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Abstract: A multiple-partners assignment game with heterogeneous sales and multi-

unit demands consists of a set of sellers that own a given number of indivisible units

of (potentially many di¤erent) goods and a set of buyers who value those units and

want to buy at most an exogenously �xed number of units. We de�ne a competitive

equilibrium for this generalized assignment game and prove its existence by using

only linear programming. In particular, we show how to compute equilibrium price
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vectors from the solutions of the dual linear program associated to the primal linear

program de�ned to �nd optimal assignments. Using only linear programming tools,

we also show (i) that the set of competitive equilibria (pairs of price vectors and

assignments) has a Cartesian product structure: each equilibrium price vector is part

of a competitive equilibrium with all optimal assignments, and vice versa; (ii) that

the set of (restricted) equilibrium price vectors has a natural lattice structure; and

(iii) how this structure is translated into the set of agents�utilities that are attainable

at equilibrium.

Journal of Economic Literature Classi�cation Numbers: C78; D78.

Keywords: Matching; Assignment Game; Indivisible Goods; Competitive Equilibrium;

Lattice.

1 Introduction

We study competitive equilibria of markets with indivisible goods. The multiple-partners

assignment game with heterogeneous sales and multi-unit demands (a market) is a many-

to-many assignment problem with transferable utility in which agents can be partitioned

into two disjoint sets: the set of buyers and the set of sellers. In this market sellers deliver

indivisible units of (potentially di¤erent) goods to buyers who pay a given amount of money

for every unit of each good. Each seller owns a given number of indivisible units of each

good and each buyer may buy di¤erent units of the goods up to an exogenously �xed

number which comes from constraints on his capacity for transport, storage, etc. Each

seller assigns a per-unit value (or reservation price) to each of the di¤erent goods that he

owns. Each buyer assigns a valuation (or maximal willingness to pay) to each unit of the

di¤erent goods; this means that his marginal utility of each of the goods is constant.

There are many assignment problems with these characteristics.1 They are many-to-

many because each agent can be assigned to (i.e., perform a transaction with) many agents

of the other side of the market. They have transferable utility because money may be used

as a means of exchange. They are heterogeneous sales because a unit of a particular good

owned by a seller may be di¤erent from a unit of another good owned by the same seller.

They are multi-demanded because buyers may be willing to buy several units of di¤erent

1For instance, the primary market of blood, local markets of fresh products that operate once or twice

per week or a clothes market in a city with wholesalers and retailers.
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goods. The main questions to be answered are the following. Given an initial distribution

of units of the goods among all sellers, (i) what is their optimal assignment to buyers? (ii)

what are the prices (if any) that would clear the market?, (iii) what is the subset of goods

that are indeed exchanged?, and (iv) what is the set of (overall) utilities that agents might

receive?

Given a market, an assignment is a description of how many units of each of the goods

are exchanged between every pair formed by a buyer and a seller. An assignment is feasible

if it satis�es the quantity and capacity constraints of all agents. A feasible assignment is

optimal if it maximizes the total net value (the sum of the valuations minus the reserve price

of all exchanged units). It turns out that the set of optimal assignments of a market can

be identi�ed with the set of integer solutions of a natural Primal Linear Problem where the

objective function (to be maximized) is the total net value, which depends linearly on the

assignment, subject to non-negativity constraints and to feasibility constraints. Results on

integer programming (see Schrijver, 1996) guarantee that the Primal Linear Program has

at least one solution with integer components, since the set of all real-valued solutions of

the Primal Linear Program is a polytope whose vertices have all integer-valued coordinates.

To choose an optimal assignment requires information about valuations, reservation

prices, and quantity and capacity constraints. Hence, competitive markets may emerge (or

be used) as a way of selecting an optimal assignment with low informational requirements.

We will assume that buyers and sellers exchange units of the goods with money through

competitive markets in which a price vector (a non-negative price for each good) is an-

nounced. Given the price vector, each seller determines the optimal number of units he

wants to sell of each of the goods he owns and each buyer determines the optimal number

of units he wants to buy of each good, without exceeding his capacity constraints. A price

vector p is an equilibrium price vector of the market if the plans of all sellers and buyers

are compatible at p; namely, the market of each good clears in the sense that all optimal

plans constitute a feasible and compatible set of exchanges (they are a feasible assignment).

In this case we say that the equilibrium price vector and the feasible assignment are com-

patible. A competitive equilibrium of the market is a pair formed by an equilibrium price

vector and a compatible assignment. We show using well-known duality theorems of linear

programming that each market has at least a competitive equilibrium.2 All our proofs rely

2In a contemporary and independent paper Milgrom (2009) establishes the existence of competitive

equilibrium prices for a more general model which also includes multi-unit auctions and exchange economies

as special cases (see Section 2 for a brief description of Milgrom (2009)�s model).
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only on well-know results of linear programming. First, we observe that the Dual Linear

Problem associated to the Primal Linear Program has a non-empty set of solutions; second,

we give a procedure to construct an equilibrium price vector from a given solution of the

Dual Linear Program; and third, we show that any optimal solution of the Primal Linear

Program is compatible with this equilibrium price vector. Thus, the set of competitive

equilibria of a market is intimately related to the set of solutions of the Primal Linear Pro-

gram (compatible optimal assignments) and the Dual Linear Program (equilibrium price

vectors).3

We next show that the set of competitive equilibria of a market has a Cartesian product

structure: each equilibrium price vector is compatible with all optimal assignments and

each optimal assignment is compatible with all equilibrium price vectors. Moreover, the set

of equilibrium price vectors has a lattice structure with the natural order of vectors � (a

re�exive, transitive, antisymmetric, and incomplete binary relation) on the n�dimensional
Euclidian space, where n is the number of goods and given two vectors x; y 2 Rn, x � y if
and only if xj � yj for all j = 1; :::; n. As a consequence of this lattice structure, the set

of equilibrium price vectors contains two extreme elements: the sellers-optimal equilibrium

price vector with each component being larger or equal to the corresponding component of

all other equilibrium price vectors and the buyers-optimal equilibrium price vector with each

component being smaller or equal to the corresponding component of all other equilibrium

price vectors. We observe that, in contrast to the Shapley and Shubik (1972)�s assignment

game, this natural order � does not translate into the set of utilities of buyers (nor the set
of utilities of sellers) that can be attainable at equilibrium. Partly, this is because there

is a insubstantial multiplicity of equilibrium prices of the goods that are not interchanged

in any equilibrium assignment. We solve this multiplicity by de�ning the set of restricted

equilibrium price vectors as those equilibrium price vectors for which the price of the goods

that are never interchanged in equilibrium is equal to their maximal one without altering the

equilibrium property of the full price vector. We show that the set of restricted equilibrium

price vectors has a complete lattice structure with the natural order of vectors �. Then,
we show that the set of utilities of buyers that are attainable at equilibrium embeds the

lattice structure of the set of restricted equilibrium price vectors. However, we also show

that the set of utilities of the sellers that are attainable at equilibrium does not inherit this

3Shapley and Shubik (1972) already pointed out the relationships among the set of competitive equilibria

of a one-to-one assignment game, the core of its associated TU-game, and the solutions of the corresponding

primal and dual linear problems.
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structure.

There are several papers that have studied generalized versions of Shapley and Shubik

(1972)�s one-to-one assignment game to many-to-one or many-to-many models. Camiña

(2006), Sotomayor (1999, 2002, 2003, 2007, and 2009) and Milgrom (2009) are some of them.

However, part of the emphasis of this literature has been put on the study of alternative

cooperative solutions of the associated TU-game, although Camiña (2006), Sotomayor (2007

and 2009) and Milgrom (2009) also study the competitive equilibria of their generalized

assignment games. At the end of Section 2 and in Subsection 5.1 we describe this very

related literature as well as its connections with our model and results.

Our main contribution to this literature is partially methodological because all our

results are proved exclusively through the following well-known linear programming results:

the primal and dual linear programs have solutions (integer-valued for the case of the

primal), the strong duality theorem and the complementary slackness theorem. Beside of

giving an uni�ed treatment this approach has an important computational advantage since

there exist several algorithms to compute solutions of linear programs and hence, they can

be used to compute competitive equilibria and their associated vectors of agents�utilities.

Most of the results in related models extending Shapley and Shubik (1972)�s assignment

game use in their proofs existential (and hence, non-computable) arguments. For instance,

in Sotomayor (2007) the existence of equilibrium price vectors and its lattice structure (as

well as the dual lattice structure of the sets of equilibrium agents�utilities) are obtained

by applying Tarski (1955)�s �xed point theorem. Milgrom (2009) proves that the set of

equilibrium price vectors has a lattice structure by applying Topkis (1978)�s �xed point

theorem.

The paper is organized as follows. In Section 2 we de�ne the multiple-partners assign-

ment game with heterogeneous sales and multi-unit demands (a market) and compare our

model with existing related models in the literature. In Section 3, we de�ne optimal as-

signments and the associated Primal Linear Program of a market. In Section 4 we present

the notion of a competitive equilibrium and show its existence by using duality theorems

of Linear Programming. In Section 5 we study the structure of the set of competitive equi-

libria by showing that it is a Cartesian product of the set of equilibrium price vectors times

the set of optimal assignments, and that the set of restricted equilibrium price vectors has

a complete lattice structure with the natural partial order �; we also show how this partial
order endows a lattice structure to the set of utilities of the buyers (but not to the set of

utilities of the sellers) that are attainable at equilibrium. In Section 6 we conclude with
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some �nal remarks. Appendix 1 at the end of the paper collects omitted proofs. Appendices

2 and 3 at the end of the paper contain some technical and omitted material.

2 Preliminaries and Related Models

The multiple-partners assignment game with heterogeneous sales and multi-unit demands

(a market) consists of seven objects. The �rst three are three �nite and disjoint sets. The

set of m buyers B = fb1; :::; bmg, the set of n type of goods G = fg1; :::; gng, and the set of
t sellers S = fs1; :::; stg. We identify buyer bi with i, good gj with j, and seller sk with k.
For each buyer i 2 B and each good j 2 G, let vij � 0 be the monetary valuation

that buyer i assigns to each unit of good j; namely, vij is the maximum price that buyer

i is willing to pay for each unit of good j: We denote by V = (vij)(i;j)2B�G the matrix of

valuations. Each buyer i 2 B can buy at most di > 0 units in total. We are assuming

that buyers have a constant marginal valuation of each unit of each good and that they

are constrained on their total demand. The amount di should be interpreted as a capacity

constraint of buyer i due to limits on his ability for transport, storage, etc. We denote by

d = (di)i2B the vector of maximal demands.

