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A Additional results for the monetary VAR

This section reports additional empirical results that are mentioned in the main text.

Figure A.1 reports responses of all variables to a monetary policy shock. Table A.1

reports growth rates of the variables in the main sample and in subsamples. Discussion

of the sensitivity analysis follows.
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Figure A.1 – Impulse responses of all variables to a monetary policy shock, quantiles

0.05, 0.5 and 0.95 of the posteriors obtained with alternative priors. Gray area: quan-

tiles 0.05 to 0.95 of the posterior obtained with the noninformative prior.
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Table A.1 – Annualized growth rates of the variables: mean (standard deviation).

1965-1995 1965-1985 1985-1995 1958-1964

Output 2.7 2.8 2.6 4.3

(3.6) (4.2) (2.1) (3.3)

Prices 5.0 5.9 3.1 1.8

(2.5) (2.4) (1.1) (1.3)

Commodity prices 0.0 0.0 0.2 0.0

(2.1) (2.2) (1.8) (0.7)

Fed funds rate 0.1 0.2 -0.2 0.2

(4.8) (5.6) (2.1) (1.3)

Nonborrowed reserves 5.3 4.3 7.4 1.5

(9.1) (8.8) (9.3) (5.8)

Total reserves 5.2 4.3 7.2 1.4

(6.6) (4.7) (9.0) (4.2)

Money (M1) 6.5 6.3 6.9 2.7

(4.0) (3.1) (5.5) (2.3)

Figure A.2 reports the sensitivity of the posterior impulse responses of output to

different specifications of the prior about the initial growth rates. When we discuss

this figure below, our point of reference is the ‘baseline’ case, discussed in the paper,

for which the prior about growth rates is calibrated on the estimation sample 1965-

1995 and the posterior is reported in Figure 1.D of the paper.

In panel a. we calibrate the prior about growth rates, as well as the parameter

S, based on the data from the years 1958-1964, i.e., preceding the estimation sample

1965-1995. As shown in panel a., when we use this prior, the response of output is

weaker and less persistent than in the baseline. This prior uses no information from

the estimation sample. This fact makes it more appealing on Bayesian grounds than

3



the baseline prior, which does use information from the estimation sample. However,

this prior turns out to be very different from the baseline prior: it is very tight and

centered around very different growth rates than those observed in the estimation

sample. The reason is that growth rates in 1958-1964 (reported the last column of

Table A.1) were quite different and much less volatile than in the estimation sample

1965-1995 (reported the first column of Table A.1). As shown in Table A.1, in 1958-

1964 the standard deviation of the growth rate is 1.3 for prices (as opposed to 2.5 in

the estimation sample), 0.7 for commodity prices (as opposed to 2.1), 1.3 for the fed

funds rate (as opposed to 4.8), 5.8 for nonborrowed reserves (as opposed to 9.1), 4.2

for total reserves (as opposed to 6.6) and 2.3 for money (as opposed to 4.0). Only

for output the difference is small (3.3 as opposed to 3.6). Some of the mean growth

rates are also very different: 4.3 percent per annum for output (as opposed to 2.7),

1.8 for prices (as opposed to 5.0), 1.5 for nonborrowed reserves (as opposed to 5.3)

etc. Results are very similar to those in panel a. (we do not report them for brevity)

also when we calibrate the prior using only the so-called ‘Great-Moderation’ period,

i.e., the post-1985 data. In the post-1985 data output, prices and Fed funds rate are

also less volatile than in the main sample, while nonborrowed reserves, total reserves

and money are more volatile than in the main sample (see the third column of Table

A.1).

In panel b. we calibrate the prior about growth rates based on the part of the

estimation sample before the ‘Great Moderation’, i.e., for the years 1965-1985. In

this case output response is somewhat more persistent than in the baseline case.

In the next two experiments we deviate from the rule that our prior carries as

much information as an initial condition in an autoregressive model. In panel c. we

specify the prior about the first two growth rates only, ∆y1 and ∆y2. Output response

is less persistent than in the baseline. In panel d. we specify the prior about the first

8 growth rates, ∆y1 up to ∆y8. Now output response is more persistent than in the

baseline.

4
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Figure A.2 – Impulse response of output to a monetary shock: quantiles 0.05, 0.5

and 0.95 of the posteriors obtained with alternative priors about initial growth rates.

