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Abstract

Consider amodel with parameter φ, and an auxiliarymodel with parameter θ. Let

φh be a randomly sampled from a given density over the known parameter space.

Monte Carlo methods can be used to draw simulated data and compute the corre-

sponding estimate of θ, say θ̃hT . A large set of tuples
(

φh, θ̃hT

)
can be generated in this

manner. Nonparametric methods may be use to fit the function E
(
φ|θ̃T = a

)
, using

these tuples. It is proposed to estimate φ using the fitted E
(
φ|θ̃T = θ̂T

)
, where θ̂T is

the auxiliary estimate, using the real sample data. This is a consistent and asymptoti-

cally normally distributed estimator, under certain assumptions. Monte Carlo results

for dynamic panel data and vector autoregressions show that this estimator can have

very attractive small sample properties. Confidence intervals can be constructed us-

ing the quantiles of the φh for which θ̃hT is close to θ̂T . Such confidence intervals are

found to have very accurate coverage.

Keywords: simulation-based estimation; datamining; dynamic panel data; vector

autoregression; bias reduction

JEL codes: C13, C14, C15, C33

1 Introduction

This paper presents a new simulation-based estimator. It is similar to the indirect infer-

ence (II) estimator (Gouriéroux, Monfort, Renault, 1993; Smith, 1993) in that it relies on

an auxiliary estimator. The II estimator minimizes a measure of distance between the

sample estimate of the parameter of an auxiliary model and the average of a number

of replications of the auxiliary estimator, each computed using data generated by a trial

value of the model’s parameter. As such, the II estimator uses a double loop of minimiza-

tions: the inner loop where the auxiliary estimate is computed using data generated at a

trial value of the model’s parameter, and the outer loop where minimization is done over

the model’s parameter. The closely related efficient method of moments (EMM) estima-

tor (Gallant and Tauchen, 1996) has an objective function that is based on the score of the
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auxiliary model. The score function is always evaluated at the parameter estimate that

results from using the sample data, but using simulated data generated at trial values of

the model’s parameter. As such, the auxiliary model is estimated only once, but the outer

loop remains.

The proposal here is to sample from a chosen density over the parameter space, to

use the draw on the parameter vector to generate a sample, and to use the sample to

compute the value of an auxiliary estimator, in the manner of a Monte Carlo study. This

process can be repeated to generate a very large set of pairs of parameter values and

auxiliary estimates, a set as large as is desired. Then data mining methods can be used

to learn about the relationship between auxiliary estimates and true parameter values.

The method explored in this paper is to use nonparametric regression to estimate the

expected value of the true parameter vector, conditional on the sample estimate of the

auxiliary model’s parameter vector. This expected value1 is used as an estimator of the

model’s parameter vector.

Computing the expectation using nonparametric regression methods requires com-

puting the estimate of the auxiliary model’s parameter many times, using different trial

values of the model’s parameter, as is done in the inner loop of the II procedure. How-

ever, there is no outer loop. What are the possible advantages of this? As noted by Cher-

nozukhov and Hong (2003), criteria functions of the form that defines the II estimator

can have many local minima. If the the outer loop is avoided, then numeric difficulties

will only be a problem when the auxiliary model is difficult to estimate. Another advan-

tage is that the estimator can take advantage of complicated restrictions on the parameter

space without having to impose such restrictions during minimization. The estimation

of the parameters of a stationary vector autoregression in Section 5.2 gives an example.

Another argument in favor of the proposed estimator is simply that seems to perform

well in many cases, as is shown by example, below.

The next section introduces the estimator. In Section 3 it is shown to be consistent

and asymptotically normally distributed. Section 4 discusses computation of confidence

intervals. In Section 5, Monte Carlo work is presented for dynamic panel data models

and vector autoregression models. Section 6 discusses extensions and conclusions.

2 The estimator

This section defines the proposed estimator. Because the estimator is similar to a certain

type of indirect inference estimator that is proposed by Gouriéroux, Phillips and Yu (in

press; henceforth referred to as GPY), I use a notation that closely follows that of their

Section 3.

Suppose we have a model, indexed by a parameter φ ∈Φ ⊂ R
k. The model is simula-

1Because the precision of the nonparametric estimate of the expected value can be made as high as is
desired simply be increasing the number of replications, I will refer to the estimated expected value simply
as the expected value.
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ble, so that given a parameter value φ, we can generate random samples of any size. The

sample data, yT , is a realized sample of size T, generated by the unknown true parameter

value φ0 ∈Φ. Our problem is to estimate φ0.

Consider an extremum estimator of the parameter of an auxiliary model:

θ̂T = argmax
θ∈Θ

QT(θ; yT), (1)

where QT(θ; yT) is an objective function.

Because the model is simulable, we are able to generate simulated samples that are

of the same length as the observed sample. Suppose that the simulated true parameter

value φ is chosen randomly by drawing from a chosen density fφ that has support Φ.

With this, one can draw a sample ỹT and then calculate the corresponding estimate, θ̃T.

