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ABSTRACT. Given a model that can be simulated, conditional moments at a trial parameter
value can be calculated with high accuracy by applying kernel smoothing methods to a long
simulation. With such conditional moments in hand, standard method of moments techniques
can be used to estimate the parameter. Because conditional moments are calculated using kernel
smoothing rather than simple averaging, it is not necessary that the model be simulable subject
to the conditioning information that is used to define the moment conditions. For this reason,
the proposed estimator is applicable to general dynamic latent variable models. It is shown that
as the number of simulations diverges, the estimator is consistent and a higher-order expansion
reveals the stochastic difference between the infeasible GMM estimator based on the same mo-
ment conditions and the simulated version. In particular, we show how to adjust standard errors
to account for the simulations. Monte Carlo results show how the estimator may be applied to
a range of dynamic latent variable (DLV) models, and that it performs well in comparison to
several other estimators that have been proposed for DLV models.
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1. INTRODUCTION

Dynamic latent variable (DLV) models are a flexible and often natural way of modeling
complex phenomena. As an example, consider a macroeconomic model. A model may specify
behavioral rules, learning rules, a social networking structure, and information transmission
mechanisms for a large group of possibly heterogeneous agents. If the model is fully specified,
it can be used to generate time series data on all of the agents’ actions. In attempting to use
real world data to estimate the parameters of such model, one finds that real world data is much
more aggregated than the data generated by the model. Typically, individual agents’ actions are
not observed - only macroeconomic aggregates are available. From an econometric point of
view, many of the variables generated by the model are latent. In a dynamic, nonlinear context,
this can complicate the econometric estimation of the model’s parameters.

To fix ideas, consider the general DLV model:

(1.1) DLV:

yt = ry
(
yt−1,wt−1,ut ;θ

)
wt = rw

(
yt−1,wt−1,ut ;θ

)
where t = 1, ...,T . The observable variables are the vector yt , wt is a vector of latent vari-
ables, and ut is a vector of independent white noise shocks, with a known distribution. Su-
perscript notation is used to indicate a vector of lagged variables up to the time indicated,
yt−1 ≡

(
y′1, ...,y

′
t−1
)′, and wt−1 ≡

(
w′1, ...,w

′
t−1
)′.1 Finally, θ ∈Θ is a vector of unknown param-

eters. This definition closely follows that of Billio and Monfort (2003), with the exception that
the same white noise vector enters the equations for both the observable and latent variables, to
allow for potential correlations in the innovations of the two sets of variables. Calculation of the
likelihood function requires finding the density of yT , and as Billio and Monfort make clear, this
involves calculating an integral of the same order as T , a problem that is in general untractable.
Without the density of the observable variables, analytic moments cannot be computed. Thus,
maximum likelihood and moment-based estimation methods often are not available.

This paper offers a new estimator that is applicable to general DLV models. It is a new imple-
mentation of the simulated method of moments (SMM) that allows use of conditional moments.
Conditional moments are evaluated using nonparametric kernel smoothing of simulated data.
The estimator is very simple to use since it is just an ordinary GMM estimator that uses ker-
nel smoothing to evaluate moment conditions. The estimator is referred to as the simulated
nonparametric moments (SNM) estimator.

Under regularity conditions, we show that the SNM estimator is consistent and establish
a higher-order expansion describing the stochastic differences between the infeasible GMM
estimator assuming that the conditional moments can be evaluated exactly and our simulated

1The possible presence of observable exogenous variables with known dynamics (for example, static exogenous
variables) is suppressed for clarity. The macroeconomic model of the previous paragraph could be formalized by
letting wt indicate the vector of all of the agents’ actions, and letting yt be the observed aggregate outcomes.
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version. The expansion reveals that the SNM estimator suffers from the usual bias component
due to the kernel smoothers. On the other hand, we demonstrate that there is no so-called "curse
of dimensionality": Kernel regression estimators are well-known to perform poorly when a large
number of conditioning variables are included, and our conditional moment estimator will have
a pointwise variance of order 1/

(
Shd
)

where S is number of simulations and d is the number
of conditioning variables. However, in the computation of the SNM estimator we sum over
the kernel estimators, which reduces the variance of the resulting parametric estimator to the
order 1/S. This is the same rate as for unconditional SMM, and as such we pay no price in
terms of first-order variance for using conditional moments instead of unconditional ones in
our simulated estimation procedure. In particular, the SNM estimator will be asymptotically
normally distributed but with an additional variance term of order 1/S relative to the exact
GMM estimator due to the simulations.

A number of other econometric methods have been developed over the last two decades
to deal with the complications that may accompany DLV models. These include the sim-
ulated method of moments (McFadden, 1989; Pakes and Pollard, 1989), indirect inference
(Gouriéroux, Monfort and Renault, 1993; Smith, 1993), simulated pseudo-maximum likeli-
hood (Laroque and Salanié, 1993), simulated maximum likelihood (Lee, 1995), the efficient
method of moments (Gallant and Tauchen, 1996), the method of simulated scores (Hajivas-
siliou and McFadden, 1998), kernel-based indirect inference (Billio and Monfort, 2003), the
simulated EM algorithm (Fiorentini, Sentana and Shephard, 2004), nonparametric simulated
maximum likelihood (Fermanian and Salanié, 2004; Kristensen and Shin, 2008) and simulated
nonparametric estimators (Altissimo and Mele, 2009). These methods have been applied to
DLV models in a number of contexts. Billio and Monfort (2003) provide numerous references
for applications.

As noted by Fermanian and Salanié (2004, pg. 702), there often exists a trade-off between
the asymptotic efficiency of a method and its applicability to a wide range of models. Simulated
maximum likelihood and the method of simulated scores are asymptotically efficient when they
can be applied, but this is not the case when the likelihood function or the score function cannot
be expressed as a function of expectations of simulable quantities. Nonparametric simulated
maximum likelihood (NPSML) is asymptotically efficient and generally applicable for estima-
tion of static models (Fermanian and Salanié, 2004). Kristensen and Shin (2008) and Altissimo
and Mele (2009) generalize this method to handle dynamic models. However, by choosing
moment conditions in a judious manner, the method of moments may reach full efficiency. In
particular, Carrasco et al. (2007) demonstrate that by using the characteristic function as mo-
ments, full ML efficiency can be reached. This is supported by our Monte Carlo results which
show that moment conditions may be chosen such the SNM estimator performs well in compar-
ison to other estimators, including NPSMLE, that have been proposed for estimation of general
DLV models.
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Even if the (simulated) GMM estimator does not reach full efficiency, there are situations
where it may be preferable to the (simulated) MLE: The aformentioned efficiency gain of the
MLE is often off-set by the MLE’s high sensitivity to misspecifications. In contrast, the SNM
will in many situations be robust towards misspecifications: It is well-known that GMM estima-
tors often remain consistent under departures in certain directions from a given fully specified
model (in particular, in terms of the distribution of the errors) while the MLE in contrast be-
comes inconsistent. Examples of DLV models where GMM-type estimators have proved robust
are stochastic volatility (SV) models (Harvey et al, 1994; Ruiz, 1994), DSGE (dynamic sto-
chastic general equilibrium) models (Ruge-Murcia, 2007), and diffusion models (Bibby and
Sørensen, 1995). This issue is particularly important if the main goal with estimating the DLV
model is to use it for forecasting. In this setting, if the DLV model is misspecified, our SNM
estimator will often be the better vehicle since this finds the parameter estimates that minimize
the forecasting error. In particular, the SNM estimates can still be used for forecasting purposes
under misspecification. In contrast, the MLE’s will in general lead to suboptimal forecasts. For
a formal argument of this point, we refer to Weiss (1996).

Finally, in comparison to simulated MLE methods, we will demonstrate that the SNM esti-
mator will suffer from fewer biases due to simulations. This is due to the fact that the simulated
conditional moments enter the GMM objective function linearly, while simulated densities en-
ter the log-likelihood nonlinearly. As such any asymptotic efficiency gains of the SMLE may
be offset by these additional biases.

The simulated method of moments (SMM) is generally applicable if unconditional moments
are used, but foregoing conditioning information may limit the estimator’s ability to capture
the dynamics of the model, and can result in poor efficiency (Andersen, Chung and Sørensen,
1999; Michaelides and Ng, 2000; Billio and Monfort, 2003). In the context of DLV models, the
usual implementation of SMM that directly averages a simulator normally cannot be based upon
conditional moments, since it is not in general possible to simulate from the model subject to the
conditioning information. Due to the full specification of the model, it is easy to simulate a path.
However, the elements are drawn from their marginal distributions. It is not in general possible
to draw from yt |

(
yt−1;θ

)
. To do so, one would need draws from wt |

(
yt−1;θ

)
. If such draws

were available, they could be inserted into the first line of the DLV model given in equation
(1.1), which, combined with a draw from ut , would give a draw from yt |

(
yt−1;θ

)
. The problem

is that the observed value of yt−1 is only compatible with certain realizations of the history of the
latent variables, wt−1, but what is the set of compatible realizations is not known. For certain
types of model it is possible to circumvent this problem. For example, Fiorentini, Sentana
and Shephard (2004) find a way of casting a factor GARCH model as a first-order Markov
process, and are then able to use Markov chain Monte Carlo (MCMC) methods to simulate
from wt |

(
yt−1;θ

)
, which is then fed into a simulated EM algorithm to estimate the parameter.
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However, for DLV models in general, there is no means of simulating from wt |
(
yt−1;θ

)
(Billio

and Monfort, 2003, pg. 298; Carrasco et al., 2007, pg. 544).
Indirect inference is generally applicable, but its efficiency depends crucially upon the choice

of the auxiliary model. The efficient method of moments (EMM) of Gallant and Tauchen (1996)
is closely related to the indirect inference estimator, and presumes use of an auxiliary model that
guarantees good asymptotic efficiency, by closely approximating the structural model. This es-
timator is both generally applicable and is highly efficient if a good auxiliary model is used, and
it is fully asymptotically efficient if the auxiliary model satisfies a smooth embedding condition
(see Gallant and Tauchen, 1996, Definition 1). Satisfying this condition is not necessarily an
easy thing to achieve. A common practice is to fit a semi-nonparametric (SNP) auxiliary model
of the sort proposed by Gallant and Nychka (1987), augmented by a leading parametric model
that is known to provide a reasonably good approximation. Andersen, Chung and Sørensen
(1999) provide Monte Carlo evidence that shows the importance of the choice of the auxiliary
model. They also note that highly parameterized auxiliary models often cannot be successfully
fit when the sample size is not large. It is important to keep in mind that a parsimonious para-
metric auxiliary model may be far from satisfying the smooth embedding condition. This can
lead to serious inefficiency and to failure to detect serious misspecifications of the structural
model (Tauchen, 1997; Gallant and Tauchen, 2002). In sum, EMM and indirect inference are
clearly attractive methods, given that the sample is large enough to use a rich auxiliary model.
Even if this is the case, effort and skill are required to successfully use these methods. In the
case of EMM, the documentation of the EMM software package (Gallant and Tauchen, 2004,
2007) makes this clear.

