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Abstract

This paper proposes a contemporaneous-threshold multivariate smooth transition au-

toregressive (C-MSTAR) model in which the regime weights depend on the ex ante

probabilities that latent regime-specific variables exceed certain threshold values. A

key feature of the model is that the transition function depends on all the parameters

of the model as well as on the data. Since the mixing weights are also a function of the

regime-specific innovation covariance matrix, the model can account for contempora-

neous regime-specific co-movements of the variables. The stability and distributional

properties of the proposed model are discussed, as well as issues of estimation, testing

and forecasting. The practical usefulness of the C-MSTAR model is illustrated by

examining the relationship between US stock prices and interest rates.
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1 Introduction

It has been long recognized that economic variables may behave very differently in dif-

ferent states of the economy such as, for example, high/low inflation, high/low growth,

or high/low stock prices (relative to dividends). This behavior may be attributable not

only to state-dependent response of economic variables to policy shocks but also to state-

dependent response on the part of authorities responsible for fiscal and monetary policies.

In an attempt to capture state-dependent or regime-switching behavior, a variety of non-

linear models have been proposed for describing the dynamics of economic time series

subject to changes in regime [see, e.g., Tong (1983, 1990); Hamilton (1993); van Dijk et

al. (2002); Dueker et al. (2007)].

Researchers are often interested in studying the interrelationships between several eco-

nomic/financial variables. To this end, several multivariate models have been considered in

the literature, including Markov-switching autoregressive (MSAR) models [e.g., Sola and

Driffill (1994)], threshold autoregressive (TAR) models [Tsay (1998)], smooth transition

autoregressive (STAR) models [van Dijk et al. (2002)], functional-coefficient autoregressive

models [Harvill and Ray (2006)], and mixture autoregressive models [Fong et al. (2007);

Bec et al. (2008)]. In spite of some obvious difficulties associated with the practical use

of many of these models (e.g., choice of an appropriate threshold variable, number of

regimes, transition function, functional forms), they are potentially very useful for ana-

lyzing state-dependent multivariate relationships. Well-known examples of such relation-

ships, which have been the focus of recent research, are nonlinear money-output Granger

causality patterns [e.g., Rothman et al. (2001); Psaradakis et al. (2005)], nonlinearities in

the term structure of interest rates [e.g., Sola and Driffill (1994); Tsay (1998); De Gooi-

jer and Vidiella-i-Anguera (2004)], and nonlinearities in business-cycle relationships [e.g.,

Altissimo and Violante (2001); Koop and Potter (2006)], inter alia.

One of the major challenges faced in a multivariate framework is how best to capture

the state-dependent behavior that the components of a multiple time series may exhibit, as

well as the potentially changing interrelationships between the variables, in a way which

is both statistically sound and economically meaningful. In many instances, different

states of the economy can be characterized in terms of high and low values of certain
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economic/financial variables (e.g., high/low inflation or high/low growth). The economy

typically behaves differently in these regimes and it is reasonable to expect that the con-

temporaneous and feedback relationships between variables will also be regime specific.

An econometric model will be useful in such cases if it is capable of both identifying the

periods associated with different states of nature and capturing the state-specific interre-

lationships among variables. An MSAR model, for example, which allows for shifts in the

mean or the intercept can capture extreme events associated with the level of the series

but cannot account for state-dependent interrelationships among the variables. The latter

may be accounted for by allowing all the parameters of the MSAR to switch, but this usu-

ally results in identifying as separate regimes periods which do not necessarily correspond

to economically meaningful states of nature (e.g., high/low growth rates). Multivariate

TAR and STAR models typically associate different regimes with small and large values

of the transition variables and are capable of characterizing state-dependent interactions

among the variables.

This paper contributes to the literature on multivariate nonlinear models by proposing

a contemporaneous-threshold multivariate STAR, or C-MSTAR, model. A key characteris-

tic of this model is that the mixing (or regime) weights depend on the ex ante probabilities

that latent regime-specific variables exceed certain (unknown) threshold values [cf. Dueker

et al. (2007)]. What is more, the mixing (or transition) function of the C-MSTAR model

depends on all the parameters of the model as well as on the data. This implies that,

contrary to conventional STAR models, there is no need to choose an appropriate transi-

tion variable using a model selection criterion since, by construction, all the variables that

enter the model’s information set are also present in the transition function. Furthermore,

the dependence of the mixing weights on the regime-specific innovation covariance ma-

trices allows the model to capture contemporaneous regime-specific co-movements of the

variables and to exploit the information in these covariance matrices in order to predict

regimes. These important characteristics make the C-MSTAR model capable of describ-

ing successfully multiple time series with a wide variety of conditional distributions and

of capturing state-dependent interrelationships among the variables of interest.

To convey the flavor of contemporaneous-threshold smooth transition autoregressive

(C-STAR) models, the definition and main characteristics of the univariate model is re-
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called in Section 2. The C-MSTAR model is introduced and discussed in Section 3. We

examine the stability properties of the model and use artificial data to analyze the various

types of conditional distributions that can be generated by a C-MSTAR model. Section 4

discusses estimation and testing, and reports the results of simulation experiments that

assess the finite-sample performance of the maximum likelihood (ML) estimator and of

the related statistics. In Section 5, we investigate the relationship between US stock prices

and interest rates using a C-MSTAR model and evaluate its out-of-sample forecast perfor-

mance. Our empirical results suggest that monetary policy has different effects on stock

prices in different states of the economy and that Granger causality between stock prices

and interest rates is regime dependent. A summary is given in Section 6.

2 Univariate Contemporaneous-Threshold Models

The C-STAR model of Dueker et al. (2007) is a member of the STAR family. A STAR

process may be thought of as a function of two (or more) autoregressive processes which

are averaged, at any given point in time, according to some continuous function G(·)

taking values in [0, 1]. More specifically, a two-regime (conditionally heteroskedastic)

STAR model for the univariate time series {xt} may be formulated as

xt = G(zt−1)x1t + [1−G(zt−1)]x2t, t = 1, 2, . . . , (1)

where zt−1 is a vector of exogenous and/or pre-determined variables and

xit = μi +

pX
j=1

α
(i)
j xt−j + σiut, i = 1, 2. (2)

In (2), p is a positive integer, {ut} are independent and identically distributed (i.i.d.)

random variables such that ut is independent of (x1−p, . . . , x0) and E(ut) = E(u2t −1) = 0,

σ1 and σ2 are positive constants, and μi and α
(i)
j (i = 1, 2; j = 1, . . . , p) are real constants.

The feature that differentiates alternative STARmodels is the choice of the mixing function

G(·) and transition variables zt−1 [cf. Teräsvirta (1998); van Dijk et al. (2002)].

Letting zt−1 = (xt−1, ..., xt−p)0 and αi = (α
(i)
1 , . . . , α

(i)
p )0 (i = 1, 2), the (conditionally)

Gaussian two-regime C-STAR model of order p is obtained by defining the mixing function
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G(·) in (1) as

G(zt−1) =
Φ({x∗ − μ1 −α01zt−1}/σ1)

Φ({x∗ − μ1 −α01zt−1}/σ1) + 1− Φ({x∗ − μ2 −α02zt−1}/σ2)
,

where Φ(·) denotes the standard normal distribution function and x∗ is a threshold para-

meter.1 Notice that

G(zt−1) =
P(x1t < x∗|zt−1;ϑ1)

P(x1t < x∗|zt−1;ϑ1) + P(x2t > x∗|zt−1;ϑ2)

and

1−G(zt−1) =
P(x2t ≥ x∗|zt−1;ϑ1)

P(x1t < x∗|zt−1;ϑ1) + P(x2t ≥ x∗|zt−1;ϑ2)
,

where ϑi = (μi, α
(i)
1 , . . . , α

(i)
p , σ2i )

0 is the vector of parameters associated with regime i.

Hence, (1) may be rewritten as

xt =
P(x1t < x∗|zt−1;ϑ1)x1t + P(x2t ≥ x∗|zt−1;ϑ2)x2t
P(x1t < x∗|zt−1;ϑ1) + P(x2t ≥ x∗|zt−1;ϑ2)

.

Since the values of the mixing function depend on the probability that the contem-

poraneous value of x1t (x2t) is smaller (greater) than the threshold level x∗, the model is

called a contemporaneous-threshold STAR model. As with conventional STAR models, a

C-STAR model may be thought of as a regime-switching model that allows for two regimes

associated with the two latent variables x1t and x2t. Alternatively, a C-STAR model may

be thought of as allowing for a continuum of regimes, each of which is associated with a

different value of G(zt−1).2

1Although conditional Gaussianity is used as a convenient assumption in much of what follows, Φ(·)

can in principle be replaced with another continuous distribution function.
2 It is perhaps worth noting here that the C-STAR model allows for realizations of x1t and x2t such

that x1t ≥ x∗ and x2t < x∗. To illustrate the point numerically, suppose that x1t = −0.5 + 0.6xt−1 + 3ut
and x2t = −0.5 + 0.9xt−1 + 3ut, with ut ∼ N (0, 1); assume further that xt−1 = 5 and x∗ = 10. Then,

the mixing weights are P(x1t < x∗|zt−1) = P(3ut < x∗ + 0.5 − 0.6xt−1|zt−1) = Φ(2.5) = 0.994 and

P(x2t ≥ x∗|zt−1) = P(3ut ≥ y∗+0.5−0.9xt−1|zt−1) = 1−Φ(1.6666667) = 0.0478, so that G(zt−1) = 0.9541.

Hence, conditionally on xt−1 = 5, the C-STAR model assigns a large weight to the regime associated with

x1t, so that most of the area of the regime-specific conditional distribution is below the threshold and very

little of the area associated with the other regime is above the threshold. It is not, therefore, against the

logic of the model to obtain a realization such as x2t < x∗ (which is very likely to happen); the identifying

conditions of the model imply that the weight to the regime associated with x2t is going to be small

whenever it is likely that the realizations of x2t are such that x2t < x∗.
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One of the main purposes of the C-STAR model is to address two somewhat arbitrary

features of conventional STAR models. First, STAR models specify a delay such that the

mixing function for period t consists of a function of xt−j for some j ≥ 1. Second, STAR

models specify which of and in what way the model parameters enter the mixing function.

C-STAR models address these twin issues in an intuitive way: they use a forecasting func-

tion such that the mixing function depends on the ex ante regime-dependent probabilities

that xt will exceed the threshold value(s). Furthermore, the mixing function makes use of

all of the model parameters in a coherent way.

