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Abstract

We study comparative statics of manipulations by women in the men-proposing de-

ferred acceptance mechanism in the two-sided one-to-one marriage market. We prove

that if a group of women employs truncation strategies or weakly successfully manip-

ulates, then all other women weakly benefit and all men are weakly harmed. We show

that our results do not appropriately generalize to the many-to-one college admissions

model.

1 Introduction

We study the effect of strategic agents on non-strategic agents in two-sided matching markets.

Consider the marriage market introduced by Gale and Shapley (1962) where the two (finite)

sides of the market are “men” and “women,” each agent having preferences over the other

side of the market and the prospect of being alone. An outcome for a marriage market is a

matching in which each agent either marries an agent from the other side of the market or

remains single. A key property for a matching is stability. A matching is stable if each agent

has an acceptable match and there is no pair of a man and a woman who like each other
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better than their current matches. Using their deferred acceptance algorithm, Gale and

Shapley (1962) constructively proved that there exists a stable matching for each profile of

preferences. Moreover, Knuth (1976) showed that the set of stable matchings is a distributive

lattice with respect to the preferences of the agents. An important consequence is that on

the set of stable matchings each side of the market has common interests that are in conflict

with those of the other side.1

In this note, we show that the conflict and coincidence of interests extends to the effects

of manipulations in the direct-revelation games based on the deferred acceptance algorithm.2

Consider the direct-revelation mechanism induced by the men-proposing deferred acceptance

algorithm. It is in the best interest of each man to report his true preferences (Dubins

and Freedman, 1981, and Roth, 1982), but women typically have incentives to misreport

their true preferences. Concerning her strategic options, a woman needs to consider only

truncation strategies, which are the strategies obtained by removing a tail of men (i.e., some

least preferred men) from her (true) ordered list of acceptable men. More precisely, for any

(general) manipulation by a woman, there is a truncation strategy which is at least as good.

We show that under the men-proposing deferred acceptance mechanism,

• truncating preferences by some women is weakly beneficial to all other women and

weakly harmful to all men (Proposition 3.2), and

• any weakly successful group manipulation3 by women is weakly beneficial to all other

women and weakly harmful to all men (Proposition 3.3).

Finally, we consider extending our results to the many-to-one college admissions model

where students have to be assigned to colleges (with possibly multiple seats). A minor

adaptation of the proof of Proposition 3.2 shows that under the student-proposing deferred

acceptance mechanism, any truncation of preferences by some colleges is weakly beneficial to

the other colleges and weakly harmful to all students. However, Kojima and Pathak (2009)

showed that under the student-proposing deferred acceptance mechanism, truncation strate-

gies typically do not exhaust the strategic options of the colleges. They proved that so-called

dropping strategies constitute a class of exhaustive strategies. A dropping strategy of a col-

lege is obtained by removing some students from its (true) ordered lists of acceptable students

(i.e., not necessarily a tail of least preferred students). We show that neither of our results

1See also Roth (1984) and Roth (1985b) for further results on polarization of interests in two-sided

markets.
2For the important role of the deferred acceptance algorithm in both matching theory and many real-life

applications we refer to Roth (2008).
3That is, none of the manipulating agents is strictly worse off.
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extends to the college admissions model in an appropriate way: there are dropping strategies

and successful manipulations that strictly harm some other college and strictly benefit some

student.

Our results complement work by Crawford (1991) who studied general many-to-one

matching markets and investigated the effect of the entrance of an agent on the welfare

of the other agents. When restricted to the marriage market, his result is the particular case

of our first result in which a woman submits an empty truncation strategy.

2 Model

In Gale and Shapley’s (1962) marriage market there are two non-empty, finite, and disjoint

sets of agents M (men) and W (women). A generic man, woman, and agent are denoted

by m, w, and i, respectively. Each agent i has a complete, transitive, and strict preference

relation Pi over the agents on the other side of the market and the prospect of being alone.

Let P = (Pi)i∈M∪W
denote the profile of all agents’ preferences.

For w, w′ ∈ W ∪ {m}, we write w Pm w′ if man m strictly prefers w to w′ (w 6= w′), and

w Rm w′ if m likes w at least as well as w′ (w Pm w′ or w = w′). Similarly, we write m Pw m′

and m Rw m′. A woman w is acceptable to a man m if w Pm m. Analogously, m is acceptable

to w if m Pw w.

