how unanimous and non-unanimous median voter schemes
can be ordered according to their manipulability. In particular, given a unanimous
median voter scheme there is always a non-unanimous median voter scheme that
is less manipulable. Moreover, if a unanimous median voter scheme and a non-
unanimous median voter scheme are comparable according to their manipulability,

then the former is more manipulable than the later.

Corollary 3 Let f¥Y € MV'S be unanimous.

a) Then, for all f* € MVS, f¥ = f* if and only if [x2, x,] C [y2, Yn].

b) There exists a non-constant and non-unanimous f* € MV'S such that f¥ = f*.
c¢) Let f* € MV'S be non-unanimous and assume f* and fY are comparable according
to their manipulability. Then, fY = f*.

Proof Let fY € MV S be unanimous. Hence, y; = a and y,+1 = b.

a) The statement follows immediately from Theorem 1.

Observe that when unanimous median voter schemes operate on the full domain 4™ they are not
anymore efficient. In the next subsection we will provide some simple criteria to compare efficient

median voter schemes on the full domain U™ according to their manipulability.
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b) We distinguish between two cases.

Case 1: Assume y, < y, and let o, 5,7 € [a,b] be such that y < a < f < v < yy.
Consider = = (a, 3, ..., 8,7) € [a,b]" ™. Then, [z, x,] = {8} C [y, yn]. By Theorem
1, fY is at least as manipulable as f* and since [ys, Yn] € [22, 2], f* is not at least as
manipulable as Y. Hence, fY is more manipulable than f* and f? is neither constant

nor unanimous since a < 1 < 11 < b.

Case 2: Assume y, = y,. Furthermore, suppose that a < y; the proof when
Yn < b proceeds symmetrically and therefore it is omitted. Let a € (a,y,) and
consider = (a, s, ..., y2,0) € [a,b]" ™. Then, [z2,x,] = {y2}. By Theorem 1, f¥ is
at least as manipulable as f* and, since [y1, Ynt1] = [a,b] € [21, Tpsa], [ is not at
least as manipulable as fY. Hence, fY is more manipulable than f*. Furthermore,
and since a < x1 = ... = x, < 41 = b, f* is neither constant nor unanimous.
¢) Assume f* € MVS is not unanimous. Then, [z1,z,11] € [¥1,Yn+1] = [a,b]. By
Theorem 1, f* is not at least as manipulable as fY. Furthermore, as f* and fY are
comparable, f¥ > f* must hold. [ |

We conclude this subsection with a corollary that identifies the unanimous median
voter schemes that do not admit a less manipulable unanimous median voter scheme.

The statement also follows immediately from Theorem 1.

Corollary 4 Let fY be a unanimous median voter scheme such that ys = y,. Then,

there does not exist an unanimous median voting scheme g such that fY = g.

3.5 Efficiency

A median voter scheme f*: U" — [a,b] (operating on the full domain of preferences)
is efficient if and only if 1 = a, z,.1 = b and xz € {a,b} for all 2 < k < n.% This
is because on the larger domain, if a median voter scheme f* has an interior fixed
ballot xy € (a,b) it is always possible to find a preference profile R with f*(R) = xy
such that there exists an alternative y that is unanimously strictly preferred by all
agents; namely, yP,f*(R) for all i € N. Moreover, all efficient median voter schemes
are unanimous.

We now present simple criteria that are useful to compare efficient median voter
schemes with other unanimous median voter schemes according to their manipulabil-

ity. But before, we need a bit of additional notation.

OHence, an efficient median voter scheme f* : U™ — [a,b] has the property that for all
(Ry,...,R,) eU™,
fm(Rl, ,Rn) S {T(Rl), ,T(Rn)}

Miyagawa (1998) and Heo (2013) have studied this property under the name of peak-selection.
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Let k be an integer such that 1 < k < n and (ay,...,a,) € |a,b]". Denote
by 7*(ay,...,a,) the k-th ranked number; namely, #{o; € {ay,...,a,} | a; <
(o, ) < n—k+1 and #{a; € {a,...,an} | a5 > 7(aq,...,q)} < k.

In particular, for £ =1 and k = n,

(v, ...,an) = max{ay,..,a,}

7 (aq, .y a) = min{ag, ..., )

Let f*:U™ — [a,b] be an efficient median voter scheme. Then, = = (a,...,a,b, ..., b)
—— N——
k n+1—k

for some 1 < k < n and, for all R € U",
%Ry, ..., R,) = 7 (1(Ry), ..., T(Ry)).
We denote the efficient median voter scheme f* with k fixed ballots at a by f*.

Corollary 5 Let f* : U™ — [a,b] be an efficient median voter scheme such that
k ¢ {1,n}. Then, the following hold.

a) For any f*e€ MVS, f* = fe.

b) If 1 < k' < n, then f* ~ f¥.

) fE o= fYand f& - f

d) If f is non-unanimous, then f* = f<.

e) There exists a non-efficient and unanimous f* € MV'S such that f* = f=.

o

Corollary 5 says the following. Statement a) states that any efficient median voter
scheme f ¢ {f*, f"} belongs to the set of the most manipulable median voter schemes.
Statement c) states that the two efficient median voter schemes f! and f" are less
manipulable than any other efficient median voter scheme f ¢ {f!, f*}. Statement
d) states that any non-unanimous median voter scheme is less manipulable that any
efficient median voter scheme f ¢ {f!, f*}. Statement ) states that given an efficient
median voter scheme f ¢ {f!, "} there is always a (non-efficient) unanimous median
voter scheme that is less manipulable. Moreover, Corollary 5 has the following two
implications when n is odd. First, for any f* € MVS, f " >~ f*, and second, for all

n+1

non-unanimous f* € MVS, fz= > f*.

Proof Let y be the vector of fixed ballots associated to f*. Since k ¢ {1,n},

1 =vy2 =a and Yy, = Ypr1 = b. (4)

a) It follows from (4) and Theorem 1.
b) It follows from a).
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¢) Let 2z be the vector of fixed ballots associated to f!; namely, z; = a and 25 = ... =
Zny1 = b. Hence, by (4) and Theorem 1, f* is more manipulable than f!. Using a

similar argument, it also follows that ¥ = f".

d) Let f* be a non-unanimous median voter scheme. Then, either a < x; or 2,41 < b.

Hence, by (4) and Theorem 1, f* is more manipulable than f*

e) Consider any « € (a,b) and define x = (a, «, ..., , b, ...,b). Then, f* is unanimous
——

k—1-times

but it is not efficient. By (4) and Theorem 1, f* = f=. [ |

Corollary 6 Let f € MV S be efficient and such that either f = f! or f = f".
a) Then, there exists a non-efficient and non-constant f* € MV'S such that f > f*.
b) If f* and f are comparable and f* is non-efficient, then f = f*.

Corollary 6 says the following. Statement a) states that there exists a non-efficient
and non-constant median voter scheme that is less manipulable than f! (or fm).
Statement b) says that if the efficient median voter scheme f! (or f") and a non-
efficient median voter scheme f are comparable according to their manipulability,
then the former is more manipulable than the later. Corollaries 5 and 6 make clear

the well-known trade-off between strategy-proofness and efficiency.

Proof Consider f! € MV S and let y = (a,b, ..., b) be its associated vector of fixed
ballots. The case f™* € MV .S proceeds symmetrically.

a) Define z = (a,a, b, ...,b), where o € (a,b). Then, by Theorem 1, f! = f* and it is
clear that f* is non-efficient.

b) Since [y, y] = {b}, and f* and f! are comparable, Theorem 1 implies that f* = f*.
|

3.6 Complete lattice structure

Using Theorem 1 we can partition the set of median voter schemes MV'S into equiva-
lence classes in such a way that each equivalence class contains median voter schemes
that are all equally manipulable. Denote the (cocient) set of those equivalence classes
by MV S/ . Furthermore, we can extend =~ on M V'S to the set of equivalence classes
MVS/ = in a natural way. Denote this extension by [7Z]. In this subsection we will
show that the pair (M'V'S/ &, [17]) is a complete lattice; namely, any nonempty subset
of equivalence classes in MV'S/ ~ has a supremum and an infimum according to [Z].
Formally, given f* € MV'S, denote by [f*] the equivalence class of f* with respect
to =; 1.e.,

[f*l={9e MVS|g= [}
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Let [¢] be the class of all constant median voter schemes.” Assume that [f*] # [c].
By Theorem 1, [f*] can be identified with the four-tuple (z1, za, ., Tni1)-

Denote by MV S/ = the set of all equivalence classes induced by ~ on MV'S
and consider the binary relation [77] on MV S/ ~ defined as follows. For any pair
7], [fY] € MV S/ =, set

/) )Lf] if and only if f* 22 f¥.

Since 77 is a preorder on MV'S, it follows that 7] is a partial order on MV S/ ~ .
Furthermore, by Theorem 1, if [f*] # [¢] and [fY] # [c], then

[FEz)fY] if and only if 21 < yy, 20 < Yo, 2n > Yy and Tp1 > Y-
We can now state and prove the result of this subsection.
Proposition 2 The pair (MV'S/ =, []) is a complete lattice.

Proof Let () # Z C MV S/ . Define

(SZ SZ ,.SZ SZ)

oy e s % wy? wy?) = (inf  aq, inf @, sup w,, sup  Tnq)

xl:[fz]EZ Iz;[fz]EZ a;n:[fz]EZ -Z'nJrl:[fz]EZ
and

( sup =z, sup @, inf wx,, inf m,y) if[]¢Z
1z 17z 1Z 17 enlfrlez  ax(frlez  wwlfl€Z waiilfrleZ
(xl y Loy Ty ’xn-i-l)

[c] if [c] € Z.