3 Multivariate Contemporaneous-Threshold Models

In this section, we present a C-MSTAR model which is capable of both separating different

regimes in terms of the probability of regime-specific latent variables being greater (or

smaller) than relevant thresholds and allowing the interaction and feedback relationships

between variables to differ between regimes. We begin by defining the model and then

proceed to investigate some of its properties.

3.1 Definition

The C-MSTAR model belongs to the class of multivariate STAR models. An n-variate

(conditionally heteroskedastic) STAR process {yt} with m regimes may be defined as

yt =
mX
i=1

Gi(zt−1)yit, t = 1, 2, . . . , (3)

where Gi(·) (i = 1, . . . ,m) are continuous functions taking values in [0, 1], zt−1 is a vector

of exogenous and/or pre-determined variables, and

yit = μi +

pX
j=1

A
(i)
j yt−j +Σ

1/2
i ut, i = 1, . . . ,m. (4)

In (4), p is a positive integer, {ut} is a sequence of i.i.d. n-dimensional random vectors,

with E(ut) = 0 and E(utu0t) = In (In being the n × n identity matrix), such that ut is

independent of (y1−p, . . . ,y0), μi (i = 1, . . . ,m) are n-dimensional vectors of intercepts,

A
(i)
j (i = 1, . . . ,m; j = 1, . . . , p) are n× n coefficient matrices, and Σi (i = 1, . . . ,m) are

symmetric, positive definite n× n matrices.3

3For a symmetric, positive definite matrix C, C1/2 denotes its symmetric, positive definite square root.
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For simplicity and clarity of exposition, we shall focus hereafter on the bivariate first-

order C-MSTAR model, i.e., the case when n = 2, m = 4, and p = 1. To define this

model, let

yt = (xt, wt)
0, yit = (xit, wit)

0, i = 1, . . . , 4,

y∗1 = (x
∗, w∗)0, y∗2 = (x

∗,−w∗)0, y∗3 = (−x∗, w∗)0, y∗4 = (−x∗,−w∗)0,

where x∗ and w∗ are threshold parameters, and xit and wit (i = 1, . . . , 4) are latent

regime-specific random variables. Then, {yt} is said to follow a (conditionally) Gaussian

first-order C-MSTAR model if it satisfies (3)—(4) with ut ∼ N (0, I2), zt−1 = yt−1, and

Gi(zt−1) = (1/δt)Φ2(Σ
−1/2
i {y∗i −μi −A

(i)
1 yt−1}), i = 1, . . . , 4, (5)

where Φ2(·) denotes the N (0, I2) distribution function and

δt =
4X

i=1

Φ2(Σ
−1/2
i {y∗i −μi −A

(i)
1 yt−1}). (6)

It can be readily seen that

G1(zt−1) = (1/δt)P(x1t < x∗, w1t < w∗|yt−1;θ1),

G2(zt−1) = (1/δt)P(x2t < x∗, w2t ≥ w∗|yt−1;θ2),

G3(zt−1) = (1/δt)P(x3t ≥ x∗, w3t < w∗|yt−1;θ3),

G4(zt−1) = (1/δt)P(x4t ≥ x∗, w4t ≥ w∗|yt−1;θ4),

where θi = (μ0i, vec(A
(i)
1 )

0, vech(Σi)
0)0 is the vector of parameters associated with regime i.

Hence the mixing functions Gi(·) reflect the weighted probabilities that the regime-specific

latent variables xit and wit are above or below the respective thresholds x∗ and w∗.

The first-order model above can be generalized straightforwardly to the case of p ≥ 2

lags. Furthermore, although we do not pursue this modelling strategy here, the number

of lags in (4) may be allowed to differ over i and thus be regime-specific.4 Regarding

the number of regimes m, it should be remembered that m is always determined by the

dimension n of the C-MSTAR model. When n = 2, we have m = 4 by construction since

4 In either case, the number of lags may be selected adaptively by using complexity-penalized likelihood

criteria [see Kapetanios (2001) and Psaradakis and Spagnolo (2006) for related results concerning univariate

nonlinear autoregressive models].
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there are four possible states of nature defined by the regime-specific latent variables and

the thresholds, namely {x1t < x∗, w1t < w∗}, {w2t < w∗, w2t ≥ w∗}, {w3t ≥ w∗, w3t < w∗},

and {w4t ≥ w∗, w4t ≥ w∗}. For a model with n = 3, we havem = 9, and so on.5 Finally, as

in the univariate case, a (conditionally) non-Gaussian model can be obtained by replacing

Φ2(·) in (5)—(6) by the distribution function Ψ(·), say, of another continuous distribution

(having mean vector 0 and covariance matrix I2). The interpretation of the C-MSTAR

model remains the same as long as ut is assumed to be distributed according to Ψ(·).

3.2 Distributional Characteristics

To gain an understanding of the behavior of C-MSTAR time series, we illustrate some prop-

erties of the C-MSTAR model by using artificial data obtained from the data-generating

processes (DGPs) given in Table 1. These DGPs have been chosen to highlight some

relevant features of the model with respect to: (i) the response of the mixing function to

changes in the parameters of the model; and (ii) the empirical distribution of C-MSTAR

data. The errors ut are contemporaneously uncorrelated under DGP-1, while DGP-2 and

DGP-3 allow for positive and negative contemporaneous correlation, respectively.

Figure 1 shows the conditional density functions of the latent regime-specific random

vectors yit (i = 1, . . . , 4) for DGP-1, given yt−1 = (0.4, 0.6)0, along with the threshold y∗1 =

(0.4, 0.6)0 and the values of the mixing functions Gi(yt−1). Each plot shows the relevant

area of the density (suitably rotated) for which each regime is defined. The regime-specific

conditional means are E(y1t|yt−1) = (0.35, 0.57)0, E(y2t|yt−1) = (0.29, 0.6)0, E(y3t|yt−1) =

(0.59, 0.39)0, and E(y4t|yt−1) = (0.43, 0.66)0. It can be seen that the values of the mixing

weights Gi(yt−1) depend on the values of the regime-specific conditional means relative to

5Needless to say, the number of parameters in an C-MSTAR model increases considerably with the

dimension of the model, and hence with the number of regimes (a problem which is, of course, common to

many of the multiple-regime multivariate models mentioned in Section 1). One way of dealing with this

difficulty may be to allow only some of the components of yit in (4) to have regime-specific dynamics. To

give an example, suppose that yt = (xt, wt, rt)
0, where xt is output growth, wt is inflation and rt is the

change in the exchange rate; since periods of high inflation are likely to coincide with periods of devaluation,

one might allow the dynamics of output and of only one of the other two variables to be regime-specific.

An alternative approach may be to consider a two-regime model in which the regimes are defined in terms

of a linear combination of the latent variables being greater (or smaller) than a linear combination of the

thresholds. The former approach has the advantage that the regimes have a clear economic interpretation.
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the threshold. More specifically, the larger the area of the conditional distribution which

lies above the threshold is, the largerGi(yt−1) is. In our example, we haveG1(yt−1) = 0.09,

G2(yt−1) = 0.48, G3(yt−1) = 0.09, and G4(yt−1) = 0.34.

Conditioning on yt−1 = (−1.5,−2)0 yields the density functions shown in Figure 2. The

regime-specific conditional means now are E(y1t|yt−1) = (−1.44,−1.97)0, E(y2t|yt−1) =

(−1.26,−1.97)0, E(y3t|yt−1) = (−1.37,−1.35)0, and E(y4t|yt−1) = (−1.31,−1.59)0. The

mixing functions take the values G1(yt−1) = 0.88, G2(yt−1) = 0.1, G3(yt−1) = 0.02, and

G4(yt−1) = 0. It is not surprising that the regime associated with G1(·) is now the most

prominent regime since the distance of E(y1t|yt−1) from each of the thresholds is about

one standard deviation.

The results for DGP-2 and DGP-3 can be summarized as follows. When we con-

dition on yt−1 = (0.4, 0.6)0, the values of the mixing functions do not change substan-

tially as a result of the change in the shape of the conditional distributions (the rel-

evant plots are omitted to save space). We have G1(yt−1) = 0, G2(yt−1) = 0.52,

G3(yt−1) = 0.11, and G4(yt−1) = 0.36 under DGP-2 (positive contemporaneous correla-

tion), while G1(yt−1) = 0, G2(yt−1) = 0.54, G3(yt−1) = 0.07, and G4(yt−1) = 0.38 under

DGP-3 (negative contemporaneous correlation). Interestingly, the change in the sign of the

correlation coefficient results in marginal changes in the values of the mixing functions; it

is the location of the conditional means relative to the thresholds and the dispersion of

the conditional densities that are of primary importance as far as the mixing weights are

concerned. Similar results are obtained when we condition on yt−1 = (−1.5,−2)0.

3.3 Stability

3.3.1 Probabilistic Properties

In this subsection we examine some probabilistic properties of the C-MSTAR model.

Specifically, we give conditions under which the C-MSTAR model is stable in the sense

of having a Markovian representation which is geometrically ergodic.6 For simplicity and

clarity of exposition, the discussion is once again focused on the Gaussian, bivariate, first-

order C-MSTAR model.
6For a comprehensive account of the stability and convergence theory of Markov chains the interested

reader is referred to Meyn and Tweedie (2009).

10



The stability concept considered here is that of Q-geometric ergodicity of a Markov

chain introduced by Liebscher (2005). To recall the definition of this concept, suppose that

{ξt}t≥0 is a Markov chain on a general state space S with k-step transition probability

kernel P (k)(·, ·) and an invariant distribution π(·), so that P (k)(v, B) = P(ξk ∈ B|ξ0 = v)

and π(B) =
R
S P

(1)(v, B)π(dv) for any Borel set B in S and v ∈ S. Then {ξt} is said

to be Q-geometrically ergodic if there exists a non-negative function Q(·) on S satisfyingR
S Q(v)π(dv) <∞ and positive constants a1, a2 and γ < 1 such that, for all v ∈ S,°°°P (k)(v, ·)− π(·)

°°°
τ
≤ {a1 + a2Q(v)}γk, k = 1, 2, . . . ,

where k·kτ denotes the total variation norm.7

Geometric ergodicity entails that the total variation distance between the probability

measures P (k)(v, ·) and π(·) converges to zero geometrically fast (as k →∞) for all v ∈ S.

