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Abstract: The division problem under constraints consists of allocating a given amount

of an homogeneous and perfectly divisible good among a subset of agents with single-

peaked preferences on an exogenously given interval of feasible allotments. We char-

acterize axiomatically the family of extended uniform rules proposed to solve the

division problem under constraints. Rules in this family extend the uniform rule used

to solve the classical division problem without constraints. We show that the fam-

ily of all extended uniform rules coincides with the set of rules satisfying e¢ ciency,

strategy-proofness, equal treatment of equals, bound monotonicity, consistency, and

independence of irrelevant coalitions.

Journal of Economic Literature Classi�cation Number: D71.

Keywords: Division Problem, Single-peaked Preferences.

�We thank two anonymous referees for their extremely valuable comments. The work of G. Bergantiños

is partially supported by research grants ECO2008-03484-C02-01 and ECO2011-23460 from the Spanish

Ministry of Science and Innovation and FEDER. J. Massó acknowledges �nancial support from the Spanish

Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence

in R&D (SEV-2011-0075) and through grant ECO2008-0475-FEDER (Grupo Consolidado-C), and from

the Generalitat de Catalunya, through the prize �ICREA Academia�for excellence in research and grant

SGR2009-419. The work of A. Neme is partially supported by the Universidad Nacional de San Luis,

through grant 319502, and by the Consejo Nacional de Investigaciones Cientí�cas y Técnicas (CONICET),

through grant PIP 112-200801-00655.
yResearch Group in Economic Analysis. Facultade de Económicas, Universidade de Vigo. 36310, Vigo

(Pontevedra), Spain. E-mail: gbergant@uvigo.es
zUniversitat Autònoma de Barcelona and Barcelona Graduate School of Economics. Departament

d�Economia i d�Història Econòmica, Campus UAB, Edi�ci B. 08193, Bellaterra (Barcelona), Spain. E-

mail: jordi.masso@uab.es
xInstituto de Matemática Aplicada de San Luis. Universidad Nacional de San Luis and CONICET.

Ejército de los Andes 950. 5700, San Luis, Argentina. E-mail: aneme@unsl.edu.ar



1 Introduction

In the division problem an amount of a perfectly divisible good has to be allocated among

a set of agents with single-peaked preferences on the set of all positive amounts of the

good. An agent has a single-peaked preference if he considers that there is an amount of

the good (the peak) strictly preferred to all other amounts and in both sides of the peak

the preference is monotonic, decreasing at its right and increasing at its left. A pro�le is a

vector of single-peaked preferences, one for each agent. It would then be desirable that the

chosen vector of allotments of the good depended on the pro�le. But since preferences are

idiosyncratic they have to be elicited by a rule selecting, for each pro�le of single-peaked

preferences, a vector of allotments adding up to the total amount of the good. But in

general, the sum of the peaks will be either larger or smaller than the total amount to be

allocated. Then, a rule has to solve a positive or negative rationing problem, depending on

whether the sum of the peaks exceeds or falls short the amount of the good. Rules di¤er

from each other on how this rationing problem is resolved in terms of its induced properties

like the strategic incentives faced by agents, e¢ ciency, fairness, monotonicity, consistency,

etc.

The literature on the division problem describes many examples of allocation problems

that �t well with this general description. For instance, a group of agents participate in an

activity that requires a �xed amount of labor (measured in units of time). Agents have a

maximal number of units of time to contribute, and consider working as being undesirable.

Suppose that labor is homogeneous and the wage is �xed. Then, strictly monotonic and

quasi-concave preferences on the set of bundles of money and leisure generate single-peaked

preferences on the set of potential allotments where the peak is the amount of working

time associated to the optimal bundle. Similarly, a group of agents join a partnership to

invest in a project (an indivisible bond with a face value, for example) that requires a

�xed amount of money (neither more nor less). Their risk attitudes and wealth induce

single-peaked preferences on the amount to be invested. Finally, a group of �rms with

di¤erent sizes have to jointly undertake a unique project of a �xed size. Since they may be

involved in other projects their preferences are single-peaked on their respective allotments

of the project. In all these cases, it is required that a rule solve the rationing problem

arising from a vector of peaks that do not add up the needed amount. The uniform rule

has emerged as a satisfactory way of solving the division problem. It tries to allocate the

good as equally as possible keeping the bounds imposed by e¢ ciency. Sprumont (1991)

started a long list of axiomatic characterizations of the uniform rule by showing �rst that

it is the unique e¢ cient, strategy-proof and anonymous rule, and second that anonymity

1



in this characterization can be replaced by envy-freeness. Ching (1994) strengthens the

results of Sprumont (1991) by showing that the uniform rule is the only one satisfying

e¢ ciency, strategy-proofness and equal treatment of equals. Ching (1992), Dagan (1996),

Schummer and Thomson (1997), Sönmez (1994), and Thomson (1994a, 1994b, 1995, and

1997) contain alternative characterizations of the uniform rule in the division problem. In

the survey on strategy-proofness of Barberà (2010) the division problem and the uniform

rule play a prominent role.

However, almost all the literature on the division problem has implicitly neglected the

fact that in many applications (like those described above), agents� allotments may be

constrained by objective and veri�able minimal and maximal capacities which impose lower

and upper bounds on them. Those constraints may come from physical, legal or economic

restrictions. Most often, real-life applications of the division problem have the feature that

agents�allotments are constrained. For instance in problems where the good to be divided

is time, like in the internal distribution of labor in a division of a �rm, or in a bureau, or in

a law �rm, or like in the assignment of teaching duties among a given set of teachers of a

particular subject in a school or university department. In all those cases, constraints due to

physical or legal limitations (like labor contracts) impose unavoidable bounds to the agents�

allotments. But constraints also show up in problems where agents have to contribute with

money to �nance a project of a �xed value, if they face budget constraints or if, due to

implicit participation costs, their contributions have to be larger than a given amount (and

hence, agents�allotments are bounded below as well). Big projects that can not be carried

out by a single �rm may be split among a set of �rms which are not able to undertake

alone the project precisely due to their capacity constraints and, in addition, each �rm

participation (in order to be valuable to itself) may require receiving an allotment of the

project above a given amount. Therefore, in all these cases the division problem is restricted

further by feasibility constraints that are described by a family of closed intervals of non-

negative feasible allotments, one for each agent. It is then natural to assume that each agent

has a closed interval of feasible allotments and his idiosyncratic preferences are single-peaked

on this interval. Moreover, we will be interested in situations where agents�participation

is voluntary; namely, each agent has to consider all his strictly positive feasible allotments

as being strictly preferred to receive zero (the allotment associated to the prospect of non-

participating in the division problem). What is speci�c to our paper is that we assume

that each agent�s allotment has to either belong to a given feasible interval of allotments

or else be equal to zero. Hence, a division problem under constraints is composed by the

set of agents, the amount of the good to be allocated among them, the vectors of lower

and upper bounds of their feasible intervals, and their single-peaked preferences on their
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respective feasible intervals. We want to emphasize that our model contains all particular

instances of division problems where agents�allotments are only constrained by maximal

capacity restrictions because the lower bounds may be equal to zero, as in some of the

real-life applications that we have just described above.

Given a division problem under constraints, it may be the case that there does not exist

a vector of feasible allotments adding up to the total amount to be allocated. Hence a rule

has two components. First, the choice of an admissible and non-empty subset of agents

among whom it is possible to allocate the amount of the good keeping their feasibility

constrains; if there is no such subset, then the rule has to choose the zero allotment for

all agents. Second, and given this chosen admissible non-empty subset of agents (called

participants), the rule has to assign to each participant a feasible allotment in such a way

that their sum adds up to the total amount to be allocated.

Our contribution in this paper is to de�ne extensions of the uniform rule to this class

of division problems under constraints and to provide an axiomatic characterization of

them by using two classes of desirable properties. The �rst class is related to the behavior

of the rule at a given division problem under constraints. First, e¢ ciency. A rule is

e¢ cient if it always selects Pareto optimal allocations. Second, equal treatment of equals. A

rule satis�es equal treatment of equals if identical participants receive the same allotment.

The second class is related to the restrictions that the properties impose on a rule when

comparing its proposal at di¤erent division problems under constraints. First, strategy-

proofness. A rule is strategy-proof if no agent can pro�tably alter the rule�s choice by

misrepresenting his preferences. Second, bound monotonicity. Assume that the upper

bound of an agent decreases. Two situations are possible. Either the allotment of this

agent in the initial problem is not larger than the new upper bound or it is strictly larger

than the new upper bound. In the �rst situation bound monotonicity says that both

problems must have the same allotment. In the second situation, bound monotonicity says

that the agent must receive his new upper bound whereas the rest of the agents can not

receive smaller allotments. Symmetric arguments can be applied when the lower bound

of an agent increases. Third, consistency. Assume that after applying the rule to a given

problem a subset of agents leave with their assigned allotments. Consider the new problem

with the remaining set of agents and the total amount of the good minus the sum of the

allotments received by the agents that already left. The rule is consistent if the allotments

it proposes to the remaining agents in the reduced problem coincides with their allotments

in the original problem. Fourth, independence of irrelevant coalitions. Assume the set

of admissible coalitions in one problem is contained in the set of admissible coalitions in

another problem and the coalition chosen by the rule in the larger problem is admissible
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for the smaller one, then this property says that the rule has to select the same coalition

of participants in the two problems.

The main �ndings of the paper appear in two theorems. In Theorem 1 we show that

in the subclass of division problems under constraints with the property that the full set

of agents is admissible, the feasible uniform rule is the unique rule satisfying e¢ ciency,

strategy-proofness, equal treatment of equals, and bound monotonicity. This result is an

extension of the characterization of Ching (1994) for the uniform rule in the classical division

problem. The feasible uniform rule on this subclass of division problems under constraints

tries to allocate the good among all agents in the most egalitarian way respecting not only

the bounds imposed by e¢ ciency, but also those imposed by the feasibility constraints.

An extended uniform rule on the class of all division problems under constraints selects

�rst, using a monotonic and responsive order on the family of all non-empty and �nite

subsets of agents, an admissible coalition of participants (if any, otherwise it chooses the

zero allotment for all agents) and then it applies the feasible uniform rule to the reduced

division problem under constraints obtained by restricting the original problem to this

admissible subset of participants. We show in Theorem 2 that the class of all extended

uniform rules (each one associated to a monotonic and responsive order on the non-empty

and �nite subsets of agents) coincides with the set of rules satisfying e¢ ciency, strategy-

proofness, equal treatment of equals, bound monotonicity, consistency and independence

of irrelevant coalitions.