Observe that if [f*] € Z, then z, € [a,b] for all & = 1,2,n,n + 1. Hence,
(292, 257, 5% 25%)) and (21%, 2%, 2l?, 21Z)) are well defined and 237,277 € [a,b]
for all k = 1,2,n,n + 1. Consider the equivalence classes [f°#] and [f!#] associated
to (z7%, 257, 257 25%)) and (21?227 xl? x1Z.), respectively. That is, f¥ € [f57] if
and only if y, = 7% for k = 1,2,n,n+ 1 and f¥ € [f!?] if and only if y;, = x? for
k=1,2,n,n+1. Since 27, 21% € [a,b] for all k = 1,2,n,n + 1, we have that

/2L e MVS) ~. (5)

Moreover, if Z = MV S/ ~ then [f°?] = (a,a,b,b) and [f14] = [c].

Now we show that (MVS/ =, [7]) is a complete lattice. Let ) # Z C MV S/ =~ .
By (5), [f°%],[f4] € MV S/ ~. By Theorem 1 and the definition of [f°4] and [f!?],
lub Z = [f%%] and lIb Z = [f!?] are, respectively, the least upper bound and the

"Remember that all constant median voter schemes (excluded in the statement of Theorem 1)

are equally manipulable since all of them are strategy-proof on U™.
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largest lower bound with respect to [Z]. Hence, supy- Z = [f*?] and infy; Z = [f'7].
Thus, (MV S/ ~,[~]) is a complete lattice. |

Two immediate consequences follow from the proof of Proposition 2. First, and
since [c] is the smallest equivalence class in MV'S/ ~ according to [Z], all constant
median voter schemes are less manipulable than any other non-constant median voter
scheme (i.e., [c] = infj-) M SV/ ~). Second, and since the equivalence class containing
all median voter schemes identified with the four-tuple (a, a, b, b) is the largest equiva-
lence in MV'S/ = according to [] (i.e., this equivalence class is the supj.| MSV/ =),
any median voter scheme f* such that xy = o = a and x, = x,,; = b is more
manipulable than any other MV S outside this class. Observe that this class includes
all efficient median voting schemes except f! and f™.

Finally, if n < 3 and f* € MVS is non-constant, then [f*] = {f*}. Thus, the
pair (MV'S,77) is like a complete lattice (it is not because the equivalence class of
constant median voter schemes is not degenerated).

Figure 2 summarizes the complete lattice structure of the pair (MV'S/ ~, [Z]) for

any n > 2, whose properties have been collected along Corollaries 3, 4, 5, and 6.

g
<+ Unanimous
Ty =la,b
2= LT = o W] | 1)
range T V \. V )
[¢]
Figure 2



4 Comparing All Generalized Median Voter Schemes

4.1 Generalized Median Voter Schemes

Median voter schemes are anonymous. All agents have the same power to influence
the outcome of a given median voter scheme f*, although this power depends on
the distribution of its associated fixed ballots = = (x1, ..., 2,41). Generalized median
voter schemes admit the possibility that different agents may have different power to
influence its outcome. This power will be described by a monotonic family of fixed
ballots, one for each coalition (subset) of agents. To develop a useful intuition to
understand the class of all generalized median voter schemes, consider first the case
n = 2. Given a monotonic family of fixed ballots {pf1 2}, g1}, P2}, Pioy }» one for each
coalition of agents, such that a < pg12y < pr1y < pyay < proy < b, we define the social

choice function f : U? — [a, b] as follows: for each R € U?,

D{1,2} if 7(Ry), 7(R2) < ppizy
7(Ra) if 7(R1) < ppoy < 7(R2) < ppyy
P{1} if 7(Ry) < ppgy < ppy < 7(R)
med{T(R:1),7(Ra),py}  if proy < 7(R1) < ppy

f(R) =< 7(Ry) if pry < 7(R1) < pyoy
med{T(R1),7(Rs),p(21} if proy < 7(R1) < pyoy
P{2} if prgy < 7(R1) and 7(Ra) < pyoy
7(Ry) if proy < 7(Ra) < pyoy < 7(Fa)
20! if proy < 7(F1), 7(R2).

\

Observe that 7y = [pg1,2}, proy]. We can interpret this function as a way of assigning
to agents 1 and 2 the power to select the alternative in the subset 7y = [p(1 2y, Pioy)-
For instance, agent 1 can make sure that the outcome is at most pg;) by voting below
ppy and at most 7(R;) by voting above p(;; and agent 1 is a dictator on [pg1y, pay]
(i.e., f(R) = 7(R1) whenever 7(R;) € [p(1},p{2}])- It is easy to check that f can be

rewritten as

f(R) = Smin max{7(R;), ps}.

To present the characterization of all strategy-proof and tops-only social choice
functions on the domain of single-peaked preferences for all n > 2, we say that a
collection {pg}scon is a monotonic family of fized ballots if (i) ps € [a,b] for all
S €2V and (i) T C Q implies pg < pr. The characterization is the following.

Proposition 3 (Moulin, 1980) A social choice function f : SP™ — |a, b] is strategy-

proof and tops-only if and only if there exists a monotonic family of fixed ballots
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{ps}seon such that for all R € SP",

f(R) = min max{7(R;), ps}-

The social choice functions identified in Proposition 3 are called generalized median
voter schemes. A simple way of interpreting them is as follows. Each generalized
median voting scheme (and its associated monotonic family of fixed ballots) can be
understood as a particular way of distributing the power among coalitions to influence
the social choice. To see that, take an arbitrary coalition S and its fixed ballot pg.
Then, coalition S can make sure that, by all of its members reporting a top alternative
below pg, the social choice will be at most pg, independently of the reported top
alternatives of the members of the complementary coalition.® An alternative way of
describing this distribution of power among coalitions is as follows. Fix a monotonic
family of fixed ballots {ps}secon (i.€., a generalized median voter scheme) and take a
vector of tops (7(Ry), ..., 7(Ry,)). Start at the left extreme of the interval a and push
the outcome to the right until it reaches an alternative v for which the following two
things happen simultaneously: (i) there exists a coalition of agents S such that all
its members have reported a top alternative below or equal to « (i.e., 7(R;) < «
for all i € S) and (ii) the fixed ballot pg associated to S is located also below «
(i.e., ps < «). Median voter schemes are the anonymous subclass of generalized
median voter schemes. Hence, the fixed ballots of any two coalitions with the same
cardinality of any anonymous generalized median voter scheme are equal. From a
monotonic family of fixed ballots {ps}gcon associated to an anonymous generalized
median voter scheme f : U™ — [a, b] we can identify the n + 1 ballots 27 < ... < x4
needed to describe f as a median voter scheme as follows: for each 1 < k < n + 1,
x, = pg for all S € 2V such that #S = n — k + 1. Moreover, the onto social choice
function f : U™ — [a,b] where agent j € N is the dictator (i.e., for all R € U",
f(R) = 7(R;)) can be described as a generalized median voter scheme by setting
pr = a for all T C N such that j € T and pg = b for all S C N such that j ¢ S.
Then, for any R € U™, (i) max{7(R;),p} = 7(R;); 7(R;) < maxjer{7(R;), pr} for
any 7' C N such that j € T; and (iii) max;es{7(R;),ps} = b for any S C N such
that j ¢ S. Thus, ming cov maxyes {7(Ry), ps} = 7(R;).

Given a monotonic family of fixed ballots p = {ps}scn, let fP denote the gener-

alized median voter scheme associated to p.

8See Barbera, Massé, and Neme (1997) for a similar interpretation for the case of a finite number

of ordered alternatives.
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4.2 Main result

Our main result will provide a systematic way of comparing non-constant and non-
dictatorial generalized median voter schemes according to their manipulability. It
turns out that to perform this comparison it is crucial to identify, for each agent
1 € N, the subintervals where i is a non-dummy agent; i.e., the subset of alternatives
that are eventually chosen at some profile but agent 7 is able to change the chosen
alternative by reporting a different preference relation. We define formally below the

general notion of a non-dummy agent at an alternative in a social choice function.

Definition 6 Let f : U™ — [a,b] be a social choice function. Agent i is non-dummy
at o € [a,b] in f if there exists R € U" and R, € U such that

f(RiyR_;) = o and
f(Rga R*i) 7£ «.
The lemma below characterizes non-dummyness at an alternative in a generalized

median voter scheme f? : U™ — [a, b] in terms of the monotonic family of fixed ballots

p. This characterization will be useful in the sequel.

Lemma 4 Let f? : U™ — |a,b] be a generalized median voter scheme. Then, i is
non-dummy at o in fP if and only if there exists S C N such that i € S, ps < ps\{i}
and ps < a < ps\(i}-

Proof See Appendix 2 at the end of the paper.
The set of all & € [a,b] such that i is non-dummy at « in f? : U" — [a,b] is

denoted by ND;. By Lemma 4,

ND;, = U [ps, ps\(iy]- (6)

{SCNlieS and ps<ps\{i}}
We are now ready to state the main result of the paper.
Theorem 2 Let p = {ps}scn and p = {Pps}scn be two monotonic families of fized

ballots and assume that the two associated generalized median voter schemes fP :

U™ — [a,b] and fP: U™ — [a,b] are neither constant nor dictatorial. Then,

[N, Py N ND; C [pn, Py N ND%; (7)
[p3\giys oY) N N D2 C [P gay Proy) N N D, (8)

and
[piy, Pa\iy) C© N Dy, (9)

hold for all i € N if and only if fP is at least as manipulable as fP.
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Before presenting three lemmata used in the proof of Theorem 2 few remarks are
in order.

