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Abstract

This paper contributes to the literature on both embodied techni-

cal progress and firm dynamics, by formulating an endogenous growth

model where selection and imitation play a fundamental role in helping

capital good producers to learn about the productivity of technologies

embodied in new plants. By calibrating the model to some key aggre-

gates particularly relevant for the embodied capital literature, among

them the growth rate of the relative investment price, the model quan-

titatively replicates the main facts associated to firm dynamics, such

as the entry rate and the tail index of the establishment size distribu-

tion. In line with the previous literature, it also predicts a contribution

to productivity growth of embodied technical progress and selection of

around 60%.
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1 Introduction

Gordon (1990)’s estimations of quality adjusted price indexes for durable

goods reopened the embodiment controversy during the nineties. In a highly

influential paper, Greenwood, Hercowitz, and Krusell (1997) calibrate a two-

sector growth model using Gordon’s estimates as a measure of investment-

specific technical change to conclude that about 58% of per capita output

growth can be attributed to productivity improvements specific to equip-

ment investment.1 The production technology in Greenwood, Hercowitz,

and Krusell (1997) derives from Solow (1957), who postulates general as-

sumptions under which a vintage capital structure aggregates at equilibrium

into a two-sector (nondurable consumption and investment) technology with

investment-specific technical change. In Solow’s theory, technology differs

across vintages, but there is within-vintage homogeneity; all capital units

belonging to the same vintage are identical.

In recent years, following the seminal papers by Jovanovic (1982) and

Hopenhayn (1992) and benefiting from increasing micro evidence, a develop-

ing literature studies different dimensions of the dynamics of heterogeneous

firms. Using a similar endogenous growth engine as the one in this paper,

Luttmer (2007) finds that around 60% of productivity growth is due to a

selection-imitation mechanism emerging from the dynamics of firm behav-

ior. As we show in this paper, the observed similarity of the contribution to

productivity growth of both embodied technical progress and the selection-

imitation mechanism is not a fortunate coincidence.

This paper contributes to the literatures on both embodied technical

progress and firm dynamics, by formulating an endogenous growth model

1The literature following Greenwood, Hercowitz, and Krusell (1997)’s publication, see
Cummins and Violante (2002) and Gort, Greenwood, and Rupert (1999), pointed in the
same direction by providing similar estimations. Endogenous growth versions of Green-
wood, Hercowitz, and Krusell (1997) are in Krusell (1998), Hsieh (2001) and Boucekkine,
del Río, and Licandro (2003).

2



where selection and imitation play a fundamental role in helping capital

good producers to learn about the productivity of technologies embodied in

new plants. By calibrating the model to some key aggregates particularly

relevant for the embodied capital literature, among them the growth rate of

the relative investment price, the model quantitatively replicates the main

facts associated to firm dynamics, such as the entry rate and the tail index

of the firm distribution. In line with Greenwood, Hercowitz, and Krusell

(1997), it also predicts a contribution to productivity growth of embodied

technical progress and selection-imitation of around 60%.

As in Greenwood, Hercowitz, and Krusell (1997), the paper assumes there

are two sectors. A nondurable sector is composed of plants using labor to

produce both consumption goods and inputs for the investment sector. The

investment sector produces ‘plants’. In the nondurable sector, there is within

and between vintage plant heterogeneity; the productivity of new plants is

stochastic, and existing plants are continuously hit by idiosyncratic produc-

tivity shocks. The heterogeneous productivity of new plants is initially un-

known and subject to stochastic learning-by-doing. This process is assumed

to have a common component, meaning that average learning is common

to all plants. But, the random component is plant-specific, so that some

plants regress, while others improve when compared to the mean. A second

important implication of plant specific learning is associated to the selection

process typical from models of firm dynamics. Plants cumulating negative

shocks realize they are particularly inefficient and exit the market.

Concerning new plants, the model assumes that their productivity is

drawn from a known distribution, whose mean depends on the mean pro-

ductivity of incumbent plants. We read this assumption in terms of learning

in the investment sector. The learning-by-doing process taking place in the

nondurable sector partially informs capital producers about the characteris-

tics of existing plants. The outcome of this learning process is then used by

them to build new plants, which are expected to be on average more efficient

than those previously produced. By learning about the efficiency of existing

technologies, capital producers are able to design better and better plants.