Several papers are closely related to the present one. First, Bergantiños, Massó and

Neme (2012a) studies the division problem with maximal capacity constraints under the

assumption that the sum of all upper bounds is larger than the total amount of the good

that has to be distributed. Second, Kibris (2003) studies the division problem with maximal

capacity constraints assuming free-disposability of the good. Then a rule assigns to each

division problem with maximal capacity constraints a vector of allotments satisfying the

constraints and adding up less or equal than the total amount. Kibris (2003) characterizes

an extension of the uniform rule to his setting with free-disposability. Third, Bergantiños,

Massó and Neme (2012b) considers the division problem when agents� participation is

voluntary. Each agent has an idiosyncratic interval of acceptable allotments (which, in

contrast with our setting here, is private information) where his preferences are single-

peaked. Then a rule proposes to each agent either to not participate at all or an acceptable

allotment. Bergantiños, Massó and Neme (2012b) shows that strategy-proofness is too

demanding in this setting. Then, they study a subclass of e¢ cient and consistent rules

and characterize extensions of the uniform rule that deal explicitly with agents�voluntary

participation. Fourth, Kim, Bergantiños and Chun (2012) characterize two families of rules,
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related with the rules studied in Bergantiños, Massó and Neme (2012b) and this paper,

using the separability principle and other properties. Fifth, Manjunath (2012) proposes a

division problem where each agent�s preferences are characterized by a top and a minimum

allotment in such a way that the agent is indi¤erent between any two quantities that are

either below the minimum acceptable allotment or above the top allotment. Manjunath

(2012) �rst shows that, under di¤erent fairness properties, strategy-proofness and e¢ ciency

are incompatible and second, he characterizes axiomatically di¤erent rules that solve the

rationing problem in his setting. Finally, the division problem with maximal capacity

constraints is also considered by Moulin (1999).1 He characterizes the class of all �xed

path mechanisms as the set of rules satisfying e¢ ciency, strategy-proofness, consistency

and resource monotonicity. Ehlers (2002a) presents a shorter proof of the main result in

Moulin (1999) and Ehlers (2002b) extends it by showing that, for problems with strictly

more than two agents, the class of all �xed path mechanisms coincides with the set of rules

satisfying weak one-sided resource monotonicity, strategy-proofness and consistency.

The paper is organized as follows. In Section 2 we describe the model. In Section 3

we de�ne several desirable properties that a rule may satisfy. In Section 4 we de�ne the

feasible uniform rule (for the subclass of division problems under constraints where the

grand coalition is admissible) and the extended uniform rule induced by a monotonic and

responsive order on the family of all �nite and non-empty subsets of agents and state their

axiomatic characterizations. Section 5 contains some �nal remarks stating other desirable

properties that all extended uniform rules also satisfy. The proofs are in Section 6.

2 Preliminaries

Let t > 0 be an amount of an homogeneous and perfectly divisible good. A �nite set of

agents is considering the possibility of dividing t among a subset of them, to be determined

according to their preferences. We will consider situations where the amount of the good

t and the �nite set of agents may vary. Let N be the set of positive integers and let N be

the family of all non-empty and �nite subsets of N. The set of agents is then N 2 N with

cardinality n. In contrast with Sprumont (1991), we consider decision problems where the

amount of the good received by each agent i 2 N is constrained either to belong to a given

closed interval [li; ui] � [0;+1), determined by lower and upper exogenous constraints (li
and ui, respectively), or to be equal to zero. That is, an agent is either excluded from the

1In Moulin (1999) the maximal capacity constraints are justi�ed on the basis of technical simplicity in

oder to de�ne the priority rationing methods by an ordinary path and to de�ne the duality operator that

cuts the main proof in half.
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division (and receives zero) or else his allotment has to be feasible. We are interested in

settings where the participation of the agents in the division problem is voluntary in the

sense that all strictly positive feasible allotments are strictly better than receiving zero.

Thus, agent i�s preferences �i are de�ned on the set f0g [ [li; ui], with 0 � li � ui � +1
and li < +1: The set [li; ui] is agent i�s interval of feasible allotments. We assume that �i
is a complete, re�exive, and transitive binary relation on f0g [ [li; ui]. Given �i, let �i be
the antisymmetric binary relation induced by �i (i.e., for all xi; yi 2 f0g [ [li; ui], xi �i yi
if and only if yi � xi does not hold) and let �i be the indi¤erence relation induced by �i
(i.e., for all xi; yi 2 f0g [ [li; ui], xi �i yi if and only if xi �i yi and yi �i xi). We will
also assume that �i is single-peaked on [li; ui] and we will denote by pi 2 [li; ui] agent i�s
peak. Formally, agent i�s preferences �i is a complete preorder on the set f0g [ [li; ui] that
satis�es the following additional properties:

(P.1) there exists pi 2 [li; ui] such that pi �i xi for all xi 2 [li; ui]nfpig;

(P.2) xi �i yi for any pair of allotments xi; yi 2 [li; ui] such that either yi < xi � pi or

pi � xi < yi; and

(P.3) xi �i 0 for all xi 2 [li; ui]nf0g.

Observe that agent i�s preferences are de�ned on f0g [ [li; ui] and are independent of t:
Moreover, we are admitting the possibilities that li = 0 and li = pi = ui. Conditions (P.1)

and (P.2) are the standard single-peaked restrictions on [li; ui] while condition (P.3) conveys

the minimal voluntary participation requirement that all strictly positive allotments in the

feasible interval are strictly preferred to the zero allotment. A preference �i of agent i is
(partly) characterized by the triple (li; pi; ui). There are many preferences of agent i with

the same (li; pi; ui); however, they di¤er only on how two allotments on di¤erent sides of pi
are ordered while all of them coincide on the ordering on the allotments on each of the sides

of pi. This multiplicity will often be irrelevant. We will assume throughout the paper that

for any agent i, the bounds li and ui are �xed and exogenously given while the preference

�i over the interval [li; ui] is idiosyncratic and has to be elicited through a direct revelation
mechanism. As we have already discussed in the Introduction, we are interested in division

problems where allotments may be restricted by objective feasibility or capacity constraints

while every preference �i satisfying (P.1), (P.2), and (P.3) is a legitimate one for agent i.2

2See Bergantiños, Massó, and Neme (2012b) for an analysis of e¢ cient and consistent rules in the

division problem when the interval [li; ui] is the set of idiosincratic acceptable allotments for agent i and

participation is voluntary.
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Let N 2 N be a set of agents. A pro�le �N= (�i)i2N is an n�tuple of preferences sat-
isfying properties (P.1), (P.2) and (P.3) above. Given a pro�le �N and agent i�s preferences
�0i we denote by (�0i;�Nnfig) the pro�le where �i has been replaced by �0i and all other
agents have the same preferences. When no confusion arises we denote the pro�le �N by
�.
A division problem under constraints (a problem for short) is a 5�tuple P = (N; t; l; u;�)

where N 2 N is the �nite set of agents, t is the amount of the good to be divided, l = (li)i2N
is the vector of lower constraints, u = (ui)i2N is the vector of upper constraints, and � is

a pro�le. Although the vector of lower and upper constraints are part of the de�nition of

the pro�le �; for convenience we explicitly include them in the description of a problem.

Let P be the set of all problems.
Given a problem P = (N; t; l; u;�) we denote by Pnl0i the problem obtained from P by

replacing li by l0i and such that the preferences of agent i on [max fli; l0ig ; ui] coincide in
both problems. Similar notation is used for Pnu0i; Pnl0; Pn �i and so on. Besides given
P 2 P and S � N; we denote by PS the problem P when considering only agents in S;

namely, PS = (S; t; (li)i2S; (ui)i2S; (�i)i2S) :
A problem where all agents have single-peaked preferences on [0;+1) is known as the

division problem; i.e., for all i 2 N , li = 0, ui = +1, and (P.1) and (P.2) hold.
The set of feasible allocations of problem P is

FA (P ) =

�
(xi)i2N 2 RN+ j

P
i2N

xi 2 f0; tg and, for each i 2 N; xi 2 f0g [ [li; ui]
�
:

This set is never empty since the allocation (0; :::; 0) 2 RN+ is always feasible. Besides, there
are problems for which (0; :::; 0) is the unique feasible allocation.

A coalition S � N is admissible (at problem P ) if either S is empty or it is feasible

to divide t among all agents in S; namely, coalition S 6= ; is admissible if there exists
x = (xi)i2S 2 RS+ such that

P
i2S xi = t and li � xi � ui for all i 2 S: Hence, S 6= ; is

admissible if and only if
P

i2S li � t �
P

i2S ui:We denote by A (P ) the set of all admissible

coalitions at problem P . The set A(P ) is non-empty because it always contains the empty

coalition.

A rule f assigns to each problem P 2 P a feasible allocation; that is, f(P ) 2 FA (P )
for all P 2 P. Hence, a rule f can be seen as a systematic way of assigning to each problem
P 2 P two di¤erent but related aspects of the solution of the problem.
First, an admissible coalition cf (P ) 2 A(P ) where

cf (P ) = fi 2 N j fi (P ) 2 [li; ui]g:

7



We refer to the agents in cf (P ) as participants. Often, and when no confusion arises because

the problem P will be obvious from the context we write cf instead of cf (P ). Obviously,

if i =2 cf (P ), then fi (P ) = 0. Besides, if li = 0; then i 2 cf (P ).
Second, how the amount t is divided among the participants; i.e., if cf (P ) 6= ; then,P

i2cf (P )
fi (P ) = t:

We will see later that to identify rules satisfying appealing properties we may have

some freedom when choosing one among all admissible coalitions while the properties will

determine a unique way of dividing the amount of the good among the participants.

3 Properties of Rules

In this section we de�ne several properties that a rule may satisfy. The �rst four are basic

and standard properties already used in many axiomatic analysis of the division problem.

The last two are bound monotonicity, which restricts how the rule should change when the

upper or lower bound of an agent changes, and independence of irrelevant coalitions, which

restricts how the participants should be chosen.

A rule is e¢ cient if it always selects a Pareto optimal allocation.

Efficiency (ef ) For each P 2 P there is no (yi)i2N 2 FA(P ) with the property that
yi �i fi (P ) for all i 2 N and yj �j fj (P ) for some j 2 N:

Rules require each agent to report a single-peaked preference on f0g [ [li; ui]. A rule
is strategy-proof if it is always in the best interest of agents to reveal their preferences

truthfully; namely, truth-telling is a weakly dominant strategy in the direct revelation

game induced by the rule.

Strategy-proofness (sp) For each P 2 P ; i 2 N , and �0i on f0g [ [li; ui],

fi (P ) �i fi (Pn �0i) :

Given a problem P we say that agent i 2 N manipulates f at pro�le � via �0i if fi (Pn �0i) �i
fi (P ).

A rule satis�es strong equal treatment of equals if identical agents receive the same

allotment.