The kernel-based indirect inference (KBII) approach suggested by Billio and Monfort (2003)
proposes an entirely nonparametric auxiliary model in place of the EMM’s highly parameterized
auxiliary model. The use of kernel regression methods is considerably simpler than estimation
of models based upon a SNP density with a parametric leading term, since software can be
written to use data-dependent rules that tune the fitting process to a given data set with little
user intervention. The consistency of the kernel regression estimator ensures a good fit to the
data. The main drawback with the KBII estimator is that the binding functions are conditional
moments of endogenous variables at certain points in the support of the conditioning variables.
How many such points to use, and exactly which points to use require decisions on the part of
the econometrician. Billio and Monfort recognize this problem and propose a scoring method
to choose the binding functions.

We now turn to a presentation of the SNM estimator. The next section defines the estimator
and discusses its properties and usage. The third section presents several examples that compare
the SNM estimator to other methods, using Monte Carlo. Section 4 discusses some extensions,
and Section 5 concludes. All proofs and lemmas have been relegated to the Appendix.



6 MICHAEL CREEL AND DENNIS KRISTENSEN

2. THE SNM ESTIMATOR

2.1. Definition of the estimator. The moment-based estimation framework used in this paper
is as follows. We have observed the sample {yt}n

t=1 over the period t = 1,2, ...,n. The sam-
ple is presumed to be a realization of the data generating process defined by Eq. (1.1) at the
true parameter value θ0. For estimation purposes, we introduce a vector xt = (xt,1, ...,xt,dx)

′ of
additional variables that are functions of current and lagged values of yt :

xt = x(yt ,yt−1,yt−2, ...,yt−q) ∈ Rdx .

These variables are chosen by the researcher and will function as conditioning variables. A
natural choice in many situations would be to use the first q lags of yt , that is, xt =(yt−1, ...,yt−q),
but we here allow for more flexibility in their selection.

Likewise, let φt = (φt,1, ...,φt,L)
′ be a collection of L “test variables” chosen by the researcher.

These are defined as functions of leads and lags of the observations,

φt=φ (yt+p, ...,yt+1,yt ,yt−1, ...,yt−p) ∈ RL.

There are no restrictions on how these functions are chosen in conjunction with the condi-
tioning variables, except that they jointly should identify the parameter of interest through the
corresponding generalized residual functions. These are defined as

(2.1) εt(θ) = φt −T (φ)(xt ;θ) ∈ RL,

where T denotes the conditional expecations operator w.r.t. xt ,

T (φ)(x;θ) = Eθ [φt |xt = x] ,

and Eθ [·|xt ] is conditional expectations taken under the model with θ being the true value,
Eθ [φt |xt ] =

´
φ (yt ,yt−1, ...)dP(yt ,yt−1, ...|xt ;θ). By construction, the residual vector satisfies

(2.2) Eθ [εt (θ) |xt ] = 0.

For a set of instruments that are functions of the conditioning variables,

Zt = Z (xt) ∈ RL×M,

moment conditions are now defined by interacting the instruments with the error functions,

(2.3) gt (θ) := Z′t εt (θ) ∈ RM,

such that Eθ [gt (θ)] = 0. Our identifying restriction is then that Eθ0 [gt (θ)] = 0 if and only if
θ = θ0. One standard way of choosing the instruments is as follows: For each residual, define
a vector of m instrumental variables zt,k ∈ Rm as functions of the conditioning variables,

zt,k = (zk,1(xt), ....,zk,M(xt))′, k = 1, ...,L.
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Here, we use the same number of instruments, m, for each residual, but the instruments may
differ across residuals. We then collect the instruments in a block-diagonal (L×M)-matrix,

Zt =


z′t,1 0 · · · 0

0 z′t,2
...

...
. . . 0

0 · · · 0 z′t,L

 ∈ RL×M,

where M = Lm. In principle, one could use a different number of instruments for each residual.
This possibility is suppressed here both to simplify notation, and because when optimal instru-
ments are defined below, it will be seen that it is optimal to use the same number of instruments
for each residual.

If the conditional moments T (φ)(xt ;θ) in equation (2.1) have a known functional form,
estimation may proceed using the standard generalized method of moments (GMM): Define the
corresponding sample moments as

(2.4) Gn (θ) =
1
n

n

∑
t=1

gt (θ) .

For some sequence of M×M dimensional positive definite weighting matrices, Wn, we would
then compute the GMM estimator defined as

θ̂n = argmin
θ∈Θ

Gn (θ)′WnGn (θ) .

When no closed-form functional form of T (φ)(xt ;θ) is available, it may be possible to
define an unbiased simulator T̂ (φ)(xt ;θ). If this is so, simulated moments can be defined by
replacing T (φ)(xt ;θ) in equation (2.1) with T̂ (φ)(xt ;θ). Doing so, and then proceeding with
normal GMM estimation methods defines the simulated method of moments (SMM) estimator
(Gouriéroux and Monfort, 1996, pg. 27; Duffie and Singleton, 1993). A unbiased estimator
can normally be obtained in static models, see e.g. McFadden (1989). However, in the case
of general DLV models, it is in general not possible to simulate subject to the conditioning
information x = xt . In this case, the standard SMM estimator cannot be based upon conditional
moments as defined in equations (2.1)-(2.4). Estimation by SMM using unconditional moments
is still feasible, but the Monte Carlo evidence cited above has shown that this approach often
has poor efficiency, due to the fact that unconditional moments provide little information on the
dynamics of a DLV model.

The fundamental idea of the simulated nonparametric moments (SNM) estimator proposed
here is to replace the expectations T (φ)(xt ;θ) that are used to define error functions in equation
(2.1) with kernel regression fits based on a simulation from the model. Kernel regression (also
known as kernel smoothing) is a well-known nonparametric technique for estimating regression
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functions of unknown form (Robinson, 1983; Bierens, 1987; Härdle, 1991; Li and Racine,
2007). Its application here is entirely standard, except for the use of simulated data.

In the following, capital letters will be used to indicate simulated data or elements that depend
upon simulated data. Let {Ys (θ) , s = 1, ....,S} be a time series of S simulations of generated
by Eq. (1.1) at the trial parameter value θ :

(2.5)

Ys (θ) = ry
(
Y s−1 (θ) ,W s−1 (θ) ,Us;θ

)
Ws (θ) = rw

(
Y s−1 (θ) ,W s−1 (θ) ,Us;θ

) ,

for s = 1, ....S, where the simulations are initialized at some values
(
Y−1 (θ) ,W−1 (θ)

)
(for

example, the final value of a burn-in period of simulations). Given the simulated values, first
compute the corresponding conditioning and test variables,

Xs (θ) = x(Ys (θ) ,Ys−1 (θ) , ...,Ys−q (θ)) ,

Φs (θ) = φ (Ys+p (θ) ,Ys−1 (θ) , ...,Ys−p (θ)) ,

and then the kernel estimator of T (φ)(xt ;θ),

(2.6) T̂S (φ)(x;θ) = ∑
S
s=1 Φs (θ)Kh (Xs (θ)− x)

∑
S
s=1 Kh (Xs (θ)− x)

,

where Kh (z) = K (z/h)/h, K : Rdx 7→R is a kernel function, and h > 0 is a bandwidth. To speed
up computations, one should not separately fit each of the L test variables, but rather employ a
specialized kernel fitting algorithm that saves the weights across variables. Since the dimension
of x, dx, is usually greater than one, the kernel function K(·) is in general multivariate.

For notational ease, we use the same bandwidth across all variables. It should be emphasized
that this may not always be advisable; in particular, if the individual variables contained in Xt

are not on the same scale a common bandwidth may lead to a less precise kernel estimator. If
one assumes that the kernel function incorporates a “pre-whitening” transformation, a common
bandwidth may be a reasonable choice. Locally adaptive kernel fitting is an extension that we
do not pursue here.

Note that the kernel regression fit can be evaluated at x without requiring that the simulated
sequence contains any realizations such that Xs (θ) = x. What is required for a good fit at x is
that there there be a large number of realizations that are "close enough" to x.

The SNM estimator now follows the standard moment-based estimation framework, except
that the kernel fit T̂S (φ)(x;θ) is used in place of the expectation of unknown form, T (φ)(xt ;θ).
To be explicit, the SNM estimator is based on estimated residual functions,

(2.7) ε̂t,S (θ) = φt − T̂S (φ)(x;θ).



SIMULATED NONPARAMETRIC MOMENTS 9

The moment function contribution of an observation is

(2.8) ĝt,S (θ) := Z′t ε̂t,S (θ) ∈ RM, ,

where we use the observed instruments. Average moment conditions are now computed as

(2.9) Ĝn,S (θ) =
1
n

n

∑
t=1

ĝt,S (θ) ,

and the SNM estimator is the minimizer of corresponding distance function,

(2.10) θ̂n,S = argmin
θ∈Θ

Ĝn,S (θ)′WnĜn,S (θ) .

2.2. Properties of the SNM estimator. This section deals with the consistency and asymptotic
normality of the SNM estimator. The proof offered here is high level, in the sense that our
assumptions are made without detailing assumptions on the DLV model in equation (1.1) that
would cause them to hold. Given a more concrete formulation of the DLV model, one could
provide more low level assumptions that would imply our general assumptions. To demonstrate
how the conditions can be verified, we discuss in more detail one particular DLV model.

We assume that the chosen endogenous variables, conditioning variables, and instruments de-
fine a GMM estimator that is consistent and distributed asymptotically normally. Of course, this
estimator normally is not feasible if the SNM estimator is under consideration, but abstractly, it
is assumed to have the usual desirable properties:

Assumption 1. The exact GMM estimator satisfies:

(1) The moment function G(θ) = E [Z′t εt (θ)] is continuous and satisfies G(θ) = 0 if and
only if θ = θ0, where θ0 lies in the interior of Θ.∈Θ⊆ Rdθ and Θ is compact.

(2) supθ∈Θ ‖Gn (θ)−G(θ)‖→P 0.
(3) Wn→P W > 0.

The above conditions are standard for GMM estimators, see e.g. Newey and McFadden
(1994) who also give more primitive conditions for them to hold for particular models. Under
Assumptions 1, the infeasible GMM estimator is consistent, θ̂n→P θ0.

The goal is now to analyze the simulated version, θ̂n,S, relative to the actual but infeasible
one, θ̂n. As a first step towards such a result, we have to ensure that the kernel estimator is
consistent uniformly over (x,θ). This is done by verifying the general conditions stated in
Kristensen (2009) where uniform convergence results are obtained for data that are functions of
a parameter. We will impose some fairly high-level assumptions on the data-generating model
that imply the conditions in Kristensen (2009). In order to state these assumptions, we first
introduce some additional notation. Let f (x;θ) and fT (x,x′;θ) denote the stationary densities
of the simulated random variables X0 (θ) and (X0 (θ) ,XT (θ)), for some T ≥ 1, respectively.
We then define for any random sequence Vs (θ), s = 1, ...,T , and for some λ ≥ 2 the following
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bounds,

(2.11) B0 = sup
x∈Rdx

sup
θ∈Θ

f (x;θ) , BV,1 = sup
x

sup
θ∈Θ

‖x‖λ E [‖V0 (θ)‖|X0 (θ) = x] f (x;θ) ,

(2.12) BV,2 = sup
x,x′∈Rdx

sup
θ∈Θ

E
[
‖V0 (θ)‖‖VT (θ)‖|X0 (θ) = x,XT (θ) = x′

]
fT
(
x,x′;θ

)
.

