
SNM Guide

Michael Creel1 and Dennis Kristensen2

November 13, 2009

1Universitat Autònoma de Barcelona and MOVE, michael.creel@uab.es

2Columbia University and CREATES, dk2313@columbia.edu

Abstract

This is a guide that explains how to use software that implements the simulated
nonparametric moments (SNM) estimator proposed by Creel and Kristensen (2009).
The guide shows how results of that paper may easily be replicated, and explains
how to install and use the software for estimation of simulable econometric models.

Keywords: econometric software; dynamic latent variable models; simulation-based
estimation; simulated moments; kernel regression; nonparametric estimation

JEL codes: C87; C13; C14; C15

1 Introduction

SNM is a simulation-based estimation method proposed by Creel and Kristensen (2009),
henceforth referred to as CK2009. This guide describes how to install and use software
that implements the estimator. As an example of usage, we show how the results of
the paper can easily be replicated. The guide presumes that the reader is familiar with
CK2009, and it makes usage of terminology and notation defined in the paper.

The SNM software is a set of scripts and compiled code that runs on GNU Octave
(www.octave.org). GNU Octave is a high-level matrix programming language which
is mostly compatible with Matlab. GNU Octave runs on Linux, Windows, and Mac OS X,
among other platforms. GNU Octave can be made to run, with relative ease, on multiple
cores of a single computer, or on a distributed cluster of computers, without the need to
purchase and administer licenses. For its portability, power, and low cost, GNU Octave
is a good choice for econometric applications that make high computational demands.

1

michael.creel@uab.es
dk2313@columbia.edu
www.octave.org


Many people who might be interested in the SNM estimator will be using different
operating systems, and many will not have GNU Octave installed. The SNM estimator
can be run in parallel using the “message passing interface” (MPI). Most users will not
have a working MPI installation. For these reasons, the Guide first explains a method of
using Octave, SNM and MPI that does not require installing any software. This method
works identically independent of the user’s installed operating system, and it allows one
to use multiple cores and/or a real computational cluster. Next, the SNM software is
described in some detail, so that users can understand how it works. Finally, the Guide
explains how to install the SNM software for use with an installed version of Octave.
Installation of MPI is not dealt with here.

2 Quick start using PelicanHPC

PelicanHPC (Creel, 2009) is a distribution of GNU Linux oriented to setting up a com-
putational cluster to run parallel programs that use MPI. Recent versions of PelicanHPC
contain all of the code needed to use the SNM estimator, with the examples that are pre-
sented in the paper. For purposes of exploration where compatibility is more important
than performance, one should obtain version 1.9.x, for 32 bit architectures. For serious
work on computers with 64 bit CPUs, the 64 bit version is recommended. A tutorial is
available for PelicanHPC (Creel, 2008).

Once the ISO image file has been obtained, one can either burn the image to a CD
and then use the CD to boot a computer, or a virtualization platform may be used to
boot a virtual computer using the ISO image file. This second method has the advantage
that one may use PelicanHPC without leaving one’s operating system of choice, with no
need to reboot the computer. Virtualbox (www.virtualbox.org/wiki/Downloads)
is a freely downloadable virtualization platform for Linux, Mac OS X and Windows.

• One should either boot a computer using a PelicanHPC CD, or boot a virtual ma-
chine using the PelicanHPC ISO image file. Once the machine has booted, the in-
structions in the PelicanHPC Tutorial (Creel, 2008) should be followed (important:
answer YES when asked if the example software should be copied) until one has
logged into PelicanHPC, and sees

2

www.virtualbox.org/wiki/Downloads


• At this point, one should type “startx” to enter into a graphical desktop environ-
ment. You should see the following:

• Navigate to the folder /home/user/Econometrics/Examples/SNM by double-clicking
on the Home icon, and then the folders in the mentioned path. Once there, read the
REAME file, by double-clicking on it.

3



• Enter the SV1 directory. You should see

• right-click within the window that shows the icons in the SV directory, and select
“open terminal here”. You should see

• at the command line prompt in the terminal window, type “octave”. At the octave

4



prompt, type “mc”. This is the method by which the Monte Carlo results in Table 2
of CK2009 may be replicated. You should see, after a minute or two, something like

Completing replication of the Monte Carlo results would take about 2 weeks on a
single core, so you should interrupt the program by typing CTRL-C. To do Monte
Carlo work with the SNM estimator, one should probably use a cluster. To learn
how to set up a cluster, consult the PelicanHPC Tutorial. Once you have a run-
ning cluster you just need to edit the file mc.m and set compute_nodes equal to the
number of cores available in your cluster.