This may be repeated many times, to generate independently and identically distributed

tuples
(
φh, θ̃hT

)
, h = 1, 2, ...,H. To illustrate, Figure 1 shows 200 such points. The true

model used to generate these points is specified in Equation 5. The auxiliary estimator

is the naive OLS estimator of θ in Equation 6, below. The Figure plots 200 pairs
(
φh, θ̃hT

)
,

ignoring the other parameters (the αi) of the true model.

When independent points are generated this way, one may consider the joint density

fφ,θ̃T , the conditional density fφ|θ̃T=a, and the associated regression function E
(
φ|θ̃T = a

)
,

where a is some point in the range of the auxiliary estimator. The regression function

E
(
φ|θ̃T = a

)
is similar to the binding function, defined by GPY as

bT(φ) = E(θ̃hT(φ)). (2)

When φ and θ have the same dimension, the indirect inference estimator is φ̂I I
T = b−1

T (θ̂T),

and it can be computed by numerically solving θ̂T = E(θ̃hT(φ̂I I
T )). Usually, the analytic

binding function is not known, but it can be calculated to any desired precision, by setting

H as large as needed, using the simulated version

bHT (φ) =
1

H

H

∑
h=1

θ̃hT(φ). (3)

Contrarily, the regression function E
(
φ|θ̃T = a

)
cannot be learned by simple simulation,

because we have no means of sampling φ while holding θ̃T fixed at a given value. How-

ever, with some assumptions, it is possible to learn E
(
φ|θ̃T = a

)
up to any desired ac-

curacy using nonparametric regression techniques. The H independent tuples
(
φh, θ̃hT

)

discussed in the previous paragraph can be used to fit E
(
φ|θ̃T = a

)
nonparametrically.

Likewise, the joint density fφ,θ̃T can be fit using a kernel density estimator. To illustrate,

the solid line in Figure 2 adds a kernel regression fit, based on H = 500, 000 points, to the

200 points of Figure 1.

Assume that the chosen nonparametric estimator is uniformly consistent, as H in-

creases. Kernel regression and density estimators are examples of nonparametric estima-
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tors that have this property under reasonable assumptions. As the number of simula-

tions, H, increases, the nonparametric fit will converge to E
(
φ|θ̃T = a

)
. Furthermore, we

may set H as large as is needed to obtain a fit to a given tolerance. Because computational

power can render the difference between the nonparametric fit and the true expectation

negligible, I simply abstract from the need to use a nonparametric estimator and hence-

forth, for the purposes of theory, treat the expectation as if it were a known function. The

proposed estimator, say φ̃T, is the regression function, evaluated at the original estimate:

φ̃T = E
(
φ|θ̃T = θ̂T

)
. (4)

Henceforth, the estimator proposed here will be referred to as the “data-mining indirect

(DMI) estimator”.

The DMI estimator directly evaluates E
(
φ|θ̃T = θ̂T

)
, while the II estimator minimizes

a measure of distance between θ̂T and E(θ̃hT(φ̂I I
T )). There is a certain similarity in the basic

concepts that define the two estimators. Figure 3 continues with the example described

above that was used to create Figures 1 and 2, plotting E
(
φ|θ̃T = θ̂T

)
and b−1

T (θ̂T). Both

of these functions are computed using kernel regression, using the 500,000 simulated

points. The proposed estimator φ̃T and the indirect inference estimator can be read off

this Figure, given θ̂T . Note that, conceptually, if we had a cloud made of an infinite

number of points, E
(
φ|θ̃T = θ̂T

)
corresponds to joining the expectations of points lying

on vertical slices though the cloud (see Figure 1), while b−1
T (θ̂T) joints the expectations of

points on horizontal slices though the cloud. It is apparent in this Figure that φ̃T and φ̂I I
T

are closely related, and are virtually identical for many values of the auxiliary parameter

estimate. However, it is also clear that they are different estimators, at least for finite T,

because the two lines diverge somewhat for certain values of the auxiliary estimator.

Note that the use of kernel smoothing to compute the inverse binding function, as is

done here, imposes smoothness on the inverse binding function. The more usual proce-

dure of numerically inverting the simulated binding function computed using Equation

3 does not impose smoothness, but instead relies on a large number of simulations to

give smoothness as a result of uniform convergence in probability. It might be worth-

while to investigate the performance of the indirect inference estimator computed using

the procedure suggested here.

3 Properties

In this section I show that the DMI estimator, φ̃T, defined in equation (4) is consistent and

asymptotically normally distributed. I begin with assumptions:

Assumption 1. E
(
φ|θ̃T = a

)
is continuous and bounded by an integrable function, ∀T, ∀a ∈

θ̂T(Φ).

Assumption 2. limT→∞ θ̂T (φ) = θ∞(φ), almost surely, ∀φ ∈Φ
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Assumption 3. θ∞(φ) : Φ → θ∞(Φ) is injective.

Assumption 1 is a simple regularity assumption. Likewise, Assumption 2 states that

the auxiliary estimator is uniformly consistent for a pseudo-true value θ∞(φ0). Note that

it may be biased and inconsistent for the true value, φ0. The third assumption is perhaps

the most fundamental of the above three assumptions. It is an identification assumption,

so that knowledge of the almost sure limit of the auxiliary estimator gives us knowledge

of the true parameter value. When both φ and θ are scalars, this assumption may be

checked by visual inspection of a nonparametric fit to the binding function. The binding

function must be strictly monotonic.