We write the model in Eq. (2.5) more compactly as

(2.13) Ys (θ) = r
(
Ys−1 (θ) ,Us;θ

)
,

where Ys (θ) = (Ys (θ) ,Ws (θ)) and r = (ry,rw), and then define the differentiated process
Ẏs (θ) =

(
Ẏs (θ) ,Ẇs (θ)

)
as

(2.14) Ẏs (θ) =
∂ r
(
Ys−1 (θ) ,Us;θ

)
∂Ys−1 (θ)′

Ẏs−1 (θ)+
∂ r
(
Ys−1 (θ) ,Us;θ

)
∂θ

.

Assumption 2. The test and moment functions satisfy:

(1) The test functions, φ (yt , ...,yt+p), are continuously differentiable and for some µ ≥ 2
and with Y s (θ) = (Ys+p (θ) , ...,Ys−p (θ)): E

[
‖φ (Y s (θ))‖µ

]
< ∞,

E[||φ (Y s (θ))φ
′ (Y s (θ))Ẏ s (θ) ||µ ] < ∞ and E[‖φ (Y s (θ))‖p ||Ẋs (θ) ||µ ] < ∞.

(2) The functions x 7→ T (φ)(x;θ) and f (x;θ) are m≥ 2 times continuously differentiable
w.r.t. x. The function r (z,u;θ) = (ry (z,u;θ) ,rw (z,u;θ)) is twice differentiable in z.

(3) E
[
supθ∈Θ f (xt ;θ)−q ‖T (φ)(xt ;θ)‖‖zt‖

]
< ∞ for some q > 0.

Assumption 3. The process {Ys (θ)} satisfies:

(1) For any given θ ∈ Θ, there exists a stationary solution {Ys (θ)} to the model in Eq.
(2.13). This solution is α-mixing with mixing coefficients αs (θ) satisfying αs (θ) ≤
As−β for some 0 < A,β < ∞ which do not depend on θ .

(2) The bounds defined in Eqs. (2.11)-(2.12) are finite for Vs (θ) = φ (Y s (θ)), Vs (θ) =
∂φ (Y s (θ))/(∂Y s (θ))Ẏ s (θ) and Vs (θ) = φ (Y s (θ)) Ẋs (θ).

(3) With d = dx +dθ , λ given in Eq. (2.11), and µ in A.3.1, the mixing exponent β satisfies

β >
1+(µ−1)(1+d/λ +d)

µ−2
.

Assumption 2 requires relevant moments of the test functions to exist and that the model
defined through the function r is sufficiently smooth in the state variables. For a set of suffi-
cient conditions for Assumption 2.1 to hold for Markov models, we refer to Kristensen (2007).
The smoothness conditions in 2.2 hold for most dynamic models; they do however rule out
discontinuous models such as threshold models. The smoothness restriction on r is however
only imposed for technical convenience, and we conjecture that our results also go through for
models with discontinuous dynamics by adapting the techniques developed in, for example,
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Pakes and Pollard (1989) to our setting. For some discontinuous models such as limited depen-
dent variable models, one can alternatively employ the trick proposed in Fermanian and Salanie
(2004, Section 3) to deal with discontinuities. The moment condition in 2.3. is used to ensure
that the trimming has no effect asymptotically. It is implicitly a requirement regarding the tail
thickness of the distribution of xt .

Assumption 3 says that the simulated path {Ys (θ)} generated from equation (2.5) is sta-
tionary for any given value of θ . Thus, we implicitly assume that we are able to initialize the
process at its stationary distribution. In practice this is not possible but due to the assumption of
α-mixing, we know that {Ys (θ)}will converge towards the stationary solution as s→∞. Thus,
if we simulate a long enough trajectory (S→ ∞), we expect that the kernel estimator based on
the non-stationary solution will be asymptotically equivalent to the one based on the stationary
one. In practice, observations belonging to a burn-in period may be discarded to reduce the
effect of initializing at a non-stationary solution. A complete analysis, taking into account the
discrepancy between the non-stationary and stationary simulated solution in finite samples, will
however not be given here since it will involve longer proofs and more complicated assumptions
on the model. For an analysis in the case of unconditional SMM, we refer to Duffie and Sin-
gleton (1993) where it is demonstrated that the estimator remains consistent without having to
initialize at the stationary distribution; see also Kristensen (2009, Theorem 3) for some results
on kernel estimators when data is not initialized at the stationary distribution. The stationar-
ity and mixing conditions could probably be weakened to assume that the process is recurrent
(and therefore potentially non-stationary) since it is possible to show pointwise convergence of
kernel estimators of conditional moments in this setting (see, for example, Karlsen and Tjøs-
theim, 2001). However, just showing pointwise convergence gets markedly more difficult in
this setting; furthermore, to our knowledge, no uniform convergence results for non-stationary
processes are currently available.

As a specific example, consider the linear model,

Ys (θ) = AYs−1 (θ)+BUs,

where θ = (A,B), and Us i.i.d. with a continuous distribution. This model includes for example
the standard SV model considered in the simulation study,

log
(
Y 2

t (θ)
)

= log
(
σ

2
t (θ)

)
+ log

(
u2

t,1
)
,

log
(
σ

2
t (θ)

)
= α +β log

(
σ

2
t−1 (θ)

)
+ut,2.

The linear process {Ys (θ)} is stationary and geometrically mixing for all θ such that A has
eigenvalues inside the unit circle, c.f. Kristensen (2007). The first-order derivative w.r.t. (A,B),
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Ẏs (θ) =
(
ẎA,s (θ) , ẎB,s (θ)

)
, solves

ẎA,s (θ) = Ys (θ)+AẎA,s (θ)+BUs,

ẎB,s (θ) = AẎB,s (θ)+Us.

Since Ys (θ) is stationary and mixing, Ẏs (θ) will also be stationary and mixing for all A with
eigenvalues inside the unitcircle. Furthermore, if E [‖Us‖p] < ∞, then E [‖Ys (θ)‖p] < ∞ and
E
[∥∥Ẏs (θ)

∥∥p
]

< ∞. So, for example, by choosing Xt as simply lagged values of yt , and the test
function as bounded by polynomials of an appropriate order, Assumptions 2-3 will hold for this
model.

We impose regularity conditions on the kernel function K:

Assumption 4. The kernel K : Rdx 7→ R satisfies:

(1) supu∈Rdx |K (u)| < ∞ and
´
|K (u)|du < ∞. There exist Λ,L < ∞ such that either (i)

K (u) = 0 for ‖u‖ > L and |K (u)−K (u′)| ≤ Λ‖u−u′‖, or (ii) K (u) is differentiable
with |∂K (u)/∂u| ≤ Λ. For some a > 1, |∂ rK (u)/∂ur| ≤ Λ‖u‖−a for ‖u‖ ≥ L and
r = 0,1.

(2) For some m ≥ 1:
´

K (u)uαdu = 0 for all α ∈ {0,1}dx with |α| = 1, ...,m− 1, and´
K (u)‖u‖m du < ∞.

This class of kernel allows for higher-order kernels (m > 2) and standard kernels (m = 2)
such as the Gaussian one.

Finally, we need to redefine our SNM estimator in order to derive the desired theoretical
results. We introduce a trimming sequence a > 0 in order to handle that the density of Xt (θ),
f (x;θ), in general is not bounded away from zero. For our theoretical results, we redefine
our SNM estimator to trim away observed values for which f (xt ;θ) < a. That is, we redefine
ĝt,S (θ) as

ĝt,S (θ) = τa,t (θ)Z′t ε̂t (θ) ,

where τa,t (θ) = τa( f̂ (xt ;θ)) is a trimming function and f̂ (x;θ) = ∑
S
s=1 Kh (Xs (θ)− x)/S is

the simulated kernel estimator of f (x;θ). Replacing ĝt,S (θ) with the above new definition, the
SNM estimator is still given by equations (2.9) and (2.10). The trimming function is chosen
such that τa,t (θ) = 0 when f̂ (xt ;θ) is "close to zero". The trimming is introduced for technical
reasons to handle the well-known denominator problem with kernel regression estimators: We
are only able to show uniform consistency of T̂S (φ)(x;θ) for x on a compact interval of the
form {x : f̂ (x;θ) ≥ a} for any lower bound a > 0. The trimming function τa,t (θ) enforces
this bound in the estimation. The use of trimming obviously imparts a loss of efficiency so as
S→ ∞, we will let a→ 0 such that asymptotically the trimming has no impact. In practice, for
S sufficiently large, trimming is most likely not required since it is used to control deviations
between the simulated and actual version of T (φ)(xt ;θ). We impose the following regularity
conditions on the trimming function:
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Assumption 5. The trimming function τa : R 7→ [0,1], a > 0, satisfies τa (z) = 1 for z ≥ a and
τa (z) = 0 for z≤ a/2. It is continuously differentiable with |τ ′a (z) |= O(a).

We here use a smooth trimming function, τa (z) such that the trimmed GMM objective func-
tion remains smooth in θ . A simple way of constructing τa (z) is to choose a cdf F with support
[0,1], and define τa (z) = F ((2z−a)/a) which then in great generality will satisfy Assumption
5; see also Andrews (1995) and Ai (1997). We are now ready to state the first main result:

Theorem 1. Assume that Assumptions 1-5 hold. As a−1hm→ 0, a−1
√

log(S)/(Shdx)→ 0 and
a→ 0, then the SNM estimator is consistent: θ̂n,S→P θ0.

Proof. See the Appendix. �

As h→ 0 and Shd → ∞, T̂S (φ)(x;θ) converges towards the true moment T (φ)(x;θ). In
principle, S could be chosen so large so that the differences between the error functions in equa-
tions (2.1) and (2.7) are smaller than the machine precision of a digital computer. If this is the
case, the SNM estimator essentially is the infeasible GMM estimator. The above result formal-
izes this intuition and shows that under suitable conditions on the bandwidth and the trimming
parameters, the SNM estimator and the GMM estimator are asymptotically indistinguishable as
S→ ∞.

However, in practice, one will normally only use a more moderate number of simulations and
so it is still of interest to have a measure of the approximation error incurred by using the SNM
estimator. In particular, in order to compute correct standard errors, one should account for
the additional sampling error introduced by the simulations. To this end, we will now analyze
in further detail the stochastic difference between the exact and simulated GMM estimator.
We follow the same strategy as in Kristensen and Salanie (2009) and use a functional Taylor
expansion of Ĝn,S (θ) w.r.t. T̂ to evaluate the higher-order properties of the SNM estimator. For
this higher-order analysis to be formally correct, we need to strengthen our assumptions.

Assumption 6. The exact GMM estimator satisfies:

(1)
√

nGn (θ0)→d N (0,Ω0) where

(2.15) Ω0 = E
[
g0 (θ0)g0 (θ0)

′]+2
∞

∑
t=1

E
[
g0 (θ0)gt (θ0)

′] .
(2) The derivative

(2.16) Hn (θ) =
1
n

n

∑
t=1

ht (θ) , ht (θ) =−Z′t
∂T (φi)(xt ;θ)

∂θ
∈ RM×dθ

satisfies sup‖θ−θ0‖<δ ‖Hn (θ)−H (θ)‖→P 0 where H (θ) = E [ht (θ)].
(3) With H0 = H (θ0), the matrix H ′0W0H0 is non-singular.
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Under Assumptions 1 and 6, the exact GMM estimator is
√

n-asymptotically normally dis-
tributed, √

n(θ̂n−θ0)→d N
(

0,
(
H ′0W0H0

)−1 H ′0W0Ω0W0H0
(
H ′0W0H0

)−1
)

,

c.f. Lemma 3 in the Appendix. As with Assumption 1, the above conditions are completely
standard conditions for GMM-estimators, c.f. Newey and McFadden (1994).