Let us call this process imitation, as in Luttmer (2007), which we model by
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assuming that the mean of new plants’ productivity depends on the mean of

incumbents’ productivity. Note that signals coming from the selection pro-

cess are highly informative, since exiting plants’ productivity does not affect

the expected productivity of new plants.

Behind the stochastic productivity process just described, and its learn-

ing interpretation, there are two sources of growth: disembodied technical

progress represented by the common component of the incumbents’ produc-

tivity process; and embodied technical progress, associated to the selection-

imitation mechanism. The result is a model of investment-specific techno-

logical change in which the relative price of investment is endogenous. Av-

erage learning-by-doing then corresponds to what Greenwood, Hercowitz,

and Krusell (1997) call neutral technological progress, while the gains in av-

erage productivity due to learning in the investment sector correspond to

investment-specific technological progress.

In learning-by-doing models of economic growth, as in Romer (1990),

technical progress is disembodied and benefits all plants; individual learning

occurs at the final production technology and immediately becomes common

knowledge. It does not matter ‘who learns what’, since any technological

news is common knowledge. In our framework, nondurable plants are het-

erogeneous and their learning is plant specific. There is a common component

as in Romer and an idiosyncratic component spilling information over capital

producers to learn about the ways of moving up the frontier technology by

producing better and better plants.

The growth engine in this paper is selection and imitation, which has

much in common with the Schumpeterian idea of creative destruction. The

stochastic evolution of individual technologies makes some plants obsolete,

opening market opportunities to new entrants. Moreover, selection transmits

information to the investment sector about the quality of technology favoring

the development of more productive plants. Growing through selection re-

verses the role of destruction and creation, when compared with the existing

literature. For example, in Aghion and Howitt (1992), growth is generated

by a random sequence of quality-improving, sector-specific innovations; bet-

ter products or technologies render previous ones obsolete, and this occurs
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through the replacement of the incumbent local monopolist by a new firm.

Something similar occurs in the Solow vintage capital model, where new

capital vintages require labor to produce, pushing up wages and reallocating

resources out of old vintages. These two are theories of destructive creation

more than creative destruction.

We evaluate the plausibility of our assumptions by doing a quantitative

exercise. Because of the aggregate formulation of our model, we can cali-

brate it without recurring to establishment-level data. Instead, we use US

data from the National Income and Product Accounts (NIPA), as well as es-

timates on the speed of embodied technological progress from Cummins and

Violante (2002) and Gort, Greenwood, and Rupert (1999), and find that the

model implies a rate of firm entry which is only slightly larger, as well as a

distribution of production units whose tail index is only slightly smaller, than

in the data. From this, we conclude that our assumption that only entrants

profit from embodied technological change is not overly restrictive. There-

fore, it should not be surprising that Greenwood, Hercowitz, and Krusell

(1997) measuring the contribution to productivity growth of embodied tech-

nological progress and Luttmer (2007) that of selection and imitation yield

very similar results.

The remainder of the paper is organized as follows: section 2 describes

the model; section 3 deals with its calibration; section 4 looks at the results,

and section 5 concludes.

2 The Model

2.1 Production Technology

There are two sectors, one producing a non-durable good and the other pro-

ducing capital goods or machines. The price of the non-durable good is

normalized to one every period. The non-durable good is homogeneous and

produced by the means of a continuum of machines of measure Kt and labor.

Its output is assigned to consumption and is the sole input in the capital

goods sector. As in Campbell (1998), it is assumed that an operative plant
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in the non-durable sector uses one and only one machine.

Machines are heterogeneous with idiosyncratic productivities Zt at time t,

Zt ∈ R+. A machine with productivity Z uses L(Z) of the homogeneous labor

input to produce Y (Z) of the non-durable good by the means of technology

Yt(Zt) = AtZ
α
t Lt(Zt)

1−α. (1)

Returns to labor are assumed to be decreasing, meaning that parameter

α ∈ (0, 1). Note that a firm’s productivity has two components. The first,

At, is assumed to follow a learning-by-doing process At = Kξ
t , ξ ∈ (0, 1−α),

which depends on the aggregate capital stock Kt.
2

The second productivity component, Zt, is machine-specific and its ran-

dom growth rate is assumed to be independently and identically distributed

over time and across machines. Let us denote by ϕ(.) the log-normal density

of Zt/Zt−1, which is assumed to have unit mean and variance σ2. By the

previous assumption, existing machines have no expected idiosyncratic gain

in productivity. As is shown below, however, the dispersion of productivity

gains will make selection to operate: Machines exposed to a sequence of neg-

ative idiosyncratic shocks are optimally scrapped, implying that the average

productivity of remaining machines is growing. The cumulative distribution

of plants across productivity levels is endogenous and denoted by Φt (Z),

with the associated density denoted by φt (Z); the average machine-specific

productivity is

Z̄t =

ˆ

∞

0

ZdΦt (Z) .