First, conditions (7), (8), and (9) say that the relevant information to compare two
generalized median voter schemes according to their manipulability for agent + € N
lies in the values of the fixed ballots associated to coalitions N, N\{i}, {i} and {0}
and in 7’s non-dummy sets.

Second, observe that condition (9) is only relevant when pg;y < pa\ gy because if
P\t < Dy, then [pgy, pagiy] = 0 and if pan iy = pypiy, then (9) follows from (7) and
(8) since f? is not constant and py\gy = iy € N D).

Third, if the non constant generalized median voter schemes associated to the
monotonic families of fixed ballots p = {ps}scov and p = {Ps}scny are anonymous,
then ND; = [pn, pgoy); ND;3 = [pn, Pioy] (¢ is non-dummy in the full ranges of f? and
f?), pvgiy < pgiy and pagiy < Pyay for all @ € N. Therefore, conditions (7), (8), and
(9) are equivalent to

[P~ pey] C [Pw, Piiy)

and
[P3\iys Pyoy] C [Py Doy
or
[pn: peoy] C (PN, Pioy]
and

vy ] C [Py Py
Now, if x and y are the n + 1 vectors associated to f? and fP, respectively, then

T1 = PN, T2 = PN\{i}> Tn = D{i}> Tnt1l = PO}, Y1 = DN, Y2 = DN\{i}» Yn = Pyiy and
Yn+1 = Pyoy- Thus, conditions (7), (8), and (9) are equivalent to

[Ih $n+1] - [yh yn—i-l]

and

[va xn] C [yz, yn]:

which is what Theorem 1 says. Hence, Theorem 1 can be seen as a corollary of
Theorem 2.

We will say that an interval I; = [c,d] with ¢ < d is a non-dummy interval for
1 fPifl; CN D;. Whenever we refer to an interval as a non-dummy interval we
exclude the possibility that the interval contains only one alternative. If ¢ € .S with
Ps < Ps\(i}, then [pg, ps\(y] is @ non-dummy interval for ¢ in f? and we denote it by
I?. We will write I when the median voter scheme used as reference is f? instead of

/P

22



We state now the three lemmata, whose proofs are in Appendix 2, that will be
used in the proof of Theorem 2. To simplify notation, given p = {ps}scny and R; € U,
we denote o/ (R;) by of(R;).

Lemma 5 Let f? : U" — [a,b] be a non-constant generalized median voter scheme.
Then, fP is not manipulable by i at R; if and only if, for all I?, R; is single-peaked
on (oP(R) NIZ) U{T(R;), a*} for all o € I7.

Lemma 6 Let p = {ps}scny be a monotonic family of fized ballots and R; € U.
If pgiy < pn\(iy, then

(PN, Py ifa <7(R;) <pn
[T(Ri), pyiy] if pov < T(R;) < ppy
o’ (R;) = {r(R)} if py < 7(R:) < pavgay

[Py, T(R:)] if pvgay < 7(Ri) < peoy
L P p] i ey < T(R).

If pv\fiy < gy, then

DN, Py ifa <7(R;) <pn

[7(Ri), priy] if pn < 7(R:) < pav\gy

o'(Ri) = [pay-pey]l if pvgay < 7(Ri) < pray
[Py T(R)]if pry < 7(Ri) < pyoy

L vy poy] i ppoy < T(R).

Lemma 7 Let p = {ps}scny and p = {ps}tscny be two monotonic families of fized
ballots such that fP and fP are not constant. Assume (7), (8), and (9) in Theorem
2 hold. Then, for any non-dummy interval I° and for all o* € I? there exists a non
dummy interval I, for i in fP such that o € I; and (oP(R;) N IF) C (oP(R;) N L) for
al R, €U’

Definition 7 Let f : U™ — [a,b] be a social choice function. Agent i is a dictator at
a € la,b] in f if for all R; € U such that T(R;) = «,

f(Ri,R_;) =« for all R_; € U™

Let f? : U™ — J[a,b] be a generalized median voter scheme and i € N be an
agent. Denote the set of all o € [a,b] such that 7 is a dictator at a in f?, by DT}.
By Lemma 6, DT, = [psy,pn\qiy)- Observe that if pyyry < priy, then 4 is not a
dictator at any a € [a,b] in fP. Furthermore, if pgy < pa\gi3, then, by monotonicity,
P\ < Py < Py < pyyy for all j # i. Therefore, if pg;y < pagy, then j is not a
dictator at any « € [a,b] in f? for all j # i.

9Note that I; does not have to be necessarily written as I°" for some S’ 3 i.
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Definition 8 Let p = {ps}scny and p = {Ps}scn be two monotonic families of fized
ballots. The generalized median voter scheme fP : U™ — [a,b] is at least more (or

more) dictatorial for i than the generalized median voter scheme fP : U™ — [a,b] if

0 # DT} C DT}, (or 0 # DT} & DT}).

Proposition below formalizes the trade-off between dictatorialness and manipula-
bility.

Proposition 4 Letp = {ps}scn andp = {ps}scn be two monotonic families of fized
ballots. Assume that fP : U™ — [a,b] and fP : U™ — [a,b] are non-constant, non-
dictatorial and comparable according to their manipulability. If fP is more dictatorial

for i than [P, then fP is more manipulable than fP.

Proof Since f? is more dictatorial than f7 for4, ) # DT} G DT!. Then, [y, ba\giy] S
[pgiy, Pv\giy) and priy < Py Therefore, py < pry and pa gy < Pavgiy Or ey < Driy
and pa\(iy < Pwv\(i}- Assume that py < py and pa gy < pagip hold; the proof for
the other case proceeds similarly and therefore it is omitted. Since DT; # () and

p = {ps}scn is monotonic, ND: = [py, pgp;] holds by (6). Thus,
[N, Py N ND; = [pn, Pgiyl-
Similarly, and since DT # 0,
(DN, Priy) N ND;-; = [P, Pgiy]-
Since f? and fP are comparable according to their manipulability and pgy < Py,
[pn, py) N NDy = [pn, peay) G 1w, iy) = [P, Deay) NN D,

Thus, by Theorem 2, f? is more manipulable than f?. [

5 Final remark

Before moving to the omitted proofs we finish with a final remark relating our com-
parability notion with the one proposed by Pathak and Sonmez. Pathak and Sonmez
(2013) propose an inclusion criterion to compare two social choice functions accord-
ing to their manipulability. In general, the social choice function v is at least as
manipulable as the social choice function ¢ according to Pathak and Sonmez if ¢
is manipulable at profile R, then 1) is also manipulable at profile R. Proposition 5
shows that in our setting Pathak and Sénmez criterion is weaker than ours.
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Proposition 5 Let f and g be two generalized median voter schemes and assume
that g is at least as manipulable as f according to Pathak and Sénmez’s notion. Then,

g 1s at least as manipulable as f.

Proof Assume that ¢ is at least as manipulable as f according to Pathak and
Sonmez’s notion. Fix i € N and let R; € M/. There exists (R}, R_;) € U™ such that

f(R, RGP f (R, R). (10)

Since f is tops-only, we may assume that R_; € SP" . By (10), f is manipulable at
profile R. Hence, by assumption, ¢ is manipulable at profile R. Since R_; € SP"!,
by Lemma 5, agent ¢ manipulates ¢ at profile R. Hence, R; € M. Thus, g is at least

as manipulable as f. [

Example 1 below shows that the reverse implication does not hold; that is, Pathak
and Sonmez’s notion is strictly weaker than ours and leaves many pairs of generalized

median voter schemes as being non-comparable while they are according to our notion.

Example 1 Let n = 3 and f* and fY be two median voter schemes associated to
x = (0, %, %, 1) and y = (0,0, 1, 1), respectively. By Theorem 1, and since [z1, 1] C
(Y1, Yni1] and [z2, x,] & [y2, Yn], fY is more manipulable that f*. In one hand, consider
any profile R = (Ry, Ry, R3) € U? and any preference R € U such that (i) 7(R;) = 1
for i =1,2, (ii) 7(Rs) = § and 3Rs3, and (iii) 7(R}) = 2. Therefore, f*(Ry, Ra, R}) =
%Pg% = f*(R) and hence, f* is manipulable at profile R. Moreover, fY(R) = 1
and fY is not manipulable at profile R. Hence, fY is not more manipulable than f*
according to Pathak and Soénmez’s notion. On the other hand, consider any profile
R = (Ry, Ry, Rs) € U® and any preference fzg € U such that (i) 7(R;) = %, (ii)
T(ﬁg) =1 (iii) T(ﬁg) = 3 and ;11}/523%, and (iv) r(]fzg) = 1. Therefore, fx(ﬁ) = Land f°
is not manipulable at profile R. Moreover, fy(ﬁl, ﬁg, Eg) = Z—iﬁg% = fy(zfz) and hence,
fY is manipulable at profile R. Hence, f? is not more manipulable than f¥ according
to Pathak and Soénmez’s notion. Thus, f* and fY are not comparable according to
Pathak and Sénmez’s notion of manipulability, although they are according to our

notion. [l

Example 1 illustrates the fact that our comparability notion is based on the inclu-
sion of the maximal domains of preferences under which each of the two generalized
median voter schemes are strategy-proof. In this case, the maximal domain of prefer-
ences under which fY is strategy-proof is the set of single-peaked preferences on [0, 1]
while f* admits a much larger maximal domain, the union of the following three sets:

{RieU|0<T(R) <3 7(R) <a<pf<i=aRf and ; <a= iR},

{R; e U | % <7(R;) <1, % <fB<a<T1(R) = aRf, and a < % = %Rioz}, and

{R, eU | T(R;) = %}
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6 Appendix 1

Proof of Lemma 1

=) Suppose there exists o* € r. such that R; is not single-peaked on o*(R;) U
{7(R;),a*}. We will prove that there exist R; € U and R_; € U™ such that
fY(RL, R_;)P,f*(R;, R_;). We will divide the proof into three different cases.