For each good j 2 G and each seller k 2 S, let rjk � 0 be the monetary valuation that
seller k assigns to each unit of good j; namely, rjk is the reservation (or minimum) price

that seller k is willing to accept for each unit of good j. We denote by R = (rjk)(j;k)2G�S the

matrix of reservation prices. Each seller k 2 S has a given number qjk 2 Z+ of indivisible
units of each good j 2 G, where Z+ is the set of non-negative integers. We denote by
Q = (qjk)(j;k)2G�S the capacity matrix. Observe that we are admitting the possibility that

seller k may have zero units of some of the goods. However, we require that the reservation

price for buyer k of a good that he has no units to sell has to be equal to zero; namely, for

all k 2 S and all j 2 G,
if qjk = 0 then rjk = 0: (1)

Moreover, we assume that there is a strictly amount of each good; namely,

for each j 2 G there exists k 2 S such that qjk > 0: (2)

A market M is a 7-tuple (B;G; S; V; d; R;Q) satisfying (1) and (2). This constitutes a

many-to-many generalization of Shapley and Shubik (1972)�s (one-to-one) assignment game

in which each buyer only wants to buy at most one unit (i.e., di = 1 for all i 2 B), there is
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only one unit of each good and the set of goods and sellers can be uniquely identi�ed with

each other because each seller only owns the unique available unit of a good (i.e., n = t and

for all (j; k) 2 G�S, qjk = 1 if j = k and qjk = 0 if j 6= k). There are other papers that have
already extended Shapley and Shubik (1972) model. Camiña (2006) studies an instance of

our model in which there is a unique seller that owns n di¤erent indivisible objects and each

buyer wants to buy at most one object (i.e., t = 1, qj1 = 1 for all j = 1; :::; n, and di = 1 for

all i 2 B). Sotomayor (2007) studies another extension of the assignment game in which
buyers may want to buy several goods although they are not interested in acquiring more

than one unit from a given seller, and each seller owns a number of identical and indivisible

objects; thus, we can also identify uniquely goods with sellers (i.e., n = t, di 2 Z+nf0g for
all i 2 B, qjk 2 Z+nf0g if j = k and qjk = 0 if j 6= k, and each buyer i and each seller k
can exchange at most one unit of the good j = k owned by the seller).4

To illustrate why our model is not a particular instance of the models studied by Camiña

(2006) and by Sotomayor (2007) consider the market M = (B; S;G; V; d; R;Q), where

B = fb1; b2g, S = fs1; s2g, G = fg1; g2; g3g, d = (20; 15),

V =

 
30 15 7

10 20 6

!
, R =

0B@ 5 4

3 6

4 5

1CA, and Q =
0B@ 10 8

7 9

5 4

1CA.
Observe that (i) there are two sellers and buyers 1 and 2 may buy up to 25 and 15 units

respectively, and (ii) there are more goods than sellers and each seller owns several units

of the three goods. Thus, by (i) and (ii) our results can not follow from either results in

Camiña (2006) or Sotomayor (2007), respectively.

Milgrom (2009) introduces and studies the space of assignment messages to investigate

(and solve) the di¢ culty that agents face, in some mechanism design settings, when re-

porting their �types�(or valuations of goods, or sets of goods). The model is very general

and contains as particular cases multi-unit auctions (with substitutable goods), exchange

economies, and integer assignment games. The last one generalizes the Shapley and Shubik

(1972)�s model in many ways; in particular, agents (i) may buy some good and sell others

(there are no a priori sets of buyers and sellers) and (ii) may trade many units of each

good, instead of just one unit. For our model, which is a particular instance of Milgrom

(2009), we obtain additional results; for instance, that the set of competitive equilibria is

4This last condition on the binary nature of the admissible exchanges between a buyer and a seller is

not imposed as a restriction on the data of the problem but rather on the set of feasible assignments.
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the Cartesian product of the set of equilibrium price vectors and optimal assignments and

that the sets of agents�utilities that are attainable at equilibrium partly inherit the lattice

structure of the set of equilibrium price vectors.

3 Optimal Assignments

In this section we de�ne optimal assignments of a market and show using Linear Program-

ming that they do exist.

An assignment for market M is a matrix A = (Aijk)(i;j;k)2B�G�S 2 Zm�n�t+ . Given an

assignment A; each Aijk should be interpreted as follows: buyer i receives Aijk units of

good j from seller k. When no confusion can arise, we omit the sets to which the subscripts

belong to and write, for instance,
P

ijk Aijk and
P

iAijk instead of
P

(i;j;k)2B�G�S Aijk andP
i2B Aijk, respectively. We are only interested on assignments satisfying all demand and

supply restrictions of feasibility.

De�nition 1 The assignment A is feasible for market M if the following two sets of

inequalities hold:

(Demand Feasibility) For all i 2 B,
P

jk Aijk � di:
(Supply Feasibility) For all (j; k) 2 G� S,

P
iAijk � qjk:

The inequality in (Demand Feasibility) says that each buyer i buys, in total, at most di
units of all goods while the inequality in (Supply Feasibility) says that each seller k sells at

most qjk units of each good j. We denote by F the set of all feasible assignments of market

M .

For each (i; j; k) 2 B �G� S; let

� ijk =

(
vij � rjk if qjk > 0

0 if qjk = 0
(3)

be the per unit gain from the trade of good j between buyer i and seller k; observe that if

seller k does not have any unit of good j the per unit gain from trade of good j with all

buyers is equal to zero and that � ijk is negative if vij < rjk. Let M be a market and A 2 F
be a feasible assignment. We de�ne the total gain from trade of market M at assignment

A as

T (A) =
P

ijk � ijk � Aijk:
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De�nition 2 A feasible assignment A� is optimal for market M if T (A�) � T (A) holds
for any feasible assignment A 2 F:

We denote by F � the set of all optimal assignments for market M .

In order to �nd the set of optimal assignments for market M = (B; S;G; V; d; R;Q) we

consider the following Primal Linear Program (PLP).

Primal linear Program (PLP):

max
(Aijk)(i;j;k)2B�G�S2Rm�n�t

P
ijk � ijk � Aijk

s. t. (P.1)
P

jk Aijk � di for all i 2 B;
(P.2)

P
iAijk � qjk for all (j; k) 2 G� S;

(P.3) Aijk � 0 for all (i; j; k) 2 B �G� S:

Results in linear programming guarantee that the set of (real-valued) solutions of the

(PLP) is non-empty. Moreover, results in integer programming guarantee that at least one

of these solutions has integer components (see Schrijver, 1996); namely, F � 6= ;. Appendix
2 at the end of the paper contains a brief description of why the (PLP) has an integer

solution. Thus, we state without proof the following result.

Proposition 1 Every market M has a nonempty set of optimal assignments.

4 Competitive Equilibria

4.1 De�nition and Existence

We consider the situation where buyers and sellers trade through competitive markets.

That is, there is a unique market (and its corresponding unique price) for each of the

goods. Hence, a price vector is an n�dimensional vector of non-negative real numbers.
Buyers and sellers are price-takers: given a price vector p = (pj)j2G 2 Rn+ sellers supply
units of the goods (up to their capacity) in order to maximize revenues at p and buyers

demand units of the goods (up to their maximal demands) in order to maximize the total

net valuation at p.

Supply of seller k For each price vector p = (pj)j2G 2 Rn+, seller k supplies of every
good j any feasible amount that maximizes revenues; namely,
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Sjk(pj) =

8><>:
fqjkg if pj > rjk
f0; 1; :::; qjkg if pj = rjk
f0g if pj < rjk:

(4)

To de�ne the demands of buyers we need the following notation. Let p 2 Rn+ be given
and consider buyer i. Let

r>
i (p) = fj 2 G j vij � pj = max

j02G
fvij0 � pj0g > 0g (5)

be the set of goods that give to buyer i the maximum (and strictly positive) net valuation

at p. Obviously, for some p; the set r>
i (p) may be empty. Let

r�
i (p) = fj 2 G j vij � pj = max

j02G
fvij0 � pj0g � 0g (6)

be the set of goods that give to buyer i the maximum (and non-negative) net valuation at

p. Obviously, for some p; the set r�
i (p) may also be empty. Moreover, it is immediate to

see that, for all i 2 B and all p 2 Rn+,

r>
i (p) � r�

i (p): (7)

Demand of buyer i For each price vector p = (pj)j2G 2 Rn+ buyer i demands any feasible
amounts of the goods that maximize the net valuations at p; namely,

Di(p) = f� = (�jk)(j;k)2G�S 2 Zn�t j (D.a) 8(j; k) 2 G� S, �jk � 0;
(D.b)

P
jk �jk � di;

(D.c) r>
i (p) 6= ; =)

P
jk �jk = di; and

(D.d)
P

k �jk > 0 =) j 2 r�
i (p)g:

Thus, Di(p) describes the set of all trades that maximize the net valuation of buyer i

at p: Observe that the set of trades described by each element in the set Di(p) give the

same net valuation to buyer i; i.e., i is indi¤erent among all trade plans speci�ed by each

� 2 Di(p):

Let A be an assignment and let i be a buyer. We denote by A(i) = (A(i)jk)(j;k)2G�S the

element in Zn�t+ such that, for all (j; k) 2 G� S, A(i)jk = Aijk:

De�nition 3 A competitive equilibrium of market M is a pair (p;A) 2 Rn+ � F � Rn+ �
Zm�n�t+ such that:

(E.D) For each buyer i 2 B; A(i) 2 Di (p) :
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(E.S) For each good j 2 G and each seller k 2 S;
P

iAijk 2 Sjk (pj) :

We say that a price vector p and a feasible assignment A are compatible if (p;A) is a

competitive equilibrium of market M . The vector p 2 Rn+ is an equilibrium price of market

M if there exists A 2 F such that (p;A) is a competitive equilibrium of market M .

Let P � be the set of equilibrium price vectors of market M: Theorem 1 below states

that the set P � is always non-empty.

Theorem 1 For every market M; P � 6= ;:

Milgrom (2009) proves Theorem 1 for a more general model by showing that equilibrium

price vectors are the optimal solutions of a non-linear and continuous function of p restricted

to a compact set.5 However, in Appendix 1 at the end of the paper we include our proof

because it only uses linear programming arguments and it is based on computing an optimal

assignment (as one of the integer solutions of the Primal Liner Program (PLP)) and a

particular equilibrium price vector in P � associated to one of the solutions of the Dual

Linear Program (DLP) that we present below.

4.2 The Dual Linear Program

In this subsection we present the Dual Linear Program (DLP) and state two well-known

results of linear programming: the Strong Duality Theorem and the Complementary Slack-

ness Theorem. Using these two theorems we will show in Theorem 2 that there exists a

strong link between the set of competitive equilibria and the set of solutions of the (PLP)

and the (DLP).

Let M = (B; S;G; V; d; R;Q) be a market. Let 
 = (
i)i2B 2 Rm be an m�dimensional
vector and � = (�jk)(j;k)2G�S 2 Rn�t be a (n� t)�matrix (below we give an interpretation
of these two objects).