Next, we assume that the DLV model is sufficiently smooth in θ such that derivatives of the
simulated trajectories exist and are well-behaved:

Assumption 7. The test and moment functions satisfy:

(1) The test functions, φ (yt , ...,yt+p), are twice continuously differentiable. The first order
derivatives satisfy the same moment conditions as imposed on φ in Assumption 2.

(2) The functions x 7→ T (φ)(x;θ) and f (x;θ) are continuously differentiable w.r.t θ , and
their derivatives are m≥ 2 times continuously differentiable w.r.t. x.

(3) E
[
supθ∈Θ f (xt ;θ)−q ‖∂T (φ)(xt ;θ)/(∂θ)‖‖zt‖

]
< ∞ for some q > 0.

Assumption 8. The process {Ys (θ)} satisfies:

(1) {Ys (θ)} is twice continuously differentiable w.r.t. to θ , and the derivatives satisfy the
same mixing conditions as {Ys (θ)} in Assumption 3.

(2) With V (θ) defined in Assumption 3.2, its first derivative w.r.t. θ also satisfies Eqs.
(2.11)-(2.12).

Assumption 9. The kernel K is differentiable and its derivative satisfies the same conditions as
imposed on K in Assumption 4.

These conditions are used to establish uniform consistency of ∂ T̂S (φ)(x;θ)/(∂θ), which in
turn gives us uniform consistency of the simulated version of Hn (θ). As with Assumptions 2
and 3, the conditions are quite high-level, but they are normally easy to verify in specific models.
It is for example possible to verify Assumptions 7 and 8 for the linear model considered earlier.
We are now ready to state the second main result evaluating the higher-order impact of the
simulations on the SNM estimator:

Theorem 2. Assume that Assumptions 1-9 hold, and that a−1hm→ 0, a−1
√

log(S)/(Shdx+4)→
0 and a→ 0. Then the SNM estimator satisfies:

θ̂n,S− θ̂n = hmB+
1
S

S

∑
s=1

Ds +OP (aq)+OP
(
a−1hm)+OP

(
1√

nShdx+δ

)
,

for some δ > 0 where

B =
(
H ′0W0H0

)−1 H ′0W0E

[
Z′t

f (xt ;θ0)
∑
|α|=m

∂ |α| [T (φ)(xt ;θ0) f (xt ;θ0)]
∂xα

]
,

Ds =
(
H ′0W0H0

)−1 H ′0W0
{

Z (Xs (θ0))
′
φ (Ys (θ0))−E

[
Z (Xs (θ0))

′
φ (Ys (θ0))

]}
.
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In particular, if
√

na−1hm → 0,
√

naq → 0, Shd+δ → ∞, and n/S→ λ ≥ 0, then the SNM
estimator satisfies:

(2.17)
√

n(θ̂n,S−θ0)
d→ N

(
0,
(
H ′0W0H0

)−1 H ′0W0 {Ω0 +λΣ0}W0H0
(
H ′0W0H0

)−1
)

,

where

Σ0 = E
[
D0D′0

]
+2

∞

∑
s=1

E
[
D0D′s

]
.

Proof. See the Appendix. �

The first part of the theorem gives a bias-variance expansion of the estimation error from
using the SNM instead of the exact GMM estimator. There are two leading terms in the expan-
sion: The first term, hmB, is the bias due to the use of kernel smoothers and the second term,

∑
S
s=1 Ds/S where E [Ds] = 0, is an additional variance component due to the use of simulations.

A number of points should be emphasized here:
First, in comparison to the NPSMLE of Fermanian and Salanie (2004) and Kristensen and

Shin (2008), the SNM suffers from fewer biases. For the NPSMLE, an additional bias term of
order 1/S appears due to the simulator entering the objective function nonlinearly. This is not
the case here, as in SMM, since T̂S (φ)(x;θ) enters Ĝn,S (θ) linearly. This will in general imply
that the SNM estimator will be less biased than the NPSMLE. One could potentially combine
the NPSML and SNM estimators in the spirit of Hajivassiliou (2000) to obtain an efficient
two-step estimator with reduced bias.

Second, in comparison to standard SMM (Duffie and Singleton; 1993; McFadden, 1989),
we here have a bias component, hmB, due to the use of kernel smoothers. On the other hand,
there is no first-order curse of dimensionality: It is well-known that the pointwise variance of
a kernel estimator is of order 1/

(
Shd
)
. One could fear that this would lead to a first-order

variance component of the SNM of the same order. This is however not the case; rather the first
order variance component is of order 1/S. To understand the intuition behind this result, it is
useful to think of the SNM estimator as a semiparametric two-step estimator: In the first step,
a nonparametric smoother is used to estimate the conditional means, T (φ)(xt ;θ), t = 1, ...,n,

These are in turn used to compute θ̂n,S. The nonparametric error in the first step is integrated
out in the second step due to us summing over T (φ)(xt ;θ), t = 1, ...,n, in the computation of
θ̂n,S. The summation is asymptotically equivalent to integrating over the kernel smoother which
reduces its variance as is well-known from the literature on semiparametric estimators, see e.g.
Kristensen (2008, 2010).

The second part of the result states how, under suitable choices of bandwidths and trimming
parameters, the simulations impact the standard errors of the SNM estimator: As can be seen
from Eq. (2.17), the SNM estimator has an additional variance term, λΣ where λ ≈ n/S, relative
to the exact GMM estimator. This is akin to Duffie and Singleton (1993). It is easy to construct
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an estimator of Σ, and so the second result can be used to adjust standard errors to account for
the use of simulations.

2.3. Discussion.

2.3.1. Choice of test functions and instruments. An integral part of the proposed estimation
procedure is the set of test functions, φ1, ...,φL, and the instruments. We here discuss in turn
how these can be chosen.

Regarding the test functions, these can either be chosen in a model-specific manner or in non-
model-based way. In the model-specific procedure for choosing test functions, the researcher
chooses different test functions depending on the model. For a given model, he/she chooses
(a small number of) test functions that he/she believes identify the parameters of interest. An
example of this approach can be found in our simulation study where we consider a stochastic
volatility model; the parameters in this model describe the dynamics of the conditional second
moment of the observed process and we therefore choose test functions mirroring this fact.

In the non-model based method, the researcher uses (a relatively large number) test functions
that (approximately) span the unknown score function. Examples of test functions within this
approach are Hermite polynomials (Bansal et al, 1994; Gallant and Tauchen, 2002) and the
characteristic function (Carrasco et al, 2007; Chacko and Viceira, 2005). To illustrate how this
approach can be implemented within our setting, consider the characteristic function approach:
We would in this case choose

(2.18) φk (yt) = exp
(
iτ ′kyt

)
, k = 1, ...,L,

where τk ∈ Rdy , k = 1, ...,L, is a collection of points chosen by the researcher. As shown in
Carrasco et al. (2007), the GMM estimator using no conditional information will converge
towards the (quasi-)maximum likelihood estimator as L grows larger. We conjecture that this
still holds true when we condition on xt such that our SNM estimator based on φ (yt) defined
in eq. (2.18) will be asymptotically equivalent to the (quasi-)maximum likelihood estimator
associated with the conditional density f (yt |xt ;θ).

A representation of optimal instruments within our setting can be found in Anatolyev (2003)
where it is shown that the optimal instruments solve a stochastic recursion equation involving
conditional means and variances of the residual function and its Jacobian; see also Hansen et
al. (1988). However, solving this recursion equation is infeasible in practice, except in a few
special cases. A feasible method is either to (i) approximate the optimal instruments (Anatolyev,
2002), or (ii) restrict the instruments to belong to a smaller, tractable class of processes.

An example of (ii) can be found in Christensen and Sørensen (2008, Section 4): They derive
optimal instruments within the following finite-dimensional class of instruments: For a given
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set of functions ξ j : Rdx 7→ R, k = 1, ...,N, the instruments are restricted to be on the form

Zt =
N

∑
k=1

akξk (xt) ∈ RL×dθ ,

for some coefficients ak ∈ RL×dθ . The functions could for example be chosen as indicator
functions, ξk (x) = I

{
x≤ x∗k

}
, k = 1, , ...,N, where x∗1, ...,x

∗
N are given (non-stochastic) points

(see e.g. Domínguez and Lobato, 2004), or as Hermite polynomials. Define A = [a′1| · · · |a′N ] ∈
Rdθ×LN . The optimal weights are then shown to be on the form (Christensen and Sørensen,
2008, Theorem 4.1),

A∗ (θ) = J (θ)V (θ)−1 ,

where J (θ) = ( j1 (θ) , ..., jN (θ)) ∈ Rdθ×LN and V (θ) = E
[
sn (θ)sn (θ)′

]
∈ RLN×LN with

jk (θ) = E
[

ξk (xt)
∂T (φ)(xt ;θ)

∂θ

]
∈ Rdθ×L, sn,k (θ) =

1
n

n

∑
t=1

ξk (xt)εt (θ) ∈ RL.

These two sets of moments, s(θ) and V (θ), can easily be implemented using simulations.

2.3.2. Optimal weight matrix. One can use standard methods and asymptotic results for GMM
estimators to make statistical inferences with the SNM estimator. For example, supposing that
an estimated optimal weight matrix is used, an overidentified model’s specification may be
tested using the familiar χ2 test based upon nĜn,S(θ) where Ĝn,S(θ) is defined in Eq. (2.9).

In order to conduct any inference, we need estimators of the asymptotic covariance matrices
in Theorem 2, Ω0 and Σ0. Also, a consistent estimator of these matrices are needed if one
wishes to use an efficient weight matrix to estimate θ0. In the ordinary GMM setting without a
fully simulable model, these covariance matrices must be estimated using only the sample data,
which requires use of one of the kernel-based heteroscedasticity and autocorrelation-consistent
covariance matrix estimators (for example, that of Newey and West, 1987). It is well-known
that inferences based upon such covariance estimators can be quite unreliable (Hansen, Heaton
and Yaron, 1996; Windmeijer, 2005). However, in the context of the SNM estimator, or any
other moment-based estimator that relies on a fully simulable model, it is possible to estimate
Ω0 and Σ0 through Monte Carlo, in much the same way as was proposed of estimation of Φ0

above. We here only discuss the estimation of Ω0, since an estimator of Σ0 can be constructed
along the same lines.

We first note that Ω0 = limn→∞ nE
[
Gn (θ)Gn (θ)′

]
. The idea now is to estimate the moment

on the right hand side of this equation using an average of R random draws of Gn (θ)Gn (θ)′,
replacing the real sample test and conditioning variables with independent simulations from the
model, given an initial consistent estimate of the model’s parameter, θ̂n,S, as was discussed in
detail in the previous section. We may generate R ≥ 1 such samples of size n, and for each
of them calculate simulated moment conditions as in Eq. (2.9). Given the rth such replica-
tion of the test and conditioning variables, (Ŷ (r)

t , X̂ (r)
t )}n

t=1 (r = 1,2, ...,R), we then compute
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Ĝ(r)
n,S(θ̂n,S) in exactly the same way as Ĝn,S (θ) is computed in Eq. (2.4), except that the sim-

ulated data at θ̂n,S replaces the real sample data. We then define vr = Ĝ(r)
n,S(θ̂n,S)− Ḡ, where

Ḡ = R−1
∑

R
r=1 Ĝ(r)

n,S(θ̂n,S), and obtain the following estimator of Ω0:

(2.19) Ω̂0 =
n
R

R

∑
r=1

vrv′r.