It is well known that, if the initial value ξ0 of the Markov chain has distribution π(·),

then geometric ergodicity implies strict stationarity of {ξt}. Furthermore, provided that

ξ0 is such that Q(ξ0) is integrable with respect to π(·), Q-geometric ergodicity implies

that {ξt} is Harris ergodic (i.e., aperiodic, irreducible and positive Harris recurrent), as

well as absolutely regular (or β-mixing) with a geometric mixing rate [see Liebscher (2005,

Proposition 4)]. Such ergodicity and mixing properties are of much importance for the

purposes of statistical inference in dynamic models since they ensure the validity of many

conventional limit theorems [see, e.g., Doukhan (1994)].

To give sufficient conditions for Q-geometric ergodicity of a C-MSTAR process, the

concept of the joint spectral radius of a set of matrices is needed. Suppose that C is a set

of real square matrices and let Ch be the set of all products of length h ≥ 1 of the elements

of C. Then the joint spectral radius of C is defined as

ρ(C) = lim sup
h→∞

Ã
sup
C∈Ch

kCk
!1/h

, (7)

where k·k is an arbitrary matrix norm. We note that the value of ρ(C) is independent

of the choice of matrix norm and that, if the set C trivially consists of a single matrix,

then ρ(C) coincides with the ordinary spectral radius (i.e., the maximal modulus of the
7Note that P (k)(v, ·)− π(·)

τ
= 2 supB P (k)(v, B)− π(B) .
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eigenvalues of the matrix).8

It is easy to see that the first-order C-MSTAR model defined by (3)—(6) belongs to

the family of models studied by Liebscher (2005). By appealing to Theorem 2 and Propo-

sition 5 in that paper, the following proposition is readily established.9 Here and in the

sequel, k·k is used to denote the Euclidean vector norm and its subordinate matrix norm

(i.e., kvk = (v0v)1/2 and kCk = supkvk=1 kCvk, for an n-dimensional vector v and an

n× n matrix C).

Proposition 1 Suppose that, for every compact subset B of R2, there exist positive con-

stants b1 and b2 such that
°°Σ(v)−1°° ≤ b1 and |det{Σ(v)}| ≤ b2 for all v ∈ B, where

Σ(v) =
P4

i=1Gi(v)Σ
1/2
i . If, in addition, the set A = {A(1)1 ,A

(2)
1 ,A

(3)
1 ,A

(4)
1 } is such that

ρ(A) < 1, then the first-order C-MSTAR process {yt} is a Q-geometrically ergodic Markov

chain with Q(v) = kvk.

It follows from our earlier discussion that ρ(A) < 1 guarantees the existence of a

unique invariant distribution for {yt} with respect to which E(kytk) < ∞; furthermore,

if {yt} is initialized from this invariant distribution, then it is strictly stationary, as well

as absolutely regular and hence ergodic (in the sense of ergodic theory). We also note

that the conclusion of Proposition 1 remains true for a non-Gaussian C-MSTAR model in

which the distribution of the noise ut admits a positive Lebesgue density on R2.

Finally, it worth pointing out that Liebscher’s (2005) approach, which we have fol-

lowed here, delivers conditions for geometric ergodicity which can sometimes be weaker

than alternative sufficient conditions [cf. Liebscher (2005, p. 682)]. A practical difficulty,

however, is that exact or approximate computation of the joint spectral radius of a set of

matrices is not an easy task, not even in the simplest non-trivial case of a two-element

set [see, e.g., Tsitsiklis and Blondel (1997)].10 One possibility is to use the algorithm

presented in Gripenberg (1996) to obtain an arbitrarily small interval within which the

8Also note that the norm of C in the definition of ρ(C) in (7) may be replaced by the spectral radius of

C as long as C is a finite or bounded set.
9 It can be easily seen that that, under the conditions of Proposition 1 below, the nonlinear functions

that specify the conditional mean and conditional variance of yt, given yt−1, satisfy the assumptions in

Section 4 of Liebscher (2005).
10The problem of determining whether ρ(A) < 1 is, in fact, known to be NP-hard, that is it cannot be

solved in a number of steps which is a polynomial function of the size of A. It should also be remembered
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joint spectral radius of A lies. An alternative approach, which may also provide useful

information about the model in cases where the condition of Proposition 1 is not fulfilled,

is to use simulation methods to investigate the properties of the skeleton of the C-MSTAR

model. We turn our attention to this topic next.

3.3.2 Skeleton of the Model

As shown by Chan and Tong (1985), the stability properties of a nonlinear dynamic model

may be analyzed by considering the noiseless part, or skeleton, of the model alone [see also

Tong (1990)]. The skeleton of the bivariate first-order C-MSTAR model is the dynamic

system

yt = f(yt−1,θ), (8)

where

f(yt−1,θ) =
4X

i=1

Gi(yt−1)(μi +A
(i)
1 yt−1) (9)

and θ denotes the vector of all the parameters of the model. A fixed point of the skeleton

is any two-dimensional vector ye satisfying the equation

f(ye,θ) = ye, (10)

and ye is said to be an equilibrium point of the C-MSTAR model. Since the model is

nonlinear, there may, of course, exist one, several or no equilibrium points satisfying (10).

By a first-order Taylor expansion of f(yt−1,θ) about the point ye, we have

yt − ye = f(yt−1,θ)− f(ye,θ) ≈ D(ye)0(yt−1 − ye), (11)

where

D(ye) =
∂f(yt−1,θ)

∂yt−1

¯̄̄̄
yt−1=ye

. (12)

Thus, an examination of the local stability of each equilibrium point ye may be carried

out by considering the spectrum of D(ye). More specifically, if the spectral radius of

D(ye) is less than unity, then the equilibrium is locally stable and yt is a contraction in

a neighborhood of ye.

that the condition that each of the matrices in A has spectral radius less than unity is necessary but not

sufficient for ρ(A) < 1. A summary of some of the methods available for computing or approximating the

joint spectral radius of a set of matrices can be found in Jungers (2009).
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It can be readily verified that

∂f(yt−1,θ)

∂yt−1
=

4X
i=1

½
∂Gi(yt−1)

∂yt−1
(μi +A

(i)
1 yt−1)

0 +Gi(yt−1)(A
(i)
1 )

0
¾

(13)

and

∂Gi(yt−1)

∂yt−1
=
1

δ2t

(
−δt(Σ−1/2i A

(i)
1 )

0∇Φ2(vi) + Φ2(vi)
4X

i=1

(Σ
−1/2
i A

(i)
1 )

0∇Φ2(vi)
)
, (14)

where vi = Σ
−1/2
i (y∗i −μi−A

(i)
1 yt−1) and ∇Φ2(vi) is the gradient vector of Φ2(·) at vi.11

3.3.3 Numerical Examples

A wide variety of empirical distributions and time series can be generated by an C-MSTAR

model. In Figure 3 we show, using the DGP-1 presented in Table 1, typical data generated

according to a first-order C-MSTAR model, the corresponding mixing functions Gi(yt−1),

and the skeleton yt.
12

When the covariance matrix of the noise is diagonal (DGP-1), the data appear to

take values which correspond to all the regimes. When, on the other hand, there is

positive contemporaneous correlation (DGP-2), the generated data assume values which

are mostly associated with regimes 1 and 4 (corresponding to G1(·) and G4(·)), while

regimes 2 and 3 (associated with G2(·) and G3(·)) appear to dominate in the presence of

negative contemporaneous correlation (DGP-3).

In all three cases, the skeleton converges to its fixed point very quickly. Using numerical

simulations, we found the fixed point ye to be unique for each DGP, taking the value

(0.0251, 0.2309)0, (0.0539, 0.3828)0 and (−0.1052,−0.0451)0 for DGP-1, DGP-2 and DGP-

3, respectively. To assess the stability of these fixed points, we compute the spectral radius

of the matrix of partial derivatives given in (12) using the expansion in (13)—(14). The

spectral radius of D(ye) is 0.8357, 0.8320 and 0.8296 under DGP-1, DGP-2 and DGP-3,

respectively, suggesting that the equilibrium points are locally stable. Furthermore, the

11Notice that, since Φ2(vi) = Φ (v1i)Φ (v2i) for any vi = (v1i, v2i)0 ∈ R2, ∇Φ2(vi) may be computed as

∇Φ2 (vi) = (φ (v1i)Φ (v2i) ,Φ (v1i)φ (v2i))0, where φ(·) is the standard normal density function.
12The corresponding plots for DGP-2 and DGP-3 (computed using the same realizations of shocks as

for DGP-1) are omitted in order to save space.
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Q-geometric ergodicity condition of Proposition 1 is also satisfied for these DGPs: an

application of the algorithm in Gripenberg (1996) yields 0.9366025 < ρ(A) < 0.9366125.13

4 Estimation and Testing

4.1 ML Parameter Estimation

As in the univariate case, once the distribution of the noise ut is specified, the parameters

of the C-MSTAR model can be estimated by the ML method. Letting Ψ(·) denote the

distribution function of ut, we assume that Ψ(·) admits a positive Lebesgue density ψ(·).

Then, for a sample (y0,y1, . . . ,yT ) of consecutive observations from the bivariate first-

order model characterized by the parameter vector θ = (θ01,θ
0
2,θ

0
3,θ

0
4, x

∗, w∗)0 ∈ Θ ⊂

Rdim(θ), we define the log-likelihood function (conditional on y0) as

LT (θ) =
TX
t=1

ln ct(θ),

where

ct(θ) =
4X

i=1

Gi(yt−1) det(Σ
−1/2
i )ψ(Σ

−1/2
i {yt − μi −A

(i)
1 yt−1}),

and the mixing weights Gi(yt−1) are given by (5)—(6) with Ψ(·) used in the place of Φ2(·).

If ct(θ) is sufficiently smooth with respect to θ and satisfies suitable stationarity, ergod-

icity and moment conditions, then standard asymptotic results hold for the ML estimatorbθ of θ, obtained as the maximizer of (1/T )LT (θ) over Θ. More specifically, bθ is strongly
consistent for the (unknown) true value θ0 of the parameter θ and {−∇2LT (bθ)}1/2(bθ−θ0)
is asymptotically normal with mean vector 0 and covariance matrix I2, where ∇2LT (bθ) is
the Hessian matrix of LT (θ) evaluated at θ = bθ. Sufficient conditions which ensure the
validity of these asymptotic results are given in Appendix A.1, along with their proof.