• to see an example of estimation, type “estimate” from the Octave prompt. This per-
forms SNM estimation using a single sample of 500 observations, drawn from the
SV1 data generating process (true parameter values are 0.900, 0.692, 0.363). Estima-
tion on a single core will take about 10 minutes or so. When it finishes, one should
see something like

5



• The other Monte Carlo results in the paper can be replicated using the “mc.m” files
found in the other directories below the SNM directory. Some of those directories
also contain scripts “estimate.m” that can be used to do SNM estimation using a
sample drawn from the relevant DGP.

3 Usage and description

We will examine the file estimate.m from the directory
/home/user/Econometrics/Examples/SNM/AR1. The contents appear in Listing 1.
We now work though a description of what each line does, except for some lines that are
obvious.

• line 1 checks that the code which is the heart of the data generating process (DGP)
is compiled, and if not, compiles it. SNM is a computationally intensive estimation
procedure, with simulation at its core. Using compiled code for the simulation is
highly advisable if the simulation involves loops. GNU Octave does not have just-
in-time compilation (yet), so loops are costly.

• line 3 sets the sample size

6



• line 4 set the name of the model, which is the DGP. The model must be an Octave
function that follows the syntax
[data, L, K, snm_draws] = modelname(theta, modelargs)

where theta is a column vector of parameters to estimate, and modelargs is a
cell array of other arguments. This is discussed futher below.

• line 7 sets true parameter values to use for a simulation of estimation by SNM. The
“real data” will be a sample of the size set in line 3, using these parameter values.

• line 10 sets the length of the simulated samples for SNM estimation, the “S” of
CK2009, equation 2.5 and following.

• line 11 sets an additional number of simulation observations which will be dis-
carded, to dampen the influence of initial conditions. The number of simulations
actually used will be S, defined in line 10.

• line 12 allows one to do computations on multiple cores or on a cluster. If it is zero,
a single core will be used. Higher values set the number of MPI ranks to use. Use of
this feature requires a working installation of MPITB for Octave (Férnandez et al.,
2006). This is available if one uses PelicanHPC.

• line 13 set the number of simulations to use for estimation of the covariance matrix
of the moment conditions (the R of CK2009, equation 2.19). The Jacobian of the
moment conditions, H0 of CK2009 Assumption 6.1, is also estimated using a similar
method.

• line 16 sets the arguments for the DGP. This is explained below.

• line 17 draws a sample from the DGP. This is the “real data” that will be used for
estimation. L is the number of test variables, and K is the number of conditioning
variables. The code for the DGP is explained below. The first L columns of data are
the test variables, the next K columns are the conditioning variables. The remaining
columns are the instruments.

• line 20 computes the number of instruments.

• lines 24-28 establish bound for the parameters, for use by the simulated annealing
algorithm. First, the real parameters limits are set, then limits for the inverse of the
window width are set.

• line 29 sets the start value for the minimization algorithm. It is set randomly to
avoid bias toward any given value. This should not be a problem if a conservative
cooling schedule is used for simulated annealing.

• lines 32-34 split up the data matrix.

• lines 37-38 get the data for OLS estimates, for comparison.

7



• line 41 calls the data preparation script for SNM. This script scales the test vari-
ables (endogs) and conditioning variables using a certain procedure, and returns
the matrix P, so that simulated data can be scaled in the same way.

• line 44 assembles the scaled data into a single matrix. Having all the data in a single
matrix makes parallelization using blocks of data relatively simple to do.

• lines 47 and 48 generate the random numbers to be used for the long simulation,
of length S. These random numbers are passed as data, to keep them constant over
iterations, to avoid “chatter”. The DGP should know how to generate the random
draws it needs. More detail on the DGP follow below.

• line 49 now sets one of the arguments of the DGP to the matrix of random draws.

• line 50 sets the arguments for function that computes the SNM moment conditions.
This is an important line. All use of SNM must define momentargs in the man-
ner done here. momentargs must be an 8 element cell array. The first element
is the name of the function that implements the DGP. This was set in line 4. The
second element is a cell array that holds the arguments to the DGP, other than the
parameters to be estimated. This was set in lines 47 and 49. Elements 3,4 and 5
are the numbers of test functions, conditioning variables, and instruments, respec-
tively. These are needed so that the data matrix can be dissaggregated into its parts.
Element 6 is the matrix that scaled the data, which is needed so that the simulated
data can be scaled in the same way. Element 7 is Boolean, and says whether or not
to use conditional moments. Element 8 is Boolean, and says whether or not to use
unconditional moments. CK2009 presents results using only conditional moments,
but in some cases, results can be improved by including unconditional moments.

• lines 53-62 set controls for the simulated annealing minimizer.

• line 65 sets the weight matrix, W. This should either be a conformable positive def-
inite matrix, or a scalar.