Dual Linear Program (DLP):

min
(
;�)2Rm�Rn�t

P
i di � 
i +

P
jk qjk � �jk

s. t. (D.1) 
i + �jk � � ijk for all (i; j; k) 2 B �G� S;
(D.2) 
i � 0 for all i 2 B;
(D.3) �jk � 0 for all (j; k) 2 G� S:

5Sotomayor (2007) contains an existential proof of the non-emptyness of the set of equilibrium price

vectors for her related model based on Tarski (1955)�s �xed point theorem.
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Let D be the set of dual feasible solutions (i.e., the set of vectors 
 2 Rm and matrices
� 2 Rn�t that satisfy conditions (D.1), (D.2), and (D.3)), and letD� be the set of solutions of

the (DLP). Results in linear programming guarantee that the (DLP) has at least a solution

(see Schrijver, 1996); namely, D� 6= ;. Moreover, D� is a convex subset of Rm�Rn�t. Thus,
we state the following result.

Proposition 2 For every market M the set of solutions D� of the (DLP) in non-empty

and convex.

A dual solution (
; �) 2 D� can be interpreted as a way of sharing the gains of trade

among buyers and sellers associated to a particular competitive equilibrium (p;A). The ith

component of vector 
 describes the (unique) per unit gain of buyer i of all units that he

buys and the (j; k)th element of matrix � describes the (unique) per unit gain of seller k of

good j. For instance, assume that (
; �) 2 D� and (p;A) is a competitive equilibrium with

Aijk > 0; i.e., buyer i buys at least one unit of good j to seller k. Then, as we will formally

show later, 
i = vij � pj and �jk = pj � rjk: Thus, we can identify (almost uniquely) each
dual solution with an equilibrium price, and vice versa. As we will see, this identi�cation

is not unique. A �rst (but insubstantial) reason of why this identi�cation is not unique is

as follows. Let (
; �) 2 D� and assume that qjk = 0 for some (j; k) 2 G � S. Let �0jk � 0
be arbitrary. De�ne (��jk; �0jk) as the (n� t)�matrix obtained from � after replacing �jk
by �0jk: Then, (
; (��jk; �

0
jk)) 2 D�; that is, the value of the (j; k)th entry of � is irrelevant.

Hence, we assume without loss of generality that

�jk = 0 whenever qjk = 0: (8)

Under this convention, the following result holds.

Proposition 3 For every market M the set of solutions D� of the (DLP) is a compact

subset of Rm � Rn�t.

Let M be a market and (
; �) 2 D be a dual feasible solution. We write T d(
; �) to

denote the value of the objective function of the (DLP) at (
; �); that is,

T d (
; �) =
P

i di � 
i +
P

jk qjk � �jk:

The Strong Duality Theorem of Linear Programming (see Dantzig, 1963) applied to our

setting says that the values of the objective functions of the two linear problems at any pair

of solutions coincide; and viceversa, if at a feasible assignment and at a feasible dual the
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two objective functions coincide then they are solutions of their respective linear problems.

Formally,

Strong Duality Theorem Let M be a market and assume A 2 F and (
; �) 2 D.
Then,

A 2 F � and (
; �) 2 D� if and only if T (A) = T d(
; �): (9)

The Complementary Slackness Theorem of Linear Programming (see Schrijver, 1996)

says that if a restriction is not binding then the corresponding variable has to be equal

to zero and if a variable is not equal to zero then its corresponding restriction has to be

binding. Hence, applied to our setting the Complementary Slackness Theorem says the

following.

Complementary Slackness Theorem Let M be a market. Then, for all A 2 F � and
(
; �) 2 D�, the following properties hold:

(CS.1) For all (i; j; k) 2 B �G� S, Aijk � (
i + �jk � � ijk) = 0.
(CS.2) For all i 2 B, (

P
jk Aijk � di) � 
i = 0.

(CS.3) For all (j; k) 2 G� S, (
P

iAijk � qjk) � �jk = 0.

4.3 Competitive Equilibria and Solutions of the Linear Programs

Theorem 2 below says that the set of competitive equilibria (pairs of equilibrium price

vectors and compatible assignments) is strongly related to the set of solutions of the two

Linear Programs. In order to state and prove it, we need to relate price vectors with dual

solutions.

De�ne the mappings 
(�) : Rn+ ! Rm+ and �(�) : Rn+ ! Rn�t+ as follows. Let p 2 Rn+ be
given. For each i 2 B, de�ne


i(p) =

(
vij � pj if there exists j 2 r>

i (p)

0 otherwise,
(10)

and for each (j; k) 2 G� S, de�ne

�jk (p) =

(
pj � rjk if pj � rjk > 0
0 otherwise.

(11)

The number 
i(p) is the gain obtained by buyer i from each unit that he wants to buy at

p (if any) and the number �jk(p) is the pro�t obtained by seller k from each unit of good

j that he wants to sell at p (if any).
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Theorem 2 Let M be a market and let p 2 Rn+ be a price vector. The following two
statements hold.

(2.1) Assume p 2 P �. Then, A 2 F � if and only if p and A are compatible.
(2.2) p 2 P � if and only if (
(p); �(p)) 2 D�.

Proof See Appendix 1 at the end of the paper.

Corollary 1 The set of equilibrium price vectors P � is a convex and compact subset of

Rn+.

5 Structure of the Set of Competitive Equilibria

5.1 Previous results

Recall that the assignment game of Shapley and Shubik (1972) is a particular instance of

our model where each seller owns one indivisible object and each buyer wants to buy at

most one object. Since objects owned by di¤erent sellers may be perceived di¤erently by

di¤erent buyers (or they may, indeed, be di¤erent), we can identify the set of goods G with

the set of sellers S. Namely, a market M is an assignment game if di = 1 for all i 2 B;
n = t and for all (j; k) 2 G� S,

qjk =

(
1 if j = k

0 if j 6= k:

Hence, each seller j 2 S has a reservation value rj � 0 of the indivisible object j 2 G that
he owns. Thus, an assignment game can be identi�ed as an (m � t)�matrix a, where for
all (i; j) 2 B � S, aij = maxf0; vij � rjg.
The set of competitive equilibria of a (one-to-one) assignment game has the following

four properties.

(1) The set of equilibrium price vectors is a non-empty, convex and compact subset of

Rn+.
(2) The set of competitive equilibria is the Cartesian product of the set of equilibrium

price vectors times the set of optimal assignments.

(3) The set of equilibrium price vectors P � endowed with the partial order � on Rn+
(where p � p0 if and only if pj � p0j for all j 2 G) is a complete lattice.6 In particular,

6See Appendix 3 for a self-contained de�nition of a complete lattice.
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given p; p0 2 P �; (maxfpj; p0jg)j2G 2 P � and (minfpj; p0jg)j2G 2 P �: Moreover, the set of
equilibrium price vectors contains two extreme vectors pB and pS with the property that

for any equilibrium price vector p 2 P �, pS � p � pB:
(4) The lattice structure of P � is translated into the set of utilities that are attainable at

equilibrium as follows. Given p 2 P � and an optimal assignment � = (�ij)(i;j)2B�S, de�ne
for each i 2 B,

ui(p) =

(
vij � pj if �ij = 1 for some j 2 S
0 otherwise,

and for each j 2 S,

wj(p) =

(
pj � rj if �ij = 1 for some i 2 B
0 otherwise.

It turns out that these utilities are independent of the chosen optimal assignment � (see

Lemma 6 below for a proof of this statement in our more general many-to-many setting).

Thus, we can write them as depending only on the equilibrium price vector p. Then, for all

p; p0 2 P �, the following three statements are equivalent:
(a) pj � p0j for all j 2 G:
(b) ui(p0) � ui(p) for all i 2 B:
(c) wj(p) � wj(p0) for all j 2 S:
Hence, we can de�ne two binary relations �u and �w on P � as follows: for p; p0 2 P �;

p �u p0 () ui(p) � ui(p0) for all i 2 B;

and

p �w p0 () wj(p) � wj(p0) for all j 2 S:

Then, the set P � endowed with the partial order �u (or �w) is a complete lattice. Moreover,
�u and �w are dual in the sense that p �u p0 () p0 �w p.
Consider again our model. We have already seen (in Theorem 1 and Corollary 1) that

property (1) still holds while Milgrom (2009) shows using Topkis (1978)�s theorem that

property (3) also holds. In this section we will show that property (2) is satis�ed while

property (4) only holds partially. In particular, the equivalences between the statements

(a), (b), and (c) above do not hold anymore on P �. One of the reasons is because there may

be goods that are never exchanged in equilibrium; for instance, because the smallest reserve

price rj = mink2S rjk of good j is strictly larger than its largest valuation vj = maxi2B vij.
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Then, the price of good j can be equal to any number in the interval [vj; rj] without a¤ecting

the equilibrium property of the full vector. We shrink the set of equilibrium price vectors by

�xing the price of the goods that are never exchanged at equilibrium at the highest possible

one that keeps the equilibrium properties of the full price vector. We call it set the set of

restricted equilibrium price vectors and denote it by P ��. Then, we show in Theorem 3 that

P �� has also a complete lattice structure with the natural order � of vectors.7 Moreover,

we show that the equivalence of (a) and (b) above holds on P �� and that property (c) above

is not anymore equivalent to properties (a) and (b) on the set P ��; i.e., for all p; p0 2 P ��;
(a) and (b) are equivalent and each implies (c) but (c) neither implies (a) nor (b).

Before proceeding we compare these results with similar results obtained in related

models. Camiña (2006) shows that in her model with one seller and unit-demands the set

of core utilities has the following properties: (i) it is non-empty, (ii) it may not coincide

with the set of utilities that are attainable at equilibrium, and (iii) it forms a complete

lattice. In Sotomayor (2007)�s model where there are the same number of goods and sellers,

each seller only owns (potentially many) units of one good and exchanges are binary (i.e.,

Aijk 2 f0; 1g for all (i; j; k) 2 B � G � S) it is showed that the sets of agents�utilities
attainable at equilibrium have a dual lattice structure with the partial order � on Rn.
This is inherited from the lattice of the set of equilibrium price vectors because each seller

only owns units of one good. Moreover, Sotomayor (2007)�s proof applies Tarski (1955)�s

algebraic �xed point theorem to an order-preserving and non-identical map whose �xed

points are the set of utilities that are attainable at equilibrium. In contrast, our results are

di¤erent and are exclusively based on duality theorems of linear programming. Sotomayor

(2009) extends her previous results to a more general model in which any two agents from

each side of the market may form a partnership, contribute with an (identical) amount of

labor (that may be perfectly divisible) and generate an amount of income which has to

be divided among the two of them. Sotomayor (2009) shows the relationships that hold

among several solution concepts and their non-emptyness. Finally, Milgrom (2009) does

not address properties (2) and (4), and complements property (3) by showing, using Topkis

(1978)�s theorem, that in his general setting the set of market-clearing prices is a non-empty,

closed, and convex sublattice (a subset of a lattice that is itself a lattice).