Strong equal treatment of equals (sete) For every P 2 P such that there are
i; j 2 N , i 6= j; and �i=�j then, fi (P ) = fj (P ) :
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Strong equal treatment of agents is incompatible with e¢ ciency. To see that, consider

any problem P where N = f1; 2; 3g; t = 10; (li; pi; ui) = (4; 5; 10) for i = 1; 2; 3; and

�1=�2=�3 : Since the allotment (103 ;
10
3
; 10
3
) =2 FA(P ) any f satisfying strong equal treat-

ment of equals has the property that cf = ; and fi(P ) = 0 for all i = 1; 2; 3: However,

(0; 5; 5) Pareto dominates (0; 0; 0): Thus e¢ ciency and strong equal treatment of equals are

incompatible. For this reason, we restrict our attention to the weaker notion of the property

requiring that only equal participants must be treated equally. The example above suggests

that a rule satisfying equal treatment of equal (participants) will have to use some criteria

to select among the three allotments (0; 5; 5); (5; 0; 5); and (5; 5; 0) (and corresponding set

of participants); but we will deal with that later.

A rule satis�es equal treatment of equals if identical participants receive the same

allotment.

Equal treatment of equals (ete) For every P 2 P such that there are i; j 2 N ,
i 6= j; �i=�j; and i; j 2 cf (P ) then, fi (P ) = fj (P ) :

We note that (sete) and (ete) coincide with the standard property of equal treatment

of equals when they are applied to classical division problems.

A rule is consistent if the following requirement holds. Apply the rule to a given problem

and assume that a subset of agents leave with their corresponding allotments. Consider

the new problem formed by the set of agents that remain with the same preferences that

they had in the original problem and the total amount of the good minus the sum of the

allotments received by the subset of agents that already left. Then, the rule does not require

to reallocate the allotments of the remaining agents.

Consistency (cons) For each problem P 2 P, each non-empty subset of agents S � N;
and each i 2 S,

fi (P ) = fi

 
S; t�

P
j2cf (P )nS

fj (P ) ; (li)i2S ; (ui)i2S ; (�i)i2S

!
:

We now introduce the property of bound monotonicity, which imposes restrictions on

how the rule changes when the upper or lower bounds of the interval of feasible allotments

of one agent changes. Take a problem P where the upper bound of agent k decreases to

u0k < uk without changing his preferences (i.e., �0k coincides with �k on [lk; u0k]). A natural
notion of bound monotonicity says the following. First, assume that fk(P ) � u0k; then,

f(P ) is also feasible in Pnu0k: Bound monotonicity says that f selects the same allocation
in both problems (i.e., f(Pnu0k) = f(P )): Second, assume that u0k < fk(P ); then, f(P ) is
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not feasible in Pnu0k: If we can divide t in Pnu0k among the same set of agents as in P (i.e.,
cf (P ) 2 A (Pnu0k)) then, bound monotonicity says that agent k receives his new upper

bound (fk(Pnu0k) = u0k) and the rest of agents receive an allotment that is not smaller than
the one they received in P (i.e., fi(Pnu0k) � fi(P ) for all i 2 Nnfkg). If u0k is so small that
we can not divide t in Pnu0k among the same set of agents as in P (i.e., cf (P ) =2 A (Pnu0k))
then, bound monotonicity says nothing. We apply the same ideas to the lower bound.

We now de�ne the property of bound monotonicity formally.

Bound monotonicity (bm)

(bm.1) Let P; Pnu0k 2 P be such that u0k < uk; and c
f (P ) 2 A (Pnu0k) : Then, cf (Pnu0k) =

cf (P ) and

fi (Pnu0k) � min ffi (P ) ; u0ig for each i 2 N; (1)

where u0i = ui for all i 2 Nn fkg :

(bm.2) Let P; Pnl0k 2 P be such that lk < l0k; and cf (P ) 2 A (Pnl0k) : Then, cf (Pnl0k) = cf (P )
and

fi (Pnl0k) � max ffi (P ) ; l0ig for each i 2 N; (2)

where l0i = li for all i 2 Nn fkg :

The property of bound monotonicity can be seen also as a weak property of solidarity.

Thomson (1994b) says: �A condition that is natural however is that agents all lose together

or all gain together when the amount to divide increases, in fact when it increases or

decreases. The general requirement that all agents be a¤ected in the same direction "as their

environment changes" is the essence of solidarity.�We can apply this solidarity principle

when the environment changes because the upper bound of some agent changes (the case

of a change in the lower bound is analogous). Take a problem P where the upper bound

of agent k decreases to u0k < uk without changing his preferences. First, assume that

fk(P ) � u0k then, f(P ) is also feasible in Pnu0k: Then, we select the same allocation in both
problems (in this case we do the same as with (bm)): Second, assume that u0k < fk(P ) then,

f(P ) is not feasible in Pnu0k: If cf (P ) 2 A (Pnu0k) then, agent k receives his new upper
bound (fk(Pnu0k) = u0k) and the rest of agents either all are better o¤ or all are worse o¤.
Namely, either

fi(Pnu0k) �i fi (P ) for each i 2 Nn fkg or

fi (P ) �i fi(Pnu0k) for each i 2 Nn fkg :

10



Obviously, bound monotonicity does not imply solidarity and solidarity does not imply

bound monotonicity. Nevertheless if a rule satisfy (ef ); then solidarity implies (bm) but the

other implication does not hold.3 Thus, we can see (bm) as a weaker version of solidarity.

A rule satis�es independence of irrelevant coalitions if the following requirement holds.

Consider two problems where the set of admissible coalitions of the �rst one is contained in

the set of admissible coalitions of the second one. Assume that the coalition chosen by the

rule in the second problem is admissible for the �rst one. Then, the rule chooses the same

coalition of participants in the two problems. This property is inspired in the well-known

principle of independence of irrelevant alternatives. Nash (1950) de�ned it, in bargaining

problems, as follows. Suppose that the set of admissible outcomes of the bargaining problem

S 0 is a subset of the set of admissible outcomes of the bargaining problem S: Besides, the

solution of S belongs to S 0: Then, the solution of S 0 must be the solution of S: Notice that

we are just applying the same principle to the function cf :

Independence of irrelevant coalitions (iic) For any two problems P; P 0 2 P
such that cf (P ) 2 A (P 0) � A (P ) then,

cf (P 0) = cf (P ) :

4 The Uniform Principle: Two Characterizations

In this section we present the two main results of the paper.

The uniform rule U on problems without constraints (see Sprumont (1991)) tries to allo-

cate the good as equally as possible, keeping the e¢ ciency bounds binding (all agents have

to be rationed in the same direction). The feasible uniform rule, on the subclass of division

problems under constraints with the property that the set of all agents is an admissible

coalition, does the same than U but it takes also into account the feasibility constraints.

We show in Theorem 1 that the feasible uniform rule is the unique rule satisfying e¢ ciency,

strategy-proofness, equal treatment of equals, and bound monotonicity on this subclass of

problems.

Let P� be the set of division problems under constraints with the property that the set
of all agents is an admissible coalition; namely,

P� =
�
P 2 P j

P
i2N

li � t �
P
i2N

ui

�
:

3We omit the non trivial proof of this statement.
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Feasible uniform rule The feasible uniform rule U on P� is de�ned as follows.
For each P 2 P� and i 2 N;

Ui (P ) =

8><>:
min fpi;maxfli; �gg if

P
j2N

pj � t

max fpi;minfui; �gg if
P
j2N

pj < t;

where � is the unique number satisfying
P

j2N Uj (P ) = t:

Remark 1 Consider the problem P = (N; t; l; u;�) 2 P� and a division problem without
constraints (N; t;�0) (i.e., l0i = 0 and u0i = +1 for all i 2 N) such that for each i 2 N; �0i
coincides with �i on [li; ui] and U (N; t;�0) 2 FA (P ) : Then, U (N; t;�0) = U (P ) : Thus,
the feasible uniform rule U can be considered as an extension of the uniform rule from

division problems without constraints to P�. Observe that the extension of the uniform
rule to problems with voluntary participation presented in Bergantiños, Massó, and Neme

(2012b) does not have this property. Let us clarify this with an example. Suppose that

N = f1; 2g ; t = 10; l = (1; 3), u = (8; 8) and p = (6; 6) : Thus, U (P ) = (5; 5) whereas the
rule in Bergantiños, Massó, and Neme (2012b) chooses (4; 6); namely, it increases uniformly

the allotments starting from l.

Theorem 1 in Ching (1994) provides a characterization of the uniform rule in the classical

division problem with (ef ); (ete); and (sp). In Theorem 1 below we prove that if we add

(bm) we have a characterization of the feasible uniform rule in P�: Thus our result can be
seen as an extension of Ching�s result.

Theorem 1 The feasible uniform rule U on P� is the unique rule satisfying e¢ ciency,
strategy-proofness, equal treatment of equals, and bound monotonicity. Besides, the four

properties are independent.

Proof See Subsection 6.1.

Remark 2 Unfortunately, U does not satisfy solidarity on P�. Consider a problem P 2 P�

where N = f1; 2; 3g ; t = 15; l = (0; 0; 0) ; u = (10; 10; 10) ; p = (6; 6; 6) ; 5 �2 7 and 7 �3 5:
Thus, U (P ) = (5; 5; 5) : Let u01 = 1: Then p01 = 1 and hence p01 + p2 + p3 = 13: Now

U(Pnu01) = (1; 7; 7) ; which means that U does not satisfy solidarity.

Therefore, it is not possible to use solidarity instead of (bm) in our results. Assume

that a rule f satis�es solidarity, (ef ); (ete); and (sp): Thus, f also satis�es (bm); (ef );

(ete); and (sp): By Theorem 1, f = U; which is a contradiction because U does not satisfy

solidarity. Hence, the properties of (ef ); (sp); (ete); and solidarity are incompatible in P�.
This fact is not surprising because solidarity is incompatible with some properties in the
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classical division problem, see for instance Thomson (1994b). The example suggests that

in our model the incompatibility comes mainly from (sp): As Lemma 1.2 will establish,

(ef ) and (sp) imply own peak monotonicity while solidarity requires the use of the whole

preferences.

We now consider the general case. We �rst extend the feasible uniform rule to P. Let
P be a problem in P. An extended uniform rule selects at P the feasible set of participants
by maximizing a given order � (a complete, antisymmetric and transitive binary relation)

on N , restricted to the family of admissible coalitions A(P ) � N , and then it applies the
feasible uniform rule to this selected set of participants to choose their allotments.

Extended Uniform Rule Let � be an order on N . The extended uniform rule on

P induced by the order � on N ; denoted by U�; is de�ned as follows. For each P 2 P and
i 2 N;

U�i (P ) =

(
Ui(PcU� (P )) if i 2 cU� (P )
0 if i =2 cU� (P ) ;

where cU
�
(P ) 2 A (P ) and cU� (P ) �S for all S 2 A (P ) ncU� (P ) :

Obviously, the family of extended uniform rules on P is large. We are interested in

the subfamily of rules that satisfy e¢ ciency, strategy-proofness, equal treatment of equals,

bound monotonicity, consistency and independence of irrelevant coalitions. To identify it

we restrict the order � on N to satisfy the properties of monotonicity and responsiveness.