• line 66 overrides the random start defined above, and uses the OLS estimates as
a start value. This is dangerous if BFGS minimization is used, because the SNM
objective function has multiple local minima, and the algorithm may converge to a
false minimum close to the start value. Use of SA with conservative cooling should
avoid this pitfall. Because this is only an example, we will take the dangerous route
here.

• lines 68-71 offer two options for minimization, BFGS or SA. As provided, the code
uses BFGS.

• line 75 obtains the estimate of the covariance matrix of the moment conditions,
using the CK2009 equation 2.19.

8



• line 78 obtains the estimate of the covariance matrix of SNM estimator of the model’s
parameter. This estimator is valid for heteroscedastic and or autocorrelated mo-
ment contributions, and allows for the use of an inefficient weight matrix.

• the rest of the code just prints out the results and compares to the OLS estimator.

1 if !(exist(’./ar1.oct’,’file’)) system("mkoctfile ar1.cc"); endif

2

3 n = 50; # number of obs

4 model = "ar1_model"; # the DGP

5

6 # true parameters

7 theta = [0; 0.9];

8

9 # settings for estimation

10 S = 10000; # number of simulations

11 burnin = 100; # initial observations to discard

12 compute_nodes = 0; # number of nodes to use, not counting master

13 vc_reps = 100; # num. simulations to use in est. of cov. and Jacobian

of moments

14

15 # make Monte Carlo data

16 modelargs = {"", n, burnin, true};

17 [data, L, K, snm_draws] = feval(model, theta, modelargs);

18

19 # define a few things

20 M = columns(data) - L - K;

21

22 # define bounds for simulated annealing

23 # bounds for parameters of the model

24 ub = [1; 1];

25 lb = [-1; 0];

26 # append bounds for inverse window width

27 ub = [ub; 3*ones(K,1)];

28 lb = [lb; 0.1*ones(K,1)];

29 thetastart = rand(size(ub)).*(ub-lb) + lb;

30

31 # split out parts of the data

32 endogs = data(:,1:L);

33 condvars = data(:,L+1:L+K);

34 instruments = data(:,L+K+1:L+K+M);

35

36 # define these for future OLS, for comparison

37 yy = endogs;

38 xx = [ones(n,1) condvars];

39

40 # prewhiten

9



41 [endogs, condvars, P] = snm_dataprep(endogs, condvars);

42

43 # re-assemble data

44 data = [endogs condvars instruments];

45

46 # define momentargs for GMM, including random draws for long simulation

47 modelargs = {"", S, burnin, false};

48 [junk, junk, junk, snm_draws] = feval(model, theta, modelargs);

49 modelargs{1} = snm_draws;

50 momentargs = {model, modelargs, L, K, M, P, true, false};

51

52 # samin controls

53 nt = 3;

54 ns = 3;

55 rt = .25;

56 maxevals = 1e4;

57 neps = 3;

58 functol = 1e-6;

59 paramtol = 1e-3;

60 verbosity = 2;

61 minarg = 1;

62 sacontrol = { lb, ub, nt, ns, rt, maxevals, neps, functol, paramtol,

verbosity, 1};

63

64 # first round consistent estimator

65 weight = 1; # weight matrix

66 thetastart = [ols(yy,xx); 1]; # good start values for BFGS (dangerous)

67 # uncomment one of the next 2 lines. First is BFGS (risky), second is

SA (safe)

68 [thetahat, obj_value, conv1] = gmm_estimate(thetastart, data, weight,

...

69 "snm_moments", momentargs, {100,2}, compute_nodes);

70 # [thetahat, obj_value, conv1] = gmm_estimate(thetastart, data, weight,

...

71 # "snm_moments", momentargs, sacontrol, compute_nodes);

72

73 # get covariance matrix of moment conditions

74 verbose = false; # output from cov matrix routine?

75 omega = snm_moment_covariance(thetahat, data, momentargs, vc_reps,

verbose);

76

77 # SNM covariance estimator

78 V = snm_variance(thetahat, data, weight, "snm_moments", momentargs,

vc_reps, ...

79 compute_nodes, omega);

80

10



81 # print results for SNM

82 thetahat = thetahat(1:2,:);

83 se = sqrt(diag(V));

84 t = thetahat ./ se;

85 results = [thetahat se t];

86 rlabels = char("const", "slope");

87 clabels = char("param", "st. err", "t");

88 printf("\n\nCheck that the final objective function value is very\n");

89 printf("close to zero, otherwise the SNM results are not valid. This

script\n");

90 printf("uses BFGS rather than SA, for speed. To chang this, edit the\n"

);

91 printf("script to uncomment the line for SA minimization\n");

92 printf("\nSNM estimation results\n");

93 prettyprint(results, rlabels, clabels);

94

95 # OLS for comparison

96 mc_ols(yy, xx);

Listing 1: estimate.m

Next we examine the code for the DPG, ar1_model.m, which was set in line 4 of
estimate.m. This code should be quite self-explanatory. The syntax for a model must
be of the form [data, L, K, snm_draws] = modelname(theta, modelargs).