Once Ω0 and Σ0 are estimated, hypothesis testing may then be done based on equation 2.17,
which is analogous to the standard result for GMM estimators with an inefficient weight matrix,
or the estimate of Ω0 and Σ0 may be used in a second round of estimation to compute a more
efficient estimate of θ0, as is common practice.

2.3.3. Choice of the kernel and the bandwidth. To implement the SNM estimator, the kernel
function K(·) must be chosen, as must the bandwidth, h. Regarding the kernel, in this paper
attention is restricted to local constant kernel regression estimators (Li and Racine, 2007). In
this context, much theoretical and empirical evidence shows that the choice of the particular
kernel function has relatively little effect on the results for a given bandwidth. For this reason,
this paper uses radially symmetric Epanechnikov product kernels exclusively, accompanied by
prior rotation of the data to approximate independence of the conditioning variables. The pos-
sibility of SNM estimation based on local linear or local polynomial kernel methods is left for
future work.

Given the kernel function, the bandwidth must be chosen. Too large a bandwidth over-
smooths the data, and induces a fit with low variance but high bias. Too small a bandwidth has
the opposite effect. This bias-variance trade-off is clear from Theorem 2, where we have a bias
term of order hm and a variance term of order nShdx . Many methods for choosing the bandwith
have been suggested in the literature, ranging from a simple rule-of-thumb bandwidth common
to all test variables and conditioning variables, to individual bandwidths by test variable and
conditioning variable, chosen using a data-dependent rule such as cross validation. It should
be noted though that these methods are designed to minimize the MSE of the kernel estimator
and as such do not necessarily minimize the MSE of θ̂n,S. Thus, standard bandwidth selection
methods may not work particularly well in our setting; see Kristensen and Salanie (2009) for a
further discussion.

In the examples that follow, we use a single bandwidth for all test variables, and we use
only a single conditioning variable, so there is only one bandwidth to be chosen. We treat the
bandwidth as an additional parameter to estimate, in the manner of Härdle, Hall and Ichimura
(1993). The real sample data, yt , is out-of-sample from the point of view of the simulated data,
Ys (θ). By including the bandwidth as a parameter to estimate in the econometric objective
function, we are effectively using an out-of-sample cross validation procedure. Use of a sin-
gle bandwidth that is chosen in a data-dependent way gives a balance between computational
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convenience and reliable nonparametric fit. The details of out implementation are clear in the
example code that is provided. This strategy has the important advantage that it is automatic,
which frees the modeler’s attention to deal with more fundamental issues such as choice of
test variables, conditioning variables, and instruments. There is of course plently of scope for
experimentation which could possibly improve on our results.

2.3.4. Computational issues. Estimation of a complicated model using long simulation may
become computationally burdensome, since kernel smoothing is a computationally intensive
procedure. Another problem is multiple local minima. As is the case with normal GMM esti-
mators (Chernozhukov and Hong, 2003, especially pp. 296-298), the SNM objective function
is not globally convex, so one needs to take care to find the global minimum. This problem
becomes more severe if an Epanechnikov kernel is used, because it is kinked. Our experience
is that gradient-based minimization algorithms are not able to find the global minimum of the
SNM objective function regardless of the kernel that is selected. The existence of multiple lo-
cal minima in a Monte Carlo context requires a means of finding the global minimizer with a
high degree of confidence, yet with minimal user intervention. Our solution is to use a sim-
ulated annealing algorithm (Goffe et al., 1994). This is a heuristic minimizer that searches
over a parameter space defined by reasonable bounds (for example, we impose stationarity and
non-negativity of variances), gradually contracting the region of search. The starting point for
each Monte Carlo replication is a random point drawn from a uniform density over the param-
eter space, to avoid the possibility that over-rapid contraction of the search region could bias
the result towards the starting point. Given that we use a robust global minimizer, we use the
Epanechnikov kernel, in spite of its kinks, for its computational advantages.

All of these factors imply that use of the SNM estimator is computationally intensive. How-
ever, kernel regression fitting, which is at the heart of the SNM estimator, is easily parallelized
(Racine, 2002; Creel, 2005), as is Monte Carlo work. While the embarrassingly parallel na-
ture of Monte Carlo is well known, Creel (2007) provides discussion of the methods we use
here. The widespread availability of multicore processors is an invitation to take advantage
of parallelization opportunities in econometric work. Once the step to parallelization is made,
ambitious projects with high computational demands become much more tractible. All of the
results reported in the next section of this paper were obtained on a computational cluster that
provided a total of 32 CPU cores, running the PelicanHPC distribution of GNU/Linux2. Peli-
canHPC (Creel, 2009) contains all software and scripts needed to replicate the results reported
in the next section, on a single computer or on a cluster. Documentation for the software is
provided by Creel and Kristensen (2009).

2PelicanHPC is the evolution of the ParallelKnoppix distribution of GNU/Linux, which was described in Creel
(2007).
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3. MONTE CARLO RESULTS

This section presents Monte Carlo results that compare the SNM estimator to other estima-
tors. We also briefly explore the use of SNM to estimate a latent network model. The intention
is to show that the SNM estimator can be used to successfully estimate a variety of DLV models,
and that the SNM estimator can perform well in comparison to alternative estimators.

As discussed above, the SNM estimator is computationally demanding, especially in the
context of Monte Carlo work. Because of this, we limit the directions that we explore. We
do not attempt to use optimal instruments, and instead just use the single conditioning variable
(explained below), augmented with a vector of ones. Nor do we attempt to use an optimal
weight matrix, and instead we just use an identity matrix as the weight. Informal Monte Carlo
work with some of the examples and a small number of replications suggested that use of an
estimated optimal weight matrix would not improve the results that are presented in this paper.
We leave exploration of the use of approximately optimal instruments and/or an optimal weight
matrix for future work, possibly when code can be written to use graphical processing units
(GPUs).

In all cases, we minimize the objective function using simulated annealing, starting from a
random point in the parameter space. All of the Monte Carlo results use a simulation length of
S = 10000, and in all cases except the first (the AR1 model), the 2 percent of observations with
the lowest value of a kernel density fit to the conditioning variable are trimmed. In all cases we
generate 500 Monte Carlo replications. Other details are found in the computer code that we
offer, as noted above.

3.1. AR1. The first model we consider is a simple autoregressive model

(3.1) yt = α +βyt−1 +ut

where ut ∼ N(0,1). The sample size is n = 50, and we generate samples using α = 0, β =
0.9. The single test function is φt = yt , and the single conditioning variable is xt = yt−1. The
instruments are a vector of ones, plus the conditioning variable. This implementation of SNM
mimics the moment conditions that define the ordinary least squares (OLS) estimator of α

and β , which is also the maximum likelihood estimator. As such, comparison of SNM with
OLS serves as a benchmark for how well SNM can perform in comparison to a fully efficient
estimator. Given that the data generating process does not create outlying observations and that
the sample size is small (n = 50), no trimming is done.

Table 1 contains the results. We see that the SNM estimator has performance similar to the
OLS estimator, and in fact has a lower root mean squared error for the slope parameter. The
results illustrate that the SNM estimator that uses the same moment conditions as a feasible
GMM estimator will lead to estimation results close to those of the feasible GMM estimator.
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3.2. Stochastic Volatility. This section presents Monte Carlo results for the logarithmic sto-
chastic volatility model of Jacquier, Polson and Rossi (1994) that has widely been used as a test
bed for estimators. Adapting the notation to conform with the general DLV model of Eq. (1.1),
the model is

(3.2) SV1:

yt = exp(wt/2)ut,1

wt = α +βwt−1 +σut,2

where the white noise ut = (ut,1,ut,2)
′ is distributed i.i.d. N(0, I2). The stochastic volatility

model of Eq. (3.1) will be referred to as the SV1 model. A slightly different parameterization
(referred to here as the SV2 model) is used by some authors:

(3.3) SV2:

yt = σb exp(wt/2)ut,1

wt = βwt−1 +σut,2

The parameters of the two versions are the same, except that σb = exp(α/2). Our code is
written for the SV2 model, and estimates σb. To recover an estimate of α, we use α̂ = 2logσ̂b.

The Monte Carlo design proposed by Sandmann and Koopman (1998) has been adopted
in subsequent work by a number of authors, and we adhere to this trend to facilitate compar-
ison with other estimators. Perhaps the most widely used design uses the parameter values
θ0 = (α,β ,σ)′ = (−0.736, 0.9, 0.363)′, for the SV1 model, and a sample size of n = 500 ob-
servations. We begin with this case.

To apply the SNM estimator, we must choose moment conditions by specifying the test
variables φt and the conditioning variables xt . For the SV1 and SV2 models, the sign of
yt gives no information. As such, we work with zt = |yt |. The test variables we use are
φt =

(
zt , z2

t , coszt sinzt , ..., cos4zt sin4zt
)
. The first two test variables are clearly related to

the variance of yt , while the remaining test variables are motivated by the characteristic func-
tion approach to defining moment conditions. The single conditioning variable is xt = zt−1 +
zt−2 + zt−3 + zt−4. This conditioning variable is intended to capture the recent variability of the
series in a parsimonious way, to avoid needing to choose multiple bandwidths.

Table 3 presents the results. For the parameter α, the SNM estimator has a root mean squared
error (RMSE) that is less than that of all alternatives except quasi-maximum likelihood (QML)
and the Monte Carlo Likelihood (MCL) estimator. For β , the SNM estimator has RMSE equal
to that of EMM, and higher than ML and MCMC. For σ , the ML, MCMC and MCL estimators
outperform SNM, which achieves lower RMSE than EMM and QML. Overall, it seems fair to
say that SNM performs well in general, and better than the only other general purpose estimator,
EMM.

Fermanian and Salanié (2004) and Altissimo and Mele (2009) illustrate the estimators they
propose using the SV2 model with the design (σb,β ,σ) = (0.025, 0.95, 0.260). The sample
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size in both cases is n = 500. We apply the SNM estimator to data from this model and design,
using the same test variables, conditioning variables and instruments as were used for the SV1
model. Table 4 provides the results, along with those of the two cited papers for comparison.
For σb, the estimators all have very good precision, with the SNM estimator doing best. For β ,

the SNM estimator achieves an RMSE that is about 20% lower than that of the alternatives. For
σ , the SNM estimator suffers from more bias than the alternatives, yet still achieves a relatively
low RMSE.

3.3. Autoregressive Tobit. Fermanian and Salanié (2004) used an autoregressive Tobit model
to illustrate the nonparametric simulated maximum likelihood (NPSML) estimator. This model,
with notation adapted to follow the general DLV model of Eq. (1.1), may be written as:

(3.4) AR Tobit:


yt = max(0,wt)

wt = α +βwt−1 +σut

ut ∼ IIN(0,1)

This model has one observable variable, yt , a single latent variable, wt and a scalar white noise
ut . Fermanian and Salanié’s Monte Carlo example used the true parameter values (α,β ,σ) =
(0.0, : 0.5, : 1.0) and the sample size n = 150. This same design is used here. To apply the SNM
estimator, the same procedure (test variables, conditioning variable, etc.) as was used for the
SV1 and SV2 models is repeated exactly, with the exception that we directly use yt rather than
its absolute value. Table 5 reports the results, along with Fermanian and Salanié’s results for
comparison. The SNM estimator has considerably lower RMSEs for the parameters α and σ ,

while for β the RMSE of SNM is a little higher than that of NPSML. The SNM estimator is
considerably less biased for σ .