The main methodological contribution of our paper is that all our results on the gen-

7Our proof is direct and it does not use Topkis (1978)�s theorem. In addition, with a few slight mod-

i�cations it can be adapted to prove directly that P � has a complete lattice structure with the order

�.
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eralized many-to-many assignment game are exclusively based on linear programming ar-

guments: (i) the identi�cation of optimal assignments and competitive equilibrium prices

with the solutions of the primal and dual linear programs, respectively; and (ii) the Strong

Duality and the Complementary Slackness Theorems. As we have already argued in the

Introduction, this approach is useful because we can obtain optimal assignments and equilib-

rium price vectors by means of any of the many existing algorithms that compute solutions

of linear programs.

5.2 Cartesian Product Structure of the Set of Competitive Equi-
libria

We �rst establish that in our model the set of competitive equilibria has a Cartesian product

structure; namely, if (p;A) and (p0; A0) are two competitive equilibria ofM then, (p;A0) and

(p0; A) are also two competitive equilibria of M . This follows immediately from Lemmata

2 and 4 used to prove Theorem 2. We state it as Proposition 4 below.

Proposition 4 Let M be a market. Then, (p;A) is a competitive equilibrium of M if

and only if p 2 P � and A 2 F �.

Proof Assume (p;A) is a competitive equilibrium ofM . By de�nition, p 2 P �. Moreover,
p and A are compatible. By Lemma 2, A 2 F �. Assume p 2 P � and A 2 F �. By Lemma
4, p and A are compatible. Thus, (p;A) is a competitive equilibrium of M: �

5.3 Sets of Equilibrium Utilities

Let p 2 Rn+ be a price vector and A 2 F a feasible assignment of market M: We de�ne

the utility of buyer i 2 B at the pair (p;A) as the total net gain obtained by i from his

exchanges speci�ed by A at price p. We denote it by ui(p;A); namely,

ui(p;A) =
P

jk(vij � pj) � Aijk:

We de�ne the utility of seller k 2 S at the pair (p;A) as the total net gain obtained by k
from his exchanges speci�ed by A at price p. We denote it by wk(p;A); namely,

wk(p;A) =
P

ij(pj � rjk) � Aijk:

De�ne

G> = fj 2 G j there exists A 2 F � such that Aijk > 0 for some (i; k) 2 B � Sg
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as the set of goods that are exchanged at some optimal assignment. For each seller k 2 S,
de�ne

G>k = fj 2 G j there exists A 2 F � such that Aijk > 0 for some i 2 Bg

as the set of goods of which k sells strictly positive amounts at some optimal assignment.

Obviously, G> = [k2SG>k .
Next lemma states that at equilibrium utilities are independent of the particular optimal

assignment chosen since they only depend on the equilibrium price vector (which determines

the associated solution of the (DLP)).

Lemma 6 Let p 2 P � be an equilibrium price vector of M and let A 2 F � be an optimal
assignment of M . Then, the following two conditions hold:

(L6.1) For each buyer i 2 B, ui(p;A) = 
i(p) � di:
(L6.2) For each seller k 2 S, wk(p;A) =

P
j2G>k

(pj � rjk) � qjk:8

Proof of Lemma 6 Let (p;A) 2 P ��F �: Note that p and A are compatible. To prove
(L6.1), �x i 2 B. By de�nition, ui(p;A) =

P
jk(vij � pj) �Aijk: Let (j; k) 2 G�S be given.

If Aijk = 0 then, (vij � pj) �Aijk can trivially be written as 
i(p) �Aijk: If Aijk 6= 0 then, by
condition (D.d) in the de�nition of Di(p); j 2 r�

i (p); which implies that (vij � pj) = 
i(p);
and

ui(p;A) = 
i(p) � (
P

jk Aijk):

If 
i(p) = 0 then, the statement holds because 
i(p)�(
P

jk Aijk) = 
i(p)�di = 0: By condition
(CS.2) in the Complementary Slackness Theorem, if 
i(p) 6= 0 then

P
jk Aijk = di: Thus,

ui(p;A) = 
i(p) � di:

To prove (L6.2), �x k 2 S. By de�nition, wk(p;A) =
P

ij(pj � rjk) � Aijk: Then,P
ij(pj � rjk) � Aijk =

P
j(pj � rjk) � (

P
iAijk):

Since p 2 P �; by (E.S), if (pj � rjk) > 0 then
P

iAijk = qjk: If (pj � rjk) < 0 then,

Sjk(pj) = f0g. Hence, since p and A are compatible,
P

iAijk = 0. Therefore,

wk(p;A) =
P

j2fj02Gjpj0�rj0k�0g
(pj � rjk) � qjk =

P
j2G>k

(pj � rjk) � qjk: (12)

8Observe that wk(p;A) can also be written as
P

j2G �jk(p) � qjk.
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Condition (12) holds because fj0 2 G j qj0k > 0 and pj0 � rj0k > 0g � G>k � fj 2 G j
pj � rjk � 0g: To see that, let j 2 G>k . Hence, there exists �A 2 F � such that �Aijk > 0;

which implies, since p and �A are compatible, pj� rjk � 0: Thus, the second inclusion holds.
To prove the �rst one, assume j 2 fj0 2 G j qj0k > 0 and pj0 � rj0k > 0g. Then, since
p 2 P �, by (E.S),

P
iAijk = qjk: Thus, j 2 G>k : �

By Lemma 6, we can write the utilities of buyers and sellers as functions only of the

equilibrium price vector p; namely, given p 2 P �, we write for each i 2 B and each k 2 S,

ui(p) = 
i(p) � di (13)

and

wk(p) =
P

j2G>k
(pj � rjk) � qjk: (14)

5.4 The Set of Restricted Equilibrium Price Vectors

We start this subsection with an example that illustrates two important facts. First, it shows

that, in contrast with the Shapley and Shubik (1972)�s assignment game and Sotomayor

(2007)�s generalization, there are markets with two equilibrium price vectors p; p0 2 P � with
the property that wk(p0) > wk(p) for all k 2 S while ui(p0) > ui(p) for some i 2 B (the

equivalence between statements (b) and (c) at the beginning of Section 5 does not hold on

P �). Second, it also shows that the (incomplete) binary relation � on the set of vectors in
Rn+ is not imbedded into the set of attainable equilibrium utilities (the equivalence between
statements (a) and (b) at the beginning of Section 5 does not hold on P �). These two facts

will have consequences for the lattice structures of the set(s) of (restricted) equilibrium

price vectors and the sets of attainable equilibrium utilities that will be analyzed at the

end of this subsection.

Example 1 LetM = (B;G; S; V; d; R;Q) be a market whereB = fb1; b2g, G = fg1; g2; g3g,

S = fs1g, V =
 
8 0 2

0 5 3

!
, d = (2; 3), R =

0B@ 1

2

10

1CA, and Q =
0B@ 2

3

1

1CA. It is easy to see
that, for all p3; p03 2 [3; 10], p = (5; 4; p3) and p0 = (7; 2; p03) are two equilibrium price vectors
of M and 14 = w1(p) > w1(p0) = 12: Furthermore, 
(p) = (3; 1) and 
(p0) = (1; 3) : Then,

u1(p) = 3 � 2 = 6, u2(p) = 1 � 3 = 3, u1(p0) = 1 � 2 = 2, and u2(p0) = 3 � 3 = 9: Thus,
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w1(p) > w1(p
0) and u1(p) > u1(p0) and u2(p0) > u2(p): Moreover, observe that, for all i 2

f1; 2g, ui(7; 2; p3) = ui(7; 2; p03) for all 3 � p3 < p03 � 10 but p = (7; 2; p3) < (7; 2; p03) = p0:
This is because no unit of good 3 is exchanged in any equilibria and hence, the equilibrium

price vector p = (7; 2; p3) is equivalent (in terms of its induced demands and supplies) to

the equilibrium price vector p0 = (7; 2; p03) as long as 3 � p3 < p03 � 10: �

In order to restore the interesting property that the (incomplete) binary relation �
on Rn+ reproduces itself in terms of buyers utilities (in the corresponding space) we have
to eliminate an insubstantial multiplicity of equilibrium prices of the goods that are not

exchanged at any equilibrium assignment. We do it by setting the prices of each non-

exchanged good equal to the highest possible one (keeping the equilibrium property of the

price vector).9 Formally, given an equilibrium price vector p 2 P �, de�ne p = (pj)j2G as

follows:

pj =

(
pj if j 2 G>

pSj if j =2 G>;
(15)

where pSj = sup
p2P �

pj.10 Proposition 5 below says that this distortion does not a¤ect the

equilibrium property of the original price vector.

Proposition 5 Let M be a market and let p 2 P �. Then, p 2 P �.

Proof See Appendix 1 at the end of the paper �

Proposition 6 shows that the distortion in (15) coincides with the one produced in p by

computing its associated price vector p(
(p);�(p)) from its dual solution (
(p); �(p)) (see (16)

in Appendix 1).

Proposition 6 For every p 2 P �, p(
(p);�(p)) = p.

Proof See Appendix 1 at the end of the paper. �

Given a market M , we can de�ne the set of restricted equilibrium price vectors P �� as

those that are obtained from equilibrium price vectors after setting the price of the goods

9The choice of the highest price is arbitrary. The important fact is to select, for each of these goods,

just one of its potentially many equilibrium prices.

10The vector pS = (pSj )j2G is called the sellers-optimal equilibrium price. Similarly, de�ne for each j 2 G,
pBj = inf

p2P�
pj : The vector pB = (pBj )j2G is called the buyers-optimal equilibrium price. By Milgrom (2009),

the price vectors pS and pB do exist and they are the two extreme equilibrium prices of the complete lattice

(P �;�;_;^).
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that are not exchanged at any optimal assignment equal to their sellers-optimal equilibrium

price. Namely,

P �� = fp 2 P � j pj = pSj for every j =2 G>g:

Theorem 3 below states that the set P �� has a complete lattice structure with the natural

order � on Rn+.11

Theorem 3 The four-tuple (P ��;�;_;^) is a complete lattice.

Proof See Appendix 1 at the end of the paper. �

Our objective in the remaining of this subsection is to show how the complete lattice

structure with the natural order � on Rn+ (and on P � and P ��) translates into the set of
of agents�utilities that are attainable at equilibrium. The fact that the lattice structure

of the set of equilibrium price vectors is inherited in a dual way by the sets of equilibrium

utilities of buyers and sellers is an important property because it says that there is a con�ict

of interests between the two sides of the market (and unanimity in each of the sides) with

respect to two comparable equilibrium price vectors.