Continuous lines: the fixed point with the highest marginal likelihood. Dashed lines:

the fixed point with the highest entropy. Gray area: quantiles 0.05 to 0.95 of the

posterior obtained with the noninformative prior.
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In panels e, f, g, h we keep the means and standard deviations of growth rates

as in the baseline, while changing the shape of the prior. In panel e. the prior

density of the observables is gaussian. Output responses are less persistent than in

the baseline. In panel f. the prior density of the observables is Student-t with 10

degrees of freedom. Output responses are similar to the baseline. In panel g. we

use as the prior the empirical distribution of growth rates in the sample (we simply

draw observed growth rates with replacement). The maximum marginal likelihood

responses are similar to the baseline, while the maximum entropy responses convey

large uncertainty about medium and long run responses. Nevertheless, we do not

rule out long-run neutrality of money. In panel h. we use the empirical Bayes prior

with the the auxiliary model as in the baseline, except that shocks to growth rates

are modeled as correlated across variables. Also in this case the maximum entropy

responses convey much uncertainty about medium and long run, but do not rule out

money neutrality.

Overall, we find that a range of reasonable priors about initial growth rates sup-

ports the main conclusion: that the response of output to a monetary policy shock is

consistent with long-run neutrality of money but larger and more persistent than in

CEE.

B A Monte Carlo experiment with the approxi-

mate conjugate algorithm

In this section we study by Monte Carlo the reliability of our approximate conjugate

algorithm. The difference from the empirical application in section 4 of the main

paper is that in the Monte Carlo we know the correct solution of the inverse problem

(1) of the main paper. We ask two questions of concern for a researcher who wants

to implement our algorithm in practice: First, is it difficult to find starting values for

which the algorithm converges to the solution of the inverse problem (1) of the main

6



paper? Second, how precise and how fast is the algorithm? The results of the Monte

Carlo experiment are promising. We generate 100 starting values, each obtained in

a natural way from a random draw of Y from pY . We find that for each of these

100 starting values our algorithm recovers the 667 true parameters of pθ with great

precision in under 5 minutes.

B.1 The design of the experiment

The design of the experiment is based on the empirical application in section 4 of the

main paper. We repeat all the assumptions here in order to make the present section

self-contained.

We assume that the density of the data conditional on parameters pY |θ is given

by the VAR model with gaussian shocks,

yt =
P∑
i=1

Bi yt−i + γ + ut, ut ∼ N(0,Σ), t = 1, ..., T. (B.1)

We assume that the P initial values of the process (y−P+1, ..., y0) are known and

starting from y1 the process follows (B.1). The parameters of the VAR are θ = (B,Σ),

where B is a K × N matrix defined as B = (B1, ..., BP , γ)′, K = NP + 1, and Σ is

an N × N symmetric positive definite matrix. We assume that the ‘true’ marginal

density of the parameters pθ is Normal-Inverted Wishart, i.e., it satisfies

p(vecB|Σ) = N (vecM,Q⊗ Σ), (B.2)

p(Σ) = IW(S, v), (B.3)

where N denotes the normal density, IW denotes the Inverted Wishart density and

M,Q, S, v are prior parameters of appropriate dimensions.1 The density of (B,Σ)

given in (B.2)-(B.3), model (B.1) and the initial value of (y−P+1, ...y−1, y0) together de-

termine pY – the density of yt in t = 1, ..., T . We would like to use values of (M,Q, S, v)

1We parameterize the Inverted Wishart density so that E(Σ) = S/(v−N−1). See, e.g., Bauwens

et al. (1999) Appendix A.2.6-A.2.7 for the properties of (B.2)-(B.3).
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and (y−P+1, ..., y0) that are ‘reasonable’ and representative for potential real-life sit-

uations. Therefore, in this experiment we use the values (yo−P+1, ..., y
o
0) taken from

the dataset of Christiano et al. (1999) (superscript o indicates ‘observed data’ as in

Geweke (2005)) and the values of M,Q, S, v that we found estimating model (B.1) on

this dataset using the standard noninformative prior p(B,Σ) = |Σ|−(N+1)/2.2 There

are N = 7 variables and P = 4 lags in this VAR. We set T , the number of periods in

p(Y ), to 33, because this choice of T equalizes the dimension of the density p(Y ) and

the dimension of p(θ) that we want to uncover. The dimension of Y is TN = 231,

and the dimension of (B,Σ) (without counting the repeated entries in the symmetric

matrix Σ) is also KN +N(N + 1)/2 = 231.