De�nition 1 We say that an order � on N is

(i) monotonic if for all S 2 N and i =2 S; (S [ fig) �S; and
(ii) responsive if for all S; T 2 N and i =2 S [ T , S�T implies (S [ fig) � (T [ fig) :

If � is monotonic, then cU
�
is maximal. Namely, if cU

�
(P )  S; then S is not admissible.

Theorem 2 below characterizes the set of extended uniform rules that choose the admis-

sible coalition according to a monotonic and responsive order � on N . The way in which
we obtain � is similar to the one used in Bergantiños, Massó, and Neme (2012b).

Theorem 2 Let f be a rule on P. Then, f satis�es e¢ ciency, strategy-proofness, equal
treatment of equals, bound monotonicity, consistency, and independence of irrelevant coali-

tions if and only if f = U� for some monotonic and responsive order � on N . Besides,
the six properties are independent.

Proof See Subsection 6.2.

Remark 3. We have formulated Theorem 2 in terms of the uniform rule but the result

is more general. The proof of Theorem 2 establishes that the following statement holds.
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Assume that a rule on P� can be characterized with a list of properties that include (ef )
and (bm): Then, this rule can be extended to the general domain P (as with U) by adding
(cons) and (iic) to the list of properties characterizing the rule on P�.

5 Final Remarks

In this section we present some other properties that the uniform rule satis�es in the classical

division problem. While some of them are satis�ed by any extended uniform rule in our

setting some others are not. Nevertheless, if we proceed by weakening such properties as

we did with the principle of equal treatment of equals, any extended uniform rule satis�es

the new formulations of the corresponding weaker principles.

A rule is non-bossy if whenever an agent receives the same allotment at two problems

that are identical except for the preferences of this agent, then the allotments of all the

other agents also coincide at the two problems. Formally,

Non-bossy For each problem P , each i 2 N , and each�0i such that fi (P ) = fi (Pn �0i) ;
then fj (P ) = fj (Pn �0i) for all j 2 Nn fig :

A rule is own-peak monotonic if when the peak of an agent increases and the rest of the

problem remains the same, this agent does not receive less.

Own-peak monotonicity For all P; (Pn �0i) 2 P, p0i � pi implies fi(Pn �0i) �
fi (P ) :

A rule is tops-only when it depends only on the peaks of the preferences.

Tops-only For all P; (Pn �0) 2 P, pi = p0i for all i 2 N implies f (P ) = f(Pn �0):

A rule satis�es maximality if the set of participants is always maximal according to

set-wise inclusion.

Maximality For any P 2 P and T � N such that cf (P )  T , T is not an admissible
coalition for P:

To show that any extended uniform rule on P induced by a monotonic and responsive
order � on N satis�es the above properties is straightforward. We state this without proof

as Proposition 1 below.

Proposition 1. For each monotonic and responsive order � on N , the extended uniform
rule U� is non-bossy, own-peak monotonic, tops-only, and satis�es maximality.

We now introduce some properties that in the strong version (as in classical division

problems) no extended uniform rule on P does satisfy. Nevertheless, a weaker version of
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them (obtained by weakening the properties as we did with equal treatment of equals)

are satis�ed by every extended uniform rule on P. In all cases, when applied to classical
division problems, the strong and the weak versions coincide.

The basic principle under envy-freeness is that no agent can strictly prefer the allotment

received by another agent.

Strong envy freeness For each P 2 P and each i; j 2 N , fi (P ) �i fj (P ) :

We weaken this notion in two ways. First, we only require to compare allotments of

participants (as in the case of ete). Second, we admit unfeasible envies (when agent i envies

the allocation of agent j but agent i�s allocation is not feasible for agent j).

Envy freeness For each P 2 P and each pair of agents i; j 2 cf such that fj (P ) �i
fi (P ) ; then the vector of allotments x = (xk)k2cf , where xi = fj (P ) ; xj = fi (P ) ; and

xk = fk (P ) for all k 2 cfnfi; jg has the property that x =2 FA (P ).

A rule is strongly individually rational from equal division if all agents receive an allot-

ment that is at least as good as equal division.

Strongly individual rationality from equal division For each P 2 P and

each i 2 N ,
fi (P ) �i

t

n
:

We now weaken this principle by applying it only when the equal allotment is feasible.

Individual rationality from equal division For each P 2 P for which ( t
n
; :::; t

n
) 2

FA (P ) then, for all i 2 N ,
fi (P ) �i

t

n
:

One-sided resource monotonicity says that if the good is scarce, an increase of the

amount to be allotted should make all agents better o¤. Symmetrically, if the good is too

abundant, a decrease of the amount to be allotted should make all agents better o¤.

Strong one-sided resource monotonicity For all P; (Pnt0) 2 P with the prop-
erty that either t � t0 �

P
i2N

pi or
P
i2N

pi � t0 � t then, fi (Pnt0) �i fi (P ) for all i 2 N:

We weaken the principle by applying it only when, after changing the amount to be

divided, the set of admissible coalitions does not change.

One-sided resource monotonicity For all P; (Pnt0) 2 P with the property that
A (P ) = A (Pnt0) and either t � t0 �

P
i2N

pi or
P
i2N

pi � t0 � t then, fi (Pnt0) �i fi (P ) for

all i 2 N:
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Proposition 2 Let � be a monotonic and responsive order on N . Then, the extended
uniform rule U� does not satisfy strong envy freeness, strong individual rationality from

equal division, and strong one-sided resource monotonicity. Nevertheless, U� satis�es envy

freeness, individual rationality from equal division, and one-sided resource monotonicity.

Proof See Subsection 6.3.

The proof of Proposition 2 establishes the following Corollary.

Corollary 1 There is no rule on P that satis�es strong individual rationality from equal

division. Moreover, let f be an e¢ cient rule. Then, f neither satis�es strong envy freeness

nor strong one-sided resource monotonicity on P.

In the classical division problem, e¢ cient allocations are equivalent to same-sideness

allocations; namely,
P

i2N pi � t implies that xi � pi for all i 2 N and
P

i2N pi < t implies

that xi � pi for all i 2 N: Nevertheless, this equivalence does not hold in the division

problem under constraints. But �rst, we de�ne same-sideness in our model.

Same-sideness Let P 2 P, x = (xi)i2N 2 FA (P ) and

cx := fi 2 N j li � xi � uig :

The allocation x satis�es same-sideness if
P

i2cx pi � t implies that xi � pi for all i 2 cx

and
P

i2cx pi < t implies that xi � pi for all i 2 cx.

We can adapt the de�nition of maximality for an allocation x simply by replacing cf

by cx in the de�nition of maximality for a rule f: Next result establishes the relationship

between e¢ ciency and same-sideness.

Proposition 3

(a) If x satis�es maximality and same-sideness, then x is e¢ cient.

(b) If x is e¢ cient, then x satis�es same-sideness but it could fail maximality.

The proof of Proposition 3 is straightforward and we omit it. Nevertheless let us clarify

why e¢ ciency does not imply maximality. Assume that S is admissible for x, j =2 S; S[fjg
is admissible for x,

P
i2S pi � t; and

P
i2S[fjg pi > t: Consider a pro�le of preferences where

agents in S �prefer much more�to receive an allotment above their peaks than below, then

x could be e¢ cient even if it is not maximal. However, the reason of why an e¢ cient

allocation is not maximal is because the inclusion of an additional agent j transforms the

problem from
P

i2S pi � t to
P

i2S[fjg pi > t:
4

4Namely, if S is admissible for x; j =2 S; S [ fjg is admissible for x,
P

i2S pi � t; and
P

i2S[fjg pi � t,
then x is not e¢ cient.
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6 Proofs

We present the proofs of the main results of the paper.

6.1 Proof of Theorem 1

We �rst prove that U satis�es e¢ ciency, strategy-proofness, equal treatment of equals, and

bound monotonicity on P�.

(1) U satis�es (ef ). Fix a problem P 2 P�. Assume that there exists x = (xi)i2N 2 FA (P )
with the property that xi �i Ui (P ) for all i 2 N: We prove that x = U (P ) : Let i 2 N be

arbitrary. We consider two cases.

1.
P

j2N pj < t: Thus, Ui (P ) = max fpi;minfui; �gg : In this case U coincides with the
constrained uniform rule F studied in Bergantiños, Massó, and Neme (2012a). Using

the same arguments used there to prove that F satis�es (ef ) in the case
P

j2N pj < t,

we can prove that xi = Ui (P ) holds.

2.
P

j2N pj � t: Thus, Ui (P ) = min fpi;maxfli; �gg : We consider three cases.

2.1. Ui (P ) = pi: Since xi �i Ui (P ) ; it follows that xi = pi:

2.2. Ui (P ) = � < pi. Since xi �i Ui (P ) ; by single-peakedness, xi � �: Suppose

that xi > �: As
P

j2N xj =
P

j2N Uj (P ) = t; there exists k 2 N such that

xk < Uk (P ) : We consider three cases.

2.2.1. Uk (P ) = pk: Then, xk < pk; which contradicts that xk �k Uk (P ) :
2.2.2. Uk (P ) = � and � < pk: Then, xk < �; which contradicts, by single-

peakedness, that xk �k Uk (P ) :
2.2.3. Uk (P ) = lk: Since x 2 FA (P ) ; xk = 0 and hence Uk (P ) = lk �k 0 = xk;

which contradicts xk �k Uk (P ) :

Thus, xi = � and hence, xi = Ui(P ):

2.3. Ui (P ) = li > �: Since xi �i Ui (P ) ; xi � li: Suppose that xi > li: As
P

j2N xj =P
j2N Uj (P ) = t; there exists k 2 N such that xk < Uk (P ) : Similarly to Case

2.2, we obtain a contradiction. Thus, xi = li and hence, xi = Ui(P ):

(2) U satis�es (sp). Fix a problem P 2 P�. Let i 2 N and �0i on [li; ui] be arbitrary. We
prove that Ui (P ) �i Ui (Pn �0i) : We consider two cases.
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1.
P

j2N pj < t: Thus, Ui (P ) = max fpi;minfui; �gg : In this case U coincides with the
constrained uniform rule F studied in Bergantiños, Massó, and Neme (2012a). Using

the same arguments used there to prove that F satis�es (sp) in the case
P

j2N pj < t,

we can prove that Ui (P ) �i Ui (Pn �0i).

2.
P

j2N pj � t: Thus, Ui (P ) = min fpi;maxfli; �gg. We consider three cases.

The proofs of cases 2.1 Ui (P ) = pi and 2.2 Ui (P ) = � < pi are similar to the proofs

that F satis�es (sp) in Bergantiños, Massó, and Neme (2012a) when
P

j2N pj � t;

and Ui (P ) = pi and Ui (P ) = � < pi; respectively.