With these assumptions we can show that the proposed estimator is consistent:

Proposition 1. Given Assumptions 1, 2 and 3, φ̃T →a.s. φ0.

Proof: see Appendix.

To further clarify the relationship between the auxiliary estimator and DMI and the

role of injectivity, consider a simple data generating process where the scalar parameter

is known to lie in [0,1]. The auxiliary estimator is such that θ̃T = 0.5 + θ2+ 2ǫ
T where ǫ ∼

N(0, 1). The auxiliary estimator is biased and inconsistent, but the relationship between

the true parameter value and the pseudo-true value satisfies the injectivity assumption.

Figures 5 and 6 plot several replications of the auxiliary and DMI estimators, for samples

of size 10 and 50, respectively. We can see that the bias of the auxiliary estimator is largely

eliminated. If this example is modified so that θ̃T = 0.5− 1.3θ + θ2+ 2ǫ
T , the injectivity

assumption fails. Figure 7 shows the consequences.

Three additional assumptions are needed for asymptotic normality:

Assumption 4. E
(
φ|θ̃T = θ∞(φ0)

)
= φ0 + op(T−1/2).

Assumption 5.
√
T

(
θ̂T − θ∞(φ0)

)
→d N (0,V∞(φ0))

Assumption 6.

∂E
(
φ|θ̃T = a

)

∂a

∣∣∣∣∣
θ∗

→a.s. G∞(θ
∞
(φ0)),

a finite full rank matrix, for all θ∗ that converge almost surely to θ∞(φ0).

Assumption 4 is a requirement that the function that defines the estimator, when eval-

uated at the pseudo-true value θ∞(φ0), must converge to the true parameter value suffi-

ciently rapidly. I have not been able to prove that this results from simple fundamental

assumptions, but simulations have been used to verify that it holds in a variety of cases.

As an example, consider the case:

θ∞(φ) = φ + φ2 + log(φ + 1)

θ̂T = θ∞(φ) +
ǫ

T
ǫ ∼ N(0, 1)
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This case follows the above assumptions. θ̂T is biased and inconsistent for φ, but it is

asymptotically normally distributed about φ + φ2 + log(φ + 1). For 20 different true val-

ues φ0 evenly spaced on the interval [0,1], simulated θ̃sT , s = 1, 2, ..., 107 were drawn, and

E
(
φ|θ̃T = θ∞(φ0)

)
was calculated by averaging the φ for which

∣∣θ̃sT = θ∞(φ0)
∣∣ < 10−5.

Table 1 reports summary statistics for
√
T

(
E

(
φ|θ̃T = θ∞(φ0)

)
− φ0

)
, over the 20 true val-

ues of φ0, for T = 10i, i = 1, 2., , , .5. We can see that the mean is close to zero in all cases,

and the standard deviation is declining to zero as T increases.

Assumption 5 simply states that the auxiliary estimator θ̂T is asymptotically normally

distributed after centering about the pseudo-true value θ∞(φ0). This will hold for many

types of auxiliary estimators and data generating processes.

Assumption 6 is an identification assumption: the auxiliary estimator must provide

information about the parameter to be estimated.

Proposition 2. Given Assumptions 4, 5 and 6,

√
T (φ̃T − φ0) →d N

(
0,G∞(θ∞(φ0))V∞(θ∞(φ0))G

′
∞(θ∞(φ0))

)

Proof: see Appendix.

4 Confidence intervals

The large number of tuples
(
φh, θ̃hT

)
, h = 1, 2, ...,H that must be generated in order to

compute the DMI estimator can be used to compute confidence intervals for the true

parameter. For a given element of φ, say φi, the proposal is to choose a small resolution

ǫ, and to select A = {φh
i :

∣∣θ̃hT − θ̂T
∣∣ < ǫ}, where θ̂T is the realized sample value of

the auxiliary estimator. The quantiles of A can be used to define limits of a confidence

interval. For such a confidence interval to be accurate, the resolution ǫ must be small, and

H must be large enough so that A contains many elements. An example that shows that

confidence intervals computed in this way can be very accurate is given below in Section

5.1.1.

5 Monte Carlo results

5.1 Dynamic and nonlinear panel models

Dynamic and nonlinear panel models are important cases where econometric estimation

methods often have a substantial bias. In this type of model, data have a double index: an

observation is yit, where i = 1, 2, ...,N and t = 0, 1, 2, ..., T. Typically, there are N nuisance

parameters. When T is small and fixed, which is a very relevant case empirically, the

maximum likelihood estimator is inconsistent (Nickell, 1981). A number of estimators

have been proposed to deal with this problem. Generalized method of moments/instru-

mental variables (GMM/IV) approaches include Holtz-Eakin, Newey and Rosen (1988),
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Arellano and Bond (1991), Ahn and Schmidt (1995), Hahn (1997), Blundell and Bond

(1998) and Alvarez and Arellano (2003). Another approach involves bias correction ap-

plied to the ML estimator. Examples include Bun and Caree (2005), Kiviet (1995) and

Hahn and Kuersteiner (2002). Yet another approach is to use Bayesian priors as a means

of reducing bias (Lancaster, 2002; Arellano and Bonhomme, 2008). Recently, Gouriéroux,

Phillips and Yu (in press; GPY) propose an indirect inference estimator that uses the ML

estimator to define binding functions.