B.2 Implementation of the approximate conjugate algorithm

We set G to be the class of Normal-Inverted Wishart densities which are conjugate

for the model (B.1), i.e., such that the posterior pg(θ|Y ) is also Normal-Inverted

Wishart. Our q(θ) consists of the identity function and the quadratic function, q(θ) =

(vec θ′, vec(θθ′)′). We implement steps 2.a and 2.b of the algorithm in the following

way.

In step 2.a given gz−1 we find the moments EF(gz−1)(q(θ)). We use the Monte

Carlo outlined in the main paper. The Monte Carlo proceeds as follows.

i) We draw M = 1000 realizations of Y from pY .

ii) Take one realization, Y . We compute the posterior of B,Σ given data Y using

gz−1 as the prior. Since gz−1 is conjugate Normal-Inverted Wishart, the posterior

pg
z−1

(B,Σ|Y ) is also Normal-Inverted Wishart with the parameters given by standard

formulas. Given this posterior, we compute and store its first and second moments,

2Specifically, define Y o to be the T o ×N matrix collecting the observations on yt from period 1

to T o and define Xo to be the T o ×K matrix with the corresponding regressors: the lagged values

of yt and a column of 1s reflecting the constant term. Then we set M = (Xo′Xo)−1Xo′Y o, Q =

(Xo′Xo)−1, S = (Y o −XoM)′(Y o −XoM) and v = T o −K −N − 1.
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Epgz−1
(·|Y )(q(θ)), which are also given by standard formulas. We repeat for each of

the M realizations.

iii) We obtain the moments EF(gz−1)(q(θ)) using Result 1, i.e., as the average of

the M moments computed in ii).

In step 2.b we match the moments EF(gz−1)(q(θ)) as well as possible with a Normal-

Inverted Wishart density. Of course, a Normal-Inverted Wishart density cannot have

arbitrary first and second moments because of its intrinsic restrictions, such as the

Kronecker structure of the variance of B, so in general we cannot match EF(gz−1)(q(θ))

exactly. Therefore, we just pick a subset of the first and second moments that we

match exactly. We experimented with fitting a Normal-Inverted Wishart density to

different sets of moments and we found that the choice of the set of moments is not

critical: there are many sets of moments that lead to similarly good convergence of

the iterations in our application. The Normal-Inverted Wishart density fitted to the

moments EF(gz−1)(q(θ)) is our next density, gz.

We run the algorithm 100 times. At the beginning of each run we construct a

random g0 with the following procedure. We draw from pY a realization Y . Then

we compute the posterior of the parameters B,Σ conditional on Y . This posterior

belongs to G. When computing this posterior we cannot use the noninformative prior

because with only 33 observations the posterior would be improper. Therefore, we

use the “Minnesota” prior of section 4.1 of the main paper, but, to make it less

informative, we blow up its standard deviation by 10c where c is a random draw from

a uniform distribution on (0,3). To introduce additional variation in the starting

points, we draw v randomly from a uniform distribution between 10 and 200 (the

‘true’ v equals 81).

B.3 Results on the convergence of the iterations

The algorithm converges towards pθ from each of the 100 starting points. To illustrate

this, Figure B.1 plots the evolution of gz along the iterations for each starting point

9



g0. The first four panels show respectively the first element of M , the log determinant

of Q, the log determinant of S and v. The values of these (functions of) gz parameters

are plotted against z with continuous lines. The ‘true’ values of these (functions of)

parameters of pθ are indicated with dashed horizontal lines. We see that in all plots

the 100 continuous lines concentrate in the vicinity of the dashed line as iterations

progress. We conclude that it is easy, in this application, to find good starting points

for the algorithm based on the knowledge of pY alone. We also experimented with

other starting points. For example, the algorithm also converges to pθ when we start

at the standard Minnesota prior or when we set M to a matrix of zeros. However, the

algorithm runs into numerical problems or appears to stabilize away from pθ when

we change our good starting points selectively in only some dimensions, e.g. set a

very tight density for the constant term γ in the VAR, or scale Q and S in opposite

directions by factors of more than 100.