Case 1: Suppose o € 0*(R;) and there exists § € 0"(R;) such that a* < <
7(R;) and o*P,3; the other case where 7(R;) < o* < f and SP,a* is similar and
therefore it is omitted. Let R € U" be such that 7(R;) = a* for all j € N. Since
o € 0%(R;), and f* is a median voter scheme, f*(R;,R_;) = o*. Similarly, let
R € U" be such that 7(R;) = 8 for all j € N. Since 3 € 0*(R;), f*(R;, R_;) = B.
Since fw(Ri,R,i) = a*PB = f*(R;, R_;), by the definition of f*, there must exist
S C N\{i} and j’ ¢ S such that

fﬂ?(R“ Rj’a RSa R—Su{i7j’})-Pif$<Ri7 Rj’? RS: R—Su{@j’})‘ (11)

Now, let R, € U be such that 7(R}) = f*(R;, Ry, Rs, R_guqi5y). Since T(R;) = a* <

B =r71(R;) for all j € N,

T(Ry) = a* = f*(Ri, Ry) < f*(Ri, Ry, Rs, R_sui )
< f*(Ry, Rjr, Rs, R_sugijry)
S fz(szR—i) (12)
=0
7(Ry)
< 7(Ry).

Then, by (12) and the definition of f*,

— ~ —

fﬁ?(R;’ Rj’a RS: R—SU{i,j’}) - fx(Rw Rj'? RS; R—SU{i,j’})'
Hence, by (11),
f2(R}, Ry, Rs, R_sugin) Pif®(Ri, Rjr, Rs, R_sugigny)-

Thus, f* is manipulable by i at R; with any R, with the property that 7(R}) =
fo(Ri, Ry, Rs, R_suijy)-

Case 2: Suppose a* ¢ 0"(R;) and there exists J € 0°(R;) such that o* < § <
T(R;) and o* P;f3; the other case where 7(R;) < f < a* and o* P, proceeds similarly
and it is therefore omitted. Let R € U™ be such that 7(R;) = 3 for all j € N. Since
B € o (Ry),

fr(Ri, Ry) = B. (13)

26



Let R € U" be such that 7(R;) = § for all j € N. If there exist S € N\{i} and j' ¢ S
such that

f2(Ri, Rjr, Rs, R_suqin) Pif®(Ri, Rjr, Rs, R_sugijry) (14)
holds, the proof proceeds as in Case 1. Hence, assume that there do not exist S C
N\{i} and j’ ¢ S satisfying (14). Let N\{:i} = {j1, ..., jn—1}. Then,

g = fx(Ria]:%fi) by (13)
R f*(Ri, Rj,, R_gij1y) consider S; = 0,
J' =71 ¢ 51, and —(14)
R f*(R;, ij le, R_(inotiay) consider Sy = {1},
j'=J2 ¢ S, and —(14)
R, [ (R, ]%jsﬁ R{jhjz}’ R—{jhh}U{i,J’?’}) consider S3 = {ji, ja},

Jj'=j3 ¢ S3, and —(14)

lex(R“ Rjnfza R{jl:j27~-~ujn73}7 R_{jlaj2r~~7jn73}u{i7jn72})

lex(RZ’ Rjnfl’ R{jlaj27~-~7jn—2}’ R*{jl7j27~~-,jn—2}u{i7jn—1})

= fx(Ri’ R,J

consider S,,_1 = {J1, 72, -+, Jn—3},
J' = jn_2 €& Sn_1, and —(14)

consider S, = {Jj1,J2, - Jn—2}»
J' = jn_1 ¢ S, and —(14)

{J1, 72, - Jn—2} U{i; jn1} = N.

Hence, as o* P[5,

a*Pf*(Ri, R_)). (15)
Since a* € 7, f*(R;, R_;) = oF. Thus, by (15), f*(R:, R_;)Pf*(R;, R_;), which
means that f? is manipulable by i at R; with any R; such that T(RZ) = a*.

Case 3: Suppose a* ¢ 0"(R;) and there exists 5 € 0"(R;) such that f < o* <
7(R;) and SP;a*; the other case where 7(R;) < a* < f and fP,a* proceeds similarly
and it is therefore omitted. We will prove that this case is not possible. Consider the
profile R such that 7(R;) = a* for all j € N. Since o* ¢ 0*(R;), § € 0*(R;) and 0" (R;)
is an interval (see Lemma 2), f(R;, R_;) < a*. Furthermore, and since a* < 7(R;),
f””(]fii, R,Z) < f*(R;, I%,l) < o*. Hence, fx(I%) < a. Thus, a* ¢ r= which contradicts
the initial hypothesis.

<) Suppose f* is manipulable by i at R;; that is, there exist R, € U and R_; €
U™ such that

fP (R}, R_y) Pif*(Ri, R-). (16)
Consider the case 7(R}) < 7(R;); the other case is similar and therefore it is omitted.
We distinguish among three different cases.

Case 1: T(R;) < f*(R;,R_;). Since f* is a median voter scheme and 7(R}) <

T(R;), f*(R;, R_;) = f*(R;, R_;). But this contradicts (16).
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Case 2: 7(R;) = f*(R;, R—;). Then, f*(R;, R_;)P,f*(R}, R_;) which also contra-
dicts (16).

Case 3: f"(R;,R_;) < 7(R;). Since 7(P!) < 7(R;) and (16), f*(Ri,R_;) <
f*(Ri, Ry). Hence, f*(R;, R;) < f*(Ri, R) < 7(R;) and 7(R) P f* (R, R3) P f* (Ri, Ry).
Thus, and since f*(R;, R_;),7(R;) € 0"(R;) U{7(R;)} and f*(R],R_;) € 1=, R; is
not single-peaked on o”(R;) U {7(R;), f*(R}, R_;)}. |

Proof of Lemma 2 We divide the proof into three cases.

Case 1: Suppose 7(R;) < x1. The case x,11 < T(R;) is symmetric and its proof
proceeds similarly; therefore, it is omitted. We prove that o*(R;) = [x1,z,]. Let
a € 0°(R;) be arbitrary. Then, there exists R_; € U™ ! such that

med{T(R1)7 SET) T(Rn>a L1y eeny xn—i—l} = Q.

Redefine y = (Y1, .., Yont1) = (T(R1), oo, T(Rp), 1,5 ooy Tpi1) € [a, D2 Iy < 4,
and since 7(R;) < x1 < ... < xper, #{s €{1,....,2n+ 1} | ys > ys+} > n + 2. Hence,
a # yg. If 2, < yg, and since 7(R;) < 11 < 29 < ... < xy, #{s € {1,..2n + 1} |
ys < ys} > n + 2. Hence, @ # ys. Thus, o € [r1,2,]. Now, let a € [x1,2,],
R; = R; and for all j € N\{i} let R; € U be such that 7(R;) = o. Redefine
Y= (Y1, ., Yons1) = (T(Rl), ...,T(Rn),xl, ey Tpp1) € [a,b*" L Since a < x, < Xy,
#{s € {1,..,2n + 1} | ys > a} > n + 1. Furthermore, and since 7(R;) < z; < a,
#{se{l,..2n+ 1} | ys < a} > n+ 1. Hence, #{s € {1,....2n + 1} | ys > a} =
#{se{1,...2n+1} |y, < @} = n+1. Thus, med{r(Ry), ..., 7(Ry), &1, ..., 1) = v.
Since R; = R;, o € 0"(R;). Therefore, 0*(R;) = [x1, ).

Case 2: Suppose 71 < T(R;) < 3. The case z,, < 7(R;) < x,11 is symmetric
and its proof proceeds similarly; therefore, it is omitted. We prove that o"(R;) =
[7(R;), Tps1]. Let o € 0”(R;) be arbitrary. Then, there exists R_; € U""! such that

med{T(R1)> sy T(Rn>a L1y eeny xn—i—l} = Q.

Redefine y = (y1,.., yans1) = (T(R1), .o, T(Rp), @15 ooy Tpy1) € [a, 0" I g <
T(R;), and since 7(R;) < 29 < ... < @py1, #H{s € {l,....2n+ 1} |ys > ys} > n+ 2.
Hence, o # yg+. If 2, < ysv, and since 7(R;) < 23 < ... < @y, #{s € {1,...,2n+1} |
ys < ys+ > n+ 2. Hence, o # ys«. Thus, a € [7(R;), x,]. Now, let o € [1(R;), xn],
R; = R; and for all j € N\{i} let R; € U be such that 7(R;) = o. Redefine
Y= (Y1, Y2ns1) = (T(Rl), ...,T(Rn),xl, ey Tpy1) € [a,b*" 1 Since a < x, < Ty,
#{s € {1,...,2n + 1} | ys > a} > n + 1. Furthermore, and since x; < 7(R;) < a,
#{se{l,...2n+1} | ys < a} > n+ 1. Hence, #{s € {1,....2n+ 1} | ys > a} =
#{se{1,...2n+1} | ys < a} = n+1. Thus, med{r(Ry), ..., 7(Ry), T1, ..., 1) = v.
Since R; = R;, o € 0°(R;). Therefore, o"(R;) = [T(Ri),xn].
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Case 3: Suppose 3 < 7(R;) < x,. We prove that o®(R;) = [22, z,]. Let o € 0"(R;)
be arbitrary. Then, there exists R_; € ™! such that

med{T(Ry),....,T(Rn), 1, ..., Tns1} = Q.