In this sub-section, I consider several models that have been used in previous re-

search, to facilitate comparison with other methods.

5.1.1 AR1 panel model

I use the Monte Carlo design of Hahn and Kuersteiner (2002), which was also used by

GPY. Data are generated from the linear dynamic panel model

yit = αi + φ0yit−1 + ǫit (5)

where ǫit ∼ N(0, 1), αi ∼ N(0, 1), φ0 = 0, 0.3, 0.6, 0.9 and αi and ǫi are independently

distributed. The initial condition is

yi0|αi ∼ N

(
αi

1− φ0
,

1

1− φ2
0

)
.

Samples are generated for N = 100, 200 and T = 5, 10, 20.

I use H = 500, 000 draws on
(
φh, θ̃hNT

)
to be used as “data” for the nonparametric

fitting process. These points were computed by drawing the autoregressive parameter

from a uniform density on the stable region: φh ∼ U(−1, 1). For each φh, θ̃hNT is the ML

(“fixed effect” or “within”) estimator of φh. The 500,000 draws on
(
φh, θ̃hNT

)
are specific

to the sample size, N and T, but are not specific to the design point, φ0 = 0, 0.3, 0.6, 0.9.

Next, 5000 Monte Carlo samples are made for each design point φ0 = 0, 0.3, 0.6, 0.9,

giving 5000 replications of the base estimator, θ̂
j
T(φ0), j = 1, 2, ..., 5000. Finally, the 5000

replications of the base estimator are used to generate 5000 replications of the DMI esti-

mator, using the kernel regression estimator

φ̃j(φ0) = Ẽ
(

φ|θ̃T = θ̂
j
T(φ0)

)
=

∑
H
h=1 φhK

(
θ̃hT−θ̂

j
T(φ0)

γ

)

∑
H
h=1 K

(
θ̃hT−θ̂

j
T(φ0)

γ

) ,

j = 1, 2, ..., 5000, where K(·) is an Epanechnikov kernel, and the bandwidth γ is the rule-

of-thumb2 value γ = H−1/5.

This same procedure is also applied using a naive OLS estimator based on the mis-

2See Li and Racine, 2007, pg. 66.
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specified model

yit = θyit−1 + uit (6)

as the starting point. This estimator simply ignores fixed effects and does not include a

constant term. This naive estimator is very biased, but it has a small variance.

Table 2 presents the Monte Carlo results, along with the results for the indirect in-

ference estimator proposed by GPY. In their Table 1, it is seen that the indirect inference

estimator achieves a RMSE that is lower than that of the best of a set of competing esti-

mators, for almost all designs. Comparing their Tables 1 and 2, it is seen that the indirect

estimator with 250 simulated paths almost always achieves a lower bias than any of the

competing estimators. For this reason, only the indirect estimator is used as a basis for

comparison here. It is important to keep in mind that both the DMI and the II estima-

tors require that the model be simulable, which in the present context means that these

estimators require that the distribution of the αi be known, up to parameters. Other

estimators that do not have this requirement will be more generally applicable. When

T = 5 or T = 10, the DMI estimator using the naive base estimator achieves the lowest

RMSE, by a notable margin. The proposed estimator using the ML estimator as the base

performs somewhat better than the indirect estimator when T = 5, and about the same

when T = 10. For T = 20, the DMI estimator using the naive base estimator is domi-

nated by the proposed estimator that uses the ML estimator as the base. The proposed

estimator using the ML base and the indirect inference estimator have virtually identical

RMSE’s when T = 20.

Arellano and Bonhomme (2009) present some estimators for nonlinear panel data

models that use robust priors to reduce bias. In some of their Monte Carlo work, they use

the AR1 panel design of equation 7, with N = 100, T = 10, and the true parameter value

φ0 = 0.5. They report results for a number of estimators. Of the feasible estimators they

present, the one that achieves lowest mean squared error and lowest mean absolute error

is their “robust, iterated ∞” estimator. Table 3 compares their results for their best esti-

mator to the DMI estimator, computed as described above using H = 500, 000 and 5000

Monte Carlo replications, using both theML estimator and the naive OLS estimator as the

base. The results for the DMI estimator are a little better than the Lancaster (2002) estima-

tor, and a little worse than the Arellano-Bonhomme estimator. It should be emphasized

that the DMI estimator requires that the model be fully simulable, which implies that the

distribution of the individual effects is known. The Lancaster and Arellano-Bonhomme

estimators do not have this requirement, so they are more generally applicable. How-

ever, these estimators require model-specific computations to be made in order to specify

the prior information, while the method proposed here only requires simulations on the

uncorrected ML or naive OLS estimators.