With some abuse of notation we also represent a man m’s preferences Pm as an ordered

list of the elements in W ∪ {m}. For instance, Pm = w3 w2 m w1 . . . w4 indicates that m

prefers w3 to w2 and he prefers remaining single to any other woman. Similarly, woman w’s

preferences can be represented as an ordered list Pw of the elements in M ∪ {w}. We often

omit the unacceptable agents from agent i’s ordered list Pi.

A marriage market is a triple (M, W, P ), or P for short. A matching is a one-to-one

function µ from M ∪ W to itself, such that for each m ∈ M and for each w ∈ W we have

µ(m) = w if and only if µ(w) = m, µ(m) 6∈ W implies µ(m) = m, and similarly µ(w) 6∈ M

implies µ(w) = w. If µ(m) = w, then man m and woman w are matched to one another.

If µ(i) = i, then agent i is unmatched or single. Agent µ(i) is called i’s match at µ. We

sometimes use a vector of men (or women) to denote a matching, e.g., µ = (m3, m1, m2)

denotes the matching where w1 is matched to m3, w2 to m1, and w3 to m2.

A matching µ is individually rational if µ(i) Ri i for all i ∈ M ∪ W . A pair (m, w) is

a blocking pair for a matching µ if w Pm µ(m) and m Pw µ(w). A matching is stable if it

is individually rational and if there are no blocking pairs. Gale and Shapley (1962) proved

constructively that each marriage market has at least one stable matching. For this they
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introduced the deferred acceptance (DA) algorithm. Let Q be a profile of ordered lists of

acceptable agents. The men-proposing DA algorithm applied to Q, denoted by DA(Q) for

short, finds a matching through the following steps.

Step 1: Each man m proposes to the woman that is ranked first in Qm (if there is no such

woman then m remains single). Each woman w tentatively accepts the best man among her

proposers (using the list Qw). All other proposers are rejected.

Step k, k ≥ 2: Each man m that is rejected in Step k − 1 proposes to the next woman

in his list Qm (if there is no such woman then m remains single). She tentatively accepts

the best man among the new proposers and the tentatively matched man from the previous

step, if any (using the list Qw). All other proposers are rejected.

The algorithm stops when no man is rejected. Then, all tentative matches become final.

With some abuse of notation, let µ(Q) denote the matching. For i ∈ M ∪ W , let µ(Q, i)

denote the match of agent i at µ(Q). Gale and Shapley (1962) proved that for preference

profile Q matching µ(Q) is the best (worst) stable matching for the men (women). Dubins

and Freedman (1981) and Roth (1982) proved that under the direct-revelation mechanism

induced by µ it is a weakly dominant strategy for the men to reveal their true preferences.

Therefore, we will assume that men are truthful and that women are the only strategic

agents. Whenever there are at least two stable matchings some woman have incentives to

misreport their true preferences (see for instance Roth and Sotomayor, 1990, Corollary 4.12).

3 Results

Before we present our results on the direct-revelation mechanism induced by the men-

proposing deferred acceptance algorithm, we first provide the formal definitions of two classes

of manipulations.

Let P be a marriage market. A truncation strategy (Roth and Rothblum, 1999) of a

woman w is a strategy (or equivalently, an ordered list) P ′

w
obtained from Pw by making

a tail of acceptable men unacceptable. Formally, P ′

w
is a truncation strategy if for all

m, m′ ∈ M , (a) [if m R′

w
m′R′

w
w then m Rw m′Rw w], and (b) [if m P ′

w
w and m′ Pw m then

m′ P ′

w
w].

A (group) manipulation by a group of women W ′ is a strategy-profile PW ′ = (Pw)
w∈W ′.

If |W ′| = 1, then PW ′ is an individual manipulation. A manipulation is weakly success-

ful if for all w ∈ W ′, µ(P ′, w) Rw µ(P, w) where P ′ = (P ′

W ′, P−W ′). A manipulation is suc-

cessful if for all w ∈ W ′, µ(P ′, w) Rw µ(P, w) and for some w′ ∈ W ′, µ(P ′, w′) Pw′ µ(P, w′).