We now consider the case 2.3 Ui (P ) = li > �: We consider three cases.

2.3.1. p0i � pi: Then,
P

j2Nnfig pj + p
0
i � t: Now Ui (Pn �0i) = min fp0i;maxfli; �0gg :

Since � < li � pi � p0i; it follows that min fp0i;maxfli; �gg = li: Hence, �0 = �
and then, Ui (P ) = Ui (Pn �0i) :

2.3.2. p0i < pi and
P

j2Nnfig pj + p
0
i � t: The proof proceeds as in Case 2.3.1.

2.3.3. p0i < pi and
P

j2Nnfig pj + p
0
i < t: Since li � p0i;P

j2Nnfig pj + li < t:

Since t =
P

j2Nnfig Uj (P ) + li and pj � Uj (P ) for all j 2 N;

t �
P

j2Nnfig pj + li;

a contradiction.

(3) By de�nition, U satis�es (ete):

(4) U satis�es (bm):We �rst prove (bm.1 ): Let P and P 0 = Pnu0k be as in the de�nition of
(bm.1 ): We should prove that

Ui (P
0) � min fUi (P ) ; u0ig for each i 2 N:

We consider two cases.

1.
P

j2N pj < t: Thus, Ui (P ) = max fpi;minfui; �gg for all i 2 N: In this case U

coincides with the constrained uniform rule F studied in Bergantiños, Massó, and

Neme (2012a). Using the same arguments used there to prove that F satis�es (sp) in

the case
P

j2N pj < t, we can prove that (bm.1 ) holds in this case.
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2.
P

j2N pj � t: Thus, Ui (P ) = min fpi;maxfli; �gg for all i 2 N: We consider two

cases.

2.1.
P

i2N p
0
i < t: Then, p

0
k = u

0
k < pk � uk: By de�nition of U; for each i 2 Nnfkg;

Ui (P ) � pi = p
0
i � Ui (P

0) : Besides, p0k � Uk (P
0). Since Uk (P 0) 2 [l0k; u0k] and

u0k = p
0
k, Uk (P

0) = u0k holds.

2.2.
P

i2N p
0
i � t. Then, Ui (P 0) = min fpi;maxfli; �0gg for all i 2 Nnfkg. Since

p0k � pk, �0 � �: Therefore, for each i 2 Nnfkg; Ui (P 0) � Ui (P ) : To show that
Uk (P

0) � min fUk (P ) ; u0kg holds we consider two cases.

2.2.1. Uk (P ) � u0k: Thus, Uk (P ) = Uk (P 0).
2.2.2. Uk (P ) > u0k: Since Uk (P ) � pk and preferences are single-peaked, p0k = u0k.

If � � pk; then Uk (P ) = maxflk; �g: If � > pk; then Uk (P ) = pk: Since

�0 � � we deduce in both cases (� � pk and � > pk) that

Uk (P
0) = min fp0k;maxflk; �0gg = p0k = u0k:

We now prove (bm.2 ). Let P and P 0 = Pnl0k be as in the de�nition of (bm.2 ). We
should prove that

Ui (P
0) � max fUi (P ) ; l0ig for each i 2 N:

We consider two cases.

1.
P

j2N pj < t: Thus, Ui (P ) = max fpi;minfui; �gg for all i 2 N: If Uk (P ) � l0k;

then U (P ) = U (P 0), by the de�nition of U: Assume now that Uk (P ) < l0k: Since

pk � Uk (P ), pk < l0k. Hence l0k = p0k: We consider two cases.

1.1.
P

j2N p
0
j > t: Then, for all i 2 Nn fkg ;

Ui (P
0) = min fp0i;maxfl0i; �0gg � p0i = pi � Ui (P ) :

Since l0k = p
0
k;

Uk (P
0) = min fp0k;maxfl0k; �0gg = l0k:

1.2.
P

j2N p
0
j � t: Then, Ui (P 0) = max fp0i;minfui; �0gg for all i 2 N: Since pk < p0k,

�0 � �: Thus, for all i 2 Nn fkg ;

Ui (P
0) = max fp0i;minfu0i; �0gg
= max fpi;minfui; �0gg
� max fpi;minfui; �gg
= Ui (P ) :
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We consider two cases for agent k.

1.2.1. � � pk: Since �0 � � � pk < l0k = p0k � uk;

Uk (P
0) = max fp0k;minfuk; �0gg = p0k = l0k:

1.2.2. � > pk: Since Uk (P ) < l0k � u0k = uk;

Uk (P ) = max fpk;minfuk; �gg = �:

Since �0 � � = Uk (P ) < l0k = p0k � uk;

Uk (P
0) = max fp0k;minfuk; �0gg = p0k = l0k:

2.
P

j2N pj � t: Thus, Ui (P ) = min fpi;maxfli; �gg for all i 2 N: If Uk (P ) � l0k; then
U (P ) = U (P 0) ; by the de�nition of U: Assume now that Uk (P ) < l0k: Notice that

p0k � pk: Thus,
P

j2N p
0
j � t. Hence, Ui (P 0) = min fp0i;maxfl0i; �0gg for all i 2 N:

Then, �0 � �: Proceeding as in Case 1.2, we deduce that Ui (P 0) � Ui (P ) for all

i 2 Nn fkg : We consider three cases for agent k:

2.1. Uk (P ) = lk: Then, lk � �: Since �0 � � � lk = Uk (P ) < l0k � p0k,

Uk (P
0) = min fp0k;maxfl0k; �0gg = l0k:

2.2. Uk (P ) = � > lk: Then pk � �: Since �0 � � = Uk (P ) < l0k � p0k,

Uk (P
0) = min fp0k;maxfl0k; �0gg = l0k:

2.3. Uk (P ) = pk: Then, pk � �: Since pk = Uk (P ) < l0k, pk < p0k = l0k. Since �0 � �
we deduce that in the two possible cases (either �0 � l0k or �0 > l0k) that

Uk (P
0) = min fp0k;maxfl0k; �0gg = l0k:

We now prove that U is the unique rule satisfying the four properties on P�. We do it
by proving the following �ve lemmata.

Lemma 1.1 Let f be a rule satisfying (ef ) and (bm) on P� and let P 2 P�: Then,
cf (P ) = N:

Proof Let P 2 P�. Consider the problem P 0 = (N; t; l0; u0;�0) ; where for all i 2 N;
l0i = 0 and u0i = max fui; tg. Besides, for all i 2 N , �0i coincides with �i on [li; ui] :
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Obviously, cf (P ) = N and by (ef );
P

i2N fi (P
0) = t: Consider now the problem P 0nl1. By

(bm);

cf
�
P 0nl1

�
= cf

�
P 0
�
= N:

Consider now the problem P 0n fl1; u1g (if u01 = u1; then the next statement holds trivially).
By (bm);

cf
�
P 0n fl1; u1g

�
= cf

�
P 0nl1

�
= N:

Repeating this argument with agents 2; :::; n; we obtain that cf (P ) = N: �

An immediate consequence of Lemma 1.1 is that if f satis�es (ef ), (bm), and (ete) on

P�, then for all P 2 P� such that �i=�j we have that fi (P ) = fj (P ).

Next lemma is an extension of Lemma 1 in Ching (1994) for the classical division problem

to the division problem under constraints.

Lemma 1.2 Let f be a rule satisfying (ef ) and (sp) on P�. Then, f is own-peak

monotonic5.

Proof Let P; Pn �0j2 P� be such that p0j � pj: To obtain a contradiction, assume

fj (P ) < fj(Pn �0j): (3)

We consider two cases.

1.
P

i2N pi � t: By (ef ) and Proposition 3, pi � fi (P ) for all i 2 N: Hence,

p0j � pj � fj (P ) < fj(Pn �0j);

which implies, by single-peakedness, that fj (P ) �0j fj(Pn �0j); a contradiction with
(sp).

2.
P

i2N pi > t: By (ef ) and Proposition 3,

fi (P ) � pi for all i 2 N: (4)

We consider two cases.

2.1.
P

i6=j pi + p
0
j � t: By (ef ) and Proposition 3, for all i 6= j; fi(Pn �0j) � pi and

fj(Pn �0j) � p0j: Hence, by (3),

fj (P ) < fj(Pn �0j) � p0j � pj;

which implies, by single-peakedness, that fj(Pn �0j) �j fj (P ) ; a contradiction
with (sp).

5See Section 5 for a formal de�nition of own-peak monotonicity.
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2.2.
P

i6=j pi + p
0
j < t: By (ef ) and Proposition 3, for all i 6= j; pi � fi(Pn �0j) and

p0j � fj(Pn �0j): Thus, p0j � fj (P ); otherwise, by (4),

t =
X
i2N

fi (P ) <
X
i6=j

pi + p
0
j

a contradiction. Hence,

p0j � fj (P ) < fj(Pn �0j);

which implies, by single-peakedness, that fj (P ) �0j fj(Pn �0j); a contradiction
with (sp). �

Next lemma is an extension of Lemma 2 in Ching (1994) for the classical division problem

to the division problem under constraints.

Lemma 1.3 Let f be a rule satisfying (ef ), (sp), and (bm) on P�. Then, for all P 2 P�

and j 2 N :

(a) If pj < fj (P ) and �0j satis�es 0 � p0j � fj (P ), then fj(Pn �0j) = fj (P ) :
(b) If fj (P ) < pj and �0j satis�es fj (P ) � p0j � t, then fj(Pn �0j) = fj (P ) :

Proof Let f be an (ef) and (sp) rule, P 2 P� and j 2 N .
(a) Assume pj < fj (P ) and let �0j be such that 0 � p0j � fj (P ) : By (ef ) and Lemma 1.1,
Proposition 3 implies that

pi � fi (P ) for all i 2 N: (5)

Since p0j � fj (P ) ; (5) implies X
i2cfnfjg

pi + p
0
j �

X
i2cf

fi (P ) = t:

We now show that fj(Pn �0j) = fj (P ) : To obtain a contradiction, assume otherwise and
consider two cases.

1. fj (P ) < fj(Pn �0j): Then,

p0j � fj (P ) < fj(Pn �0j);

which implies, by single-peakedness, that

fj (P ) �0j fj(Pn �0j);

contradicting (sp).
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2. fj (P ) > fj(Pn �0j): We consider two cases.

2.1. fj(Pn �0j) � pj: Then,
pj � fj(Pn �0j) < fj (P ) :

By single-peakedness,

fj(Pn �0j) �j fj (P ) ;

contradicting (sp).

2.2. fj(Pn �0j) < pj: Then, p0j > 0 and

fj(Pn �0j) < pj < fj (P ) : (6)

By Lemma 1.1, fj(Pn �0j) 2 [lj; uj]. Let �00j be such that p00j = pj and

fj(Pn �0j) �00j fj (P ) : (7)

By Lemma 1.2, f is own-peak monotonic. Hence, fj(Pn �00j ) = fj (P ) : By (7),

fj(Pn �0j) �00j fi(Pn �00j );

contradicting (sp).