3.4. Factor ARCH. Billio and Monfort (2003) illustrate the kernel-based indirect inference
(KBII) estimator with several Monte Carlo examples, one of which is a simple factor ARCH
model. The model has a scalar common latent factor, wt , and two observed endogenous vari-
ables, yt = (yt1,yt2)

′. The 2×1 dimensional parameter β has its first element set to 1, for
identification. The model, referred to as FA, is

(3.5) FA:


yt = βwt +u1t

wt =
√

htu2t

ht = α1 +α2 (wt−1)
2

t = 1,2, ...,n, where u1t ∼ N(0,σ2I2) and u2t ∼ N(0,1) . The parameter vector design is
(α1,α2,σ ,β2) = (0.2, 0.7, 0.5, −0.5). The sample size is n = 500.

Let zt = |yt |. The test variables used are zt , coszt sinzt , cos2zt , sin2zt , ..., cos4zt sin4zt ,
along with yt1yt2, to identify the sign of β2. The conditioning variable is zt−1,1 +zt−1,2 +zt−2,1 +
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zt−2,1. The motivation for summing over the two observable variables is that variation in either
of the two observable variables is an indication of variation in the latent variable. This also
keeps the dimensionality low, which helps to avoid excessive computational time. The instru-
ments are again the same conditioning variable augmented with a vector of ones.

Table 6 reports the Monte Carlo results, together with the lowest RMSE that Billio and
Monfort obtain using several versions of kernel-based indirect inference, indirect inference,
and simulated method of moments (see Billio and Monfort, 2003, Table 5, page 317). For
all four parameters, the SNM estimator outperforms the estimators considered by Billio and
Monfort, in terms of bias and RMSE.

3.5. Degree distribution of a latent network. The previous examples all use fairly simple
models that have application to financial series. In this section we consider a model that in-
corporates an unobserved network. The results of this section are only intended as a sketch
of possibilities, to show that the SNM estimator could be of use for the estimation of more
ambitious models that include networks.

Much theoretical and empirical work is currently being done to incorporate network effects
into economic models (Jackson, 2006). In many cases where one would suspect that network
effects could be important, the actual network is not observed. The chances of a new graduate
obtaining a given job could depend upon his or her social contacts, but these contacts are private
information. The traffic received by a web site depends in part on the number of sites that link to
it, but it may be costly to learn the complete list of sites that link to a give site. The information
flow through a network of financial agents no doubt affects the price and volatility of financial
assets, yet agents will certainly attempt to hide at least some contacts. We investigate the
possibility of learning about a latent network from observed outcomes generated by the network.
A distinct problem, studied by Copic, Jackson and Kirman (2009), is how an observed network
comes to be formed from latent groups of nodes that share some characteristics (homophily).
In their paper, the network is observed, and the question is what latent structure led to the
formation of the network. Here we do not observe the network, and attempt to learn about its
structure though an observed output.

Consider a latent random graph network, of the Bernoulli type, as described by Jackson
(2006, Section 3.1.1). There are N nodes. Connections between nodes are assumed to be the
outcome of independent Bernoulli trials. The probability that two nodes are connected is pCON .
The degree of a node is the number of links that it has. The frequency distribution of the degrees
of the nodes is known as the degree distribution of the network. For the Bernoulli network, the
degree distribution is binomial(N−1, pCON), and as N becomes large, the degree distribution is
approximately Poisson. Here, we work with N = 500, and is this is known to the modeler. The
objective is to estimate pCON,without directly observing the network.
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Suppose that a disease is transmitted though the network. Analogously, we could think of
transmission of information or new innovations. Jackson and Rogers (2007) provide a theoreti-
cal background and additional references. The disease will provide the signal that will be used
to learn about the network structure. Suppose that a disease exists such that, in each period t:

• the probability of transmission from an infected node to a connected uninfected node is
pT RANS = 0.01

• the probability that an infected node recovers is pREC = 0.9
• the probability of an uninfected node becoming infected spontaneously, independent of

the nodes to which it is connected, is pSPON = 0.01

We assume that enough medical research has been done so that these probabilities may be taken
as known. Emphasis is therefore on learning about the network (pCON) rather than learning
about the disease.

Let wit indicate if node i is healthy (wit = 0) or infected (wit = 1) in period t. The states
of the individual nodes are not observed. What is observed is the overall infection rate yt =
N−1

∑
N
i=1 wit . Figure 5.1 shows a typical series generated from the model. Note that the se-

ries exhibits autocorrelation, leptokurtosis, and volatility clustering, all of which are features
associated with financial and some macroeconomic series.

We do Monte Carlo work using SNM applied to yt to estimate pCON . The time series length is
n = 50. Because our intention here is only to sketch possibilities for use of SNM to estimate this
sort of model, we will not burden the reader with the details of the test functions, conditioning
variables, and so on. They may be found in the example code that is provided. We performed
100 replications, where at each trial the true pCON is drawn from U(0,0.5). Figure 5.2 shows the
results. We can see that the estimated pCON closely tracks the true value, with good precision.

Some comments are in order. First, the model used here is highly structured: everything
about the data generating process is known except the degree distribution and the specific net-
work that generates the data. The size of the network and the characteristics of the disease are
known. It would clearly be of interest to attempt to relax these assumptions. If we were model-
ing diffusion of an innovation, estimation of pT RANS could be of central interest. Relaxation of
the assumption of known network size would be needed in many applications. Second, the por-
tion of the parameter space on which pCON is well identified depends on the characteristics of
the disease. If the disease is too infectious (pT RANS too high), it will be difficult to identify pCON

when it is large, because in this case the probability that a node is infected will depend almost
entirely on pREC, and it will be insensitive to small changes in pT RANS and pCON . The results
here are merely suggestive of the potential for estimating models with a latent network struc-
ture using SNM or other simulation-based estimators. For the highly specific case we examine,
good results can be obtained. Further work would need to seriously examine identifiability,
especially as assumptions are relaxed to allow for more interesting models.
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4. EXTENSIONS

A number of extensions of the proposed estimator are available. We here discuss how our
method can be extended to allow for non-stationarity and how it can be adjusted to obtain a
consistent estimator without requiring S→ ∞.

4.1. Non-Stationary Models. We have worked under the maintained assumption that the pro-
cess is stationary. If the the data-generating process in question is non-stationary, our simulated
estimator will in general no longer work. Suppose for example, we wish to base our estima-
tion on the following conditional moment, Eθ [yt |yt−1]. Under non-stationarity, the distribution
of (yt ,yt−1) will in general change over time and so the conditional moment Eθ [yt |yt−1] is no
longer time-invariant (in contrast to the stationary case). To handle this case, we now introduce
an alternative simulation scheme: First, simulate S independent trajectories each of length n,
{Ys,t (θ) : t = 1, ...,n}, s = 1, ....,S, where the sth trajectory is computed as:

(4.1)

Ys,t (θ) = ry
(
Y t−1

s (θ) ,W t−1
s (θ) ,Us,t ;θ

)
Ws,t (θ) = rw

(
Y t−1

s (θ) ,W t−1
s (θ) ,Us,t ;θ

) , t = 1, ...,n,

where Us,t , s = 1, ...,S, t = 1, ...,n, are i.i.d. draws. We here assume that we have observed the
initial values (y0,w0) and then start the simulations there, (Ys,0 (θ) ,Ws,0 (θ)) = (y0,w0).3 We
then compute

Xs,t (θ) = x(Ys,t−1 (θ) , ...,Ys,t−q (θ)) ,

Φs,t (θ) = φ (Ys,t (θ) , ...,Ys,t+p (θ)) ,

and

(4.2) T̂t,S (φ)(x;θ) = ∑
S
s=1 Φs,t (θ)Kh (Xs,t (θ)− x)

∑
S
s=1 Kh (Xs,t (θ)− x)

, t = 1, ...,n.

By construction, (Φs,t (θ) ,Xs,t (θ)), s = 1, ...,S, are i.i.d. simulations from the target distribution
at time t, (Φs,t (θ) ,Xs,t (θ))∼ ft (φ ,x;θ), s = 1, ...,S. Thus, as h→ 0 and Shdx → 0,

T̂t,S (φ)(x;θ)→P Tt (φ)(x;θ) = Eθ [φt |xt = x] =
ˆ

φ ft (φ |x;θ) .

We now proceed as in the stationary case and define ε̂t,S (θ) = φt− T̂t,S (φ)(xt ;θ), and ĝt,S (θ) =
Z′t ε̂t,S (θ). The asymptotic properties of the resulting estimator are however not covered by
Theorem 1, since in general the infeasible GMM-estimator does not satisfy Assumptions A.2
and A.7. For theoretical results in non-stationary environments, see Kitamura and Phillips
(1997) for some results for linear models and Kristensen and Shin (2008) for simulation-based
likelihood-inference.

3Alternatively, one can impose a prior on w0 and simulate from this.
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4.2. Unbiased Simulator. The current kernel estimator T̂S (φ)(xt ;θ) in Eq. (2.6) has a bias of
order hm. An alternative specification of the SNM estimator that leads to an unbiased simulator
can be constructed by following the main idea of Altissimo and Mele (2009); see also Billio and
Monfort (2003). The estimator takes as starting point the following redefined residual functions,

εt,h (θ) = Rh (φ)(xt)−Rh (φ)(xt ;θ),

where
Rh (φ)(xt ;θ) := Eθ [φ (yt)Kh (xt − x)] ,

and Rh (φ)(xt) = Rh (φ)(xt ;θ0). A simulated version can then be obtained as

(4.3) ε̂t (θ) = R̃(φ)(xt)− R̂(φ)(xt ;θ),

where R̃(φ)(x) and R̂(φ)(x;θ) are kernel estimators using actual and simulated data respec-
tively,

R̃(φ)(x) =
1
n

n

∑
t=1

φ (yt)Kh (xt − x) ,

R̂(φ)(x;θ) =
1
S

S

∑
s=1

φ (Ys (θ))Kh (Xs (θ)− x) .

We now have that R̂(φ)(x;θ) is an unbiased estimator of R(φ)(x;θ) such that we will obtain
consistency for fixed h and S by the same arguments as in Duffie and Singleton (1993). The
identification condition for fixed h now becomes

Rh (φ)(xt ;θ0) = Rh (φ)(xt ;θ) a.s. ⇔ θ = θ0;

see Altissimo and Mele (2009) for a further discussion. Furthermore, as h→ 0 and Shdx → ∞,

R̂(φ)(x;θ)→P T (φ)(x;θ) f (x;θ) ,

where f (x;θ) is the density of f (x;θ). Thus, by choosing the instruments appropriately, the
estimator based on R̂(φ)(x;θ) is equivalent to the SNM estimator as h→ 0. Finally, note that
the above estimator shares some similarities with the one of Domínguez and Lobato (2004).

5. CONCLUSION

This paper has proposed a simulated method of moments estimator that allows use of condi-
tional moments, in the case of general dynamic latent variable models. The estimator is consis-
tent and asymptotically normally distributed, with the same asymptotic distribution as that of
the infeasible GMM estimator defined by the same moment conditions. The Monte Carlo re-
sults show that use of conditional moments allows the proposed simulated method of moments
estimator to obtain efficiency that is competitive with other estimation methods.