4.2 Finite-Sample Properties of ML

To throw some light on the sampling properties of the ML estimator of the parameters

of a C-MSTAR model, we now conduct an extensive simulation study. The DGP used

13The algorithm is implemented using Gustaf Gripenberg’s MATLAB code, which is available at

http://math.tkk.fi/~ggripenb/ggsoftwa.htm.
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in the experiments is the bivariate first-order C-MSTAR model with Gaussian errors and

several parameter configurations. In order to save space, we only report results for the

three parameter configurations listed in Table 1.14

Experiments proceed by first generating 50+T data points for yt, with T = 100, 200,

400, 800, 1000, and initial values set to zero; the first 50 data points are then discarded

in order to eliminate start-up effects, while the remaining T points are used to estimate

the parameters of the model. The ML estimate bθ is obtained by means of a quasi-Newton
algorithm that approximates the Hessian according to the Broyden—Fletcher—Goldfarb—

Shanno update computed from numerical derivatives. Approximate standard errors for the

elements of bθ are obtained from the inverted negative Hessian matrix of the log-likelihood
function evaluated at the ML estimates. Since the computation of ML estimates is time

consuming (given the large number of parameters), the number of Monte Carlo replications

per experiment is 2,000.

In Tables 2—4, we report some of the characteristics of the finite-sample distributions

of each of the elements of bθ.15 These include the bias of the ML estimator, a measure

of the accuracy of estimated standard errors as approximations to the sampling standard

deviation of the ML estimator, and a test for the normality of the sampling distribution

of the ML estimator.

For most parameters the bias is significantly different from zero only when T = 200.

The size of the bias depends somewhat on the DGP. For example, while large samples

are needed to reduce the bias of bμ3 (DGP-1 and DGP-2) and bμ4 (DGP-3), we find that
the bias of the elements of bA(1)1 (DGP-1) and bA(2)1 (DGP-2 and DGP-3) approaches zero

even for relatively small sample sizes. Overall the results show that the ML estimator is

slightly biased only for the smallest sample size under consideration, and the bias clearly

decreases as the sample increases, becoming negligible in most cases when T = 800.

As a measure of the accuracy of estimated asymptotic standard errors, the ratio of the

exact standard deviation of the ML estimates to the estimated standard errors averaged

across replications for each design point is shown (in parentheses) in Tables 2—4. For most

parameters, the estimated asymptotic standard errors are downward biased. These biases

14The full set of results is available upon request.
15 In order to save space, only results for T = 200 and T = 800 are reported here.
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are not, however, substantial (even when T = 200) and should not have significant adverse

effects on inference.

Finally, the Gaussianity of the finite-sample distributions of the ML estimates is as-

sessed by means of a Kolmogorov—Smirnov goodness-of-fit test based on the difference

between the empirical distribution function of the ML estimates (relocated and scaled so

that the linearly transformed estimates have zero mean and unit variance) and the stan-

dard normal distribution function [see Lilliefors (1967)]. As can be seen in Tables 2—4, the

normality hypothesis for estimators other than bμ3 and bμ4 (DGP-1and DGP-3) and bx∗
(DGP-2) cannot be rejected (at the 5% level) for sample sizes larger than 200. Further-

more, we find that the values of the Kolmogorov—Smirnov statistic decrease as T increases,

suggesting that the quality of the normal approximation is likely to improve with increas-

ing sample sizes. In fact, while normality is rejected a few times when T = 200, it is never

rejected when T = 800.

4.3 Testing for Nonlinearity

Although a linear specification is nested within the C-MSTAR model, testing the former

against the latter by means of conventional Wald, likelihood ratio or score tests is not

straightforward because the threshold parameters (x∗ and w∗ in the bivariate case) are

not identified under linearity. It is well known that in problems of this type the asymptotic

distributions of conventional test statistics typically depend on unknown parameters and

are non-standard. As in Dueker et al. (2007), one may, in principle, adapt Hansen’s (1992)

procedure to obtain asymptotic P -values for a suitably modified likelihood ratio statis-

tic. However, the computational demands of this procedure are rather prohibitive in our

multivariate setting because ML parameter estimation for each point of a grid involving

a large number of parameters is required (dim(θ) = 38 when n = 2).

As an alternative, we will investigate here an approach based on a general portmanteau-

type test that is designed to detect nonlinearity of an unspecified type in a multivari-

ate time series. The test in question was proposed by Harvill and Ray (1999) and is

a multivariate extension of Tsay’s (1986) nonlinearity test. To describe the test pro-

cedure, let {et} be the least-squares residuals from a pth-order vector autoregressive

(VAR) model for {yt} and {e∗t } be the least-squares residuals from the regression of

17



the {np(np + 1)/2}-dimensional vector q∗t = vech(qt ⊗ q0t) on the (np)-dimensional vec-

tor qt = (y0t−1, . . . ,y
0
t−p)

0, where ⊗ is the Kronecker product operator. Further, let S1
and S2 be the n × n matrices of residual sum of squares and regression sum of squares,

respectively, in the least-squares regression of et on e∗t . Then, for a sample of size T , the

Harvill—Ray test statistic is given by

< =
µ
bd− nc+ 1

nc

¶Ã
1− ω1/2

ω1/2

!
,

where c = np(np+1)/2, b = T−p−c−np−(n−c+1)/2, d = {(n2c2−4)/(n2+c2−5)}1/2,

and ω = det(S1)/det(S1+S2). Under the null hypothesis that {yt} follows a (zero-mean)

linear pth-order VAR model, < has asymptotically a central F -distribution with nc and

bd− (nc/2) + 1 degrees of freedom.

To examine whether a test based on < has power to detect nonlinearity of the C-

MSTAR type, we carry out some Monte Carlo experiments. Table 5 shows the empirical

rejection frequencies of the tests for C-MSTAR time series generated according to the

three DGPs in Table 1. It is clear that, even for time series of relatively short length, the

test based on < has significant power to reject a linear first-order VAR specification when

the data come form a C-MSTAR model.

It should be emphasized, however, that the results of a test based on < should be

interpreted with caution in an empirical setting since the test is not designed against a

C-MSTAR, or any other specific nonlinear alternative model, and can be expected to have

non-trivial power against a wide range of nonlinear mechanisms. However, since the test

appears to be powerful enough to detect nonlinearity of the C-MSTAR type, it should

be useful as part of a modelling strategy which seeks to establish the usefulness of a C-

MSTAR model by first checking a simpler linear VAR model for signs of misspecification.

Of course, once the linear and C-MSTAR are estimated, they can be compared by using

a complexity-penalized likelihood criterion such as the well-known Akaike information

criterion (AIC) or one of its many variants. Such criteria have been shown to be useful

when selecting among competing multiple-regime models [see Psaradakis et al. (2009)].
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5 Empirical Application

As an illustration, we analyze the low-frequency relationship between stock prices and

interest rates. The interactions between asset prices and monetary policy is a topic which

has attracted considerable interest in the literature [see, e.g., Bernanke and Gertler (1999,

2001) and Cecchetti et al. (2000)]. Using a C-MSTAR model, we examine the possibly

different effects that monetary policy may have on stock prices in different states of the

economy. An interest rate shock may, for example, have very different effects on stock

markets depending on whether the price-earnings ratio is (perceived to be) high or low.

Our approach explicitly allows for four different regimes, which are associated with: (i) low

price-earning ratio, low interest rates; (ii) low price-earning ratio, high interest rates;

(iii) high price-earning ratio, low interest rates; and (iv) high price-earning ratio, high

interest rates.

5.1 A C-MSTAR Model for Stock Prices and Interest Rates

Let St and Rt denote the ratio of stock prices to earnings per share and the nominal

interest rate, respectively. Further, let st = St−μs and rt = Rt−μr denote the deviation

of the two variables from their respective means. Putting yt = (st, rt)
0, our analysis is

based on the C-MSTAR model

yt =
4X

i=1

Gi(yt−1)yit, (15)

where yit = (sit, rit)0 are latent regime-specific random vectors satisfying

yit = μi +A
(i)
1 yt−1 +Σ

1/2
i ut, i = 1, . . . , 4. (16)

In (15)—(16),

G1(yt−1) = (1/δt)P(s1t < s∗, r1t < r∗|yt−1;θ1),

G2(yt−1) = (1/δt)P(s2t < s∗, r2t ≥ r∗|yt−1;θ2), (17)

G3(yt−1) = (1/δt)P(s3t ≥ s∗, r3t < r∗|yt−1;θ3),

G4(yt−1) = (1/δt)P(s4t ≥ s∗, r4t ≥ r∗|yt−1;θ4),
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δt = P(s1t < s∗, r1t < r∗|yt−1;θ1) + P(s2t < s∗, r2t ≥ r∗|yt−1;θ2)

+P(s3t ≥ s∗, r3t < r∗|yt−1;θ3) + P(s4t ≥ s∗, r4t ≥ r∗|yt−1;θ4), (18)

{ut} ∼ i.i.d. N (0, I2), (19)

and θi = (μ0i, vec(A
(i)
1 )

0, vech(Σi)
0)0.

We use Robert Shiller’s well-known data set of annual observations, from 1900 to 2000,

on the Standard and Poor’s 500 composite stock price index to earnings per share (St) and

the three-month Treasury Bill rate (Rt).16 It is clear from Figure 4 that, for long periods

of time, both series take values well above their sample means (which are bμs = 13.731

and bμr = 4.809). It is also clear that both time series tend to remain above or below the
respective sample mean for relatively long periods.17 It is reasonable to expect that the

economy behaved differently in the 1970’s and 1980’s, when interest rates were relatively

high and the price-earnings ratio was relatively low, and in periods such as the 1930’s and

late 1990’s, when the price-earnings ratio was relatively high. When considering linear

VAR models for (st, rt), the AIC selects a first-order model. However, such a model is

firmly rejected by the nonlinearity test discussed in Section 4.3: the value of < is 7.44689,

which has a zero asymptotic P -value.

Since we use annual data, we expect that the nonlinear dynamics of stock price and

interest rate will be adequately captured by a first-order model such as the one in (15)—(19).

ML estimates of the parameters of the C-MSTAR model and their asymptotic standard

errors are reported in Table 6. The standardized residuals of the model exhibit no signs

of serial correlation on the basis of conventional Ljung—Box portmanteau tests.

The estimated threshold parameters reported in the last row of Table 6 are bs∗ = 3.40317
and br∗ = −0.07214. Adding to these values the corresponding sample means bμs and bμr, we
see that the estimated thresholds for the price-earnings ratio and interest rate are 17.1343

and 4.73695 , respectively.