In the investment sector, a continuum of firms of unit measure are oper-

ative. They transform one unit of the non-durable good into a machine. As

in the one sector growth model, machines produced at period t − 1 become

operative at t. The initial productivity of a new machine Zt, relative to the

average productivity of operative machines Z̄t−1, is assumed to follow a log-

normal distribution ϕe(.) with mean ψ, ψ > 0, and variance σ2
e . This is the

2Notice that capital is measured in units of machines, without any quality adjust-
ment. This important issue is discussed below. The upper bound restriction on ξ avoids
unbounded growth.
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simplest way of modeling imitation: The expected initial productivity of new

machines is proportional to the average productivity of existing machines, ψ

being the proportionality factor. Consequently, the investment sector will be

producing better and better machines if the average productivity of existing

machines were permanently growing.3 Imitation is restricted to the capital

goods sector.

Let us give some economic interpretation to the previous assumptions.

In the non-durable sector a random learning-by-doing process occurs at the

plant level. Average learning as represented by At is common, but the ran-

dom component Zt is machine-specific, meaning that some plants improve,

but others regress when compared to the mean. This means that some ma-

chines are more adapted to the new technological environment, as described

by At, than others. This learning process may be interpreted as learning

about the quality of machines, which improves randomly over time as the

economy develops. Imitation means that by observing the distribution of

output across machines, capital good producers learn about the quality of

existing machines, and then they try to replicate the best machines as closely

as possible. Imitation is random. The output of the imitation process is rep-

resented by the density ϕe(.), with an expected initial productivity close to

the mean productivity of existing machines, the distance being represented

by ψ.4

Total output in the non-durable sector is given by

Y N
t = Kt

ˆ

∞

0

Yt (Z) dΦt (Z) , (2)

while an efficient allocation of labor satisfies

Kt

ˆ

∞

0

Lt (Z) dΦt (Z) = Lt, (3)

3In fact, the calibrated value of ψ will be smaller than unity, replicating the observed
evidence that the average productivity of entering plants is smaller than the average pro-
ductivity of incumbent plants.

4Luttmer assumes that the productivity distribution of entrants is a scaled-down version
of the productivity distribution of incumbents.
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where Lt is the aggregate labor supply. Non-durable output has to be effi-

ciently allocated to consumption Ct and as an input in the investment sector

IN
t :

Y N
t = Ct + IN

t . (4)

2.2 Consumers and Producers Behavior

There is a continuum of individuals of measure L. Individuals have a la-

bor endowment of one unit every period, meaning that L also measures the

aggregate labor supply. Preferences are represented by

U =

∞∑

t=0

βt ln (Ct) , (5)

where Ct denotes consumption, and the discount factor is β, with β ∈ (0, 1).

The representative household maximizes its life-time utility (5) subject to a

standard budget constraint. Given that plants are atomistic, and all shocks

are independently and identically distributed across plants, households may

diversify any individual risk by owning a positive measure of plants. The

first order condition for consumption yields the usual Euler equation:

Ct+1

Ct

= β (1 + rt) , (6)

where r is the interest rate.

At any period t, a plant with productivity Z solves the following static

problem

Πt(Z) = max
Lt(Z)

Kξ
tZ

αLt(Z)1−α − wtLt(Z),

taking the wage rate wt and the mass of plants Kt as given. The optimal

labor demand is

Lt(Z) =

(

(1 − α)Kξ
t

wt

) 1

α

Z.
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The real wage rate is obtained by aggregation, using (3),

wt = (1 − α)

(
Z̄t

Lt

)α

Kξ+α
t

implying that

Lt(Z) =
Lt

Kt

Z

Z̄t

. (7)

Average per plant labor Lt

Kt
is allocated across plants depending on their

relative productivities. Consequently, a plant’s profits can be written as a

linear function of the plant’s productivity Z

Πt(Z) = αKξ
t

(
Lt

Z̄tKt

)1−α

Z. (8)

As will be shown below, at a balanced growth path a plant’s profits are

stationary, but the mass of plants grows at the same rate as the economy,

meaning that total profits follow output.