De�ne the partial orders �u and �w on P � as follows: for any pair p; p0 2 P �;

p �u p0 if and only if ui(p) � ui(p0) for every i 2 B

and

p �w p0 if and only if wk(p) � wk(p0) for every k 2 S:

Example 1 has showed that we may have p; p0 2 P � with the property that p 6= p0, but
ui(p) = ui(p

0) for all i 2 B; i.e., the binary relation �u is not a partial order on P � because
it is not antisymmetric since p �u p0, p0 �u p and p 6= p0 hold. Hence, the lattice structure
of the set P � with the binary relation � is not inherited by the set of utilities of buyers

that are attainable at equilibrium. However, next proposition says that the partial order

� on the set of restricted equilibrium price vectors translates into the set of utilities of the

buyers that are attainable at equilibrium (i.e., the statements (a) and (b) at the beginning

of Section 5 are equivalent on this subset of P �). Formally,

Proposition 7 Let p; p0 2 P �� be two restricted equilibrium price vectors of market M .

Then,

ui(p) � ui(p0) for every i 2 B if and only if p0j � pj for every j 2 G:
11In order to state our results we present in Appendix 3 some notions to de�ne a lattice in our setting.

See Birko¤ (1979) for a general description of lattice theory.

21



Proof See Appendix 1 at the end of the paper. �

Consider now the restriction of the partial order �u on the set P �� and de�ne the
binary operations _u and ^u on P �� as the binary operations on P � restricted to the set
P ��; namely, for all p; p0 2 P ��,

p _u p0 � �p and p ^u p0 � p̂:

Theorem 4 The four-tuple (P ��;�u;_u;^u) is a complete lattice.

Proof It follows from Theorem 3 and Proposition 7. �

Next proposition shows that the con�ict of interests between the two sides of the market

on the set of equilibrium price vectors holds partially in our general model (statement (b)

in the beginning of Section 5 implies statement (c) on P �); namely, if buyers unanimously

consider the equilibrium price vector p as being at least as good as equilibrium price vector

price p0 then all sellers consider p0 as being at least as good as p (remember that Example

1 shows that the converse does not hold).

Proposition 8 Let p; p0 2 P � be two equilibrium price vectors of market M such that

ui(p) � ui(p0) for all i 2 B: Then, wk(p0) � wk(p) for all k 2 S.

Proof Let p; p0 2 P � and assume that ui(p) � ui(p
0) for every i 2 B. By Lemma 8 in

Appendix 1, p0j � pj for every j 2 G>: Fix k 2 S. Then, p0j � rjk � pj � rjk for every
j 2 G>k : Thus, by (14), wk(p0) � wk(p). �

Proposition 9 states that utilities associated to the two extreme equilibrium price vectors

pB and pS are extreme and opposite utilities.

Proposition 9 Let M be a market. Then, for every p 2 P �; the following properties
hold.

(9.1) For every i 2 B, ui(pB) � ui(p) � ui(pS).
(9.2) For every k 2 S, wk(pS) � wk(p) � wk(pB).

Proof Consider any p 2 P �. By their de�nitions, pBj � pj � pSj for all j 2 G: In

particular, these inequalities hold for all j 2 G>. By Lemma 8 in Appendix 1, ui(pB) �
ui(p) � ui(pS) for all i 2 B: Thus, (9.1) holds. By Proposition 8, wk(pB) � wk(p) � wk(pS)
for all k 2 S. Thus, (9.2) holds. �

Consider again Example 1. Take p = (3; 2; 10) and p0 = (3
2
; 3; 10) and observe that

p; p0 2 P �� and w1(p) = w1(p0) = 4: Hence, p �w p0, p0 �w p, and p 6= p0. Thus, the binary
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relation �w is not a partial order on P �� because it is not antisymmetric. Hence, the set
P �� does not have a lattice structure with the binary relation �w (and the induced binary
operations _w and ^w). Observe that this is a direct consequence of the fact that in our
model sellers may own units of di¤erent goods. Therefore, two unrelated equilibrium price

vectors in P �� may give the same utility to a seller because the losses in revenues from

selling one good with a lower price are compensated with the gains from selling another

good with a higher price. Obviously, this can not occur whenever each seller only owns

units of a unique good, as in Sotomayor (2007 and 2009).

6 Concluding Remarks

Before �nishing the paper some remarks are in order. The �rst one is related with the

computational advantage of the linear programming approach. It allows to �nd the (essen-

tially) unique optimal assignment A� as the (essentially) unique solution of the (PLP) as

well as the set of equilibrium price vectors as solutions of the (DLP). Moreover, and fol-

lowing Leonard (1983), there is an alternative way to compute the two extreme equilibrium

price vectors pS and pB as solutions of two linear programs. To �nd pS we �rst compute�

S; �S

�
, the best dual solution from the point of view of the sellers, by letting T � T (A�)

and solving the following associated dual program: choose (
; �) 2 Rm � Rn�t in order to

max
(
;�)2Rm�Rn�t

P
jk qjk � �jk

s. t. (D.0)
P

i di � 
i +
P

jk qjk � �jk = T

(D.1) 
i + �jk � � ijk for all (i; j; k) 2 B �G� S;
(D.2) 
i � 0 for all i 2 B;
(D.3) �jk � 0 for all (j; k) 2 G� S;
(D.4) �jk = 0 if qjk = 0.

It is easy to show that
�

S; �S

�
is the unique solution of this linear program, which is

among all solutions of the (DLP) the one with the highest entries in the matrix �. Then,

set pS = p(

S ;�S). Analogously, to �nd pB we �rst compute

�

B; �B

�
by solving a symmetric

linear program. Then, set pB = p(

B ;�B). Thus pS and pB are obtained by solving two dual

linear programs.

Second, the classical approach in matching of transforming many-to-many or many-to-

one ordinal problems into a one-to-one matching problem by breaking each buyer i and each
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seller k into as many pieces as his capacity constraint (di and
P

j qjk, respectively) would

not work here because in the one-to-one setting two units held by two di¤erent �pieces�of

a seller would have to be considered as di¤erent goods and hence, they could have di¤erent

prices.

Finally, we leave for future research the study of alternative cooperative notions like pair-

wise stability, core, or set-wise stability of the natural TU-game associated to our market

and the analysis of their relationships with the set of competitive equilibria (Camiña (2006)

and Sotomayor (2002, 2007, and 2009) perform parts of this analysis in their respective

settings). We conjecture that the core and the set-wise stable set are non-empty, they are

di¤erent sets, and the set of utilities attainable at equilibrium is a strict subset of the set of

set-wise stable utilities. We also leave for future research the characterization of (strategic)

equilibria when sellers (or buyers) set prices simultaneously and the relationship of these

sets with the set of competitive equilibrium prices of a market M .
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Appendix 1: Omitted proofs

Before proving Theorem 1 we de�ne for each solution (
�; ��) 2 D� of the (DLP) its

associated price vector p(

�;��) = (p

(
�;��)
j )j2G as follows. For each j 2 G,

p
(
�;��)
j = min

fk2Sjqjk>0g
f��jk + rjkg: (16)

Observe that when computing the minimum among all sellers, we have to exclude those

that do not have good j; otherwise, the price of good j would be equal to 0 since, by

assumption (1), if qjk = 0 then rjk = 0; and by (8), ��jk = 0: Moreover, we de�ne p
(
�;��)
j to

be the minimum because, even if qjk > 0, we may have that Aijk = 0 for all i 2 B in all

optimal assignments A 2 F �; for instance, if rjk > vij for all i 2 B.

Theorem 1 For every market M , P � 6= ?.

Proof Let A� 2 F � and (
�; ��) 2 D� be solutions of the (PLP) and (DLP), respectively.

By Propositions 1 and 2, they exist. To show that P � 6= ;, we will show that (p(
�;��); A�)
is an equilibrium of M . We �rst show that for all i 2 B, A�(i) 2 Di(p

(
�;��)):

Fix i 2 B. Since A� is feasible, (D.a) and (D.b) hold.
Before proceeding, observe that by restriction (D.1) in the (DLP), for all (j0; k0) 2 G�S,


�i + �
�
j0k0 � � ij0k0. Thus, 
�i � � ij0k0 � ��j0k0 : If (j0; k0) 2 G�S is such that qj0k0 > 0 then, by

(3), 
�i � vij0 � (��j0k0 + rj0k0): Thus, for all j0 2 G,


�i � vij0 � min
fk2Sjqj0k>0g

f��j0k + rj0kg: (17)

To show that (D.c) holds assume that
P

jk A
�
ijk < di. By (CS.2) of the Complementary

Slackness Theorem,


�i = 0: (18)

By (16) and (17), 
�i � vij � p
(
�;��)
j for all j 2 G. By (18), 0 � vij � p(


�;��)
j for all j 2 G.

Hence, r>
i (p

(
�;��)) = ;:
To show that (D.d) holds, �x j 2 G and assume that

P
k A

�
ijk > 0. We want to show

that j 2 r�
i (p

(
�;��)): By assumption, there exists k0 2 S such that A�ijk0 > 0: Thus,

qjk0 > 0. By (CS.1) of the Complementary Slackness Theorem, 
�i +�
�
jk0 = � ijk0 = vij� rjk0.

Thus, 
�i = vij � (��jk0 + rjk0). Hence, 
�i � vij � minfk2Sjqjk>0gf��jk + rjkg: By (17),

�i = vij �minfk2Sjqjk>0gf��jk + rjkg: By (16),


�i = vij � p
(
�;��)
j : (19)
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By (16) and (17), 
�i � vij0 � p
(
�;��)

j0
for all j0 2 G: By (19), vij � p(


�;��)
j � vij0 � p(


�;��)
j0 for

all j0 2 G. By restriction (D.2) in the (DLP), 
�i � 0: Hence, j 2 r�
i (p

(
�;��)):

To show that (E.S) holds �x (j; k) 2 G�S. We want to show that
P

iA
�
ijk 2 Sjk(p

(
�;��)
j ).

Assume �rst that
P

iA
�
ijk < qjk. Then, by (CS.2) in the Complementary Slackness Theo-

rem, ��jk = 0. Since, by de�nition, p
(
�;��)
j = minfk02Sjqjk0>0gf�

�
jk0 + rjk0g; pj � ��jk0 + rjk0 for

all k0 such that qjk0 > 0: But since 0 �
P

iA
�
ijk < qjk and �

�
jk = 0, p

(
�;��)
j ) � rjk. Hence,

if pj > rjk then
P

iA
�
ijk 2 fqjkg = Sjk(p

(
�;��)
j ). If p(


�;��)
j = rjk then (E.S) holds trivially

since
P

iA
�
ijk 2 f0; :::; qjkg: Assume p

(
�;��)
j < rjk: By (1), qjk > 0. To get a contradiction,

assume there exists i 2 B such that A�ijk > 0. By (CS.1) of the Complementary Slackness

Theorem, and since, by (3), � ijk = vij � rjk, 
�i + ��jk = � ijk = vij � rjk. By hypothesis,
and since by restriction (D.3) of the (DLP), ��jk � 0; 
�i � 
�i + ��jk < vij � p

(
�;��)
j . Thus,


�i < vij � p(

�;��)

j ; contradicting condition (17). Thus, for all i 2 B; A�ijk = 0: Hence,P
iA

�
ijk = 0 2 f0g = Sjk(p

(
�;��)
j ): Thus p(


�;��) 2 P �. �

The proof of Theorem 1 (which proves that P � is non-empty by showing that for all

(
�; ��) 2 D�, p(

�;��) 2 P �) implies the following corollary.