The precision of the algorithm is very good. In addition to the first four panels

of Figure B.1 we also report the precision in terms of the observables Y , because

discrepancies of parameters from the ‘true’ values are hard to interpret. To illustrate

the precision, the last panel shows the evolution of the Kullback-Leibler divergence

between p(Y ) and
∫

Θ
p(Y |θ) gz(θ)dθ estimated from a sample of 1000 draws from

each density.3 This plot suggests that already after about 20 iterations the discrep-

ancies of gzθ from pθ are negligible as far as the implications for Y are concerned,

according to our estimator of Kullback-Leibler divergence. But what does this mean

in practice? To illustrate the match of the distributions of the observables implied

by gzθ and pθ, Figure B.2 plots the quantiles 0.05 and 0.95 of yt against t for the 33

periods for which we specified pY . The continuous line shows the percentiles of yt

generated from pY while the dashed lines show the percentiles of yt generated from

3We use p(Y ) as the weighting function in Kullback-Leibler divergence, i.e., we estimate∫
Y p(Y ) log

(
p(Y ) /

∫
Θ
p(Y |θ) gz(θ)dθ

)
dY . We use the nearest-neighbor estimator the Kullback-

Leibler divergence proposed by Wang et al. (2009) and implemented in the TIM package for Matlab,

Rutanen (2011).
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Figure B.1 – Parameters of gz along the iterations. Last plot: the estimated Kullback-

Leibler divergence between p(Y ) and
∫

Θ p(Y |θ) g
z(θ)dθ along the iterations.
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Figure B.2 – Quantiles 0.05 and 0.95 of p(Y ) (continuous line) and
∫

Θ p(Y |θ) g
200(θ)dθ

(dashed line) plotted against time.

the distribution implied by g200,
∫

Θ
p(Y |θ) g200(θ)dθ, in the run of the algorithm that

achieved the largest Kullback-Leibler divergence from the target, i.e., in the worst

case. We used 10,000 draws of Y to reestimate the Kullback-Leibler divergences at

the 200th iteration, in order to identify this worst case. We also used 10,000 draws of

Y to estimate the plotted quantiles. We see in Figure B.2 that even in the case when

the Kullback-Leibler divergence was the largest, the quantiles 0.05 and 0.95 of both

distributions of Y basically coincide.

We conclude that the algorithm is extremely efficient compared to alternative

approaches to such inverse problems. In the current problem 200 iterations take

under 5 minutes with Matlab on a standard PC. Note that for a 7-variable VAR

with 4 lags the dimension of M,Q, S, v (without counting the repeated entries in the

symmetric matrices Q and S) is KN +K(K + 1)/2 +N(N + 1)/2 + 1 = 667. To our

knowledge, there are no other feasible approaches to finding these 667 parameters.

For example, it would be impossible to numerically minimize an objective function

(such as the Kullback-Leibler divergence between the left-hand side and the right-

hand side of (1)) with gradient methods because the dimension of 667 is prohibitively

12



large for such methods.

C Proof of a result from the main text

Proof of Proposition 4

We first show that F(g∗) is well defined. Since πkj ≥ 0 and gk > 0 we have∑
k

πkjg
∗
k ≥ 0 all j = 1, ..., N. (C.1)

Since gi > 0 for all i, the only way that (C.1) could hold as equality for some given j is

if πkj = 0 for all k. But this would violate invertibility of Π. Therefore
∑

k πkjgk > 0

for all j and F(g) is well defined.

Using g∗i > 0, Lemma 2 and the fixed point condition imply that∑
j

πij∑
k πkjg

∗
k

pY (Y j) = 1 for all i = 1, ..., N. (C.2)

Let h ∈ RN have hj =
pY (Y j )∑
k πkjg

∗
k

as typical element. Let 1 ∈ RN have all elements

equal to 1. Equation (C.2) can be written as

Πh = 1 (C.3)

Since all the rows of Π add up to 1 we have Π1 = 1. Premultiplying both sides of

the last equation by Π−1 we have that h = 1 and it follows that∑
k

πkjg
∗
k = pY (Y j) for all j = 1, ..., N (C.4)

so that g∗ solves (3). �
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