Confidence intervals The procedure for computing confidence intervals described in

Section 4 was implemented using the H = 500, 000 draws, and a resolution of ǫ = 0.0005.
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For each sample size and design point φ0 = 0, 0.3, 0.6, 0.9, and for each of the 5000

Monte Carlo replications, the above procedure is used to compute 90%, 95% and 99%

confidence intervals, using the ML auxiliary estimator. The proportion of times that the

true φh is contained in the confidence interval is computed. The results are in Table 4. The

intervals are somewhat too broad for T = 5 and φ0 = 0.9, but in general, the confidence

intervals are very reliable. Confidence intervals using the naive auxiliary estimator have

very similar coverage, and for this reason are not reported.

5.1.2 AR1 panel model with incidental trend

GPY also present Monte Carlo results for an extension of the AR1 panel model, incorpo-

rating an incidental trend. The extendedmodel is

yit = αi + βit + φ0yit−1 + ǫit (7)

where the design is the same as described following equation 5, except that αi = βi =

0. The same procedure as described above was used to compute the DMI estimator,

using only the ML estimator (see GPY, page 16 for formulae used to compute the ML

estimator) as the base. In this case it would not be fair to use the naive estimator that

ignores individual effects and trends as the base, because these are true restrictions on

the model.

Table 5 gives the results. For T = 5, and N = 100, 200, neither the proposed estima-

tor nor the indirect inference estimator dominates in terms of RMSE. The most notable

difference is for φ0 = 0.9, where the proposed estimator has considerably lower RMSE,

though it is more biased. For time series of length T = 10 or T = 20, DMI nearly always

has RMSE lower than that of the indirect inference estimator, with the differences being

most notable for N = 100.

5.1.3 Static logit panel model

The Arellano-Bonhomme (2009) estimator performed a little better than the proposed

estimator in the case of the AR1 panel model, φ0 = 0.5 (see above). To further compare

the approaches, their static logit Monte Carlo design (see their Section 9) is used here to

evaluate the performance of the proposed estimator. The design of the experiment is

yit = 1 [xitφ0 + αi0 + ǫit > 0]

where xit ∼ N(0, 1) and the individual effects αi0 ∼ N(x̄i, 1), where x̄i = 1
T ∑

T
t=1 xit.

The ǫit are independent draws from the logistic CDF. The true value of φ0 = 1, and

N = 100. The experiment is repeated for T = 5, 10, 20, 100. The base estimator is a

quasi-maximum likelihood estimator that ignores the individual effects. That is, the base

estimator is the estimator of the misspecified logit model that results from the above

model, with the exception that, erroneously, it is assumed that yit = 1 [xitφ0 + ǫit > 0]. As
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above, 500,000 draws of the base estimator are made, where φ was sampled fromU(0, 2).

These 500,000 draws are used to compute five thousand Monte Carlo replications of the

DMI estimator in the manner described above.

Table 6 presents results. These results may be compared with Tables 1 and 2 in Arel-

lano and Bonhomme (2009). For the case of T = 5, the proposed estimator achieves bias,

mean squared error (MSE) and mean absolute error (MAE) lower that those of any of the

estimators considered by Arellano and Bonhomme. For larger sample sizes, the results

start to become mixed, if we consider the criteria of bias, MSE and MAE. For T = 10, the

DMI estimator outperforms all the estimators considered by Arellano and Bonhomme

according to at least two of these three criteria. For T = 20, the DMI estimator has a

performance similar to many of the estimators considered by Arellano and Bonhomme,

except for the Lancaster (2002) estimator, which performs best. For T = 100, the proposed

estimator is dominated by most of the alternatives.

The assumption that the distribution of the individual effects be known is quite im-

plausible in this example. Nevertheless, the example serves to illustrate how the DMI

estimator can achieve a good bias reduction in small samples, though use of a simple

naive auxiliary model, when one is able to write a fully simulable model.

5.2 Vector autoregressions

It is well known that the OLS estimator of the parameter of an autoregressive model has

a non-negligible small sample bias (Shaman and Stine, 1988). The problem extends to

vector autoregressions (Nicholls and Pope, 1988; Pope, 1990), and it is a factor that con-

tributes to the small sample bias of estimated impulse-response functions (Kilian, 1998).

Here, I examine a simple stationary vector autoregressive model, and provide simula-

tion results. In this experiment, the DMI estimator essentially removes small sample bias

from coefficient estimates, and has a root mean squared error that is considerably smaller

than that of the conditional maximum likelihood estimator.

The model under consideration is a 3 variable VAR: yt = (yt,1, yt,2, yt,3), where yt =

Ayt−1 + ǫt and ǫt ∼ N(0, I3). It is assumed that the system is stationary. The parameter

space is defined as the set of A such that the elements on the main diagonal are between

0.3 and 1.3, and the elements off the main diagonal are between -0.5 and 0.5, plus the

requirement that the eigenvalues of A lie within the complex unit circle, as is implied by

stationarity.