Redefine y = (y1, ..., Yons1) = (T(R1), ..., T(Rp), T1, ooy Ty1) € [a, BT If g < 29,
and since zo < ... < 41 and zy < 7(R;), we have that #{s € {1,....2n + 1} | y; >
Ys + > n+2. Hence, a # ye. If 2, < ys+, and since 21 < ... < x, and 7(R;) < z,,, we
have that #{s € {1,...,2n+1} | ys <y} > n+2. Hence, o # y,. Thus, a € [xg, x,].
Now, let a € [22,2,], R; = R; and for all j € N\{i} let R; € U be such that 7(R;) =
. Redefine y = (yy, ..., yani1) = (T(R1), ... T(Rn), 1, oory it € [a, b2, Since a <
Tp < Tpy1, #{s € {1,...,2n+1} | ys > a} > n+1. Furthermore, and since x; < 25 <
a, #{se{l,...,2n+ 1} | ys < a} >n+ 1. Hence, #{s € {1,....2n+ 1} | ys > a} =
#{se{1,...2n+1} | ys < @} = n+1. Thus, med{r(Ry), ..., 7(Ry), T1, ..., 1) = cv.
Since R; = R;, o € 0"(R;). Therefore, 0" (R;) = [z, ). |

Proof of Lemma 3 We divide the proof into five cases.

Case 1: Suppose 7(R;) < z1. Then, by Lemma 2, 0*(R;) = [z1, z,]. Since 7(R;) <

1 < Tp < Yn,
(Y1, Yn] if 7(R;) <11
Y(R;) =< [T(Ry),yn] ifyr < 7(R) < s
[Y2, Yn] if yo < 7(Ri) < Y-

Hence, 0*(R;) C 0¥(R;).
Case 2: Suppose z1 < 7(R;) < x3. Then, by Lemma 2, 0*(R;) = [7(R;), xy]. Since
1 < ST(R) <2 <@y <y,

o'(R;) = [T(R),yn] 1 <T(R;) <y
Z [Y2; Yn] if yo < 7(R;) < yn.
Hence, 0"(R;) C 0Y(R;).
Case 8: Suppose 2 < 7(R;) < z,. Then, y» < 7(R;) < y,. By Lemma 2,

0" (R;) = [z, x,] and o¥(R;) = [y2, yn|. Hence, 0"(R;) C o¥(R;).
Case 4: Suppose x, < 7(R;) < x,41. Then, by Lemma 2, 0*(R;) = [xq, T(R;)].
Since yo < 22 < @y < T(Ry) < Tnt1 < Yn1,

Oy<R‘) — [y27yn] lf Y2 S T(Rz> g UYn
‘ o, T(R;)] i g < T(Ri) < Y-

Hence, 0"(R;) C 0Y(R;).
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Case 5: Suppose z,41 < T(R;). Then, by Lemma 2, 0*(R;) = [r2, Ty+1]. Since
Yo <@ < xppn < T(Ry),

[y2ayn] if Y2 < T(Rz) S Yn
o'(Ri) = q [y2, 7(Ry)] if yn < 7(Ri) < i
[y2> yn-i—l] if Yn+1 < T(Rz)
Hence, 0*(R;) C o¥(R;). [
7 Appendix 2
We start with two preliminary notions and several remarks.
First, a generalized median voter scheme f? : U" — [a,b] can alternatively be

represented by a monotonic family of right fixed ballots p" = {p%}seon, where (i) for
all S € 2V, p§ € [a,b], (ii) S C T implies p < pf, (iii) for all S € 2V, pl = pas,
and (iv) for all R € Y™, fP(R) = maxgeon minjes{7(R;),ps} = 7 (R).

Second, a non-dummy interval [; is a mazimal non-dummy interval for i if there
is no non-dummy interval I/ such that I; C I/. Since the number of coalitions that
contain a player is finite, any maximal non-dummy interval I; can be written as the
union of a family of intervals; namely, I, = Ulefisk, where ¢ € S forall k=1, ..., K.

Before moving to the proof of the four lemmata used to prove Theorem 2, we state

without proof the following facts.

Remark 2 Let f? : U" — [a,b] be a generalized median voter scheme and let R; € U.
Then, R; is single-peaked on (oP(R;)NI1;) U{T(R;),a*} for all o* € I;, for all mazximal
non-dummy interval I; if and only if R; is single-peaked on (oP(R;)NIZ)U{T(R;),a*}

for all o* € I?, for all non-dummy interval I .

Remark 3 If ppy < proy, then [pgy, pioy] is a non-dummy interval for i in f? : U™ —
[a,b]. If pxy < pn\(i}, then [pn, pa\gay) 8 a non-dummy interval for i in fP.

Remark 4 If o € [py,pnvy]s B € [Py, peoy] and I; is a maximal non-dummy inter-
val for i in fP: U™ — [a,b] such that o, B € I;, then I; = [pn, pioy]-

Remark 5 If pyy < pn\(iy, then [pw, peey) is a (mazimal) non-dummy interval for i
in fP:U" — [a,b].

Remark 6 If px = py < pa\fiy = Pioy, then i is a dictator in fP : U™ — |a,b].
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Proof of Lemma 4 Let f? : U™ — [a,b] be a generalized median voter scheme.
We will denote f? simply by f.

=) Assume i is non-dummy at « in f. Then, there exist R € U™ and R} € U such
that f(R;, R_;) = a and f(R}, R_;) # «. We distinguish between two cases.

Case 1: Assume f(R;,R_;) = a < f(R;, R_;). Since f is a generalized me-
dian voter scheme, 7(R;) < a < 7(R}). Let S = {j € N | 7(R;) < a}. Ob-
serve that ¢ € S. First, we prove that ps < «a. Suppose otherwise, a < pg; then,
max;es{T(R;),ps} = ps > a. By the definition of S and f, f(R;, R_;) > «, a con-
tradiction with f(R;, R_;) = a. Now, we prove that o < pg\ ;3. Suppose otherwise,
ps\fiy < . For all j € S\{i}, 7(R}) = 7(R;) < a. Hence, maxjeg\ (i3 {7(R}), ps\i} } <
a . Thus, f(R!, R_;) < «, a contradiction with f(R., R_;) > a. Therefore, ps < a <
ps\{iy- Since f(R;, R—;) < f(R}, R-), ps < ps\{i}-

Case 2: Assume f(R], R_;) < a = f(R;, R—;). The proof proceeds symmetrically

to Case 1 using the right phantom representation of f.

<) Assume there exists S C NV such that i € S, ps < ps\yiy and ps < @ < pg\fiy-
We distinguish between two cases.

Case 1: Assume pg < o < pgs\f;3- Let R € U" be such that 7(R;) = « for all
j € Sand 7(R;) = b for all j ¢ S. Then, f(R) = a. Let R, € U be such that
a < 7(Rj) < ps\qiy- Hence, f(R;, R_;) = 7(R;) # o Thus, 7 is non-dummy at « in f.

Case 2: Assume ps < o < pg\fi}- Let R € U™ be such that 7(R;) = pg for all
Jj € S\{i}, 7(R;) = a and 7(R;) = b for all j ¢ S. Then, f(R) = a. Let R; € U be
such that ps < 7(R!) < a. Hence, f(R}, R_;) = 7(R}) # a. Thus, i is non-dummy at
ain f. [

Proof of Lemma 5 We will denote f? and o?(R;) simply by f and o(R;), respec-
tively.

=) Assume f is not manipulable by i at R; and let I’ = [ps, ps\3] be a non
dummy interval for i in f. Fix o* € I7 and let 8 € (o(R;) N I7) U {r(R;)}. We
distinguish among four cases.

Case 1: Assume o* € (o(R;) NI7) U{7T(R;)} and o* < B < 7(R;) (if B < o* the
proof is similar changing the role of a* and (3). We will show that SR;a*. If § = 7(R;)
the statement holds immediately. Assume 3 < 7(R;). Then, o*, 3 € I°. Hence, and
since a* < 3, ps < a* < pg\(i3. Consider any R_; € U™ ! with the property that for

every j € N\{i},
[ ifjes\{i)
m(R;) = { B if j e N\S. (17)
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Let R € U™ be such that 7(R;) = § for all j € N\{i} and 7(R;) = 7(R;). Since
B € o(R;) = o(R;), f(R) = 8. As 7(R;) < 7(R;) for j € N, by Remark 1, f(R) <
f(R) = 8. Moreover, a* < f(R). Hence,

a" < f(R) < 6.

If " € S\{i}, then a* < pg\(;} < ps because p is monotonic. Hence, maSX{T(Rj),pSl} >
jes’
o It S” € S\{i}, then m%x{T(Rj),pg/} > B > a*. Thus, o* < f(R) < 3. We proceed
jes’
by distinguishing between two subcases.

Subcase 1.1: Assume f(R) = f3. Consider any R; € U such that 7(R;) = a*. Since
o* < f(R), o < f(R;, R_;). Furthermore, since pg < o* = 7(R;) and 7(R;) = o* for
all j € S\{i}, f(Ri,R,i) < o*. Hence, f(Ri,R,Z-) = «*. Since f is not manipulable
by ¢ at R;, SR;a* holds.

Subcase 1.2: Assume f(R) < . Then, f(R) ¢ {a*,8,7(R;)} ={7(R;) | j € N}.
Thus, f(R) € {ps | S C N}. Set R = R and o} = f(R'). Observe that a* < af < f3
and since f is not manipulable by i at R;, aF = f(R')R;o* (because f(R;, RL,) = o
if 7(R;) = o*). Since {ps | S C N} is finite, we apply successively the previous
argument starting with o < 3 and obtaining R', R?, ..., RX where (i) K < 27, (ii)
RF=R;forall k =1,... K, (iii) o* < f(R*) < f(RF) < Bforall k=1,...,. K — 1,
(iv) f(RY)R;a* and f(RF)R,f(R*Y) for all k = 1,..., K, (v) f(R*) € {ps | S C N}
and (vi) f(RX) = 3. Then, by transitivity of R;, SR;a*.