Corollary 2 Let (
; �) 2 D�. Then, p(
;�) 2 P �.

Theorem 2 Let M be a market and let p 2 Rn+ be a price vector. The following two
statements hold.

(2.1) Assume p 2 P �. Then, A 2 F � if and only if p and A are compatible.
(2.2) p 2 P � if and only if (
(p); �(p)) 2 D�.

Proof The statements of Theorem 2 will follow from Lemmata 2, 3, 4, and 5 below. We

start by stating and proving a lemma that will be used in the proofs of Lemmata 4 and 5.

Lemma 1 Assume (
(p); �(p)) 2 D� and A 2 F �. Then, p and A are compatible.
Proof of Lemma 1 Assume p 2 Rn+ is such that (
(p); �(p)) 2 D� and A 2 F �.

To show that p and A are compatible, we �rst show that for all i 2 B, A(i) 2 Di(p):

Since A is feasible, (D.a) and (D.b) hold. To show that (D.c) holds, assume r>
i (p) 6= ;:

Then, vij � pj > 0 for some j 2 G. By de�nition, 
i(p) > 0: By condition (CS.2) in

the Complementary Slackness Theorem,
P

jk Aijk = di; namely, condition (D.c) in the

de�nition of Di(p) holds.

To show that (D.d) holds, �x (i; j) 2 B�G and assume
P

k Aijk > 0:We want to show

that j 2 r�
i (p): Since

P
k Aijk > 0, there exists a seller k 2 S such that Aijk > 0. Thus,

qjk > 0 holds. Moreover, by condition (CS.1) in the Complementary Slackness Theorem,
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i(p) + �jk(p) = � ijk. Since, by (3), qjk > 0 implies � ijk = vij � rjk; we have


i(p) + �jk(p) + rjk = vij: (20)

We distinguish between the following two cases.

Case 1: pj � rjk � 0: Then, �jk(p) = pj � rjk � 0: By (20), 
i(p) = vij � pj: If 
i(p) =
vij � pj > 0 then j 2 r>

i (p): By (7), j 2 r�
i (p): If 
i(p) = vij � pj = 0 then r>

i (p) = ;:
Hence, for all (j0; k0) 2 G� S, 0 � vij0 � pj0. Thus, j 2 r�

i (p):

Case 2: pj � rjk < 0: Then, �jk(p) = 0: By (20), 
i(p) + rjk = vij: Hence, 
i(p) + pj < vij:
Thus, 
i(p) < vij � pj: Hence, by de�nition of 
i(p), there exists j0 2 r>

i (p) such that


i(p) = vij0 � pj0 < vij � pj, but this is impossible (i.e., Case 2 never occurs).
Hence, condition (D.d) holds for i 2 B. Thus, A(i) 2 Di(p) for all i 2 B.
We want to show now that, for all (j; k) 2 G� S,

P
iAijk 2 Sjk (pj) holds. Fix (j; k) 2

G � S: Since A is feasible, 0 �
P

iAijk � qjk: Assume pj = rjk: Then,
P

iAijk 2 Sjk (pj)
holds trivially. Assume pj > rjk: Then, �jk(p) = pj � rjk > 0: By condition (CS.3) in

the Complementary Slackness Theorem,
P

iAijk = qjk: Thus,
P

iAijk 2 Sjk(pj) = fqjkg:
Finally, assume pj < rjk:. Then, �jk(p) = 0 and Sjk(pj) = f0g: Suppose Aijk > 0: Then,
qjk > 0: By condition (CS.1) in the Complementary Slackness Theorem, 
i(p) + �jk(p) =

� ijk = vij � rjk � 0: Since pj < rjk;

vij � pj > vij � rjk = 
i(p) � 0;

a contradiction with the de�nition of 
i(p): Thus, for all i 2 B, Aijk = 0 and
P

iAijk =

0 2 Sjk(pjk) = f0g. �
Lemma 2 [(= of (2.1)] Assume p 2 P � and A 2 F are compatible. Then, A 2 F �.
Proof of Lemma 2 Let p 2 P � and A 2 F be compatible. We show that A 2 F � in
two steps. We �rst show in Claim 1 that (
(p); �(p)) 2 D. Then, we show in Claim 2 that

T (A) = T d(
(p); �(p)), and hence, by the Strong Duality Theorem, A is a solution of the

(PLP).

Claim 1: (
(p); �(p)) 2 D.
Proof of Claim 1 By their de�nitions, 
i(p) � 0 for all i 2 B and �jk(p) � 0 for all

(j; k) 2 G � S; namely, restrictions (D.2) and (D.3) of the (DLP) hold. To show that, for
all (i; j; k) 2 B �G� S,


i(p) + �jk(p) � � ijk (21)
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holds, �x i 2 B and assume �rst that 
i(p) = 0. Then, vij � pj � 0 for all j 2 G: If qjk > 0
then, by (3), � ijk = vij � rjk � pj � rjk � �jk(p): Thus, since 
i(p) = 0; (21) holds. If

qjk = 0 then, by (3), � ijk = 0: Thus, by de�nition of �jk(p) and since 
i(p) = 0, (21) holds.

Hence, if 
i(p) = 0 then (21) holds.

Assume now 
i(p) > 0. Then, there exists j 2 r>
i (p) such that 
i(p) = vij � pj > 0: By

de�nition of r>
i (p); for all (j

0; k0) 2 G� S,

vij � pj + �j0k0(p) � vij0 � pj0 + �j0k0(p)
� vij0 � pj0 + pj0 � rj0k0
= vij0 � rj0k0 :

If qj0k0 > 0 then, by (3), � ij0k0 = vij0 � rj0k0 and hence, vij � pj + �j0k0(p) � � ij0k0. If qj0k0 = 0
then � ij0k0 = 0, and since vij � pj > 0 and �j0k0(p) � 0; vij � pj + �j0k0(p) � � ij0k0 holds as
well. Thus, for all (i; j0; k0) 2 B �G� S, 
i(p) + �j0k0(p) � � ij0k0 : Hence, (21) holds as well
when 
i(p) > 0. Thus, (
(p); �(p)) 2 D. This ends the proof of Claim 1. �
Claim 2: T (A) = T d(
(p); �(p)).

Proof of Claim 2: By de�nition,

T (A) =
P

ijk � ijk � Aijk: (22)

Condition (E.D) in the de�nition of an equilibrium price vector implies that, for every

i 2 B, A(i) 2 Di(p): Fix (i; j; k) 2 B �G� S and assume Aijk > 0. By condition (D.d) in
the de�nition of Di(p), j 2 r�

i (p): Observe that Aijk > 0 implies qjk > 0: Thus, by (3),

� ijk = vij � rjk: (23)

If r>
i (p) 6= ; then j 2 r�

i (p) implies vij � pj � vij0 � pj0 for all j0 2 G. Thus, j 2 r>
i (p).

Hence, by de�nitions of 
i(p) and r>
i (p); and condition (23),


i (p) + pj � rjk = vij � pj + pj � rjk
= vij � rjk
= � ijk:

If r>
i (p) = ; then, since j 2 r�

i (p), vij � pj = 0 and 
i(p) = 0: Hence, by (23),


i (p) + pj � rjk = pj � rjk
= vij � rjk
= � ijk:
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Thus, 
i (p) + pj � rjk = � ijk: Hence, for all (i; j; k) 2 B � G � S such that Aijk > 0,

� ijk � Aijk = (
i(p) + pj � rjk) � Aijk: From (22),

T (A) =
P

ijk � ijk � Aijk
=

P
ijk (
i (p) + pj � rjk) � Aijk

=
P

ijk 
i (p) � Aijk +
P

ijk (pj � rjk) � Aijk:

Thus,

T (A) =
P

i(
P

jk Aijk) � 
i (p) +
P

jk(
P

iAijk) � (pj � rjk) : (24)

Fix i 2 B. By condition (D.c) in the de�nition of Di(p); if
P

jk Aijk < di then r
>
i (p) = ;,

and by the de�nition of 
i (p) ; 
i(p) = 0. Hence, by (24),

T (A) =
P

i di � 
i (p) +
P

jk(
P

iAijk) � (pj � rjk) : (25)

Condition (E.S) in the de�nition of an equilibrium price vector implies that, for every

(j; k) 2 G� S;
P

iAijk 2 Sjk(pj): To show that, for all (j; k) 2 G� S,

(
P

iAijk) � (pj � rjk) = qjk � �jk(p) (26)

holds, we distinguish among several cases.

Case 1: qjk = 0. Then, by supply feasibility,
P

iAijk = 0. Thus, (26) holds.

Case 2: qjk > 0.

Case 2.1:
P

iAijk = qjk. Then, by (E.S), pj � rjk � 0: Hence, pj � rjk = �jk(p). Thus,
(26) holds.

Case 2.2: 0 <
P

iAijk < qjk. Then, by (E.S), pj = rjk. Hence, �jk(p) = pj � rjk = 0.
Thus, (26) holds.

Case 2.3:
P

iAijk = 0. Then, by (E.S), pj � rjk. Hence, �jk(p) = 0: Thus, (26) holds.
Hence, for all (j; k) 2 G�S, (26) holds. Thus, by (25), T (A) =

P
i di�
i (p)+

P
jk qjk ��jk(p).

Therefore, T (A) = T d(
(p); �(p)): �
The statement of Lemma 2 follows from Claims 1 and 2. �

Lemma 3 [=) of (2.2)] Assume p 2 P �. Then, (
(p); �(p)) 2 D�.

Proof of Lemma 3 Assume p 2 P � and let A 2 F be any assignment compati-

ble with p: Thus, the hypothesis of Lemma 2 hold. By Claims 1 and 2 in the proof of

Lemma 2, (
(p); �(p)) 2 D and T (A) = T d(
(p); �(p)). By the Strong Duality Theorem,

(
(p); �(p)) 2 D�: �
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Lemma 4 [=) of (2.1)] Assume p 2 P � and A 2 F �. Then, p and A are compatible.
Proof of Lemma 4 Follows from Lemmata 1 and 3: �
Lemma 5 [(= of (2.2)] Assume (
(p); �(p)) 2 D�. Then, p 2 P �.
Proof of Lemma 5 Let p 2 Rn+ be such that (
(p); �(p)) 2 D�. We want to show that

p is an equilibrium price vector of M . Let A 2 F � be arbitrary. By Lemma 1, p and A are
compatible. Hence, by de�nition, p 2 P �. �
Theorem 2 holds since condition (2.1) follows from Lemmata 2 and 4, and condition

(2.2) follows from Lemmata 3 and 5. �

Proposition 5 Let M be a market and let p 2 P �. Then, p 2 P �.