The SNM estimator relies on the user specifying the moment conditions to use in estimation,
as is the case with any method of moments estimator. Our Monte Carlo results use moment
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conditions based on test variables that are motivated in a large part by the characteristic function
approach. A less obvious choice is the selection of the conditioning variables. It is desirable
to capture the information contained in the history of the system, but there is also the need
to economize on dimensionality, to avoid deterioration of the kernel fit without requiring an
excessively long simulation, which is computationally burdensome.

The rest of the estimation process can be automatized in software to a high degree. In the
present implementation, the kernel function is an Epanechnikov product kernel. The quality of a
kernel fit is largely insensitive to the particular kernel that is chosen, as long as the bandwidth is
chosen accordingly (Li and Racine, 2007. pg. 15). For this reason, we choose the Epanechnikov
kernel for its computational advantages. The bandwidth is automatically chosen, in a data
dependent way. Future work could explore other ways of choosing the bandwith, but at least
for the applications we have explored in this paper, this strategy is both convenient and effective.

Some of the other estimators to which the SNM estimator is compared in this paper require
a considerable degree of active decision making on the part of the modeler. An example is the
newer version of the EMM estimator that uses MCMC methods, as presented in Gallant and
Tauchen (2007). This version of EMM requires estimation of a SNP density augmented by a
leading parametric model to define the score generator. Selection of the parameterization of the
score generator is complicated by the fact that it involves many parameters. After estimation of
the score generator, the model is estimated using MCMC methods that also require judgement
about proper tuning of the Markov chain.

The Monte Carlo results provided in this paper show that the SNM estimator achieves root
mean squared errors that are often better than those of alternative estimators, and are rarely
much worse. Generally speaking, the estimator is not excessively biased. These results are
quite acceptable as they stand, but it is anticipated that they may be improved upon in the future,
for two reasons. First, use of an estimated optimal weight matrix could improve efficiency
of estimation, though exploratory work with some of the examples considered in this paper
suggests that this improvement may not be great, at least for moment conditions of the type we
use. Probably more important would be to use optimal or approximately optimal instruments.

Topics for further research include methods to obtain a high precision fit to the conditional
moments that define the estimator while using less computational time. Possibilities include
the use of sieve estimation methods instead of kernel smoothing, use of approximate nearest
neighbors, and use of high performance algorithms for kernel smoothing, such as the improved
fast Gauss transform (Yang et al., 2003). Use of an optimal bandwidth may also be helpful
for this purpose, since it may be possible to obtain the same quality of fit to T (φ)(x;θ) while
using a shorter simulation length. Another interesting possibility is to attempt to use optimal or
approximately optimal instruments.

As was previously noted, the code for the SNM estimator, as well as all supporting software
and the scripts to replicate the Monte Carlo examples given in this paper are available on the



28 MICHAEL CREEL AND DENNIS KRISTENSEN

PelicanHPC CD image (Creel, 2009), with documentation provided by Creel and Kristensen
(2009).
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APPENDIX

Appendix A. Proofs.

Proof. [Proof of Theorem 1] We claim that

sup
θ∈Θ

∣∣Ĝn,S (θ)′WnĜn,S (θ)−Gn (θ)′WnGn (θ)
∣∣(5.1)

= OP
(
a−1hm)+OP

(
a−1
√

log(S)/(Shdx)
)

+OP
(
a−q) .

If this holds, it follows by standard results, see e.g. Newey and McFadden (1994, Theorem 2.1)
that under Assumption 1 θ̂n,S is consistent if the three right hand terms go to zero. To prove the
claim, write

sup
θ∈Θ

∣∣Ĝn,S (θ)′WnĜn,S (θ)−Gn (θ)′WnGn (θ)
∣∣

= sup
θ∈Θ

∣∣∣[Ĝn,S (θ)−Gn (θ)
]′

Wn
[
Ĝn,S (θ)+Gn (θ)

]∣∣∣
≤ sup

θ∈Θ

∥∥Ĝn,S (θ)−Gn (θ)
∥∥× sup

θ∈Θ

{∥∥Ĝn,S (θ)
∥∥+‖Gn (θ)‖

}
×‖Wn‖

≤ A2× (A1 +A2)×‖Wn‖ ,

where
A1 = 2 sup

θ∈Θ

‖Gn (θ)‖ , A2 = sup
θ∈Θ

∥∥Ĝn,S (θ)−Gn (θ)
∥∥ .

First, by Assumption 1, ‖Wn‖= OP (1) and

A1 ≤ 2 sup
θ∈Θ

‖Gn (θ)−G(θ)‖+2 sup
θ∈Θ

‖G(θ)‖= OP (1) .

Second,

A2 ≤ sup
θ∈Θ

1
n

n

∑
t=1

∥∥τa,t (θ) T̂ (φ)(xt ;θ)−T (φ)(xt ;θ)
∥∥‖zt‖

≤ 1
n

n

∑
t=1
‖zt‖× sup

θ∈Θ

sup
f̂ (x;θ)≥a/2

∥∥T̂ (φ)(x;θ)−T (φ)(x;θ)
∥∥

+ sup
θ∈Θ

1
n

n

∑
t=1

I
{

f̂ (xt ;θ) < a/2
}
‖T (φ)(xt ;θ)‖‖zt‖

= A2,1 +A2,2.
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Here, A2,1 = OP
(
a−1hm

)
+ OP(a−1

√
log(S)/(Shdx)) by Lemma 4 together with the fact that

n−1
∑

n
t=1 ‖zt‖= OP (1), while the second term satisfies:

A2,2 ≤ sup
θ∈Θ

1
n

n

∑
t=1

I
{

1 <
aq

2q f̂ (xt ;θ)q

}
‖T (φ)(xt ;θ)‖‖zt‖

≤ 2−qaq sup
θ∈Θ

1
n

n

∑
t=1

f (xt ;θ)−q ‖T (φ)(xt ;θ)‖‖zt‖

= OP (aq) ,

where the last equality follows from Assumption 2.3 and the LLN. This completes the proof of
Eq. (5.1). �

Proof. [Proof of Theorem 2] We have that θ̂n,S is consistent. So with probability approaching
one, θ̂n,S lies in a (small) neighbourhood of θ0 which in turn lies in the interior of Θ. Thus, the
SNM estimator solves the following first-order condition,

Ĥn,S(θ̂n,S)′WnĜn,S(θ̂n,S) = 0,

where

Ĥn,S(θ) =−1
n

n

∑
t=1

τa,t (θ)Z′t
∂ T̂S (φ)(xt ;θ)

∂θ
+

1
n

n

∑
t=1

∂τa,t (θ)
∂θ

Z′t
[
φt − T̂S (φ)(xt ;θ)

]
.

By a standard Taylor expansion of Ĝn,S(θ̂n,S) around θ0,

Ĝn,S(θ̂n,S) = Ĝn,S(θ0)+ Ĥn,S
(
θ̄n,S
)
(θ̂ −θ0),

where θ̄n,S lies between θ̂n,S and θ0. Substituting this back into the first-order condition and
rearranging the terms yields

(5.2)
√

n(θ̂n,S−θ0) =
[
Ĥn,S(θ̂n,S)′WnĤn,S

(
θ̄n,S
)]−1

Ĥn,S(θ̂n,S)′Wn
√

nĜn,S(θ0).

We have

Ĥn,S(θ)−Hn(θ) = −1
n

n

∑
t=1

τa,t (θ)Z′t

[
∂ T̂S (φ)(xt ;θ)

∂θ
− ∂TS (φ)(xt ;θ)

∂θ

]
+

1
n

n

∑
t=1

(τa,t (θ)−1)Z′t
∂TS (φ)(xt ;θ)

∂θ

+
1
n

n

∑
t=1

∂τa,t (θ)
∂θ

Z′t
[
φt − T̂S (φ)(xt ;θ)

]
.

By the same arguments as in the proof of Theorem 1 combined with Lemmas 4-5, we obtain that
each of the right hand side terms converge to zero uniformly over {θ : ‖θ −θ0‖< δ} under the
conditions given in the theorem. This combined with Assumption A.7.3, yields that Ĥn,S(θ̂n,S)
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and Ĥn,S
(
θ̄n,S
)

both converge in probability towards H0. Combining Eqs. (5.2) and (5.6),

θ̂n,S− θ̂n =
([

H ′0W0H0
]−1 H ′0W0 +oP (1)

)[
Ĝn,S(θ0)−Gn(θ0)

]
.

We now analyze Ĝn,S(θ0)−Gn(θ0) in further detail: Write

Ĝn,S(θ0) = Ḡn(θ0)+5Ḡn(θ0)
[
T̂S−T

]
,

where

Ḡn(θ0) =
1
n

n

∑
t=1

τa,t (θ0)Z′t T (φ)(xi;θ0),

is the trimmed version of the true moment conditions, and

5Ḡn(θ0)
[
T̂S−T

]
=

1
n

n

∑
t=1

τa,t (θ0)Z′t
[
T̂S (φ)(xi;θ0)−T (φ)(xi;θ0)

]
is an adjustment term measuring the impact of the simulations. As shown in the proof of
Theorem 1, Ḡn(θ0) = Gn(θ0)+OP (aq).

We further decompose the adjustment term into

(5.3) 5 Ḡn(θ0)
[
T̂S−T

]
=5Ḡn(θ0)

[
T̂S−E[T̂S]

]
+5Ḡn(θ0)

[
E[T̂S]−T

]
,

where E[T̂S (φ)(x;θ0)] is the (conditional on x) expectation w.r.t. the simulations. By standard
results for bias of kernel regression estimators,

E[T̂S (φ)(x;θ0)] = T (φ)(x;θ0)+hm 1
f (x;θ0)

∂ r [T (φ)(x;θ0) f (x;θ0)]
∂xr +o(hm) ,

uniformly over x. Plugging this expression into the expression of 5Ḡn(θ0)
[
E
[
T̂S
]
−T

]
and

appealing to the Law of Large Numbers,

5Ḡn(θ0)
[
E[T̂S]−T

]
= hm 1

n

n

∑
t=1

τa,t (θ0)
Z′t

f (xt ;θ0)
∂ r [T (φ)(xt ;θ0) f (xt ;θ0)]

∂xr +o(hm)

= hmE

[
∑
|α|=m

∂ |α| [T (φ)(xt ;θ0) f (xt ;θ0)]
∂xα

]
+o(hm) .

Next, the first term in Eq. (5.3) can be written as

(5.4) 5 Ḡn(θ0)
[
T̂S−E[T̂S]

]
=

1
n

n

∑
t=1

S

∑
s=1

∆(xt ,Zt ,Vs)+Rn,

where Vs = (Ys (θ0) ,Xs (θ0)),

∆h (xt ,Zt ,Vs) :=
Z′t

f (xt ;θ0)
ψh (xt ,Vs) ,

ψh (xt ,Vs) := φ (Ys (θ0))Kh (Xs (θ0)− x)−E [φ (Ys (θ0))Kh (Xs (θ0)− x)] .
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Here, Rn,S is a higher-order term containing the effects of trimming which can be ignored. We
recognize the sum on right hand side of Eq. (5.4) as a U-statistic. Define

Dh (Vs) = E [∆h (xt ,Zt ,Vs) |Vs] ,

and

Wt,S :=
1
S

S

∑
s=1
{∆h (xt ,Zt ,Vs)−Dh (Vs)} .