The Monte Carlo simulations are done as follows. The elements of A are set initially

set randomly following aij ∼ U(0.3, 1.3) if i = j and aij ∼ U(−0.5, 0.5) if i 6= j. Then it

is checked if the eigenvalues of A lie within the complex unit circle, and A a is rejected if

this is not the case. If rejection occurs, a new trial is made until the stationarity require-

ment is satisfied. When an A that satisfies stationarity is found, a time series of length

130 is generated, and the first 100 observations are discarded. Finally, the coefficients of

the model yt,1 = α + β1yt−1,1 + β2yt−1,2 + β1yt−1,3 + ǫt,1 are estimated by ordinary least

10



squares, which is the conditional maximum likelihood estimator, ignoring the restric-

tions on the parameter space. This was done to generate 100,000 replications. For each

replication, we save the true coefficients that are in the first row of A, as well as the four

estimated coefficient from the OLS regression.

Next, for each of the 100,000 replications, the DMI estimator was applied, for each of

the three parameters A11, A12, and A13. The kernel regression used to implement DMI

conditioned on all all four parameter estimates of the OLS estimator. Table 7 contains

the results. Note that the results in this table marginalize over the random design of

A, which was described above. We can see that the OLS estimator has a substantial

bias in the case of A11, and that the DMI estimator essentially removes this bias. The

DMI estimator has substantially smaller RMSE and MAE than does the OLS estimator,

for all three parameters. It is worthy of note that the DMI estimator does not impose

stationarity on the estimates, but that it is a weighted average of parameter values drawn

from a parameter space that is restricted to contain only points that give a stationary

model. The conventional OLS estimator ignores the stationarity restriction. Part of the

better efficiency of the DMI estimator may be due to the fact that stationarity is taken into

account, at least indirectly. This example also illustrates how complicated restrictions on

the parameter space might be taken into account in other contexts.

To get an idea of how the results depend upon the true values of the parameters,

Figure 8 plots the first 1000 errors in the own-autoregressive parameter, Â11 − A11 as a

function of the true value, A11, for both the OLS and DMI estimators. Note that the true

values of A12 and A13 are not controlled for. We can see that the DMI estimator uniformly

has a smaller variance, but theremay be some conditional bias, especially for small values

of A11. Controlling for A12 and A13 could account for some of this bias, but it is probable

that some of the bias is due to the fact that we are attempting to use the DMI estimator at

the bounds of the parameter space. Kernel regression fitting near the limits of the data is

known to suffer from bias, (Li and Racine, 2007, page 30) and no attempt has been made

to control for this problem. To eliminate this effect, one could sample true parameter

values from an artificially enlarged parameter space, so that conditioning points would

be surrounded by neighbors in all directions.

6 Conclusions

The DMI estimator introduced in this paper requires a fully specified model, so that data

can be generated by simulation. In common with other simulation-based estimators, its

applicability is limited by this requirement. A second requirement is that there be a one-

to-one relationship between the pseudo-true value of the auxiliary estimator and the true

parameter. This requirement may be difficult to satisfy in some cases, if no consistent

auxilary estimator is available. However, the examples given in the paper show that

these requirements can be met in some cases, and that the DMI estimator can perform

quite well in comparison to other applicable estimators. The paper also has presented a
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means of computing confidence intervals that appears to work very well.

It is worth noting that the auxiliary model used to define the DMI estimator can be

more complicated that the auxiliary estimators that have been used in the examples of

this paper. If a given estimator is known to work well for a certain model, it could be

used as the auxiliary estimator for DMI estimation.

If the dimension of the parameter vector is high, it may be computationally burden-

some to use a large number of simulation draws and/or a fully nonparametric estimator

such as kernel regression. One might choose to use informal approximation methods

that can yield a reasonably good fit to the bias function while using a limited number

of simulations. A reasonably high-order polynomial in the parameter of the auxiliary

model could be used to define basis functions for a least squares fit. Once could con-

template using the estimator only for the parameters of most interest. Instead of using

the entire estimated parameter vector of the auxiliary model as conditioning variables

in the regression function, one could drop parameters that are suspected to have little

effect on the parameter of interest, to reduce the dimension of the problem and thus

save on computations. There are many such possibilities for economizing on computa-

tions. Given that kernel regression is a data parallel problem, one can overcome computa-

tional demands by using parallel computing techniques (Creel, 2005). The computational

work reported in this paper was done using the GNU Octave programming language

(http://www.octave.org), on a 32-core computational cluster made using the Peli-

canHPC distribution of GNU Linux (http://pelicanhpc.org). Use of PelicanHPC

is very similar to what is described in Creel (2007). All software needed to replicate the

results of this paper is available from the author.

Extensions to the method are not difficult to imagine. Figure 4 continues with the ex-

ample discussed in Section 2, showing a kernel density plot of fφ,θ̃T , based on H =50,000

simulated points. Superimposed on the density is the line E(φ|θ̃), which defines the DMI

estimator. It is apparent that the maximizer of the density, conditional on θ̃, and the ex-

pectation E(φ|θ̃) are in general close to one another, for vertical slices though the Figure,

but that they diverge somewhat when θ̃ is close to one. One could use the maximizer of

the density conditional on θ̃ as an estimator of φ0. One might also use the conditional

median of φ given θ̃. Perhaps an alternative such as these could have better efficiency

than the DMI estimator proposed here.