The bottom four panels of Figure 4 plot the estimated mixing functions, for each

point in sample, which specify the weight of regime 1 (associated with G1(·)), regime 2
16The date is available at http://www.econ.yale.edu/~shiller/data/chapt26.xls.
17The hypothesis that St and Rt are random walks (with drift) is rejected in favor of a stationary

STAR alternative using Eklund’s (2003) test statistic, which takes the value 6.38 and 2.68 for St and Rt,

respectively.

20



(associated with G2(·)), regime 3 (associated with G3(·)), and regime 4 (associated with

G4(·)). It is seen that the most prominent regime is the one characterized by a low price-

earnings ratio and low interest rates (regime 1). This regime lasts from mid 1930’s to

the end of the 1960’s. Much of the 1970’s and 1980’s appear to be associated with a

regime with low price-earnings ratio and high interest rates (regime 2), a regime which

also seems to characterize a few years in the beginning of the 1900’s through 1930. The

regime associated with high price-earnings ratio and low interest rates (regime 3) never

lasts more than six years and is prevalent in only a few years during the 1930’s, 1960’s

and 1990’s. Finally, the regime associated with high price-earnings ratio and high interest

rates (regime 4) seems to dominate for only short periods of time towards the end of the

1960’s and the early 1990’s.

Regarding the stability properties of the empirical model, we note that the ML esti-

mates reported in Table 6 do not satisfy the condition of Proposition 1; specifically, we

have 1.25346 < ρ( bA) < 1.27997, where bA = {bA(1)1 , bA(2)1 , bA(3)1 , bA(4)1 }. It should be remem-
bered, however, that a joint spectral radius less than unity is not necessary for Q-geometric

ergodicity and is clearly a rather stringent condition.

To investigate further the stability characteristics of the empirical model, we examine

the properties of its skeleton. Using numerical simulation and a grid of starting values,

it is found that the skeleton of the empirical model in Table 6 has a unique fixed point

ye = (0.478,−0.059)0 and that the matrix of partial derivatives D(ye) in (12) has spectral

radius 0.801. This suggests that the model is locally stable. Furthermore, plots of the

skeleton (not shown here) reveal that, for both the price-earning ratio and the interest

rate, the skeleton converges very quickly to the respective long-run value, which provides

further evidence of stability.

5.2 Regime-Specific Granger Causality

In the majority of applications, Granger causality has been analyzed in the context of

linear VAR models for a set of variables of interest. A standard auxiliary assumption

typically made is that the parameters of the VAR are constant over the sample period

under consideration. This corresponds to an assumption that the causal links are stable

over time, an assumption which is far from innocuous and may often not hold in practice
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[see, e.g., Psaradakis et al. (2005)].

The potential non-constancy of causality patterns poses significant econometric prob-

lems. Although there may be many good reasons for time-dependence of causality patterns

(changes in operating procedures and other aspects of monetary policy, large shocks to

the economy, etc.), standard econometric techniques are not well-equipped to handle such

situations, unless researchers have strong a priori indications of when and why the links

between the variables of interest change. Furthermore, since there is no direct relation-

ship between causality in an economic sense (one variable being responsible for changes

in another variable) and Granger causality (one variable having predictive content for

another), the information that is useful in terms of understanding changes in causality

in an economic sense may not be useful, or sufficient, for guiding one’s choice of sample

points at which Granger causality changes. Finally, causality results obtained under the

assumption of a constant-parameter linear model are likely to be biased in the presence

Granger-casual links which are regime dependent.

To illustrate this point, we begin our analysis using a first-order VAR model, the

estimated parameters of which are reported in Table 7. Clearly, none of the two variables

appears to be Granger causal for the other. This result is very surprising since, not only

do the two variables reflect alternative investing opportunities, but the interest rate is

usually thought of as a policy variable that might be used to correct misalignments in

stock prices. The lack of Granger causality in our system may well be a consequence of

the issues described above.

Another potential difficulty is that causality tests based on VAR models may have low

power in the presence of nonlinearities in the data. For this reason, we also carry out the

nonparametric test for Granger non-causality proposed by Diks and Panchenko (2006).

The test is implemented with one lag and bandwidth set equal to max{8.62/T 2/7, 1.5} =

2.3059.18 The test statistic for the null hypothesis that the price-earning ratio is Granger

non-causal for the interest rate takes the value 0.195, which has asymptotic P -value 0.4226;

the statistic for testing the null hypothesis that the interest rate is Granger non-causal for

the price-earning ratio takes the value 1.1095, which has asymptotic P -value 0.0866.

18For details on the definition of the test statistic and the choice of bandwidth the reader is referred to

Diks and Panchenko (2006).
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Of course, neither the causality test based on the VAR nor the nonparametric test

can provide information about the potential regime-specific nature of Granger causality

in our bivariate system. To investigate this issue we adopt a slightly different approach

to that of Psaradakis et al. (2005) and, instead of inquiring how causality patters change

over time, we examine whether the two variables are useful for predicting each other

in different economic regimes. Using the C-MSTAR model in Table 6, it can be seen

that the off-diagonal elements of A(i)1 vary significantly across regimes. Specifically, the

interest rate Granger causes the price-earning ratio in regime 3. One may speculate that

in regime 3 the stock price boom of the 1960’s is associated with a long period of relatively

low interest rates; the causality in regime 1 reflects the fact that stocks and bonds are

substitute assets and that low interest rates may help to forecast high future stock prices.

The price-earnings ratio Granger causes the interest rates in regimes 2, 3 and 4. This result

may reflect the fact that the central bank reacts to the price-earning ratio by changing

the interest rate when it is thought that a misalignment correction is needed. In regime

2, a low price-earnings ratio leads to a reduction in interest rates (from a high interest

rate regime). In regime 3, a high price-earnings ratio leads to an increase in interest rates

(from a low interest rate regime). Finally, in regime 4 a high price-earnings ratio leads to

a reduction of the interest rate (from a high interest rate regime). Notice that regime 4

is followed by regime 2; for example, the period of high price-earnings ratio and interest

rates of the 1920’s is followed by a crash in the stock markets.19

5.3 An Alternative Nonlinear Model

In this sub-section, we compare the C-MSTAR with a closely related nonlinear model

which may be capable of accounting for the regime-specific characteristics of the data,

namely a logistic multivariate STAR model (LMSTAR), and discuss briefly some other

types of nonlinear models that one might use.

The LMSTAR model is specified as in (15)—(16), with the mixing functions Gi(·) given
19Even though there is no reason, in general, for regime 4 to be short lived (as this is not an intrinsic

property of the model), we expect this to be the case for our data set because a high enough interest rate

tends to cool down the stock market.
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by

Gi (yt−1) =
Λi(yt−1)P4
i=1Λi(yt−1)

, i = 1, . . . , 4, (20)

where

Λ1(yt−1) = L(st−1;λs, s
∗)L(rt−1;λr, r

∗),

Λ2(yt−1) = L(st−1;λs, s
∗) [1− L(rt−1;λr, r

∗)] , (21)

Λ3(yt−1) = [1− L(st−1;λs, s
∗)]L(rt−1;λr, r

∗),

Λ4(yt−1) = [1− L(st−1;λs, s
∗)] [1− L(rt−1;λr, r

∗)] ,

and L(·; ·, ·) is the logistic function

L(x;λ, x∗) =
1

1 + exp{λ(x− x∗)} , x ∈ R, λ > 0. (22)

The parameter λ determines the speed of transition between the two regimes associated

with the limiting values of L(x;λ, x∗) (as x → ±∞), while x∗can be interpreted as a

threshold parameter.20 It is easy to see that Gi (yt−1) = Λi(yt−1), i = 1, . . . , 4.

ML estimates of the parameters of the LMSTAR model are reported in Table 8. The

standardized residuals of the model exhibit no signs of serial correlation. The estimated

threshold parameters are bs∗ = 0.61643 and br∗ = 2.58431; adding these to the correspond-
ing sample means bμs and bμr, we see that the estimated thresholds for the price-earnings
ratio and interest rates are 14.3475 and 7.39341, respectively. It is also clear that the

off-diagonal elements of A(i)1 vary significantly across regimes. In particular, the interest

rate is Granger-causal for the price-earnings ratio only in regime 1 (when the probability

of the latent variable r1t being below the relevant threshold is high). The price-earnings

ratio Granger causes interest rates only in regime 4 (when the probability of r4t and

s4t being above their respective thresholds is high). We also note that the separation

of regimes shown in Figure 5 is similar to that implied by the C-MSTAR model. Fi-

nally, we see that the C-MSTAR model is the preferred specification according to the

20The LMSTAR model is the closest model to the C-MSTAR in the sense that we can define the same

four regimes in both models. The main differences between the two models concern the information that is

included in the mixing function, and are extensively discussed in Dueker et al. (2007). To these differences

we should add the presence of regime-specific covariance matrices in the mixing weights of the C-MSTAR

model.
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three complexity-penalized goodness-of-fit measures reported here, namely the AIC, the

Bayesian information criterion (BIC) and the Hannan—Quinn (HQ) criterion.

Regarding the stability of the fitted LMSTAR model, the set of estimated coefficient

matrices has a joint spectral radius that exceeds unity (1.1968250 < ρ( bA) < 1.1970068).

However, numerical analysis of the skeleton of the LMSTAR model reveals that it has

a single fixed point ye = (0.124, 0.001)0 which is locally stable; the matrix of partial

derivatives in (11) associated with the skeleton of the LMSTAR model (see Appendix A.2)

has spectral radius 0.842.

Another nonlinear model that might be considered is the autoregressive conditional

root (ACR) model of Bec et al. (2008). Despite some apparent similarities, the ACR

and C-MSTAR models have different dynamic interpretations and are designed to capture

different characteristics of the data, something which makes empirical comparisons rather

problematic in our empirical setting. The ACR is primarily designed to capture dynamics

which switch between seemingly stationary and nonstationary behavior. The ACR model

is defined as a mixture of a finite number of vector autoregressions, only one of which is

operative at each observation; the switching between these autoregressions is determined

by a random variable the transition probabilities of which are a nonlinear function of the

lagged endogenous variables. A common feature of the ACR and C-MSTAR models is that

the probability of transitions between regimes is a function of lagged variables. The regimes

are, however, defined in entirely different ways in the two models and regime separation

will be quite different in practice (for example, extreme values of lagged variables of either

sign will be associated with the same regime in the ACR, while this is not the case in the

C-MSTAR).21 The two classes of models are clearly best suited to different applications.