Case 2: Assume o* € (o(R;) N I7) U {7(R;)} and 7(R;) < B < a*. The proof
proceeds as in Case 1 using the right phantom representation of f.

Case 3: Assume o ¢ o(R;) and o < f < 7(R;) (if 7(R;) < 8 < o* the proof
is similar using the right phantom representation of f). We will show that SR;a*.
If 5 = 7(R;) the statement holds immediately. Assume 8 < 7(R;) and consider any
profile R € U™ where, for every j € N, 7(R;) = o*. Since a* € I C ry, f(R) = a™.
We will show that o* < f(R;, R_;) < 3. Let R= (Ri, R_;). Since o* < T(Rj) for all
j €N, a* < f(R). Consider any subprofile R_; € U""! where, for every j € N\{i},
7(R;) = . Since B € o(R;), f(R;,R_;) = B. As 7(R;) = o < = 7(R;) for all
j € N\{i}, by Remark 1, f(R;, R_;) < /. Since f is not manipulable by i at R; and
f(Ri;, R_;) # a* (because a* ¢ o(R;)) we have that f(R;, R_;)R;f(R) = «*. Define
o = f(R;, R_;). Notice that o/ < 3 < 7(R;) and o/ € o(R;) N I?. Therefore, by Case
1, BR;c’. By transitivity of R;, SR;a*.

Case 4: Assume o* ¢ o(R;) and f < o* < 7(R;). (if 7(R;) < o* < [ the proof
is similar changing the role of a* by ). We will show that this case is not possible.
Consider any profile R’ € U™ such that 7(R}) = o* for all j € N. Since o™ ¢ o(R;),
B € o(R;) and o(R;) is an interval, f(R;, R' ;) < «*. Furthermore, as o* < 7(R;) and
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Remark 1 holds, f(R!, R ;) < f(R;,R_;) < a*. Hence, f(R') < a*. Thus, o* ¢ 7y
which contradicts the fact that o* € I7.
<) Assume f is manipulable by ¢ at R;. Then there exist R; € U and R_; € U"*
such that
f(R,R_)P,f(Ri, R-s). (18)

We assume that 7(R}) < 7(R;) (if 7(R;) < 7(R}) the proof is similar using the right
phantom representation of f). Set R’ = (R}, R_;). We distinguish among three cases.

Case 1: Assume 7(R;) < f(R). Since f is a generalized median voter scheme and
T(R) < 1(R;), f(R') = f(R), which contradicts (18).

Case 2: Assume 7(R;) = f(R). Then f(R)R;f(R’), which also contradicts (18).

Case 3: Assume f(R) < 7(R;). Since 7(R}) < 7(R;), by Remark 1, f(R') < f(R)
and (18), f(R') < f(R) holds. Hence, f(R') < f(R) < 7(R;) and 7(R;) P, f(R') P, f(R).
Thus, as f(R), 7(R;) € o(R;)U{7(R;)}, R; is not single-peaked on o( R;)U{7(R;), f(R')}.
We will show that there exists S C N such that i € S and f(R'), f(R) € I7 =
[ps,ps\(iy]- Set o = f(R') < f(R) = 8. Since f(R') < f(R) and f is a generalized
median voter scheme, 7(R.) < f(R') = o* Define S = {j € N | 7(R;) < o*}. Then,
i ¢ S and because 3 = f(R),

ps = p. (19)

Set, S = SU{i}. Hence, S = {j € N | 7(R}) < a*}. Suppose pg > a*. Then, for all

S" € Smaxjes{T(R}),ps'} > psr > ps > o and for all S* € S, maxjcg-{7(R}), ps+} >
o* because if j ¢ S, then 7(R}) > o*. Thus, o* < f(R'), which is a contradiction.

Hence ps < a*. Therefore, i € S and

ps <o < B < ps\giys

since S\{i} = S and (19) hold. Thus, there exist a non dummy interval [pg, ps\(i}]
and o = f(R') € [ps, ps\(i3) such that R; is not single-peaked on (o(R;)N[ps, ps\(i}] ) U
{T(R:),a*}. ]

Proof of Lemma 6 The proof is omitted since it consists of verifying that the

option set can be written as stated. [ |

Proof of Lemma 7 Leti € S C N, I a non-dummy interval for i in f? and
a* € I? be arbitrary. The proof proceeds by looking at different cases that can
be grouped into two main cases depending on whether py\pi3 < priy (Case 1) or
Py < piy (Case 2).

Case 1: Assume py\p < pgy. Since [py,pgiy] U oy poy) = 7 and 17 C
ND; C ry, either o* € [py,pry] N ND}, or o € [py\iy, pey] N ND}. Hence, by (7)
and (8), either a* € [pn, Psy] N NDj or o € [fn\giy, Droy) N NDj,. Thus, there exists
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a non-dummy interval I; for i in f? such that o* € I;. Let I; be a maximal non-
dummy interval for i in f? such that I; C f,, We have that o* € IAz We will show
that (o?(R;) N I°) C (oP(R;) N I;) for all R; € U, showing that for all 3 € o”(R;) N I®
two things happen simultaneously: 3 € I, (Claim a) and 8 € o?(R;) (Claim A), for
all R, e U.

Claim a: B € I;.
Proof of Claim a: We distinguish among five cases.

Case a.1: o € [pn,py)\[Pav\gi}> Po) and py < B < pgy. Assume § < o (the proof
of the other case proceeds similarly). As 3, a* € [py,pgy] NI and I} is a interval,
[8,0%] C [pn,pgy) N IP. Hence, by (7), [8, "] C [pw, pgy]l N ND;, C [pn, pra) N N D}
Then, [3,a*] C ND%. As I; is a maximal non-dummy interval and o* € I;, B, a*] C
I;. Therefore, § € I;.

Case a.2: o € [pn, pgiy]\[P3\(iy, Proy] and pry < 8 < proy. As py < " < pn\piy,
piy < B < pgoy and I? is a non-dummy interval such that o*, 3 € I, we have that
by Remark 4, ND;, = [pn, pggy]. Then, by (7) and (8), [pw,pgy] C [P, Pyl 0 N D}y
and [p\(iy, peoy) C [Da\gy» Proy] "N Dy Hence, [pn, priy) U [pa\ iy Pgoy) € NDj. Thus,
[a*, 8] € ND;. As I; is a maximal non-dummy interval and o € I;, [o*, ] C I;.

Therefore, 3 € I;.

Case a.3: o € [pngy, pioy) \[Pn, pry) and pavgiy < B < prgy. Assume of < 3
(the proof of the other case proceeds similarly). Since 8,a* € [pwgy,pgy) N I7
and [Z-S is an interval, by (8), [a*, 8] C [pwn\@}, proy] N [iS C [pv\gy proy] N ND; C
[Pa\(iy> Proy] N N Dy, Hence, [o*, 5] C NDL. As I; is a maximal non-dummy interval
and o € I;, [o*, 8] C I,. Therefore, § € I;.

Case a.4: o € [pvgy, Py \[pv, pgy) and py < B < pagy- Since pyy < a* <
oy, Pn < B < pwyiy and I? is a non-dummy interval such that o*,3 € I, by
Remark 4, ND! = [py,pey]. Hence, by (7) and (8) [pn,pg] C [pn,Pgay] N ND},
and [px\(iy, roy] C [Pwgiy, Proy] N N Dy Hence, [pw, pray] U [pasy, proy] © NDj and
[8,0*] € NDZ. As I; is a maximal non-dummy interval and o* € I;, [3,a*] C I;.
Therefore, 3 € ;.

Case a.5: o € [py\gy, pioy] N [P, ppay)- Hence, o* € [pa\giy, pay) N N D;,. Thus,
by (7) and (8), & € [P}, Bray] N [P, D) N ND). Assume o* < J3 (the proof
of the other case proceeds similarly). Since paw\y < o < 8 < pyy, and I? is a
an interval, [o*, 8] C [pn\ i}, Pgoy) N IZS. Hence, by (8), [o*, 5] C [Dn\fi}, Pray) N ND%.
Thus [o*, 3] € NDj. As I; is a maximal non-dummy interval and o* € I;, [o*, 3] C I
Therefore, 5 € I;.

Claim A: 8 € 0°(R;).
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Proof of Claim A: We proceed by first distinguishing between Case A.1 and Case A.2,

and in turn for each one of them, the proof is divided in 5 subcases.
Case A.1: DN\{i} < Pyi)- By Lemma 6,

.

(PN, P1iy] if o <7(R;) <pn
[T(R:), peay) if py < 7(Ri) < pagay
o(Ri) =9 [pvyra) i oy < 7(R) < pay

vy, T(R:)] i pray < 7(R:) < poy
| vy py] i py < T(RY).

and )
[P, iy if a <7(R) < pn
[T(Ri),pgiy)  if pyv < 7(Ri) < Pwvay
oP(R;) = (D13} Pyiy] if Py < T(R; ) < Pga} (20)

[Py, T(R:)]if pry < 7(Ri) < Py

L [Pa\{iy» DoY) if poy < 7(R).
Case A.1.1: a < 7(R;) < py. Then, 8 € [py, pgiy). Since 8 € I7, B € [pn.py) N

ND;. By (7), B € [pn,Pgy)- Then, 8 € [7(R;), 3] and py < B. Therefore, by the
first three rows in (20), 5 € of(R;) holds.