The model must be able to return

• a data matrix

• L, the number of test functions

• K, the number of conditioning variables

• snm_draws, a matrix of random numbers that can be used to generate data.

Looking at the code line by line:

• In lines 7-9, we see that the model will generate the needed random draws if they
are not received as an element of modelargs.

• line 16 calls the compiled code which generates data from the AR1 model. If the
model can be written without loops, this might be omitted. For models that use
loops, it is strongly advised to use compiled code. The provided ar1.cc and other
.cc files in other directories serve as examples.

• lines 28-31 compute instruments, if asked to do so. This is useful if the model is to
be used for Monte Carlo. For use with real data, this part would not be needed.

11



1 function [data, L, K, snm_draws] = ar1_model(theta, modelargs)

2 snm_draws = modelargs{1};

3 simlength = modelargs{2};

4 burnin = modelargs{3};

5 make_instruments = modelargs{4};

6 if ischar(snm_draws)

7 snm_draws = randn(simlength + burnin + 10, 2);

8 modelargs{1}= snm_draws;

9 endif

10

11 n = modelargs{2};

12 maxlag = 1;

13 n = n + maxlag;

14 modelargs{2} = n;

15

16 y = ar1(theta, modelargs);

17 data = [y lags(y,maxlag)];

18 data = data(maxlag + 1:n,:);

19 n = rows(data);

20

21 y = data(:,1);

22 endogs = y;

23 condvars = data(:,2);

24 data = [endogs condvars];

25 L = columns(endogs);

26 K = columns(condvars);

27

28 if make_instruments

29 instruments = [ones(n,1) st_norm(condvars)];

30 data = [data instruments];

31 endif

32

33 endfunction

Listing 2: ar1_model.m

4 Installation of SNM and support code

To install SNM and support code (minimization, MPITB, utilities, etc.), one should obtain
the file Econometrics.zip that accompanies Creel (2003). This archive contains the SNM
code and examples.

• It extracts to a folder ./Econometrics.

• The SNM example code is in ./Econometrics/Examples/SNM.

12



• The SNM estimation code is in ./Econometrics/MyOctaveFiles/Econometrics/SNM.

To be able to use MPITB, one needs to install LAM/MPI (www.lam-mpi.org), as well
as GNU Octave (www.octave.org). To set the Octave path, compile MPITB, and so
forth, one can execute the script ./Econometrics/setup_econometrics. Those
who already use Octave should examine the script before running it, as it will overwrite
the file ~/.octaverc (leaving a backup).

References

[1] Creel, M. (2003). Econometrics, working paper and computer code, http://

econpapers.repec.org/paper/aubautbar/575.03.htm.

[2] Creel, M. (2008) PelicanHPC Tutorial, working paper, http://econpapers.

repec.org/paper/aubautbar/749.08.htm.

[3] Creel, M. (2009) PelicanHPC, GRECS computer code, http://econpapers.

repec.org/software/aubgrecss/005.09.htm.

[4] Creel, M. and D. Kristensen (2009) Estimation of Dynamic Latent Variable Models
using Simulated Nonparametric Moments, working paper, http://econpapers.
repec.org/paper/aubautbar/792.09.htm

[5] Fernández, J., M. Anguita, E. Ros, J.L. Bernier (2006) SCE Toolboxes for the devel-
opment of high-level parallel applications, 6th International Conference Computa-
tional Science - ICCS 2006, Reading, United Kingdom, May 28-31, 2006. Proceedings
of the..., Part II, Lecture Notes in Computer Science, vol.3992, pp.518-52

13

www.lam-mpi.org
www.octave.org
http://econpapers.repec.org/paper/aubautbar/575.03.htm
http://econpapers.repec.org/paper/aubautbar/575.03.htm
http://econpapers.repec.org/paper/aubautbar/749.08.htm
http://econpapers.repec.org/paper/aubautbar/749.08.htm
http://econpapers.repec.org/software/aubgrecss/005.09.htm
http://econpapers.repec.org/software/aubgrecss/005.09.htm
http://econpapers.repec.org/paper/aubautbar/792.09.htm
http://econpapers.repec.org/paper/aubautbar/792.09.htm

	Introduction
	Quick start using PelicanHPC
	Usage and description
	Installation of SNM and support code