Finally, we note that we also considered a four-state bivariate MSAR model in which

the unconditional means of the two series were allowed to be either high or low in each of

the regimes. The MSAR model was found to be outperformed by the M-CSTAR, both in

terms of in-sample goodness of fit and out-of-sample predictive ability.

21This issue is of relevance in our setting because the de-meaned variables st and rt take both positive

and negative values in the sample.
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5.4 Forecast Accuracy

In this sub-section, we evaluate the accuracy of out-of-sample forecasts from the VAR,

C-MSTAR and LMSTAR models. The comparisons are based on a series of recursive

forecasts computed in the following way. Each of the three models is fitted to the bivariate

time series {yt = (st, rt)
0}T−Nt=1 , where T = 101 is the number of observations in the full

sample and N = 25 is the number of forecasts (the forecast period is 1976—2000). Using

T − N as the forecast origin, a sequence of one-step-ahead forecasts are generated from

each of the fitted models. The forecast origin is then rolled forward one period to T−N+1,

the parameters of the forecast models are re-estimated, and another sequence of one-step-

ahead forecasts is generated. The procedure is repeated until N forecasts are obtained,

which are then used to compute measures of forecast accuracy. Note that the one-step-

ahead forecasts for the C-MSTAR and LMSTAR models are relatively straightforward to

compute as both models involve a weighted average of the two linear relationships.

The forecast performance of the different models is evaluated using traditional accuracy

measures such as mean square percentage error (MSPE), mean absolute percentage error

(MAPE), and root mean square percentage error (RMSPE). In addition, the ability of the

models to correctly identify turning points (i.e., the direction of change in the variable of

interest regardless of the accuracy with which the magnitude of the change is predicted)

is evaluated using the so-called confusion rate (CR), which is computed as the percentage

of times the direction of change is wrongly predicted.

From the results reported in Table 9, it is clear that the C-MSTAR model yields the

smallest MSPE, MAPE and RMSPE for the price-earnings ratio, while the VAR outper-

forms the competing models in forecasting the interest rate. Turning to the outcomes for

the bivariate system (sum of the individual results), the C-MSTAR evidently outperforms

the competing models. In particular, the gain of using the C-MSTAR over the VAR model

is 2% in terms of both MSPE and MAPE, and 1% in terms of the RMSPE. The mar-

ginal gain of the C-MSTAR over the LMSTAR is 31% when using the RMSPE, 71% with

MAPE and over 300% with MSPE. Interestingly, but not entirely surprisingly, a compari-

son between the models on the basis of confusion rates shows that the C-MSTAR produces

better results for both series. In fact, the C-MSTAR wrongly predicts the direction of the

change in the price-earnings ratio only 25% of time, with the corresponding figure for the
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alternative nonlinear (linear) model being 58% (29%). Turning to the interest rate, it is

interesting to note that while the C-MSTAR wrongly predicts the direction of change one

third of the time, the LMSTAR does much worse predicting the wrong direction of change

75% of the time.

To assess which model is more successful over time (that is, which model outperforms

the alternatives most of the time as opposed to being more successful on average), we

compute the number of times each model achieves the smallest MAPE over the 25 forecast

points. On the basis of the individual series, we find that C-MSTAR outperforms the

alternative specifications 76% of the time when forecasting the price-earnings ratio and

60% of the time when forecasting the interest rates.

To summarize, the results presented in this section illustrate the importance of captur-

ing the regime-specific properties of the data in order to understand the complex interrela-

tionships between economic variables. Not accounting for such regime-specific character-

istics may lead to results which, like those obtained from a linear VAR, may appear to be

counterintuitive. The C-MSTAR model characterizes adequately the dynamics of interest

rates and stock prices, yields economically meaningful results, and has good out-of-sample

forecast performance.22

6 Summary

In this paper we have introduced a new class of contemporaneous-threshold multivariate

STAR models in which the mixing weights are determined by the probability that con-

temporaneous latent variables exceed certain threshold values. We have discussed issues

related to the stability of the model, estimation and testing. We have also illustrated

the practical use of the proposed model by analyzing the bivariate relationship between

US stock prices and interest rates. We have found that the proposed model is capable of

outperforming some competing linear and nonlinear models, especially in terms of out-

of-sample forecast performance, and that the regime-specific Granger causality patterns

between the two variables typically differ from those obtained from a linear model in a

22The forecast results are particularly noteworthy because one of the major weaknesses of many nonlinear

models is their relatively poor out-of-sample performance [see also Dueker et al. (2007)].
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way which is economically meaningful.

A Appendix

A.1 Asymptotic Properties of the ML Estimator

Sufficient conditions which ensure the strong consistency and asymptotic normality of

the ML estimator of θ mentioned in Section 4.1 are given below. Here, we write ∇f(θ̄)

and ∇2f(θ̄) for the gradient vector and Hessian matrix, respectively, of a scalar-valued

function θ 7→ f(θ) at θ̄, and use k·k2 to denote the Frobenius matrix norm (i.e., kCk2 =

{tr(C0C)}1/2).

(C.1) For each θ ∈ Θ, {yt} is strictly stationary and ergodic.

(C.2) Ψ(·) and ψ(·) are twice continuously differentiable.

(C.3) θ0 is an interior point of the compact and convex parameter space Θ.

(C.4) P[ct(θ)− ct(θ0) 6= 0] > 0 for all θ ∈ Θ\{θ0}.

(C.5) E (supθ∈Θ |ln ct(θ)|) <∞.

(C.6) E
³
supθ∈B(θ0)

°°∇2 ln ct(θ)°°2´ <∞ for some open neighborhood B(θ0) of θ0.

(C.7) E
³
supθ∈B(θ0)

°°∇2ct(θ)°°2´ <∞.

(C.8) E
³
k∇ ln ct(θ0)k2

´
<∞.

(C.9) Ω(θ0) = −E[∇2 ln ct(θ0)] is nonsingular.

These are fairly standard regularity conditions for ML estimation. We note that for

(C.1) to hold it is sufficient that the conditions of Proposition 1 are satisfied and {yt} is

initialized from its invariant distribution.

We have the following result for the ML estimator bθ = argmaxθ∈Θ (1/T )LT (θ).

Proposition 2 If conditions (C.1)—(C.5) are satisfied, then bθ is strongly consistent for
θ0. If, in addition, conditions (C.6)—(C.9) are satisfied, then

√
T (bθ−θ0) is asymptotically

normal with mean vector 0 and covariance matrix Ω(θ0)−1.
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Proof. It is easy to see that LT (θ) is a measurable function of the data for each fixed

θ ∈ Θ and almost surely continuous in θ. Moreover, since the sequence {ln ct(θ)} is

strictly stationary and ergodic under (C.1)—(C.2), it follows from (C.5) and the uniform

strong law of large numbers in Theorem 2.7 of Straumann and Mikosch (2006) that

lim
T→∞

sup
θ∈Θ

¯̄̄̄
¯ 1T

TX
t=1

ln ct(θ)− E[ln ct(θ)]
¯̄̄̄
¯ = 0 almost surely.

Thus, using the compactness of Θ, along with the fact that E[ln ct(θ)] attains a unique

maximum at θ = θ0 under conditions (C.3)—(C.5), we conclude by a standard argument

[cf. Amemiya (1973, Lemma 3)] that limT→∞ bθ = θ0 almost surely.

Turning to the root-T asymptotic normality of bθ, we note that LT (θ) is almost surely
twice continuously differentiable in θ and

PT
t=1∇ ln ct(bθ) = 0 for all T sufficiently large

because bθ is strongly consistent for θ0 and θ0 is interior to Θ. Hence, by a mean-value
expansion of

PT
t=1∇ ln ct(bθ) about θ0, we have

0 =
1√
T

TX
t=1

∇ ln ct(θ0) +
Ã
1

T

TX
t=1

∇2 ln ct(θ∗)
!n√

T (bθ − θ0)o , (23)

for all T sufficiently large and some θ∗ ∈ Θ satisfying kθ∗ − θ0k ≤
°°°bθ − θ0°°°. Since

{∇2 ln ct(θ)} is a strictly stationary and ergodic sequence, and limT→∞ θ∗ = θ0 almost

surely by virtue of the strong consistency of bθ for θ0, it follows from (C.6), Theorem 2.7

of Straumann and Mikosch (2006), and Lemma 4 of Amemiya (1973) that

lim
T→∞

1

T

TX
t=1

∇2 ln ct(θ∗) = −Ω(θ0) almost surely. (24)

Furthermore, since the model is correctly specified, {∇ ln ct(θ0)} forms a strictly stationary

and ergodic vector-valued martingale-difference sequence relative to the σ-field generated

by {yt,yt−1, . . . ,y0}, and E[{∇ ln ct(θ0)}{∇ ln ct(θ0)}0] is finite and equal to Ω(θ0) under

(C.4)—(C.8). Thus, we may use the Billingsley—Ibragimov martingale central limit theorem

[e.g., Taniguchi and Kakizawa (2000, Theorem A.2.14)] and the Cramér—Wold device to

conclude that (1/
√
T )
PT

t=1∇ ln ct(θ0) is asymptotically normal with mean vector 0 and

covariance matrix Ω(θ0). This result, together with (23), (24) and (C.9), delivers the

claimed asymptotic distribution of
√
T (bθ − θ0). ¤
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The asymptotic normality of {−∇2LT (bθ)}1/2(bθ−θ0)mentioned in Section 4.1 is an im-
mediate consequence of Proposition 2 and of the fact that limT→∞(1/T )

PT
t=1∇2 ln ct(bθ) =

−Ω(θ0) almost surely (which also guarantees that there exists T large enough such that

∇2LT (bθ) is negative definite almost surely).
A.2 Skeleton of the LMSTAR Model

The skeleton of the LMSTAR model discussed in Section 5.3 is given by equations (8) and

(9), with the mixing functions Gi(·), i = 1, ..., 4, defined as in (20)—(22). Consequently, the

local stability of a fixed point of the skeleton can be assessed by considering the spectrum

of the matrix of partial derivatives given in (12)—(13), with

∂G1(yt−1)

∂yt−1
=

⎡⎣ l(xt−1)L(wt−1)

L(xt−1)l(wt−1)