(b) We omit the proof since it follows a symmetric argument to the one used to prove (a).

�

Lemma 1.4 Let f be a rule satisfying (ef ), (ete) and (bm) on P�. Assume Pn �0fi;jg2
P� is such that uk = t for all k 2 N and �0i and �0j coincide on [max fli; ljg ; t] : Then, it
is not possible that simultaneously

fi(Pn �0fi;jg) < Ui(Pn �0fi;jg)

and

fj(Pn �0fi;jg) > Uj(Pn �0fi;jg)

hold.

Proof We consider three cases.

1. li = lj: By Lemma 1.1, cf (Pn �0fi;jg) = N: Thus, i and j belong to cf (Pn �0fi;jg):
Since �0i and �0j coincide on [max fli; ljg ; t] and f and U satisfy (ete), the statement
holds trivially.
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2. li < lj: Let l�j = li and consider the preference ��j of agent j on [l�j ; uj] that coincides
with �0i on [li; ui] = [l�j ; uj]: Obviously,

Pn
�
l�j ;�0i;��j

	
2 P�:

By Lemma 1.1,

cf (Pn
�
l�j ;�0i;��j

	
) = N:

By (ete);

fi(Pn
�
l�j ;�0i;��j

	
) = fj(Pn

�
l�j ;�0i;��j

	
) and

Ui(Pn
�
l�j ;�0i;��j

	
) = Uj(Pn

�
l�j ;�0i;��j

	
): (8)

Notice that the original problem Pn �0fi;jg can be obtained from Pn
�
l�j ;�0i;��j

	
by

increasing the lower bound of agent j from l�j to lj: We consider three cases.

2.1. lj � min
�
fj(Pn

�
l�j ;�0i;��j

	
); Uj(Pn

�
l�j ;�0i;��j

	
)
	
: Since the two rules satisfy

(bm),

f(Pn �0fi;jg) = f(Pn
�
l�j ;�0i;��j

	
) and

U(Pn �0fi;jg) = U(Pn
�
l�j ;�0i;��j

	
):

Thus, the statement holds trivially.

2.2. min
�
fj(Pn

�
l�j ;�0i;��j

	
); Uj(Pn

�
l�j ;�0i;��j

	
)
	
< lj

� max
�
fj(Pn

�
l�j ;�0i;��j

	
); Uj(Pn

�
l�j ;�0i;��j

	
)
	
:

Assume that6

fj(Pn
�
l�j ;�0i;��j

	
) < lj � Uj(Pn

�
l�j ;�0i;��j

	
): (9)

By (8)

fi(Pn
�
l�j ;�0i;��j

	
) < Ui(Pn

�
l�j ;�0i;��j

	
): (10)

Since the two rules satisfy (bm),

fj(Pn �0fi;jg) = lj; (11)

fi(Pn �0fi;jg) � fi(Pn
�
l�j ;�0i;��j

	
); and (12)

U(Pn �0fi;jg) = U(Pn
�
l�j ;�0i;��j

	
): (13)

6The proof of the other case is similar because we only use properties that the two rules satisfy.
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Thus, by (11), (9), and (13),

fj(Pn �0fi;jg) < Uj(Pn �0fi;jg)

and, by (12), (10), and (13),

fi(Pn �0fi;jg) < Ui(Pn �0fi;jg):

Hence, the statement holds.

2.3. max
�
fj(Pn

�
l�j ;�0i;��j

	
); Uj(Pn

�
l�j ;�0i;��j

	
)
	
< lj: Since the two rules satisfy

(bm),

fj(Pn �0fi;jg) = lj and

Uj(Pn �0fi;jg) = lj;

which means that the statement holds trivially.

3. li > lj: The proof proceeds as in Case 2, after changing the roles of i and j. �

Lemma 1.5 Let f be a rule satisfying (ef ), (sp), (ete), and (bm) on P�: Then, f = U:

Proof Let P 2 P� be arbitrary. We want to show that f(P ) = U(P ): Since f is (bm)

we can assume through the proof that ui � t for all i 2 N . Otherwise, if uk > t for some
agent k take u0k = t; by (bm),

f (Pnu0k) = f (P ) :

Assume �rst that
P

i2N pi � t: By (ef ) and Proposition 3, fi (P ) � pi for all i 2 N:
Let u11 = t and consider any �11 de�ned on [l1; t] that coincides with �1 on [l1; u1] and

the peak of �1 and �11 (we call it p11) coincide. For each i 2 Nn f1g de�ne �1i=�i and
u1i = ui: Notice that P can be obtained from P 1 = Pn fu1;�1g by decreasing the upper
bound of 1 from t to u1: By (bm);

fi (P ) � min
�
fi
�
P 1
�
; ui
	
for each i 2 N: (14)

Since
P

i2N p
1
i =

P
i2N pi � t and f satis�es (ef), by Proposition 3, fi (P 1) � pi for all

i 2 N: Since pi � ui for all i 2 N; by (14),

fi (P ) � fi
�
P 1
�
for all i 2 N:

Hence,

f
�
P 1
�
= f (P ) :
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Let u22 = t and consider any �22 de�ned on [l2; t] that coincides with �2 on [l2; u2] and
the peak of �2 and �22 coincide. For each i 2 Nn f2g de�ne �2i=�i and u2i = u1i : Let

P 2 = (N; t; l; u2;�2) : Analogously to the previous case,

f
�
P 2
�
= f

�
P 1
�
= f (P ) :

Repeating this argument we obtain that f (P n) = f (P ) : Thus, we can assume that

ui = t for all i 2 N:
Without loss of generality assume that p1 � p2 � ::: � pn: To obtain a contradiction,

assume that U (P ) 6= f (P ) : Then, there exists i1 2 N such that

Ui1 (P ) < fi1 (P ) � pi1 � p1: (15)

Step 1: Take �0i1 de�ned on [li1 ; t] such that it coincides with �1 on [max fl1; li1g ; t]
and the peak of �0i1 (denoted by p0i1) is also p1: Let P i

1
= Pn �0i1 : By (15), we can apply

Lemma 1.3 (b) with f = U and j = i1. Then,

Ui1(P
i1) = Ui1 (P ) : (16)

By Lemma 1.2, f is own-peak monotonic. Since pi1 � p0i1 ;

fi1 (P ) � fi1(P i
1

): (17)

By (16), (15), and (17)

Ui1(P
i1) < fi1(P

i1):

Step 2: Then, there exists i2 2 Nnfi1g such that

fi2(P
i1) < Ui2(P

i1): (18)

Take �0i2 de�ned on [li2 ; t] such that �0i2 coincides with �0i1 on [max fli1 ; li2g ; t] and the
peak of �0i2 (denoted by p0i2) is also p0i1 (= p1) : Let P i

1i2 = P i
1n �0i2 : Since U satis�es (ef ),

by Proposition 3, Ui2(P i
1
) � pi2 = pi

1

i2 : By (18), fi2(P
i1) < pi2 : Besides, p0i1 = p1 � pi2. By

Lemma 1.3 (b) applied to f and j = i2 we deduce that

fi2(P
i1i2) = fi2(P

i1): (19)

By Lemma 1.2, f is own-peak monotonic. Since pi2 � p0i2 ;

Ui2(P
i1) � Ui2(P i

1i2): (20)
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By (19), (18), and (20)

fi2(P
i1i2) < Ui2(P

i1i2):

By Lemma 1.4,

fi1(P
i1i2) � Ui1(P i

1i2):

Step 3: Then, there must exist i3 2 Nnfi1; i2g such that

Ui3(P
i1i2) < fi3(P

i1i2): (21)

Take �0i3 de�ned on [li3 ; t] such that �0i3 coincides with �0i2 on [max fli1 ; li2 ; li3g ; t] and
the peak of �0i3 (denoted by p0i3) is also p0i1 (= p1) : Let P i

1i2i3 = P i
1i2n �0i3 : By (21),

fi3(P
i1i2) < pi3 : Besides, p0i1 = p1 � pi3. By Lemma 1.3 (b) applied to f = U and j = i3 we

deduce that

Ui3(P
i1i2i3) = Ui3(P

i1i2): (22)

By Lemma 1.2, f is own-peak monotonic. Since pi3 � p0i3 ;

fi3(P
i1i2) � fi3(P i

1i2i3): (23)

By (22), (21), and (23)

Ui3(P
i1i2i3) < fi3(P

i1i2i3):

By applying Lemma 1.4 to the pairs i3; i1 and i3; i2 we obtain

Ui1(P
i1i2i3) � fi1(P i

1i2i3).

and

Ui2(P
i1i2i3) � fi2(P i

1i2i3):

Continuing with this procedure, at Step n, we obtain that either

Uin (Pn �0N) < fin (Pn �0N) and

Uij (Pn �0N) � fij (Pn �0N) for all j 2 Nn fing

or else

fin (Pn �0N) < Uin (Pn �0N) and

fij (Pn �0N) � Uij (Pn �0N) for all j 2 Nn fing

In both cases we have a contradiction becauseX
i2N

fi (Pn �0N) =
X
i2N

Ui (Pn �0N) = t:
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Assume now that
P

i2N pi < t. By (ef ) and Proposition 3, fi (P ) � pi for all i 2 N:
We de�ne P 0 = Pnl0 where l0i = 0 for all i 2 N: Obviously, P 0 2 P�: Let P0 be the
subdomain of P� given by problems P with the property that li = 0 for all i 2 N: In

Theorem 1 of Bergantiños, Massó, and Neme (2012a) it is proved that there is a unique

rule on P0 satisfying (ef ), (sp), (ete), and upper bound monotonicity. This rule is called
the constrained uniform rule and for all i 2 N it is de�ned as follows. For all P 2 P0 and
i 2 N;

Fi (P ) =

(
min f�; pig if

P
j2N pj � t

min fmax f�; pig ; uig if
P

j2N pj < t;

where � is such that
P

j2N Fj(P ) = t. Since (bm.1 ) coincides with upper bound monotonic-

ity on P0; f coincides with F on P0: Thus, for all i 2 N;

fi
�
P 0
�
= min fmax f�; pig ; uig ;

where � satis�es
P

j2N fj (P
0) = t: Besides, for all i 2 N;

Ui
�
P 0
�
= max fpi;minfui; �gg ;

where � satis�es
P

j2N fj (P
0) = t: It is immediate to see that for each �;

min fmax f�; pig ; uig = max fpi;minfui; �gg :

Thus, � = �. Hence, for all i 2 N; fi (P 0) = Ui (P 0) :
Let P 1 = P 0nl1: Since P 1 and P 0 belong to P�; by (bm),

f1
�
P 1
�
� max

�
f1
�
P 0
�
; l1
	
and

fi
�
P 1
�
� max

�
fi
�
P 0
�
; 0
	
for i 6= 1:

Since f1 (P 0) = U1 (P 0) � p1 � l1 we have that f (P 1) = f (P 0) :
Let P 2 = P 1nl2: Since P 1 and P 2 belong to P�; by (bm),

f2
�
P 2
�
� max

�
f2
�
P 1
�
; l2
	
and

fi
�
P 2
�
� max

�
fi
�
P 1
�
; 0
	
for i 6= 2:

Since f2 (P 1) = f2 (P 0) = U2 (P 0) � p2 � l2 we have that f (P 2) = f (P 1) :
Repeating this argument for all i = 3; :::; n we have that f (P n) = f (P 0) : Since P n = P ,

for all i 2 N;

fi (P ) = fi
�
P 0
�
= Ui

�
P 0
�
= max fpi;minfui; �gg = Ui (P ) :
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This concludes the proof of Theorem 1�s characterization.