7 Appendix: Proofs

Proof of Proposition 1

The estimator is

φ̃T = E
(
φ|θ̃T (φ) = θ̂T

)
.
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By assumption 1, we may pass the limit operator though the expectation operator. With

this, the condition that θ̃T (φ) = θ̂T must hold in the limit. By Assumption 2,

lim
T→∞

θ̃T(φ) = θ∞(φ) a.s.

and

lim
T→∞

θ̂T = θ∞(φ0), a.s.

Thus, in the limit, we must have

θ∞(φ) = θ∞(φ0),

except on a set of probability zero. By Assumption 3, this can hold only if φ = φ0. Thus,

with probability one, lim φ̃T = E (φ|φ = φ0) = φ0. �

Proof of Proposition 2

The estimator is φ̃T = E
(
φ|θ̃T(φ) = θ̂T

)
. A Taylor’s series expansion about the pseudo-

true value θ∞(φ0) gives

φ̃T = E
(
φ|θ̃T(φ) = θ∞(φ0)

)
+

∂E
(
φ|θ̃T(φ) = a

)

∂a

∣∣∣∣∣
θ∗

(
θ̂T − θ∞(φ0)

)

By Assumption 4, we can write

√
T (φ̃T − φ0) =

∂E
(
φ|θ̃T(φ) = a

)

∂a

∣∣∣∣∣
θ∗

√
T

(
θ̂T − θ∞(φ0)

)

Assumptions 5 and 6 give the result. �
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Figures

Figure 1: Simulated points
(
θ̃h, φh
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Figure 2: Kernel regression estimate of E(φ|θ̃)
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Figure 3: DMI=E(φ|θ̃) and II=b−1(θ̃)
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Figure 4: Kernel density estimate of fφ,θ̃ with DMI=E(φ|θ̃) superimposed
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Figure 5: The relationship between the original estimator, AUX, and DMI. Samples of
size N = 10.
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Figure 6: The relationship between the original estimator, AUX, and DMI. Samples of
size N = 50.
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Figure 7: Consequences of failure of monotonicity.
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Figure 8: VAR model. Â11 − A11versus A11. OLS and DMI.
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Tables

Table 1: Checking assumption 4. Descriptive statistics , over 20 values of φ0, of√
T

(
E

(
φ|θ̃T = θ∞(φ0)

)
− φ0

)

T mean st. dev. min max

10 0.002 0.024 -0.040 0.062

100 -0.001 0.005 -0.014 0.009

1000 -0.000 0.001 -0.002 0.002

10000 -0.000 0.000 -0.001 0.001

100000 0.000 0.000 -0.000 0.000

Table 2: Simple dynamic panel data model. Bias and RMSE of φ̃ and indirect inference
(II) estimator of Gouriéroux, Phillips and Yu, 2007. Source for II is Gouriéroux, Phillips
and Yu, 2007, Table 2.

Case Bias RMSE

T N φ φ̃ (ML) φ̃ (naive) II φ̃ (ML) φ̃ (naive) II

5 100 0.0 0.004 0.000 0.001 0.058 0.050 0.057

5 100 0.3 0.004 0.000 -0.001 0.064 0.045 0.081

5 100 0.6 0.004 0.011 0.000 0.069 0.045 0.070

5 100 0.9 -0.023 -0.035 0.000 0.057 0.036 0.076

5 200 0.0 0.001 0.000 0.000 0.041 0.035 0.041

5 200 0.3 0.002 0.000 -0.010 0.045 0.033 0.074

5 200 0.6 0.002 0.009 -0.000 0.049 0.031 0.050

5 200 0.9 -0.011 -0.034 -0.003 0.044 0.034 0.054

10 100 0.0 0.000 0.000 0.001 0.036 0.043 0.035

10 100 0.3 0.001 -0.000 0.000 0.036 0.039 0.036

10 100 0.6 -0.000 0.008 0.000 0.038 0.033 0.037

10 100 0.9 -0.004 -0.034 -0.001 0.034 0.034 0.040

10 200 0.0 0.000 -0.000 0.000 0.025 0.031 0.025

10 200 0.3 0.000 0.001 -0.000 0.026 0.028 0.026

10 200 0.6 0.001 0.009 0.000 0.027 0.024 0.026

10 200 0.9 -0.001 -0.033 0.002 0.026 0.033 0.028

20 100 0.0 0.000 0.001 0.001 0.024 0.040 0.024

20 100 0.3 -0.001 -0.000 0.001 0.023 0.035 0.024

20 100 0.6 -0.000 0.007 0.000 0.022 0.029 0.022

20 100 0.9 0.000 -0.033 0.000 0.020 0.033 0.021

20 200 0.0 -0.000 0.001 0.000 0.017 0.028 0.017

20 200 0.3 0.000 0.001 0.000 0.017 0.026 0.016

20 200 0.6 -0.000 0.008 0.000 0.015 0.021 0.015

20 200 0.9 0.001 -0.033 0.000 0.014 0.033 0.014
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Table 3: Simple dynamic panel data model. N = 100,T = 10,φ0 = 0.5. “ML” is the maxi-
mum likelihood estimator without bias correction. “Lancaster” is the estimator proposed
in Lancaster (2002), using Arellano and Bonhomme’s equation 19. “AB” is the Arellano-
Bonhomme robust, iterated ∞ estimator. Source for Lancaster and AB is Arellano and
Bonhomme (2006) Table 3, page 35.