Case A.1.2: py < 7(R;) < pwyiy- Then, 8 € [7(R;),pgy). Since g € I7, B €
[pNap{z}] mND;Zo By (7)7 ﬁ € [pNaﬁ{z}] Then, B € [T<Rz)7p{2}] and PN < 5 Therefore,
by the first three rows in (20), 5 € o(R;) holds.

Case A.1.3: pyyy < T(R;) < pgiy. Then, B € [pa fiy, pay)- Since 5 € I?, B €
[pwv\(iy> py) N ND;. By (7) and (8), 8 € [pn\f}, Brayl- By (20), 8 € 0P(R;).

Case A.1.4: pry < 7(R;) < pgoy. Then, 8 € [pa\fiy, 7(R;)]. Since € I?, B €
[P\, Proy] N ND}. By (8), B € [pngiy, Po)- Then, B € [pa\giy, 7(R:)] and 8 < pygy-
Therefore, by the last three rows in (20), 5 € o?(R;) holds.

Case A.1.5: Py < T(RZ‘). Then, 5 € [pN\{i},p{@}]. Since 3 € ]ZS, B € [pN\{i},p{@}]ﬂ
ND;’). By (8), 5 € [ﬁN\{i},ﬁ@]. Then, S € [ﬁN\{i},T(Ri)] and § < D{oy- Therefore, by
the last three rows in (20), 8 € o(R;) holds.

Case A.2: pgy < pn\giy- By Lemma 6,

(

[P Piy) if a <7(R;) < pn
[T(Ri), byl if pv < 7(R;) < Py
F(R) =1 {r(R;)} if pray < 7(R;) < Py (21)
[Py, T(R)] if Py < 7(Ri) < Proy
L PPy i ey < T(R).

Case A.2.1: a < 7(R;) < py. The proof proceeds as in Case A.1.1.
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Case A.2.2: py < 7(R;) < pn\g}- The proof proceeds as in Case A.1.2.

Case A.2.3: pyiy < T(Ri) < pgy. Then, B € [pangy,peyl- By (7), (8) and
B € ND;, B € [Py, Pay) N NDJ, contradicting that py < pa\gy. Then, in this
case, 17 N oP(R;) = 0 and the proof is trivial.

Case A.2.4: priy < 7(R;) < pgoy- The proof proceeds as in Case A.1.4.

Case A.2.5: pggy < 7(R;). The proof proceeds as in Case A.1.5.

Case 2: Assume pg;y < pa\gi3- Then, by Remark 5, ND; = [pn, pioy] and itself is
a maximal non-dummy interval for ¢ in fP. As [pn,poy] = [pn, Py U [Py, Py U
[Pn\giys Poy]s by (7), (8) and (9), we have that there exists a non-dummy interval for
i in fP such that [py, pggy] C I,. Let a* € [P, pgoy] be arbitrary. Then, o* € I;. We
will show that

(0" (R:) N [pw, pyny]) € (P(R;) N I;) for all R; € U. (22)

Then, and since I° C [py, pioy) for any S C N, the statement of Lemma 7 will follow
immediately since (o?(R;) N I7) C (oP(R;) N [pw, pyay]) C (oP(R;) N I;). To prove that
(22) holds observe first that o?(R;) N [pn, pay] C I;. Tt remains to be proven that if
B € oP(R;) N [pn, oy}, then B € oP(R;). We proceed by distinguishing between two
cases.

Case 2.1: pn\iy < Pgiy- By Lemma 6,

(

[pN,P{z‘}] if a < T(Ri) < pn
[7(R:), pgiy] if py < 7(R;) < pgay
o'(R;) = {7(R:)} if priy < 7(Ri) < pagay (23)

[Py, T(R:)]if pavvgy < 7(Ri) < pyoy
| vy Py i pgy < T(R)

and )
[Pn, iy if a <7(R;) < pn
[T(Ri), o] if pv < 7(R) < Pwvvgyy
F(Ri) =9 [Pxgy Pl i Py < T(R) Py (24)
Py, T(R:)] if pay < 7(Ri) < p
L [Pvvgay Proyl i proy < T(RY).

We distinguish among five subcases.

Case 2.1.1: a < 7(R;) < pn. Then 8 € [pn,pgy)- Since 3 € I?, B € [pn,puy) N
ND;. By (7), 8 € [pn.Dgsy)- Then, 8 € [7(R;),pgsy] and py < 3. Therefore, by the
first three rows in (24), 5 € o (R;) holds.

Case 2.1.2: py < 7(R;) < pg. Then, 8 € [r(R;),pgy]. Since 8 € I7, § €
[pN,p{i}]ﬂND;. By (7), B € [pn, Pgiy)- Then, 8 € [T(R;), pgy] and py < 3. Therefore,
by the first three rows in (24), 5 € oP(R;) holds.

36



Case 2.1.3: ppy < 7(R;) < pw\giy- Then, 8 = 7(R;) € [pn.pgoy] C I, c (DN Dyoy)-
Since 5 = 7(R;) € [pn,Dol, B € 0P(R;) because fP in unanimous on r = [y, Py)-

Case 2.1.4: pnvyy < T(Ri) < pgy. Then, 8 € [pny, 7(R;)]. Since g € I7,
B € [pny,po] N ND;. By (8), B € [pan\ay, Dgoy]- Then, 8 € [pn\gy, 7(R;)] and
B < pyoy. Therefore, by the last three rows in (24), 5 € oP(R;) holds.

Case 2.1.5: Py < T(RZ-). Then, ﬁ c [pN\{i},p{@}]. Since ﬁ < [Z-S, 6 € [pN\{i},p{@}]ﬂ
ND,. By (8), B € [pn\(iy, Poy]- Then, 8 € [pn\iy, T(Ri)] and 8 < pypy. Therefore, by
the last three rows in (24), 5 € oP(R;) holds.

Case 2.2: pgy < Pn\fiy- By Lemma 6,

(

(DN, Priy] if a < 7(R;) < pn
i [T(Ri), Py if py < 7(R;) < pry
o'(R;) = {7(Ri)} if priy < 7(R;) < Dy (25)

{
[Py, T(R:)] i pavvy < 7(Ri) < Dyoy
L [Py Py] i proy < T(R:).

The proof follows similar arguments to the ones already used in Case 2.1. [

Proof of Theorem 2

=) Suppose R; € /\/lf " By Lemma 5, there exist a non-dummy interval If =
[ps. ps\(iy] for i in f? and o* € I such that R; is not single-peaked on (of(R;) N I7)U
{7(R;), a*}. Hence, by Lemma 7, there exists a maximal non-dummy interval I; for i
in f? such that o* € I; and (o?(R;) N IS) U {7 (R;),*} C (oP(R)) N L) U {r(R;), a*}.
Thus, R; is not single-peaked on (o?(R;) N I;) U {7(R;),@*}. Then by Lemma 5 and
Remark 2, R; € M{p

<) Assume f? is at least as manipulable as fP. Then,
M c MI for alli € N. (26)

To obtain a contradiction assume [py, pgy] "N D}, & [py, pay] NN D} or [pa iy, Pgoy) N
N D; Z Py Pyl NN D% or [puy,pniy) € N D]é. We proceed by distinguishing
among the three cases.

Case 1: [pn,piy) N ND! & [, Dgiy) N NDg. Then, there exists a maximal non-
dummy interval I for i in f? such that [py,pgy] NI € [pn, byl N NDjy. Let 01 < 0

-----

that they are maximal intervals, ND} = {J,_, I} and for all ¢,t' = 1,...,T such
that t # ¢/, I} N I}, = (. Then, for any maximal non-dummy interval I} for i in f; we
have that

01, 00) & [Pn, Py N I} (27)
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We distinguish between two subcases.
Case 1.a: N Dzi? = (). Two further subcases are possible.

Case 1.a.1: 01 < 03. Let o, 8,7 € [a,b] and R; € U be such that 01 < a < § <
v < 09, T(R;) = a, and vP;3."° Hence, 7(R;) € [01,02] C [pn, pg3)- By Lemma 6,

o (Ri) = { [pa\qiys ppiy) if PN\ < 7(R) < ppay
[7(R;), pgiy] otherwise.

Then, and because (3,7 € [01,02] C I and 3,7 € [7(R;), 02| C [T(R;), pgiy] C P(R;),

R; is not single-peaked on (o (R;)NI)U{7(R;)} since yP,3. But for allt =1, ..., T and

all o € I, R, is single-peaked on (o?(R;)NIH)U{T(R;),a'} trivially since o?(R;) NI} =

(). Thus, by Lemma 5, R; € M{p\/\/lfp which contradicts (26).

Case 1.a.2: 01 = 04. Since I C [pn,pgay), [P, pgiy) N1 = {01} and I is a (non
degenerated) interval (since I is a non-dummy interval), py;y = o1 = 02. Therefore,
I = [pgy, pey] because I C [pn,pgey], I is a maximal non-dummy interval and by
Remark 3, [pgy,pey] is a non-dummy interval of 7 in fP. Hence, as I is a non
degenerated interval,

DP{iy = 01 < P{o}-
Two subcases are possible.

Case 1.a.2.a: pn\giy < pgoy- Let a, B, € [a,b] and R; € U be such that max{pn\ i}, Py} <
a < B <y < poy 7(R;) = 7, and aP;5."' Hence, 7(R;) € [maX{pN\{i}>p{i}}ap{®}]'
By Lemma 6,

o’(R:) = [pnv\iay, T(R:))-
Then, and because «, 3, 7(R;) € o?(R;) NI U {7(R;)}, R; is not single-peaked on
oP(R;) N T U{7r(R;)} since aP;3. But for t = 1,....,T and all o € I}, R; is single-
peaked on (0?(R;) N I}) U{T(R;),a'} trivially since o?(R;) N I} = (). Thus, by Lemma
5, R; € MI"\M!” which contradicts (26).