We now prove that the four properties are independent.

� (ef ) is independent of the other properties.

We de�ne the rule f 1 as follows. Let P 2 P�. For each i 2 N;

f 1i (P ) = median fli; �; uig ;

where � is such that
P

i2N fi (P ) = t. Then, f 1 satis�es (sp), (ete), and (bm) but

fails (ef ).

� (sp) is independent of the other properties.

We de�ne the rule f 2 as follows. Let P 2 P�. For each i 2 N;

f 2i (P ) =

8><>:
pi +min f�; ui � pig if

P
i2N

pi < t

Ui (P ) if
P
i2N

pi � t;

where � is such that
P

i2N f
2
i (P ) = t: Then, f 2 satis�es (ef ), (ete), and (bm) but

fails (sp).

� (ete) is independent of the other properties.

We de�ne f 3 as the priority rule given by the order (1; 2; :::; n) applied to the set

of e¢ cient allocations. Namely, let P 2 P�. We de�ne f 3 formally, by considering
separately the two following cases.

1.
P

i2N pi � t: Take k as the unique agent satisfying that
Pk

i=1 pi +
Pn

i=k+1 li �
t <

Pk+1
i=1 pi +

Pn
i=k+2 li: For each i 2 N;

f 3i (P ) =

8><>:
pi if i � k
t�
Pk

i=1 pi �
Pn

i=k+2 li if i = k + 1

li if i � k + 2:

2.
P

i2N pi < t: Take k as the unique agent satisfying that
Pk+1

i=1 pi +
Pn

i=k+2 ui �
t <

Pk
i=1 pi +

Pn
i=k+1 ui: For each i 2 N;

f 3i (P ) =

8><>:
pi if i � k
t�
Pk

i=1 pi �
Pn

i=k+2 ui if i = k + 1

ui if i � k + 2:
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Then, f 3 satis�es (ef ), (sp), and (bm) but fails (ete).

� (bm) is independent of the other properties.

We de�ne the rule f 4 inspired by the Constant Equal Losses rule used in bankruptcy

problems. Let P 2 P�. For each i 2 N;

f 4i (P ) =

(
max fui � �; pig if

P
i2N pi < t

min fmax fli; ui � �g ; pig if
P

i2N pi � t;

where � is such that
P

i2N f
4
i (P ) = t: Then, f

4 satis�es (ef ), (sp), and (ete) but fails

(bm).

6.2 Proof of Theorem 2

Let � be any monotonic and responsive order on N : We prove that U� satis�es (ef ), (sp),
(ete), (bm), (cons) and (iic) on P.

(1) U� satis�es (cons). Let P 2 P, S � N; and i 2 S. We must prove that

U�i (P ) = U
�
i

�
PU

�;S
�

where PU
�;S =

 
S; t�

P
j2cU� (P )nS

U�j (P ) ; (li)i2S ; (ui)i2S ; (�i)i2S

!
:We�rst prove that cU

� �
PU

�;S
�
=

cU
�
(P ) \ S: Suppose cU�

�
PU

�;S
�
6= cU� (P ) \ S. Since cU� (P ) \ S 2 A

�
PU

�;S
�
; we have

cU
� �
PU

�;S
�
�
�
cU

�
(P ) \ S

�
: Obviously, cU

� �
PU

�;S
�
[
�
cU

�
(P ) \ (NnS)

�
2 A (P ) : By de�-

nition of U�, �
cU

�
(P )
�
�
�
cU

� �
PU

�;S
�
[
�
cU

�
(P ) \ (NnS)

��
: (24)

Since � is responsive and cU
� �
PU

�;S
�
�
�
cU

�
(P ) \ S

�
,�

cU
� �
PU

�;S
�
[
�
cU

�
(P ) \ (NnS)

��
�
�
cU

�
(P ) \ S [

�
cU

�
(P ) \ (NnS)

��
= cU

�
(P )

which contradicts cU
� �
PU

�;S
�
6= cU� (P ) \ S and (24). Thus, if i =2 cU� (P ) \ S, U�i (P ) =

0 = U�i
�
PU

�;S
�
holds. Let i 2 cU� (P ) \ S: We consider two cases.

1.
P

j2cU� (P )
pj � t: Thus, U�j (P ) = min fpj;maxfll; �gg � pj for all j 2 cU

�
(P ) : Then,

P
j2cU�(PU�;S)

pj �
P

j2cU�(PU�;S)
U�j (P ) =

P
j2cU� (P )\S

U�j (P )

= t�
P

j2cU� (P )nS
U�j (P ) :
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Thus, U�j
�
PU

�;S
�
= min fpj;maxflj; �0gg for all j 2 cU

� �
PU

�;S
�
: SinceX

j2cU� (P )\S

U�j
�
PU

�;S
�
= t�

P
j2cU� (P )nS

U�j (P ) =
X

j2cU� (P )\S

U�j (P ) ;

it follows that �0 = �. Hence, U�i (P ) = U
�
i

�
PU

�;S
�
:

2.
P

j2cU� (P )
pj < t: The proof uses symmetric arguments to those already used in Case 1

and it is omitted.

(2) U� satis�es (iic). Let P; P 0 2 P be such that cU� (P ) 2 A (P 0) � A (P ) : By de�nition of
cU

�
(P ), cU

�
(P ) �S for all S 2 A (P ) ncU� (P ) : Thus, cU� (P ) �S for all S 2 A (P 0) ncU� (P ) :

Hence, cU
�
(P 0) = cU

�
(P ) :

(3) U� satis�es (ef ). Fix a problem P 2 P. Assume that there exists x = (xi)i2N 2 FA (P )
with the property that xi �i U�i (P ) for all i 2 N: We prove that x = U� (P ) : Since

xi �i U�i (P ) for all i 2 cU
�
(P ), xi 2 [li; ui] for all i 2 cU

�
(P ). Since � is monotonic and

cU
�
(P ) is maximal in FA (P ), xi = 0 = U

�
i (P ) for all i =2 cU

�
(P ) : Since U� satis�es (cons),

for all i 2 cU� (P ) ;
U�i (P ) = U

�
i

�
PcU� (P )

�
:

Since PcU� (P ) 2 P�, U� coincides with U on PcU� (P ) and U satis�es (ef ) on P�; xi = U�i (P )
for all i 2 cU� (P ) :

(4) U� satis�es (sp). Let P 2 P; i 2 N and �0i be as in the de�nition of (sp). We must
prove that U�i (P ) �i U

�
i (Pn �0i) : Let us denote P 0 = Pn �0i : Obviously, A (P 0) = A (P ) :

Since U� satis�es (iic), cU
�
(P 0) = cU

�
(P ) : Then, U�j (P ) = U�j (P

0) for all j =2 cU� (P ) :
Thus, if i =2 cU

�
(P ) ; U�i (P ) �i U

�
i (P

0) : Since U� satis�es (cons), for all j 2 cU� (P ) ;
U�j (P ) = U�j

�
PcU� (P )

�
and U�j (P

0) = U�j

�
P 0
cU

�
(P )

�
: Since PcU� (P ) 2 P�; P 0

cU
�
(P )

2 P�;
U� coincides with U on PcU� (P ) and P 0cU� (P ) ; and U satis�es (sp) on P�; we deduce that
U�i
�
PcU� (P )

�
�i U�i

�
P 0
cU

�
(P )

�
:

(5) U� satis�es (ete). It is obvious from the de�nition.

(6) U� satis�es (bm). We �rst prove that U� satis�es (bm.1 ): Let P; (Pnu0k) 2 P be such that
u0k < uk; and c

U� (P ) 2 A (Pnu0k) : We denote P 0 = Pnu0k: Since u0k < uk, A (P 0) � A (P ) :
Since U� satis�es (iic); cU

�
(P 0) = cU

�
(P ) : Then, U�i (P ) = 0 = U

�
i (P

0) for all i =2 cU� (P ) :
Thus, for all i =2 cU� (P ) ;

U�i (P
0) � min fU�i (P ) ; u0ig .
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Since U� satis�es (cons), for all i 2 cU� (P ) ; U�i (P ) = U
�
i

�
PcU� (P )

�
and U�i (P

0) = U�i

�
P 0
cU

�
(P )

�
:

Since PcU� (P ) 2 P�; P 0cU� (P ) 2 P�; U� coincides with U on PcU� (P ) and P 0cU� (P ) ; and U satis�es
(bm.1 ) on P�; we deduce that for all i 2 cU� (P )

U�i (P
0) = U�i

�
P 0
cU

�
(P )

�
= Ui

�
P 0
cU

�
(P )

�
� min

�
Ui
�
PcU� (P )

�
; u0i
	

= min
�
U�i
�
PcU� (P )

�
; u0i
	

= min fU�i (P ) ; u0ig .

The proof that U� satis�es (bm.2 ) is similar to the proof that U� satis�es (bm.1 ) and

it is omitted.

Let f be a rule satisfying (ef ), (sp), (ete), (bm), (cons) and (iic). We prove that there

exists a monotonic and responsive order � on N for which f = U�.

We �rst de�ne a binary relation � on N as in Bergantiños, Massó, and Neme (2012b)

Let S; S 0 2 N . Three cases are possible.

1. S � S 0. Then, set S�S 0:

2. S 0 � S. Then, set S 0�S:

3. There exist agents j 2 SnS 0 and j0 2 S 0nS: Consider any problem P 2 P where

S; S 0 � N and for each i 2 N; li = pi = ui; and

pi =

8>>>>>>>><>>>>>>>>:

" if i 2 S \ S 0

"2 if i 2 Sn (S 0 [ fjg)
t� " jS \ S 0j � "2 jSn (S 0 [ fjg)j if i = j

"3 if i 2 S 0n (S [ fj0g)
t� " jS \ S 0j � "3 jS 0n (S [ fj0g)j if i = j0

"4 if i 2 Nn (S [ S 0) :

We choose " > 0 small enough to make sure that 0 < pi < t for all i 2 N and

A (P ) = fS; S 0g : By (ef ), cf (P ) 2 fS; S 0g: Then, if cf (P ) = S set S�S 0 and if

cf (P ) = S 0 set S 0�S:

Since f satis�es (iic), � is well de�ned because it does not depend on the particular

chosen problem, namely given P 0 2 P such that A (P 0) = fS; S 0g we have that cf (P 0) =
cf (P ) : Thus, � is well de�ned.