4



Note that not every truncation strategy is a weakly successful manipulation. For in-

stance, an empty truncation strategy leaves the woman unmatched. Likewise, not every

weakly successful, individual manipulation is a truncation strategy (see, for instance, Exam-

ple 1). However, truncation strategies are exhaustive in the sense that any weakly successful,

individual manipulation can be replicated or improved upon by some truncation strategy.4

The following well-known result states that men and women have opposite interests

whenever a manipulation leads to a stable matching.

Lemma 3.1. Under the men-proposing DA mechanism, a group manipulation by some

women W ′ is weakly beneficial to all women and weakly harmful to all men if the induced

matching is stable. If the matching is not stable then each blocking pair contains a woman

from W ′.

Proof. Let P ′

W ′ be a group manipulation and let P ′ = (P ′

W ′, P−W ′). By assumption, µ(P ′) is

stable for the market P . Hence, by men-optimality of µ(P ), all women weakly prefer µ(P ′)

to µ(P ) and all men weakly prefer µ(P ) to µ(P ′). The second statement follows from the

observation that µ(P ′) is stable for P ′ and that for each pair (m, w) with w 6∈ W ′, Pm = P ′

m

and Pw = P ′

w
.

The following example illustrates that a manipulation may lead to an unstable matching,

even if the manipulating women are strictly better off at the new matching.

Example 1. (A successful manipulation that yields an unstable matching.)

Consider the matching market with 3 men, 3 women, and preferences P given by the columns

in the table below. For instance, w3 Pm1
w1 Pm1

w2 Pm1
m1. One easily verifies that µ(P ) =

Men Women

m1 m2 m3 w1 w2 w3

w3 w2 w1 m1 m1 m3

w1 w1 w3 m2 m2 m1

w2 w3 w2 m3 m3 m2

(m3, m2, m1)— the boxed matching in the table. Suppose that woman w1 submits the list

P ′

w1
= m2. Then, µ(P ′) = (m2, m1, m3)— the boldfaced matching in the table. Note P ′

w1
is

4To see this, let P ′
w

be an individual manipulation. Let m = µ ((P ′
w
, P−w), w) ∈ M ∪ {w}. Consider

the truncation strategy P ′′
w

obtained from Pw by making all men that are strictly less preferred than m

unacceptable. One easily verifies that µ ((P ′′
w
, P−w), w) Rw µ ((P ′

w
, P−w), w).
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a successful manipulation since µ(P ′, w1) = m2 Pw1
m3 = µ(P, w1). But µ(P ′) is not stable

with respect to the true preferences P (the unique blocking pair is (m1, w1)). ⋄

In Example 1, all women that do not manipulate weakly benefit and all men are weakly

harmed. Since the resulting matching is not stable this observation does not follow from

Lemma 3.1. Nevertheless, we will prove that the observed opposed interests are a feature

of two interesting classes of group manipulations: group truncation strategies and weakly

successful group manipulations.

For marriage markets, the next proposition generalizes the results of Crawford (1991)

from an individual empty truncation strategy to arbitrary group truncation strategies. We

include the proof, which is similar to that of Crawford (1991), for two reasons. First, for

marriage markets the arguments are shorter and more transparent. Second, it will be useful in

pointing out why the same arguments do not immediately carry over to other manipulations.

To prove our results we introduce the following additional notation. For every integer

k ≥ 1, let X(Q, w, k) be the set of men that will have proposed to woman w by step k under

DA(Q), i.e., in some step l ∈ {1, . . . , k} of DA(Q). Let X(Q, w) be the set of men that will

have proposed to w by the last step of DA(Q), i.e., X(Q, w) = ∪kX(Q, w, k).

Proposition 3.2. Under the men-proposing DA mechanism, any group manipulation by

women that consists of truncation strategies is weakly beneficial to the other women and

weakly harmful to all men.

Proof. Let P ′

W ′ be a group manipulation of some women W ′ such that for each w′ ∈ W ′, P ′

w′

is a truncation strategy. Let P ′ = (P ′

W ′, P−W ′). It is sufficient to show that for each woman

w and each step k, X(P, w, k) ⊆ X(P ′, w, k). For k = 1 the inclusion is in fact an equality

since at step 1 of DA(P ) and DA(P ′) each man proposes to exactly the same woman.