Proof Let A 2 F � be an optimal assignment of M . We will prove that (p;A) is a

competitive equilibrium of M by showing that conditions (E.D) and (E.S) of De�nition 3

are satis�ed by p with respect to A:

(E.D) For every i 2 B; A(i) 2 Di(p):

Fix i 2 B. Since A is feasible, conditions (D.a) and (D.b) hold.
To show that condition (D.c) holds, assume r>

i (p) 6= ;. Then, there exists j 2 r>
i (p)

such that vij � pj > 0. Since either pj = pj or pj = pSj we have that either 0 < vij � pj =
vij � pj or 0 < vij � pj = vij � pSj , which implies that either r>

i (p) 6= ; or r>
i (p

S) 6= ;.
Since p and pS are both compatible with A,

P
jk Aijk = di: Thus condition (D.c) holds for

p.

To show that condition (D.d) holds, let (i; j) 2 B �G be such that
P

k Aijk > 0: Thus,

j 2 G>: We have to show that j 2 r�
i (p): Since p and p

S are both compatible with A,

j 2 r�
i (p) \r

�
i (p

S): By de�nition of r�
i (p),

vij � pj � 0 (27)

and

vij � pj � vij0 � pj0 for every j0 2 G: (28)

By de�nition of r�
i (p

S), vij � pSj � 0 and vij � pSj � vij0 � pSj0 = vij0 �maxp2P � pj0 for every
j0 2 G. We next show that:

vij � pj � 0

and

vij � pj � vij0 � pj0 for every j0 2 G:
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Since j 2 G>; pj = pj: Thus, by (27), vij � pj � 0: We distinguish between the following
two cases.

Case 1: j0 2 G>: Then, pj0 = pj0 and

vij � pj = vij � pj by de�nition of pj
� vij0 � pj0 by (28)

= vij0 � pj0 by de�nition of pj0 :

Hence, vij � pj � vij0 � pj0 for every j0 2 G>:
Case 2: j0 =2 G>: Then, pj0 = pSj0 = maxp2P � pj0 and

vij � pj = vij � pj by de�nition of pj
� vij0 � pj0 by (28)

� vij0 �maxp2P � pj0
= vij0 � pj0 by de�nition of pj0 :

Hence, vij � pj � vij0 � pj0 for every j0 =2 G>:
Thus, j 2 r�

i (p):

(E.S) For every j 2 G,
P

iAijk 2 Sjk(pj):
Assume �rst that j 2 G>: Then, pj = pj and Sjk(pj) = Sjk(pj). Since p and A are

compatible,
P

iAijk 2 Sjk(pj): Thus,
P

iAijk 2 Sjk(pj): Assume now that j =2 G>: Then,
pj = p

S
j and Sjk(pj) = Sjk(p

S
j ). Since p

S and A are compatible,
P

iAijk 2 Sjk(pSj ): Thus,P
iAijk 2 Sjk(pj): �

Proposition 6 For every p 2 P �, p(
(p);�(p)) = p.

Proof Let p 2 P � be given and let A� 2 F � be any compatible assignment. By de�nition,
for all j 2 G, ~pj � p(
(p);�(p))j = minfk2Kjqjk>0gf�jk(p) + rjkg:
Assume �rst that j =2 G>. Then,

P
ik A

�
ijk = 0: By (CS.2) of the Complementary

Slackness Theorem, ��jk = 0 for all k 2 S and all ��jk such that there exists 
� with the
property that (
�; ��) 2 D�. Thus, by part (2.2) of Theorem 2, �jk(p) = 0: Hence, ~pj =

minfk2Kjqjk>0g rjk: By Corollary 2 and de�nition of p
S, ~pj � pSj . To obtain a contradiction,

assume ~pj < pSj . Then, there exists k 2 K such that qjk > 0 and rjk < pSj . Since, by

Milgrom (2009), P � is a complete lattice, pS 2 P �, (E.S) implies that
P

iA
�
ijk = qjk > 0; a

contradiction.

Assume now that j 2 G>. It is immediate to see that, for all p0 2 P �;

G> �
S
i2B
r�
i (p

0) (29)
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holds. Next, we show that the following claim holds.

Claim Let p0 2 P � and (i; j) 2 B �G be such that j 2 r�
i (p

0), then vij � p0j = 
i(p0):
Proof of Claim Since j 2 r�

i (p
0), vij � p0j � 0 and for all j0 2 G, vij � p0j � vij0 � p0j0. If

vij � p0j = 0; then vij0 � p0j0 � 0 for all j0 2 G: Thus, 
i(p0) = 0 = vij � p0j: If vij � p0j > 0,
then j 2 r>

i (p
0). Thus, 
i(p

0) = vij � p0j: �
By restriction (D.1) of the (DLP), for all (
; �) 2 D� and all (i; j; k) 2 B � G � S,


i+�jk � � ijk. Thus, by (3), for all i 2 B and all (j; k) such that qjk > 0; 
i+�jk � vij�rjk:
Hence,

�jk + rjk � vij � 
i: (30)

Since j 2 G>; condition (29) implies that there exist (i0; k0) 2 B � S such that qjk0 > 0;

A�i0jk0 > 0 and j 2 r
�
i (p

0). Thus, by (30) applied to (
(p0); �(p0)) and i0 2 B, �jk(p0)+rjk �
vi0j�
i0(p0) for all k 2 S such that qjk > 0. By the claim above, �jk(p0)+rjk � vi0j�
i0(p0) =
p0j: Thus,

min
fk2Kjqjk>0g

f�jk(p0) + rjkg � p0j: (31)

Moreover, by (CS.1) of the Complementary Slackness Theorem, 
i0(p
0) + �jk0(p

0) = � i0jk0 =

vi0j � rjk0 : Thus, �jk0(p0) + rjk0 = vi0j � 
i0(p0); and by the claim above, �jk0(p0) + rjk0 =

vi0j � 
i0(p0) = p0j: Thus, by (31), minfk2Kjqjk>0gf�jk(p0) + rjkg = p0j, which implies that

p0j = pj: Hence, p
(
(p);�(p)) = p: �

Theorem 3 The four-tuple (P ��;�;_;^) is a complete lattice.

Proof We will show that the set of restricted equilibrium price vectors P �� ofM has the

property that each of its non-empty subsets has a supremum and an in�mum according to

the order �. This will imply that the set P �� has a complete lattice structure. Let Z � P ��

be a non-empty subset of restricted equilibrium price vectors of M . De�ne the price vector

pB (Z) 2 Rn+ by taking, for each j 2 G, the in�mum among all j�components of the vectors
in Z: Similarly, de�ne the price vector pS (Z) 2 Rn+ by taking, for each j 2 G, the supremum
among all j�components of the vectors in Z. Then, it turns out that pB (Z) and pS (Z)
are also restricted equilibrium price vectors of M (see Lemma 7 below). Formally, given a

market M , de�ne pB (Z) = (pBj (Z))j2G 2 Rn+ and pS (Z) = (pSj (Z))j2G 2 Rn+ as follows:
for each j 2 G, let

pBj (Z) = inf
p2Z

pj and pSj (Z) = sup
p2Z

pj: (32)

For the special case where Z = P �, we have written pB and pS instead of pB (P �) and

pS (P �).
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Lemma 7 Let M be a market. Then, pB (Z) ; pS (Z) 2 P �� for all ; 6= Z � P ��.

Proof of lemma 7 Let A 2 F � be an optimal assignment of M . Given a non empty
subset Z � P ��, we will �rst prove that pB (Z) and pS (Z) are equilibrium price vectors of

M by showing that conditions (E.D) and (E.S) of De�nition 3 are satis�ed by pB (Z) and

pS (Z) with respect to A.

(E.D) for pS (Z): For every i 2 B; A(i) 2 Di(p
S (Z)):

Fix i 2 B. Since A is feasible, conditions (D.a) and (D.b) hold.
To show that condition (D.c) holds, assume r>

i (p
S (Z)) 6= ;. Then, there exists j 2

r>
i (p

S (Z)) such that vij � pSj (Z) > 0. Since pSj (Z) = supp2Z pj; we have that for every

p 2 Z, 0 < vij � pSj (Z) � vij � pj, which implies that r>
i (p) 6= ;: Because p and A are

compatible,
P

jk Aijk = di: Thus condition (D.c) holds for p
S (Z).

To show that condition (D.d) holds, let j 2 G be such that
P

k Aijk > 0: We have to

show that j 2 r�
i (p

S (Z)). Since for all p 2 Z, p and A are compatible, j 2 r�
i (p) for

every p 2 Z: By de�nition of r�
i (p), vij � pj � 0 and vij � pj � vij0 � pj0 for every j0 2 G.

For every j0 2 G,
vij0 � pj0 � vij0 � sup

p̂2Z
p̂j0 (33)

holds for all p 2 Z. Let fpmgm2N be a sequence such that, for all m 2 N, pm 2 Z and

fpmj gm2N ! supp2Z pj: By (33), vij0 � pmj0 � vij0 � supp2Z pj0 for all m 2 N. Since j 2 r�
i (p)

for every p 2 Z; j 2 r�
i (p

m) for every m 2 N. Thus, vij � pmj � vij0 � pmj0 for all m 2 N.
Thus, vij � pmj � vij0 � supp2Z pj0 for all m 2 N. Hence, vij � supp2Z pj � vij0 � supp2Z pj0 :
Thus, j 2 r�

i (p
S (Z)):

(E.S) for pS (Z): For every (j; k) 2 G� S,
P

iAijk 2 Sjk(pSj (Z)):
Fix (j; k) 2 G � S. If pSj (Z) < rjk then, for all p 2 Z, pj � pSj (Z) < rjk. Thus,P

iAijk = 0 2 Sjk(pj): Thus,
P

iAijk 2 f0g = Sjk(pSj (Z)): If pSj (Z) > rjk; let fpmgm2N be
a sequence such that, for all m 2 N, pm 2 Z and fpmj gm2N ! supp2Z pj: Then, there exists

�m 2 N such that for all m > �m; pmj > rjk. Thus,
P

iAijk 2 fqjkg = Sjk(pmj ) for all m > �m:

Hence,
P

iAijk 2 fqjkg = Sjk(pSj (Z)):
(E.D) for pB (Z): For every i 2 B; A(i) 2 Di(p

B (Z)):

Fix i 2 B. Since A is feasible, conditions (D.a) and (D.b) hold.
To show that condition (D.c) holds, assume r>

i (p
B (Z)) 6= ;: Then, there exists j 2

r>
i (p

B (Z)) such that vij � pBj (Z) > 0. Let fpmgm2N be a sequence such that, for all
m 2 N, pm 2 Z and fpmj gm2N ! infp2Z pj: Then, there exist �m 2 N such that, for all
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m > �m; vij � pmj > 0, which implies that r>
i (p

m) 6= ;: Because pm and A are compatible,P
jk Aijk = di: Thus, condition (D.c) holds for p

B (Z).