Estimator Mean Median St. Dev. MSE MAE

ML 0.333 0.328 0.0320 0.0290 0.167

Lancaster 0.504 0.506 0.0374 0.00140 0.0302

AB 0.499 0.497 0.0323 0.00104 0.0264

φ̃, ML 0.501 0.501 0.0368 0.00135 0.0292

φ̃, naive 0.503 0.504 0.0331 0.00111 0.0267

Table 4: Confidence interval coverage. Simple dynamic panel data model. φ̃ is computed
using the ML auxiliary estimator.

Case Coverage

T N φ 90% 95% 99%

5 100 0.0 0.8974 0.9446 0.9900

5 100 0.3 0.9036 0.9492 0.9880

5 100 0.6 0.9036 0.9532 0.9886

5 100 0.9 0.9430 0.9736 0.9926

5 200 0.0 0.8960 0.9480 0.9872

5 200 0.3 0.8950 0.9450 0.9846

5 200 0.6 0.9060 0.9472 0.9886

5 200 0.9 0.9138 0.9646 0.9924

10 100 0.0 0.8970 0.9452 0.9870

10 100 0.3 0.9156 0.9552 0.9878

10 100 0.6 0.8928 0.9502 0.9890

10 100 0.9 0.9154 0.9592 0.9908

10 200 0.0 0.8856 0.9490 0.9898

10 200 0.3 0.8856 0.9518 0.9886

10 200 0.6 0.8940 0.9422 0.9884

10 200 0.9 0.8934 0.9470 0.9880

20 100 0.0 0.9016 0.9466 0.9884

20 100 0.3 0.8966 0.9514 0.9910

20 100 0.6 0.8952 0.9522 0.9890

20 100 0.9 0.8836 0.9382 0.9846

20 200 0.0 0.8992 0.9518 0.9864

20 200 0.3 0.8816 0.9444 0.9884

20 200 0.6 0.9028 0.9566 0.9900

20 200 0.9 0.9036 0.9604 0.9882
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Table 5: Panel data model with incidental trend. Bias and RMSE of φ̃ and indirect in-
ference (II) estimator of Gouriéroux, Phillips and Yu, 2007. Source for II is Gouriéroux,
Phillips and Yu, 2007, Table 3.

Case Bias RMSE

T N φ φ̃ II φ̃ II

5 100 0.0 0.014 -0.019 0.089 0.078

5 100 0.3 0.038 -0.035 0.132 0.083

5 100 0.6 0.035 -0.037 0.133 0.151

5 100 0.9 -0.132 -0.050 0.158 0.252

5 200 0.0 0.006 -0.004 0.061 0.054

5 200 0.3 0.014 0.003 0.085 0.063

5 200 0.6 0.041 0.011 0.117 0.128

5 200 0.9 -0.094 -0.058 0.118 0.212

10 100 0.0 0.001 -0.034 0.040 0.054

10 100 0.3 0.002 -0.049 0.046 0.087

10 100 0.6 0.012 -0.034 0.064 0.068

10 100 0.9 -0.031 0.007 0.059 0.123

10 200 0.0 0.000 0.005 0.029 0.031

10 200 0.3 0.001 -0.010 0.033 0.081

10 200 0.6 0.005 0.010 0.043 0.041

10 200 0.9 -0.015 0.030 0.044 0.097

20 100 0.0 0.000 -0.008 0.025 0.027

20 100 0.3 0.001 -0.009 0.026 0.028

20 100 0.6 0.000 -0.010 0.028 0.030

20 100 0.9 0.004 -0.016 0.031 0.040

20 200 0.0 -0.000 0.000 0.018 0.018

20 200 0.3 0.000 0.000 0.018 0.019

20 200 0.6 0.000 0.001 0.019 0.020

20 200 0.9 0.008 0.010 0.026 0.032

Table 6: Static logit model, φ = 1, N = 100,T = 5, 10, 20, 200.

T Mean Median St. Dev. MSE MAE

5 1.013 1.007 0.137 0.019 0.110

10 1.008 1.005 0.095 0.009 0.076

20 1.005 1.005 0.067 0.004 0.054

100 1.002 1.002 0.035 0.001 0.028
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Table 7: Vector autoregressive model

Â11 − A11 Â12 − A12 Â13 − A13

OLS DMI OLS DMI OLS DMI

Mean -0.0932 -0.0004 0.0004 0.0000 -0.0004 -0.0000

Median -0.0758 0.0000 0.0001 0.0000 -0.0002 0.0000

St. Dev. 0.1543 0.0884 0.1558 0.0960 0.1563 0.0957

RMSE 0.1802 0.0884 0.1558 0.0960 0.1563 0.0957

MAE 0.1363 0.0637 0.1191 0.0688 0.1196 0.0687

23


	Introduction
	The estimator
	Properties
	Confidence intervals
	Monte Carlo results
	Dynamic and nonlinear panel models
	AR1 panel model
	AR1 panel model with incidental trend
	Static logit panel model

	Vector autoregressions

	Conclusions
	Appendix: Proofs