By Lemma 11 and Lemma 13 in Bergantiños, Massó, and Neme (2012b), � is complete,

antisymmetric, monotonic, responsive and transitive. By Lemma 12 in Bergantiños, Massó,
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and Neme (2012b) we have that cf (P ) �S for all S 2 A(P )ncf (P ) :We should note that in
the proofs of such lemmata the only properties of f used are (ef ), (cons), and (iic).

Lemma 2.1 Let f be a rule satisfying (ef ), (sp), (ete), (bm), (cons), and (iic) and let

� be its corresponding order de�ned as in Cases 1, 2, and 3 above. Then, f = U�:

Proof Let P 2 P be arbitrary and suppose that f and � satisfy the hypothesis of Lemma
2.1. If A(P ) = ;; then cf (P ) = cU�(P ) and f(P ) = U�(P ) = (0; :::; 0): Assume A(P ) 6= ;:
By (ef ), cf (P ) and cU

�
(P ) are non-empty. Since S 2 A(PS) implies S 2 A(P ); we have

that A(PS) � A(P ): In particular, cf (P ) 2 A(Pcf (P )) � A(P ): Hence, by (iic), cf (Pcf (P )) =
cf (P ) : Since f satis�es (cons),

fi (P ) =

(
fi(Pcf (P )) if i 2 cf (P )
0 if i =2 cf (P ) :

(25)

Because Pcf (P ) 2 P� and f satis�es (ef ), (sp), (ete), and (bm), by Theorem 1, for all

i 2 cf (P ) ;
fi(Pcf (P )) = U

�
i (Pcf (P )): (26)

By (25) and (26), f coincides with U�: �

This concludes the proof of Theorem 2�s characterization.

We now prove that the six properties are independent.

� (ef ) is independent of the other properties.

Let f 1 be de�ned as in the independence of the properties of Theorem 1. We extend

f 1 to problems where N is not admissible as we did with the uniform rule. Namely,

let � be a monotonic and responsive order on N . We de�ne f 1;� as follows. For any
P 2 P and i 2 N;

f 1;�i (P ) =

(
f 1i (Pcf1;� ) if i 2 cf1;�

0 if i =2 cf1;� ;

where cf
1;� 2 A (P ) and cf1;��S for all S 2 A (P ) ncf1;� :

It is not di¢ cult to prove that f 1;� satis�es all properties but (ef ).

� (sp) is independent of the other properties.

Let f 2 be de�ned as in the independence of the properties of Theorem 1. Let � be a

monotonic and responsive order on N . We de�ne f 2;� from f 2 as we did with f 1;�.

It is not di¢ cult to prove that f 2;� satis�es all properties but (sp).
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� (ete) is independent of the other properties.

Let f 3 be de�ned as in the independence of the properties of Theorem 1. Let � be a

monotonic and responsive order on N . We de�ne f 3;� from f 3 as we did with f 1;�.

It is not di¢ cult to prove that f 3;� satis�es all properties but (ete).

� (bm) is independent of the other properties.

Let f 4 be de�ned as in the independence of the properties of Theorem 1. Let � be a

monotonic and responsive order on N . We de�ne f 4;� from f 4 as we did with f 1;�.

It is not di¢ cult to prove that f 4;� satis�es all properties but (bm).

� (iic) is independent of the other properties.

Let N = f1; 2g and � be such that

f1; 2g � f1g � f2g �;:

We de�ne f 5 as follows. For all P 2 P ;

f 5(P ) =

(
(0; t) if f2g 2 A(P ); N =2 A(P ); and t � 1
U� otherwise.

It is not di¢ cult to prove that f 5 satis�es all properties but (iic).

� (cons) is independent of the other properties.

Let � be a monotonic order on N but not responsive. We de�ne f 6 = U�:

It is not di¢ cult to prove that f 6 satis�es all properties but (cons).

6.3 Proof of Proposition 2

Let � be any monotonic and responsive order on N :

(1) U� satis�es envy freeness. Let P 2 P and i; j 2 cU� be such that U�i (P ) �j U
�
j (P ) :

Since U� satis�es consistency, U�k (P ) = U
�
k (PcU� ) for all k 2 cU

�
: Thus, we can assume that

cU
�
= N ; namely, P 2 P� and U� = U: We consider two cases.

1.
P

k2N pk < t: Then, Uk (P ) = max fpk;minfuk; �gg � pk for all k 2 N . Since

Ui (P ) �j Uj (P ) ; Uj (P ) = minfuj; �g > pj: We consider two cases.
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1.1. � < pi: Since pi � ui; Ui (P ) = pi: Since Ui (P ) �j Uj (P ) > pj; by single-

peakedness, Ui (P ) < Uj (P ) : Then,

� < pi = Ui (P ) < Uj (P ) = minfuj; �g;

which is a contradiction.

1.2. � � pi: Since pi � ui; Ui (P ) = minfui; �g: Since Ui (P ) �j Uj (P ) ; by single-
peakedness,

minfui; �g = Ui (P ) < Uj (P ) = minfuj; �g:

Since Ui (P ) = � and Ui (P ) < Uj (P ) are incompatible, we have that Ui (P ) =

ui < Uj (P ) : Thus, Uj (P ) =2 [li; ui] which means that the allotment of j is not
feasible for i:

2.
P

k2N pk � t: Then, Uk (P ) = min fpk;maxflk; �gg � pk for all k 2 N . Since

Ui (P ) �j Uj (P ) ; Uj (P ) = maxflj; �g < pj: We consider two cases.

2.1. � � pi: Since li � pi; Ui (P ) = maxfli; �g: Since Ui (P ) �j Uj (P ) ; by single-
peakedness,

maxfli; �g = Ui (P ) > Uj (P ) = maxflj; �g:

Since Ui (P ) = � and Ui (P ) > Uj (P ) are incompatible, we have that Ui (P ) =

li > Uj (P ) : Thus, Uj (P ) =2 [li; ui] which means that the allotment of j is not
feasible for i:

2.2. � > pi: Since li � pi; Ui (P ) = pi: Since Ui (P ) �j Uj (P ) ; by single-peakedness,

pi = Ui (P ) > Uj (P ) = maxflj; �g;

a contradiction with � > pi:

(2) U� satis�es individual rationality from equal division: Let P 2 P be such that ( t
n
; :::; t

n
) 2

FA (P ) : Thus, li � t
n
� ui for all i 2 N and hence, P 2 P� and U� = U: We consider two

cases.

1.
P

i2N pi < t: Then, Ui (P ) = max fpi;minfui; �gg � pi for all i 2 N . Assume thatP
i2N ui > t (otherwise ui =

t
n
for all i 2 N and the result holds trivially). Since for

all i 2 N; t
n
� ui it follows that for all i 2 N;

max
�
pi;minfui; tng

	
= max

�
pi;

t
n

	
� t

n
.

Hence, � � t
n
: We consider two cases.
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1.1. pi � �: Then, Ui (P ) = pi �i tn :

1.2. pi < �: Then, pi < Ui (P ) = � � t
n
. By single-peakedness, Ui (P ) �i tn :

2.
P

i2N pi � t: Then, min fpi;maxfli; �gg � pi for all i 2 N . Assume that
P

i2N li < t

(otherwise li = t
n
for all i 2 N and the result holds trivially). Since for all i 2 N;

li � t
n
it follows that for all i 2 N;

min
�
pi;maxfli; tng

	
= min

�
pi;

t
n

	
� t

n
for all i 2 N:

Hence, � � t
n
: We consider two cases.

2.1. pi > �: Then, tn � � = Ui (P ) < pi: By single-peakedness, Ui (P ) �i
t
n
:

2.2. pi � �: Then, Ui (P ) = pi �i tn :

(3) U� satis�es one-sided resource monotonicity. Let P; (Pnt0) 2 P be as in the de�nition

of the property. Since A (P ) = A (Pnt0) and U� satis�es (iic), cU� (P ) = cU� (Pnt0). Since
U� satis�es (cons), and using similar arguments to those already used to prove that U� is

envy free, we can assume that P 2 P� and U� = U: We consider two cases.

1.
P

i2N pi � t0 � t: Then, for all i 2 N

Ui (P ) = max fpi;minfui; �gg and
Ui (Pnt0) = max fpi;minfui; �0gg :

Since t0 � t, �0 � �. Then, for all i 2 N;

pi � Ui (Pnt0) � Ui (P ) :

By single-peakedness, Ui (Pnt0) �i Ui (P ) :

2. t � t0 �
P

i2N pi: The proof is symmetric to the prove of Case 1 and it is omitted.

(10) U� does not satisfy strong envy freeness. Let P 2 P be such that N = f1; 2g ; t = 10;
l = (7; 0), u = (9; 9) and for each x 2 [1; 3] and y 2 [7; 9] we have that y �2 x: The set of
feasible allocations is

FA (P ) = f(x1; 10� x1) j x1 2 [7; 9]g [ f(0; 0)g :

Since U� is e¢ cient, U� (P ) 6= (0; 0) ; which means that U� does not satisfy strong envy

freeness.
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(20) U� does not satisfy strong individual rationality from equal division. Let P 2 P be such
that N = f1; 2g ; t = 10; l = (1; 2), u = (3; 8) and p2 = 5: The set of feasible allocations is

FA (P ) = f(x1; 10� x1) j x1 2 [2; 3]g [ f(0; 0)g ;

which means that U� does not satisfy strong individual rationality from equal division.

(30) U� does not satisfy strong one-sided resource monotonicity. Let P 2 P be such that

N = f1; 2; 3g ; t = 10; t0 = 14; l = (1; 1; 12), u = (6; 6; 20), p = (5; 5; 15) ; and for each

i 2 f1; 2g and each x; y 2 [1; 6] ; x �i y if and only if jx� 5j � jy � 5j : Now,

FA (P ) = f(x1; 10� x1; 0) j x1 2 [4; 6]g [ f(0; 0; 0)g and
FA (Pnt0) = f(x1; 0; 14� x1) j x1 2 [1; 2]g [ f(0; x2; 14� x2) j x2 2 [1; 2]g

[ f(1; 1; 12)g [ f(0; 0; 14)g [ f(0; 0; 0)g :

Since U� is e¢ cient, for each i 2 f1; 2g, fi (P ) 2 [4; 6] and fi (Pnt0) � 2. Thus, U� does not
satisfy strong one-sided resource monotonicity. �
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