To show that condition (D.d) holds, let j 2 G be such that
P

k Aijk > 0: We have to

show that j 2 r�
i (p

B (Z)): Since for all p 2 Z, p and A are compatible, j 2 r�
i (p) for every

p 2 Z: By de�nition of r�
i (p), vij � pj � 0 and vij � pj � vij0 � pj0 for every j0 2 G. By

de�nition of pB (Z) ; vij � pBj (Z) = vij � infp2Z pj � vij � pj for all p 2 Z: Fix j0 2 G and
let fpmgm2N be a sequence such that, for all m 2 N, pm 2 Z and fpmj0 gm2N ! infp2Z pj0 :

Then, by de�nition of pBj (Z), vij � pBj (Z) � vij0 � pmj0 for every m 2 N: Since j 2 r�
i (p

m),

vij � pmj � vij0 � pmj0 for every m 2 N. Thus, vij � pBj (Z) � vij0 � pmj0 for every m 2 N:
Hence, vij � pBj (Z) � vij0 � pBj0 (Z). Since this holds for all j0 2 G, j 2 r

�
i (p

B (Z)):

(E.S) for pB (Z): For every (j; k) 2 G� S,
P

iAijk 2 Sjk(pBj (Z)):
Fix (j; k) 2 G � S. If pBj (Z) > rjk then, pj > rjk for all p 2 Z. Thus,

P
iAijk = qjk 2

fqjkg = Sjk(pj): Thus,
P

iAijk 2 Sjk(pBj (Z)): If pSj < rjk; let fpmgm2N be a sequence such
that, for all m 2 N, pm 2 Z and fpmj gm2N ! infp2Z pj: Then, there exists �m 2 N such

that for all m > �m; pmj < rjk. Thus,
P

iAijk 2 f0g = Sjk(p
m
j ) for all m > �m: Hence,P

iAijk 2 f0g = Sjk(pBj (Z)):
We now prove that indeed pB(Z); pS(Z) 2 P ��: That is, that pBj (Z) = pSj and pSj (Z) = pSj

for every j =2 G>. Let j =2 G>: Since pBj (Z) = infp2Z pj and p 2 Z � P �� implies pj = pSj ;
infp2Z pj = p

S
j : Thus, p

B
j (Z) = p

S
j : Hence, p

B(Z) 2 P ��: Similarly, pS(Z) 2 P ��: �

By Lemma 7 above we can write for each ; 6= Z � P �� and j 2 G, pSj (Z) = maxp2Z pj
and pBj (Z) = minp2Z pj. In particular, p

S
j (P

��) = maxp2P �� pj for all j 2 G and pBj (P ��) =
minp2P �� pj for all j 2 G> and pBj = pSj for all j =2 G>:
To show that (P ��;�;_;^) is a lattice let p; p0 2 P �� and set Z = fp; p0g: Then,

p _ p0 = pS(Z) and p ^ p0 = pB(Z): By Lemma 7, p _ p0 2 P �� and p ^ p0 2 P ��. Moreover,
it is immediate to check that _ and ^ are idempotent, commutative, associative, and

absorbing binary operations on P ��. Thus, (P ��;�;_;^) is a lattice. To prove that it is
complete, consider any ; 6= Z � P ��. By de�nition, lub�Z = pS(Z) and llb�Z = pB(Z).

By Lemma 7, pS(Z); pB(Z) 2 P ��. Thus, (P ��;�;_;^) is a complete lattice. �

Proposition 7 Let p; p0 2 P �� be two restricted equilibrium price vectors of market M .

Then,

ui(p) � ui(p0) for every i 2 B if and only if p0j � pj for every j 2 G:

Proof It follows from de�nition of P �� and Lemma 8 below. �
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Lemma 8 Let p; p0 2 P � be two equilibrium price vectors of market M . Then,

ui(p) � ui(p0) for every i 2 B if and only if p0j � pj for every j 2 G>:

Proof of Lemma 8 Let p; p0 2 P �.
=)) Assume ui(p) � ui(p

0) for every i 2 B: By (13), 
i(p) � 
i(p
0) for every i 2 B:

By part (2.2) of Theorem 2, (
(p); �(p)) 2 D� and (
(p0); �(p0)) 2 D�: Assume j 2 G> and
let k 2 S be such that j 2 G>k . Then, there exist A 2 F � and i 2 B such that Aijk > 0:

Thus, and since (p;A) and (p0; A) are competitive equilibria of M;
P

i0 Ai0jk 2 Sjk(pj) andP
i0 Ai0jk 2 Sjk(p0j) imply that

pj � rjk and p0j � rjk: (34)

By condition (CS.1) of the Complementary Slackness Theorem ,


i(p) + �jk(p)� � ijk = 0 (35)

and


i(p
0) + �jk(p

0)� � ijk = 0: (36)

Thus,


i(p) + �jk(p) = 
i(p
0) + �jk(p

0):

Since 
i(p) � 
i(p0) for every i, �jk(p0) � �jk(p) holds. By de�nition of �jk(p0) and �jk(p),
and since (34) holds, �jk(p0) = p0j � rjk � pj � rjk = �jk(p): Thus, p0j � pj:
(=) Assume p0j � pj for every j 2 G>: Hence, for every i 2 B and every j 2 G>;

vij � pj � vij � p0j: (37)

Fix i 2 B and assume r>
i (p

0) 6= ;: Then, there exists j0 2 G> such that vij0 � p0j0 > 0: By
(37), vij0�pj0 > 0; which implies that r>

i (p) 6= ;: Hence, if r>
i (p

0) 6= ; there exists j0 2 G>

such that


i(p
0) = vij0 � p0j0 � vij0 � pj0 = 
i(p):

Thus, by (13), ui(p) � ui(p
0). Assume now that r>

i (p
0) = ;: Then, since by de�nition

0 � 
i(p); 
i(p
0) = 0 � 
i(p): Hence, by (13), ui(p) � ui(p

0). Thus, for every i 2 B,

ui(p) � ui(p0). �
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Appendix 2: The (PLP) Has an Integer Solution

The feasibility restrictions of the (PLP)P
jk Aijk � di for all i 2 B;P
iAijk � qjk for all (j; k) 2 G� S

(38)

can be written as X � A � b: For instance, consider the case jBj = jGj = jSj = 2: Then,

(38) can be written as

2666666664

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

3777777775
�

266666666666664

A111

A112

A121

A122

A211

A212

A221

A222

377777777777775
�

2666666664

d1

d2

q11

q12

q21

q22

3777777775
:

De�nition The matrix X is totally unimodular if the determinants of all its square

submatrices are equal to either �1; 0; or 1:

Theorem (Schrijver, 1996) If X is totally unimodular then, for every integer vector b, the

vertices of the polyhedral (the intersections of a �nite number of half-spaces)

fA : X � A � bg

have all integer coordinates.

Theorem (Schrijver, 1996) A matrix X = (xij)
j=1;:::;m
i=1;:::;n is totally unimodular if:

(1) xij 2 f�1; 0; 1g for all 1 � i � n and all 1 � j � m:
(2) Each column has at most two nonzero coe¢ cients; namely,

nP
i=1

jxijj � 2:

(3) Let R = f1; :::; ng be the set of raws; then, there exists a partition fR1; R2g of R
such that, for each column j 2 f1; :::;mg that has two non-zero coe¢ cients,P

i2R1 xij �
P

i2R2 xij = 0:

It is easy to check that the matrix X of any market satis�es conditions (1), (2), and

(3) in the above theorem. Hence, X is totally unimodular and thus, the (PLP) has at
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least a solution with all integer components. That X satis�es (1) and (2) is immediate. To

illustrate (3), consider again the case jBj = jGj = jSj = 2: Then, R = f1; 2; 3; 4; 5; 6g and
R1 = f1; 2g and R2 = f3; 4; 5; 6g; that is,

X =

26666666664

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

37777777775
:
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Appendix 3: Lattices

Let X be a non-empty set. A partial order � on X is a re�exive, transitive, and antisym-

metric binary relation on X; that is, for all x; y; z 2 X, x � x, [x � y � z] =) [x � z],

and [x � y and y � x] =) [x = y]. Given a partial order � on X and a subset Y � X,
de�ne the set of upper bounds of Y as ub�Y = fx 2 X j x � y for all y 2 Y g and the
least upper bound of Y as lub�Y = �y, where �y 2 ub�Y and, for all y 2 ub�Y , y � �y:

Similarly, de�ne the set of lower bounds of Y as lb�Y = fx 2 X j y � x for all y 2 Y g and
the largest lower bound of Y as llb�Y = y where y 2 lb�Y and, for all y 2 lb�Y , y � y:
Given a partial order � on X, de�ne the binary operations _ and ^ on X as follows: for

x; y 2 X, x _ y = lub�fx; yg and x ^ y = llb�fx; yg. Observe that, in general, lub�fx; yg
and llb�fx; yg may not exist; however, by the antisymmetry of �, if they exist, they are
unique.

De�nition The four-tuple (X;�;_;^) is a lattice if, for all x; y 2 X, lub�fx; yg and
llb�fx; yg exist. A set X has a lattice structure if (X;�;_;^) is a lattice for some �; _;
and ^.

A lattice (X;�;_;^) is complete if for any subset Y � X; lub�Y 2 X and llb�Y 2 X.
Observe that since the binary operations _ and ^ follow from the partial order � there

is some redundancy in the notation (X;�;_;^) of a lattice. However, it is useful (and
common) to refer simultaneously to the partial order and to the two binary operations

because there is an (equivalent) algebraic approach where, instead of starting from the

partial order �, one can start from two binary operations on X as follows. A join _
and a meet ^ on X are two idempotent, commutative, associative, and absorbing binary

operations on X; that is, for all x; y; z 2 X; x _ x = x and x ^ x = x, x _ y = y _ x and
x ^ y = y ^ x, x _ (y _ z) = (x _ y) _ z and x ^ (y ^ z) = (x ^ y) ^ z, and x = (x _ y) ^ x
and x = (x ^ y) _ x. Given a join _ and a meet ^ on X; de�ne the partial orders �_ and
�^ on X as follows: for all x; y 2 X;

x �_ y if and only if x = x _ y

and

x �^ y if and only if y = y ^ x:

Indeed, both approaches are equivalent in the sense that the partial orders �_ and �^

obtained from _ and ^ are the same and coincide with � (i.e., the partial order from which
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_ and ^ are de�ned).12

We use this second approach to show in Theorem 3 that the set P �� has a lattice structure

with the following natural join and meet. Let p; p0 2 P ��: De�ne p _ p0 � �p = (�pj)j2G and

p ^ p0 � p̂ = (p̂j)j2G as follows. For each j 2 G,

�pj = maxfpj; p0jg

and

p̂j = minfpj; p0jg:

12See Grätzer (2003).
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