⎤⎦ ,
∂G2(yt−1)

∂yt−1
=

⎡⎣ l(xt−1) [1− L(wt−1)]

−L(xt−1)l(wt−1)

⎤⎦ ,
∂G3(yt−1)

∂yt−1
=

⎡⎣ −l(xt−1)L(wt−1)

[1− L(xt−1)] l(wt−1)

⎤⎦ ,
∂G4(yt−1)

∂yt−1
=

⎡⎣ −l(xt−1) [1− L(wt−1)]

− [1− L(xt−1)] l(wt−1)

⎤⎦ ,
and

l(x) =
∂L(x)

∂x
=
−λ exp{λ(x− x∗)}
[1 + exp{λ(x− x∗)]2

.
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Table 1. Data-Generating Processes

DGP-1

μ1 =

⎡⎣ −0.05
−0.05

⎤⎦ , A
(1)
1 =

⎡⎣ 0.80 0.05

0.10 0.90

⎤⎦ , Σ1 = I2

μ2 =

⎡⎣ −0.05
0.05

⎤⎦ , A
(2)
1 =

⎡⎣ 0.75 −0.05
0.05 0.85

⎤⎦ , Σ2 = I2

μ3 =

⎡⎣ 0.15

−0.05

⎤⎦ , A
(3)
1 =

⎡⎣ 0.75 −0.30
0.20 0.85

⎤⎦ , Σ3 = I2

μ4 =

⎡⎣ 0.05
0.10

⎤⎦ , A
(4)
1 =

⎡⎣ 0.90 −0.10
0.01 0.90

⎤⎦ , Σ4 = I2

(x∗, w∗) = (0.6,−0.4)

DGP-2

Intercepts, autoregressive coefficients and threshold parameters are

the same as for DGP-1.

Σ1 =

⎡⎣ 1 0.9

0.9 1

⎤⎦ , Σ2 =
⎡⎣ 1 0.8

0.8 1

⎤⎦ , Σ3 =
⎡⎣ 1 0.3

0.3 1

⎤⎦
Σ4 =

⎡⎣ 1 0.8

0.8 1

⎤⎦
DGP-3

Intercepts, autoregressive coefficients and threshold parameters are

the same as for DGP-1.

Σ1 =

⎡⎣ 1 −0.9

−0.9 1

⎤⎦ , Σ2 =
⎡⎣ 1 −0.8

−0.8 1

⎤⎦ , Σ3 =
⎡⎣ 1 −0.3

−0.3 1

⎤⎦
Σ4 =

⎡⎣ 1 −0.8

−0.8 1

⎤⎦
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Table 2. Monte Carlo Results: DGP-1

T = 200

bμ1 =
⎡⎣ 0.085

(1.054)

0.071
(1.032)

⎤⎦ , bA(1)1 =

⎡⎣ 0.006
(1.019)

0.008
(1.013)

0.005
(0.995)

0.009
(1.015)

⎤⎦ , bΣ1 =
⎡⎣ −0.057

(1.055)
0.024
(0.989)

−0.066
(1.042)

⎤⎦

bμ2 =
⎡⎣ 0.077

(1.061)

0.053
(1.026)

⎤⎦ , bA(2)1 =

⎡⎣ −0.004
(1.022)

−0.023
(0.994)

0.013
(0.996)

−0.006
(1.028)

⎤⎦ , bΣ2 =
⎡⎣ −0.046

(1.049)
0.033
(0.992)

−0.041
(1.076)

⎤⎦

bμ3 =
⎡⎣ 0.180

(1.130)†

0.156
(1.106)†

⎤⎦ , bA(3)1 =

⎡⎣ 0.030
(1.043)

0.093
(1.075)

0.084
(0.982)

0.012
(1.068)

⎤⎦ , bΣ3 =
⎡⎣ −0.072

(0.969)
0.083
(0.955)

−0.093
(1.022)

⎤⎦

bμ4 =
⎡⎣ 0.171

(1.149)†

0.109
(1.165)†

⎤⎦ , bA(4)1 =

⎡⎣ 0.052
(1.029)

0.078
(0.948)

0.084
(0.982)

0.075
(0.930)

⎤⎦ , bΣ4 =
⎡⎣ −0.066

(0.950)
0.065
(1.033)

−0.069
(1.041)

⎤⎦
bx∗ = −0.042

(1.061) , bw∗ = −0.054
(1.093)

T = 800

bμ1 =
⎡⎣ −0.007

(1.003)

0.010
(1.009)

⎤⎦ , bA(1)1 =

⎡⎣ −0.001
(1.011)

−0.005
(0.992)

0.006
(0.998)

0.002
(0.996)

⎤⎦ , bΣ1 =
⎡⎣ −0.021

(1.019)
0.011
(0.997)

−0.020
(1.010)

⎤⎦

bμ2 =
⎡⎣ 0.011

(1.005)

0.004
(1.006)

⎤⎦ , bA(2)1 =

⎡⎣ −0.002
(1.003)

0.016
(1.005)

0.009
(0.999)

−0.002
(1.007)

⎤⎦ , bΣ2 =
⎡⎣ 0.003

(1.008)
0.010
(1.002)

−0.005
(1.015)

⎤⎦

bμ3 =
⎡⎣ 0.077

(1.053)

0.111
(1.041)

⎤⎦ , bA(3)1 =

⎡⎣ 0.009
(1.018)

0.044
(0.951)

0.022
(1.012)

0.010
(1.040)

⎤⎦ , bΣ3 =
⎡⎣ −0.020

(1.006)
0.060
(0.994)

−0.052
(1.011)

⎤⎦

bμ4 =
⎡⎣ −0.088

(1.058)

0.061
(1.044)

⎤⎦ , bA(4)1 =

⎡⎣ 0.019
(1.006)

−0.038
(1.056)

0.058
(0.992)

−0.049
(1.031)

⎤⎦ , bΣ4 =
⎡⎣ −0.006

(1.008)
0.008
(0.992)

0.029
(0.910)

⎤⎦
bx∗ = −0.012

(1.009) , bw∗ = 0.026
(0.988)

Figures are the finite-sample bias of the ML estimator and the ratios of sampling standard

deviations to estimated standard errors (in parentheses).

† indicates that the Kolmogorov—Smirnov statistic is significant at the 5% level.
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Table 3. Monte Carlo Results: DGP-2

T = 200

bμ1 =
⎡⎣ −0.072

(1.047)

0.099
(1.018)

⎤⎦ , bA(1)1 =

⎡⎣ −0.005
(1.020)

0.050
(1.008)

0.022
(1.007)

0.010
(1.033)

⎤⎦ , bΣ1 =
⎡⎣ −0.038

(1.053)
−0.010
(1.012)

−0.033
(1.040)

⎤⎦

bμ2 =
⎡⎣ −0.051

(1.062)

0.072
(1.009)

⎤⎦ , bA(2)1 =

⎡⎣ 0.010
(0.990)

−0.009
(0.998)

0.004
(1.000)

−0.002
(1.004)

⎤⎦ , bΣ2 =
⎡⎣ −0.031

(1.022)
0.005
(0.999)

−0.032
(1.040)

⎤⎦

bμ3 =
⎡⎣ 0.201

(1.301)†

0.210
(1.227)†

⎤⎦ , bA(3)1 =

⎡⎣ 0.041
(1.078)

0.106
(0.929)

0.079
(1.012)

0.062
(1.078)

⎤⎦ , bΣ3 =
⎡⎣ −0.090

(0.920)
0.079
(0.943)

−0.101
(1.061)

⎤⎦

bμ4 =
⎡⎣ 0.032

(1.031)

0.080
(1.029)

⎤⎦ , bA(4)1 =

⎡⎣ 0.002
(0.991)

0.016
(0.997)

0.008
(0.998)

0.002
(1.007)

⎤⎦ , bΣ4 =
⎡⎣ 0.011

(1.022)
0.010
(1.000)

−0.015
(1.051)

⎤⎦
bx∗ = −0.055

(1.091)† , bw∗ = −0.061
(1.072)

T = 800

bμ1 =
⎡⎣ 0.020

(1.008)

0.007
(1.001)

⎤⎦ , bA(1)1 =

⎡⎣ −0.001
(1.000)

0.007
(1.002)

0.007
(1.002)

−0.005
(1.014)

⎤⎦ , bΣ1 =
⎡⎣ −0.022

(1.010)
0.005
(1.006)

−0.011
(1.004)

⎤⎦

bμ2 =
⎡⎣ 0.029

(0.996)

0.030
(1.002)

⎤⎦ , bA(2)1 =

⎡⎣ −0.003
(0.996)

0.005
(0.999)

0.002
(0.999)

0.002
(1.002)

⎤⎦ , bΣ2 =
⎡⎣ −0.009

(1.005)
−0.002
(0.998)

−0.005
(1.009)

⎤⎦

bμ3 =
⎡⎣ 0.098

(1.033)

0.056
(1.058)

⎤⎦ , bA(3)1 =

⎡⎣ 0.026
(1.009)

0.031
(1.082)

0.044
(1.006)

0.049
(1.051)

⎤⎦ , bΣ3 =
⎡⎣ −0.007

(1.012)
0.044
(1.013)

−0.008
(1.010)

⎤⎦

bμ4 =
⎡⎣ 0.007

(1.009)

0.023
(1.007)

⎤⎦ , bA(4)1 =

⎡⎣ −0.001
(1.003)

0.008
(1.002)

−0.003
(1.001)

−0.002
(0.997)

⎤⎦ , bΣ4 =
⎡⎣ −0.001

(1.004)
−0.004
(0.999)

−0.004
(0.989)

⎤⎦
bx∗ = 0.012

(0.993) , bw∗ = −0.010
(1.004)

Figures are the finite-sample bias of the ML estimator and the ratios of sampling standard

deviations to estimated standard errors (in parentheses).