Assume that the inclusion holds for k. We will show that the inclusion also holds for

k + 1. Let m ∈ X(P, w, k + 1). If m ∈ X(P, w, k), then by induction, m ∈ X(P ′, w, k),

and hence m ∈ X(P ′, w, k) ⊆ X(P ′, w, k + 1). So, assume m ∈ X(P, w, k + 1) \ X(P, w, k).

Then, in DA(P ), man m proposed to w at step k + 1 but not at step k. So, m was rejected

by some woman w̄ 6= w at step k of DA(P ). By the induction hypothesis, m ∈ X(P, w̄, k) ⊆

X(P ′, w̄, k). If w̄ 6∈ W ′ then w̄ will also have rejected m by step k of DA(P ′) since P ′

w̄
= Pw̄.

If w̄ ∈ W ′ then w̄ will also have rejected m by step k of DA(P ′) since P ′

w̄
is a truncation

strategy obtained from Pw̄. Since m makes his proposals in the same order in DA(P ) and

DA(P ′), he will have proposed to w by step k+1 of DA(P ′). Hence, m ∈ X(P ′, w, k+1).

The following example shows that if we replace (possibly unsuccessful) truncation strate-

gies in the statement of Proposition 3.2 by weakly successful manipulations then the key
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argument in the proof does no longer work.

Example 2. (A successful manipulation with a “rejection lag.”)

Consider the matching market with 3 men, 3 women, and preferences P given by the

columns in the table below. One easily verifies that µ(P ) = (m1, m3, m2)— the boxed

Men Women

m1 m2 m3 w1 w2 w3

w1 w1 w2 m3 m2 m1

w2 w3 w1 m1 m1 m2

w3 w2 w3 m2 m3 m3

matching in the table. Suppose that woman w1 submits the list P ′

w1
= m3, m2, m1. Then,

µ(P ′) = (m3, m1, m2)— the boldfaced matching in the table. Note that P ′

w1
is a successful

manipulation since µ(P ′, w1) = m3 Pw1
m1 = µ(P, w1).

Note that all other women weakly benefit and all men are weakly hurt by the manipu-

lation. However, the arguments in the proof of Proposition 3.2 cannot be directly applied

here. This can be seen as follows. In DA(P ), woman w1 rejects m2 in the first step (after

which he proposes to w3, gets accepted, and the algorithm halts). In DA(P ′), the ma-

nipulating woman w1 will reject m2 in a later step (i.e., not in the first step). Therefore,

X(P, w1, 1) 6⊆ X(P ′, w1, 1). Hence, the arguments of Proposition 3.2 cannot be applied to

tackle successful manipulations that are not truncation strategies. ⋄

Our second result shows that the conflict and coincidence of interests as observed in

Example 2 holds in fact for any weakly successful group manipulation. In other words, we

can replace the (possibly unsuccessful) truncation strategies in Proposition 3.2 by weakly

successful manipulations.

Proposition 3.3. Under the men-proposing DA mechanism, any weakly successful group

manipulation by women is weakly beneficial to the other women and weakly harmful to all

men.

Proof. Let P ′

W ′ be a weakly successful manipulation of a group of women W ′ and let P ′ =

(P ′

W ′, P−W ′). It is sufficient to show that for each woman w and each step k, X(P, w, k) ⊆

X(P ′, w). For k = 1 the inclusion is obvious since at step 1 of DA(P ) and DA(P ′) each man

proposes to exactly the same woman.

Assume that the inclusion holds for k. We will show that the inclusion also holds for

k + 1. Let m ∈ X(P, w, k + 1). If m ∈ X(P, w, k), then by induction, m ∈ X(P ′, w). So,
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assume m ∈ X(P, w, k + 1) \ X(P, w, k). Then, in DA(P ), man m proposed to w at step

k + 1 but not at step k. So, m was rejected by some woman w̄ 6= w at step k of DA(P ). By

the induction hypothesis, m ∈ X(P, w̄, k) ⊆ X(P ′, w̄). If w̄ 6∈ W ′ then w̄ will also reject m

in DA(P ′) since P ′

w̄
= Pw̄. If w̄ ∈ W ′ then µ(P ′, w̄) Rw̄ µ(P, w̄) Pw̄ m, which implies that in

the last step of DA(P ′) woman w̄ is matched to a man she strictly prefers to m (according

to her true preferences). Therefore, in either case w̄ will also eventually reject m in DA(P ′).