Case 1.a.2.b: pgiy < pn\(iy = Pgoy- Then, by Remark 5, [py, pgy] is a non-dummy
interval of 7 in fP. As I = [pgy, pgey) is @ maximal non-dummy interval of ¢ in f?, we
must have I = [py,pggy]. Therefore, py = pgiy. Hence, py = ppiy and pav\ gy = pyoy-
By Remark 6, 7 is a dictator in f?, which is a contradiction.

Case 1.b: NDi # 0. Then, [pn,pgy) NI # 0 for all t = 1,...,T. To see that,
observe that it holds immediately if py;; = prgy. Assume pg;y < pygy. Then, there exists
I, O _fl{l} = [P1iy, Pyoy] because, by Remark 3, [pg;y, bgoy] is a non-dummy interval for
i in fP. Then, [Py, py) N 1 # 0. Furthermore, for all ¢ # ¢, [pn, priy] N I} # 0, since

10 R; is defined in any arbitrary way in [a, b]\{7, 3}.
R, is defined in any arbitrary way in [a,b]\{«, 3}.
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IINIY = 0. For each t = 1,...,T, let 0} < n} be such that [px, py] N I = [0, nh).
Then, by (27), [01,02] € [0}, n5] for all t =1, ..., T. Hence,

op<nioroy>nhforallt=1,..,T. (28)

Assume, without loss of generality, that nt < n? < ... <n? (and ni < n2 < ... <nd).

We distinguish among four different cases.

Case 1.b.1: There exists ¢’ € {1,...,T} such that oy <} < 05 < n4. This t' is

.....

) max{a el |} ift'#1
I ift'=1

and -
) min{a e l} ,} ift'#T
LRl if ' =T
Thus, 7, < T]'i, (if 7y # a, then proof is trivial and if 7, = a, then a < 0 < n“i’) and
n, >nb. Let R; € U and o, 3,7 € [a,b] be such that (i) max{oy,n,} < a < 8 <
v <nf, (i) 7(R;) = a, (iii) vPB, (iv) if p,d € [a,b] and 0} < p < 4, then n! R;pR;d,
and (v) if p,d € [a,b] and § < p < max{oy,n,}, then max{o,n,} R;dR;p.'* Hence,
7(R;) € (01,02) C [pn,pgy) and 7(R;) < % < pyiy, where the last inequality follows
from the fact that [y, pgy) N I = [nY,75]. By Lemma 6, and since if pry < pa i
then py < 01 < 7(R;) < 09 < priy < papay, and if Py < Py gy then < 7(R;) <t <
Py < PN\{i}s
by it i <T(R;) < pg
o (Ry) = [Py Pyl i vy < T(R) <y g
[T(R;),pgy]  otherwise
o . _ (29)
[pNap{i}] if 7(R;) < pn
oP(Ri) = [Dnvgiy: Pyl i Dy < 7(Rs) < Pray
[7(R;),pgiy]  otherwise.

Then, R; is not single-peaked on (o (R;)NI)U{7(R;)} because 3,7 € [01,09] C I and
B,7 € [T(R;),00] C [T(R;),pgiy] C 0P(R;). We will now show that, for all t = 1,..., T,
R; is single-peaked on (0P (R;)NIH)U{7(R;),a'} for all o € I!. We distinguish between
two subcases.

Case 1.b.1.a: t # t'. By the definition of R; and the fact that either I} C [py, 7] C

[P, max{o1,n,}] or I} C [ny,pgy] C [0, Pgey] C [0, Proyl, Ri is single-peaked on
I'U{7(R;)}. Thus, R; is single-peaked on (oP(R;) N I}) U {7(R;),a'} for all o’ € I.

2R, is defined in any arbitrary way in [max{o1,7,},7% ]\{7, 5}

39



Case 1.b.1.b: t = t'. By (29), o?(R;) C [pn,Pyy). Hence, of(R;) N I}, C [0, nb).
Thus, by its definition, R; is single-peaked on (oP(R;) N %) U {7(R;)}. Let o’ € I,.
Two further subcases are distinguished.

Case 1.b.1.b.1: o' € [pn,Pn)- Then, o/ € [nt,n4] because o’ € Ii,. Hence, by
the definition of R; and the fact that o?(R;) NI\ C [nY,n4], R; is single-peaked on
(0P (Ri) N L)) U{T(Ry), o'}

Case 1.b.1.b.2: o/ & [pn, Ppy). Then, o/ > pry > nh > nt'. Hence, by the definition
of R; and the fact that o?(R;) NI}, C [, n4], R; is single-peaked on (o?(R;) N Ii,) U
{r(R:), '}

Then, by Lemma 5, R; € MI"\M{” which contradicts (26).

Case 1.b.2: There exists ¢’ € {1,...,T} such that ¢ < o, < 5} < oy. This #' is

.....

similar to Case 1.b.1, because the problem is symmetric, and therefore it is omitted.

Case 1.0.3: [o1,02] N [nint] = O for all ¢ € {1,...,T}. The proof of this case is
similar to Case 1.a and therefore it is omitted.

Case 1.b.4: Assume that neither Case 1.b.1 nor Case 1.b.2 nor Case 1.b.3 hold.
By (28), for all t € {1, ..., T},

n, > oy and 1} < 9.
Let n, = n} and 7, = 1. Then,
o1 <ny <1y <oy

Let R; € U and a, 3,7 € [a,b] be such that (i) 0y < a < 8 <y <n, (ii) 7(R;) = «,
(iii) vP;3, and (iv) if p,d € [a,b] and n; < p < §, then n; R;pR;0."> Hence, 7(R;) €
[01,02] C [pn,pgy] and 7(R;) < ny < Py By Lemma 6, and similarly as in Case
1.b.1,

and
[T(R;),py]  otherwise

iy Pgy) it i <T7(R;) < py
OP(RZ,):{ gy py] i pgey < T(R:) < pay
(DN, Piiy) if 7(R;) < pn
oP(Ri) = q [Py Pyl 1 Dy < 7(Rs) < Py
[T(Ri),priy]  otherwise.

Then, R; is not single-peaked on (o?(R;)NI)U{7(R;)} because 3,7 € o?(R;)NI. We
will now show that, for all t = 1, ..., T, R; is single-peaked on (o?(R;) NI} )U{T(R;), '}

I3 R; is defined in any arbitrary way in [a, n,]\{7, 8}
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forall’ € I}. Fixt =1, ...,T. Since 0”(R;) C [pn, Dy, OP(R:)NIL} C [, mh] C [y, ma).
Then, by its definition, R; is single-peaked on (0P (R;)NI})U{7(R;)}. We will now show
that R; is single-peaked on (of(R;) N I}) U {7(R;),a’} for all o/ € If. We distinguish
between two subcases.

Case 1.b.4.a: o € [py,pgy). Then, o/ € [ni, 0] because o/ € I}. Hence, o/ €
[1,,m5]. Therefore, by definition of R; and the fact that o?(R;) N I} C [n,,n,], R; is
single-peaked on (oP(R;) N I') U {7(R;),a'}.

Case 1.b.4.b: o ¢ [pn,Pgy)- Then, o/ > pgy > 0y, > 1y because o/ € I} C rys).
Hence, by definition of R; and the fact that o?(R;) NI C [n,,7n,], R; is single-peaked
on (P(R) NIHU{T(Ry),a'}.

Therefore, by Lemma 5, R; € MI"\M!” which contradicts (26).

Case 2: [pn\(iy, poy) "N D}, € [P\ qiy, roy] VN Dy Since the problem is symmetric,
the proof is similar to the one used in Case 1.

Case 3: [pry, pvigiy] € NDj. Then pry < pagip- We proceed by distinguishing
among four subcases.

Case 3.a: priy = py\giy- Then, we can apply either Case 1 or Case 2.

Hence, assume pgy < py\giy and let v € [pgy, pa iy \N D}

Case 3.b: Either pgy = v or pyyiy = v hold. Then, we can apply either Case 1
or Case 2.

Case 8.c: pry < v < pvyy and py < pgy. Let R; € U and o, 5 € [a,b] be such
that (i) py < a < B < pgy, (ii) 7(R;) = «, (iii) y£B and (iv) if p,§ € [a,b]\{7} and
a<p<dord<p<a,then pR;0. By Lemma 6,

o’ (R;) = [T(Ri), pap)- (31)

Since priy < pav\giyp, NDY = [pn,pgoy] holds. As R; is not single-peaked on (oP(R;) N
[N, pgoy]) U{T(R:),~} and v € [pn, proy] = NDY, by Lemma 5, R; € /\/lzfp. Further-
more, as R; is single-peaked on [a,b]\{7} and v ¢ ND, by Lemma 5, R; ¢ M .
Thus, R; € M\ M!” which contradicts (26).

Case 3d: pgy < v < pvvgiy and py = pgy. Then, pa iy < proy (otherwise i is a
dictator). Let R; € U and «a, 3 € [a,b] be such that (i) py\iy < 8 < a < pyey, (ii)
T7(R;) = «, (iii) 7P, and (iv) if p,d € [a,b]\{7} and o < p < d or § < p < «, then
pR;0. By Lemma 6,

P (Ri) = [pwgiy, T(Ri)). (32)

Since piy < pvvgiy, VDY = [pn, pgoy] holds. As R; is not single-peaked on (o”(R;) N
on, peoy)) U {T(R;),~} and v € [pn, pry] = ND?, by Lemma 5, R; € M. Further-
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more, as R; is single-peaked on [a,b]\{7} and v ¢ ND, by Lemma 5, R; ¢ M! .

Thus, R; € MI\M!” which contradicts (26). |
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