† indicates that the Kolmogorov—Smirnov statistic is significant at the 5% level.
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Table 4. Monte Carlo Results: DGP-3

T = 200

bμ1 =
⎡⎣ 0.071

(1.033)

0.060
(1.011)

⎤⎦ , bA(1)1 =

⎡⎣ 0.004
(0.972)

0.007
(1.015)

0.002
(0.998)

0.001
(1.007)

⎤⎦ , bΣ1 =
⎡⎣ 0.013

(0.967)
0.020
(1.005)

−0.004
(1.006)

⎤⎦

bμ2 =
⎡⎣ 0.031

(1.015)

0.032
(1.008)

⎤⎦ , bA(2)1 =

⎡⎣ 0.002
(1.005)

0.003
(1.001)

0.003
(0.999)

0.002
(0.999)

⎤⎦ , bΣ2 =
⎡⎣ −0.048

(1.048)
0.037
(0.990)

−0.047
(1.033)

⎤⎦

bμ3 =
⎡⎣ 0.099

(1.152)†

0.163
(1.076)

⎤⎦ , bA(3)1 =

⎡⎣ 0.043
(1.019)

0.074
(1.050)

0.073
(1.012)

0.046
(1.069)

⎤⎦ , bΣ3 =
⎡⎣ −0.081

(1.042)
0.045
(1.029)

−0.054
(1.033)

⎤⎦

bμ4 =
⎡⎣ 0.165

(1.262)†

0.111
(1.186)†

⎤⎦ , bA(4)1 =

⎡⎣ 0.056
(1.082)

0.081
(1.079)

0.085
(1.076)

0.050
(1.062)

⎤⎦ , bΣ4 =
⎡⎣ −0.088

(1.076)
0.067
(1.029)

−0.078
(1.050)

⎤⎦
bx∗ = 0.022

(1.031) , bw∗ = −0.040
(0.955)

T = 800

bμ1 =
⎡⎣ 0.030

(1.002)

0.043
(1.007)

⎤⎦ , bA(1)1 =

⎡⎣ 0.001
(1.002)

0.004
(1.009)

0.000
(1.001)

−0.006
(1.019)

⎤⎦ , bΣ1 =
⎡⎣ −0.010

(1.002)
0.002
(1.002)

−0.005
(1.006)

⎤⎦

bμ2 =
⎡⎣ 0.019

(1.002)

0.001
(1.003)

⎤⎦ , bA(2)1 =

⎡⎣ 0.001
(1.000)

0.001
(0.999)

0.000
(1.001)

0.001
(0.999)

⎤⎦ , bΣ2 =
⎡⎣ −0.009

(1.001)
0.001
(1.000)

−0.004
(0.997)

⎤⎦

bμ3 =
⎡⎣ 0.067

(1.047)

0.101
(1.032)

⎤⎦ , bA(3)1 =

⎡⎣ 0.015
(1.006)

0.021
(1.036)

0.022
(0.998)

0.017
(0.989)

⎤⎦ , bΣ3 =
⎡⎣ −0.031

(1.004)
0.010
(1.007)

−0.018
(1.009)

⎤⎦

bμ4 =
⎡⎣ 0.087

(1.052)

0.020
(1.019)

⎤⎦ , bA(4)1 =

⎡⎣ 0.012
(1.020)

0.030
(1.022)

−0.009
(0.967)

0.020
(1.012)

⎤⎦ , bΣ4 =
⎡⎣ 0.035

(1.009)
0.045
(0.995)

−0.021
(0.988)

⎤⎦
bx∗ = 0.006

(1.009) , bw∗ = −0.011
(1.004)

Figures are the finite-sample bias of the ML estimator and the ratios of sampling standard

deviations to estimated standard errors (in parentheses).

† indicates that the Kolmogorov—Smirnov statistic is significant at the 5% level.
38



Table 5. Power of Nonlinearity Test

T 1% 5% 10%

DGP-1

100 82.20 88.84 91.28

200 86.36 91.68 93.48

400 93.80 96.20 97.60

800 99.04 99.48 99.60

DGP-2

100 78.08 86.76 90.20

200 85.16 92.36 95.04

400 95.16 97.84 98.68

800 99.64 99.88 99.96

DGP-3

100 93.28 96.08 97.24

200 98.96 99.56 99.68

400 99.96 100 100

800 100 100 100

Entries are percentage rejection frequencies.
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Table 6. ML Estimates for a C-MSTAR Model

Regime 1: Low Price-Earnings Ratio, Low Interest Rate

bμ1 =
⎡⎣ −0.54000

(0.72558)

0.52756
(0.07339)

⎤⎦ , bA(1)1 =

⎡⎣ 1.03181
(0.11118)

−0.32729
(0.25067)

0.00836
(0.01090)

1.11187
(0.02438)

⎤⎦ , bΣ1 =
⎡⎣ 2.72805

(0.78069)
0.07130
(0.00967)

0.07130
(0.00967)

0.02642
(0.04115)

⎤⎦

Regime 2: Low Price-Earnings Ratio, High Interest Rate

bμ2 =
⎡⎣ 0.52803

(0.34762)

0.59252
(0.27681)

⎤⎦ , bA(2)1 =

⎡⎣ 0.90321
(0.08047)

−0.03038
(0.10508)

−0.15747
(0.07017)

0.79461
(0.08365)

⎤⎦ , bΣ2 =
⎡⎣ 3.61557

(0.78726)
−0.29982
(0.74264)

−0.29982
(0.74264)

3.00545
(0.33928)

⎤⎦

Regime 3: High Price-Earnings Ratio, Low Interest Rate

bμ3 =
⎡⎣ 0.19662

(1.3002)

−1.08184
(0.34393)

⎤⎦ , bA(3)1 =

⎡⎣ 0.95186
(0.20444)

1.04940
(0.44486)

0.10149
(0.04864)

0.90033
(0.09666)

⎤⎦ , bΣ3 =
⎡⎣ 15.2194

(4.90575)
−0.43588
(0.00489)

−0.43588
(0.00489)

0.63892
(0.55733)

⎤⎦

Regime 4: High Price-Earnings Ratio, High Interest Rate

bμ4 =
⎡⎣ −3.73793

(1.82851)

−0.82893
(0.24954)

⎤⎦ , bA(4)1 =

⎡⎣ −0.46101
(0.25623)

0.18350
(0.29623)

−0.13939
(0.03497)

0.53549
(0.04044)

⎤⎦ , bΣ4 =
⎡⎣ 22.9615

(10.4492)
3.13327
(0.00489)

3.13327
(0.00489)

0.42766
(0.71372)

⎤⎦
bs∗ = 3.40317

(0.71359) , br∗ = −0.07214
(0.10159) ,

maxL =− 351.160, AIC = 778.320, BIC = 877.317, HQ = 818.386

Figures in parentheses are asymptotic standard errors and maxL is the maximized log-likelihood.

Table 7. ML Estimates for a VAR Model

yt = μ+Ayt−1 +Σ
1/2ut

bμ =
⎡⎣ 0.1301

(0.3200)

0.0111
(0.1503)

⎤⎦ , bA =

⎡⎣ 0.7938
(0.0706)

−0.0590
(0.0332)

0.0988
(0.1047)

0.8661
(0.0492)

⎤⎦ , bΣ =
⎡⎣ 10.2291 0.0577

0.0577 2.2561

⎤⎦

maxL =− 437.679, AIC = 893.358, BIC = 916.805, HQ = 902.847

Figures in parentheses are asymptotic standard errors and maxL is the maximized log-likelihood.
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Table 8. ML Estimates for a LMSTAR Model

Regime 1: Low Price-Earnings Ratio, Low Interest Rate

bμ1 =
⎡⎣ 1.02473

(0.28692)

0.92660
(0.10919)

⎤⎦ , bA(1)1 =

⎡⎣ 1.02161
(0.05848)

−0.12392
(0.10759)

−0.00319
(0.02149)

1.19457
(0.03978)

⎤⎦ , bΣ1 =
⎡⎣ 1.44019

(0.43671)
0.32393
(0.07138)

0.32393
(0.07138)

0.20652
(0.08464)

⎤⎦

Regime 2: Low Price-Earnings Ratio, High Interest Rate

bμ2 =
⎡⎣ −1.79071

(0.52315)

1.04670
(1.21128)

⎤⎦ , bA(2)1 =

⎡⎣ 0.76229
(0.09344)

0.13731
(0.08808)

−0.29126
(0.21669)

0.53078
(0.21931)

⎤⎦ , bΣ2 =
⎡⎣ 1.22248

(0.50228)
−0.65899
(3.61650)

−0.65899
(3.61650)

6.94336
(0.54162)

⎤⎦

Regime 3: High Price-Earnings Ratio, Low Interest Rate

bμ3 =
⎡⎣ 0.23872

(0.57517)

−0.66698
(0.12075)

⎤⎦ , bA(3)1 =

⎡⎣ 0.88645
(0.11388)

0.86029
(0.25165)

−0.00141
(0.02452)

0.82499
(0.04672)

⎤⎦ , bΣ3 =
⎡⎣ 9.12349

(2.22135)
−0.32945
(0.11884)

−0.32945
(0.11884)

0.35104
(0.26687)

⎤⎦

Regime 4: High Price-Earnings Ratio, High Interest Rate

bμ4 =
⎡⎣ 3.58485

(2.62699)

1.87520
(0.41219)

⎤⎦ , bA(4)1 =

⎡⎣ −0.38696
(0.39798)

0.15326
(0.94790)

−0.30991
(0.06200)

0.24298
(0.14860)

⎤⎦ , bΣ4 =
⎡⎣ 19.4180

(10.0201)
−3.00842
(0.06049)

−3.00842
(0.06049)

0.48008
(0.35632)

⎤⎦

bs∗ = 0.616434
(1.50367) , br∗ = 2.58431

(0.72959) ,
bλs = 0.19228

(0.06978) ,
bλr = 0.63536

(0.17905)

maxL =− 359.705, AIC = 799.411, BIC = 903.617, HQ = 841.585

Figures in parentheses are asymptotic standard errors and maxL is the maximized log-likelihood.
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Table 9. Out-of-Sample Performance

MSPE MAPE RMSPE CR

VAR (PE) 0.0562 0.1946 0.4412 0.2917

VAR (IR) 0.0658 0.2132 0.4617 0.4167

Overall 0.1220 0.4078 0.9029 −

C-MSTAR (PE) 0.0487 0.1734 0.4164 0.2500

C-MSTAR (IR) 0.0710 0.2266 0.4760 0.3333

Overall 0.1197 0.4000 0.8924 −

LMSTAR (PE) 0.2413 0.3671 0.6059 0.5833

LMSTAR (IR) 0.1445 0.3175 0.5635 0.7500

Overall 0.3858 0.6846 1.1694 −

PE refers to the price-earnings ratio and IR to the interest rate. MSPE is mean square

percentage error, MAPE is mean absolute percentage error, and RMSPE is root

mean square percentage error of the difference between the forecast data and

and the actual data. CR are confusion rates.
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