Since m makes his proposals in the same order in DA(P ) and DA(P ′), he will have proposed

to w by the last step of DA(P ′). Hence, m ∈ X(P ′, w).

Finally, we consider extending our results to the many-to-one college admissions model

where students have to be assigned to colleges with possibly multiple seats, strict preferences

over individual students, and responsive preferences over groups of students.5 Note that the

men-proposing DA algorithm and some of its properties can be straightforwardly generalized

to college admissions (such that the men “become” students, and the women “become”

colleges with possibly multiple seats). In particular, it is a weakly dominant strategy for the

students to submit their true preferences (Roth, 1985a, Theorem 5∗) under the mechanism

induced by the student-proposing DA algorithm, which will be denoted by µ. Note that a

college can manipulate not only its ordered list of students but also the number of available

seats, i.e., the strategy space is much richer than in one-to-one markets.

A minor adaptation of the proof of Proposition 3.2 shows that under the student-

proposing DA mechanism, any group manipulation by colleges that consists of truncation

strategies is weakly beneficial to the other colleges and weakly harmful to all students.

However, Kojima and Pathak (2009) showed that under the student-proposing deferred ac-

ceptance mechanism, truncation strategies typically do not exhaust the strategic options of

the colleges. More precisely, they presented a many-to-one market in which for some college

there is a strategy such that any truncation strategy yields a strictly worse match. They

also proved that so-called dropping strategies constitute a class of exhaustive strategies. A

dropping strategy of a college is obtained by removing some students from its (true) ordered

lists of acceptable students (i.e., not necessarily a tail of least preferred students).6 Formally,

for a college c with preferences Pc over individual students, P ′

c
is a dropping strategy if

for all students s, s′, [s R′

c
s′R′

c
∅ implies s Rc s′Rc ∅].

Therefore, a possible appropriate extension of Proposition 3.2 to college admissions would

involve dropping strategies rather than truncation strategies. The next example, however,

5For a formal definition of the college admissions model and responsiveness in particular, see Roth (1985a).
6The fact that dropping strategies are exhaustive implies that it suffices to focus on each college’s sub-

mittable ordered lists of students.
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shows that neither of our results extends to the college admissions model in an appropriate

way: there are dropping strategies and successful manipulations that strictly harm some

other college and strictly benefit some student.

Example 3. (Propositions 3.2 and 3.3 cannot be appropriately generalized to

college admissions.)

Consider the following matching market with students s1, s2, s3, and s4, and colleges c1 and

c2. Each college has two seats. The preferences P over individual agents are given by the

columns in the table below. We assume that the colleges’ preferences over sets of students

are responsive to the preferences over individual students and that both colleges prefer

{s1, s4} to {s2, s3}.
7 One easily verifies that µ(P ) = (c2, c1, c1, c2)— the boxed matching

Students Colleges

s1 s2 s3 s4 c1 c2

c2 c1 c1 c1 s1 s4

c1 c2 c2 c2 s2 s2

s3 s3

s4 s1

in the table. Suppose that college c1 submits the dropping strategy P ′

c1
= s1, s4. Then,

µ(P ′) = (c1, c2, c2, c1)— the boldfaced matching in the table. Note that P ′

c1
is a successful

dropping strategy since college c1 prefers {s1, s4} to {s2, s3}. Since college c2 is strictly worse

off and student s4 is strictly better off under µ(P ′) it follows that Propositions 3.2 and 3.3

cannot be appropriately extended to college admissions. ⋄

Remark 1. In fact, using the many-to-one market in Example 3 one can construct a marriage

market in which an individual (unsuccessful) dropping strategy of a woman makes another

woman strictly worse off and some man strictly better off (cf. Proposition 3.3).8 For two

reasons we do not provide further details and present Example 3 instead. First, the class

of dropping strategies contains the strictly smaller class of truncation strategies, which is

already exhaustive for one-to-one markets. Second, the market in Example 3 shows not only

the impossibility of appropriately generalizing Proposition 3.2 but also the impossibility of

generalizing Proposition 3.3. ⋄

Finally, we note that Example 3 uncovers another difference between marriage markets and

college admissions and adds to those already identified in Roth (1985a).

7Note that preferring {1, 4} to {2, 3} is compatible with responsiveness.
8We thank Bettina Klaus for pointing this out.
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