Conditionally on the simulations which we collect in ES, it is easily seen that {Wt,S} satisfies
the conditions of Lemma 6 such that

E

[∥∥∥∥1
n ∑

n
t=1Wt,S

∥∥∥∥2

|ES

]
≤C (1,A)E

[
‖Wt,S‖2+δ |ES

]
n−1,

where in turn

E
[
‖Wt,S‖2+δ

]
≤ 1

S1+δ/2C (1,A)E

[∥∥∥∥ τtZ′t
f (xt ;θ0)

ψh (xt ,Vs)
∥∥∥∥2+2δ

]
,

and, by standard arguments,

E

[∥∥∥∥τa,t (θ0)Z′t
f (xt ;θ0)

ψh (xt ,Vs)
∥∥∥∥2+2δ

]
= O

(
1

hd+δ

)
.

We now have that

5Ḡn(θ0)
[
T̂S−E

[
T̂S
]]

=
1
S

S

∑
s=1

Dh (Vs)+OP

(
1√

nShd+δ

)
,

where, leaving out higher order terms,

Dh (Vs) ' E
[

Z′t
f (xt ;θ0)

{φ (Ys (θ0))Kh (Xs (θ0)− xt)−E [φ (Ys (θ0))Kh (Xs (θ0)− xt)]}|Vs

]
'
ˆ

Z (x)′

f (x;θ0)
φ (Ys (θ0))Kh (Xs (θ0)− xt) f (x)dx−

ˆ
Z (x)′T (φ)(xt ;θ0) f (x)dx

' Zs (θ0)
′
φ (Ys (θ0))−E

[
Zs (θ0)

′
φ (Ys (θ0))

]
.

This proves the first part of the theorem.
The second part follows by combining the first part with Eq. (5.6). �

Appendix B. Lemmas.

Lemma 3. Under Assumption 1, θ̂n is consistent. If in addition Assumption 6 holds,
√

n(θ̂n−θ0)→d N
(

0,
(
H ′0W0H0

)−1 H ′0W0Ω0W0H0
(
H ′0W0H0

)−1
)

,

where H0, Ω0 and W0 are given in Assumptions 1 and 6.
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Proof. First, consistency follows from Newey and McFadden (1994, Theorem 2.1). To show
asymptotic normality, we first note that θ̂n satisfies the following first order condition:

(5.5) Hn(θ̂n)′WnGn(θ̂n) = 0,

where Hn(θ) is given in Assumption . A Taylor expansion of Gn(θ̂n) around θ0 yields

Gn(θ̂n) = Gn(θ0)+Hn(θ̄n)(θ̂n−θ0)

where θ̄n,i ∈ [θ̂n,i,θ0,i], i = 1, ...,dθ . Substituting this into Eq. (5.5), and rearranging the terms
yields

(5.6)
√

n(θ̂n−θ0) =
[
Hn(θ̂n)′WnHn(θ̄n)

]−1
Hn(θ̂n)′Wn

√
nGn(θ0),

which converges in distribution towards the claimed normal distribution by Assumption 6. �

Lemma 4. Under Assumptions 2-4, the simulated conditional moment estimator satisfies:

sup
θ∈Θ

sup
x: f̂ (x)≥a

∥∥T̂ (φ)(x;θ)−T (φ)(x;θ)
∥∥= OP

(
a−1hr)+OP

(
a−1
√

log(S)/(Shdx)
)

.

Proof. For a given test function, φk, write T̂ (φk)(x;θ) = ĝ(x;θ)/ f̂ (x;θ), where

ĝ(x;θ) =
1
S

S

∑
s=1

φk (Ys (θ))Kh (Xs (θ)− x) , f̂ (x;θ) =
1
S

S

∑
s=1

Kh (Xs (θ)− x) .

It is easily checked that our Assumptions A.3-A.5 imply the conditions (A.1)-(A.5) in Kris-
tensen (2009). His Theorem 2 combined with standard bias expansions of higher-order kernel
estimators now yield that

sup
θ∈Θ

sup
x
|ĝ(x;θ)−g(x;θ)| = OP (hm)+OP

(√
log(S)/(Shdx)

)
,

sup
θ∈Θ

sup
x
| f̂ (x;θ)− f (x;θ)| = OP (hm)+OP

(√
log(S)/(Shdx)

)
,

where g(x;θ) = T (φk)(x;θ) f (x;θ). It now follows by using the same arguments as in Andrews
(1995, Proof of Theorem 1) that the claimed result holds. �

Lemma 5. Under Assumptions 2-4 and 7-9, the simulated conditional moment estimator satis-
fies:

sup
θ∈Θ

sup
x: f̂ (x)≥a

∥∥∥∥∂ T̂ (φ)(x;θ)
∂θ

− ∂T (φ)(x;θ)
∂θ

∥∥∥∥= OP
(
a−1hm)+OP

(
a−1
√

log(S)/(Shdx+2)
)

,

Proof. With ĝ(x;θ) and f̂ (x;θ) given in the proof of Lemma 4,

∂ T̂ (φk)(x;θ)
∂θ

=
∂
[
ĝ(x;θ)/ f̂ (x;θ)

]
∂θ

=
∂ ĝ(x;θ)/∂θ

f̂ (x;θ)
− ĝ(x;θ)

f̂ (x;θ)
∂ f̂ (x;θ)/∂θ

f̂ (x;θ)
,
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where

∂ ĝ(x;θ)
∂θ

=
1
S

S

∑
s=1

∂φk (Ys (θ))
∂y

Ẏs (θ)Kh (Xs (θ)− x)(5.7)

+
1
S

S

∑
s=1

φk (Ys (θ)) Ẋs (θ)K′h (Xs (θ)− x)

and

(5.8)
∂ f̂ (x;θ)

∂θ
=

1
S

S

∑
s=1

Ẋs (θ)K′h (Xs (θ)− x) .

We first note that

E
[

∂ ĝ(x;θ)
∂θ

]
=

∂g(x;θ)
∂θ

+O(hm) , E
[

∂ f̂ (x;θ)
∂θ

]
=

∂ f (x;θ)
∂θ

+O(hm) ,

uniformly over (x;θ). Next, we see that Assumptions 2-4 and 7-9 imply that the conditions
(A.1)-(A.5) in Kristensen (2009) are met for each of the three kernel averages in Eqs. (5.7)-
(5.8). His Theorem 2 then yields that the variance components of the first kernel average
in Eq. (5.7) is of order O(log(S)/

(
Shdx

)
) while the two remaining ones both are of order

O(log(S)/
(
Shdx+2

)
). Using the same arguments as in Andrews (1995, Proof of Theorem 1),

the result now follows. �

Lemma 6. Assume that {Wt} is a stationary and α-mixing sequence with mixing coefficients
αt , t = 1,2, ..., that satisfy αt ≤ At−a for some A,a > 0. Also, assume that E [Wt ] = 0 and
E
[
‖Wt‖2r+δ

]
< ∞ for some r,δ > 0. Then, there exists a constant C (r,A) < ∞ such that:

E

[∥∥∥∥1
n ∑

n
t=1Wt

∥∥∥∥2r
]
≤C (r,A)E

[
‖Wt‖2r+δ

]2/(2r+δ )
nr(q−1),

where

q =
2r

2r + r0
< 1, r0 =

aδ

2r +δ
> 0.

In particular, if the sequence is geometrically mixing, we can choose q = 0.

Proof. From Hahn and Kuersteiner (2004, Lemma 7), there exists a constant c(r) < ∞ such that
for any 1≤ m≤ c(r)n:

E

[∥∥∥∥1
n ∑

n
t=1Wt

∥∥∥∥2r
]
≤ c(r)E

[
‖Wt‖2r+δ

]2/(2r+δ ) [
n−rm2r +α

δ/(2r+δ )
m

]
= c(r)E

[
‖Wt‖2r+δ

]2/(2r+δ ) [
n−rm2r +Am−aδ/(2r+δ )

]
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By choosing m = c(r)nq/2, we obtain

E

[∥∥∥∥1
n ∑

n
t=1Wt

∥∥∥∥2r
]
≤ c(r) [1+Ac(r)]E

[
‖Wt‖2r+δ

]2/(2r+δ )
nr(q−1).

�
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TABLES

Table 1: Monte Carlo Results: AR1 model. n = 50. Mean and root mean squared error (in
parentheses).

Estimator α = 0.0 β = 0.9
SNM -0.011 (0.288) 0.861 (0.091)
OLS 0.003 (0.275) 0.823 (0.117)

Table 2: Monte Carlo Results: Classical linear model. SNM-GMM is the difference between
the SNM and the GMM estimators.

β̂1 β̂2
Mean St. Dev. Min Max Mean St. Dev. Min Max

SNM-GMM -0.001 0.004 -0.015 0.014 0.002 0.007 -0.020 0.025
GMM 0.489 0.473 -0.867 2.143 0.524 0.723 -1.510 2.964

Table 3: Monte Carlo Results: Stochastic volatility, SV1 model. n = 500. Mean and root mean
squared error (in parentheses). Sources for other estimators: ML - Fridman and Harris (1996);
EMM - Andersen, et al. (1999); MCMC - Jacquier et al. (1994); QML and MCL - Sandmann
and Koopman (1998).

Estimator α =−0.736 β = 0.9 σ = 0.363
SNM -0.736 (0.201) 0.882 (0.080) 0.380 (0.128)
ML -0.87 (0.43) 0.88 (0.05) 0.37 (0.08)

EMM -0.91 (0.60) 0.88 (0.08) 0.38 (0.20)
MCMC -0.87 (0.34) 0.88 (0.046) 0.35 (0.067)
QML -0.736 (0.02) 0.845 (0.18) 0.417 (0.21)
MCL -0.745 (0.02) 0.897 (0.10) 0.325 (0.07)

Table 4: Monte Carlo Results: Stochastic volatility SV2 model. n = 500. Mean and root mean
squared error (in parentheses). Sources for other estimators: NPSML - Fermanian and Salanié
(2004); CD-SNE and J-SNE - Altissimo and Mele (in press).

Estimator σb = 0.025 β = 0.95 σ = 0.26
SNM 0.025 (0.003) 0.907 (0.079) 0.331 (0.135)

NPSML 0.022 (0.004) 0.913 (0.107) 0.318 (0.180)
CD-SNE 0.024 (0.003) 0.909 (0.110) 0.229 (0.134)
J-SNE 0.027 (0.005) 0.942 (0.095) 0.297 (0.149)
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Table 5: Monte Carlo Results: AR Tobit model. n = 150. Mean and root mean squared error
(in parentheses). Source for NPSML: Fermanian and Salanié (2004).

Estimator α = 0.0 β = 0.5 σ = 1.0
SNM -0.001 (0.094) 0.523 (0.159) 0.966 (0.140)

NPSML -0.010 (0.215) 0.510 (0.151) 0.810 (0.264)

Table 6: Monte Carlo Results: Factor ARCH model. Mean and root mean squared error (in
parentheses). Source for Other estimator: Billio and Monfort (2003, Tables 3, 4 and 5, pp.
313-317). The Other estimator is that with the lowest RMSE for the given parameter.

Estimator α1 = 0.2 α2 = 0.7 σ0 = 0.5 β20 =−0.5
SNM 0.223 (0.069) 0.681 (0.192) 0.480 (0.048) -0.522 (0.069)
Other 0.244 (0.132) 0.659 (0.309) 0.461 (0.141) -0.445 (0.269)
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FIGURES

Figure 5.1: Overall infection rate yt , latent network model
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Figure 5.2: Latent network model, true and estimated pCON , with 45º line for reference
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