Note that non-durable technology (2), after substitution of (1) and (7),

may be written as a Cobb-Douglas technology on capital and labor

Y N
t =

(

Kξ
t Z̄

α
t

)

Kα
t L

1−α
t . (9)

Total factor productivity has two components, a disembodied component re-

lated to the learning-by-doing term Kξ
t and an embodied component related

to the average productivity of incumbents Z̄t. Since ξ + α < 1 by assump-

tion, learning-by-doing is not strong enough to generate growth endogenously.

However, the selection-imitation mechanism described in the following sec-

tion makes Z̄ grow at the positive rate gZ , which will have as implication

that non-durable production will be growing at the growth factor

gN = g
α

1−α−ξ

Z ,

at the stationary solution.

Finally, it can be easily proved that total profits are αY N . Therefore,

consistently with aggregate technology (9), α is the capital share in value

9



added.

2.3 Entry, Exit and Productivity Distribution

Given that capital is a fixed factor and since its relative productivity may

decline over time, less productive plants definitively cease production. In this

case plant’s capital is scrapped, being transformed into new capital at the

rate θ, θ ∈ (0, 1), which represents the scrapping value of capital.

At period t−1, knowing its productivity Zt−1, an incumbent plant has to

decide whether to exit the market at period t. Let Vt (Zt−1) be the expected

value at period t of a plant with observed productivity Zt−1. If the plant

chooses to stay, it will draw a new productivity Zt, produce and get profits

Πt and then the discounted expected value Vt+1. Otherwise, it recovers the

scrap value θ at time t − 1, and transfers it to period t getting the corre-

sponding return rt. The optimal policy then involves choosing a reservation

productivity Z∗

t−1 at which plants are indifferent between staying and exiting:

ˆ

∞

0

[

Πt (Z
′) +

1

1 + rt+1

Vt+1 (Z ′)

]

ϕ
(
Z ′/Z∗

t−1

)
dZ ′ = θ(1 + rt), (10)

with Πt (Z) as defined above. Since the decision is taken at period t− 1, the

productivity cutoff Z∗

t−1 corresponds to the t − 1 productivity distribution.

The plant’s value is then given by

Vt (Zt−1) =

{
´

∞

0

[

Πt (Z
′) + 1

1+rt+1
Vt+1 (Z ′)

]

ϕ (Z ′/Zt−1) dZ
′ if Zt−1 ≥ Z∗

t−1,

θ(1 + rt) otherwise.

(11)

To create a plant requires a machine, which costs one unit of the non-

durable good. Under free entry, expected profits have to cover the investment

cost:

ˆ

∞

0

[

Πt (Z ′) +
1

1 + rt+1
Vt+1 (Z ′)

]

ϕe

(
Z ′/Z̄t−1

)
dZ ′ = 1 + rt. (12)

Since the machine has to be bought one period in advance, the investment

cost, on the right hand side, includes the user cost of capital rt.
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At period t−1, after observing Zt−1, an operative plant faces the following

alternatives: to keep producing with the same machine or to exit, which opens

the option of buying a new machine by creating a new plant. This trade-off

may be better understood by comparing (10) and (12). The right hand sides

reflects the investment costs of these two alternatives, being both faced at

t − 1 but evaluated at t [this explains the 1 + r factor]. The cost of a new

machine is unity and the opportunity cost of an old machine is the scrapping

value θ. At equilibrium, the distance between Z∗ and Z̄ depends on ψ and

the relative variance of both random process. By direct observation of these

two equations, we may expect that parameters affecting the value function

would not have a strong effect on the cutoff point, since the value function

is the same in both conditions.

In order to map the time t productivity distribution Φt (Z) into the next

period’s distribution, one has to take into account (i) idiosyncratic shocks

hitting plants, (ii) the disappearance of those plants which choose to shut

down, and (iii) the entrance of new plants. Since there is a continuum of

plants in the economy, the evolution of the distribution of plants across pro-

ductivity levels is deterministic even though each particular firm experiences

random shocks. The transition function for the distribution of plants across

productivity levels is

Kt+1φt+1 (Z) = Kt

ˆ

∞

Z∗

t

ϕ (Z/Z ′) dΦt (Z
′)

︸ ︷︷ ︸

remaining plants

+ (It + θXt)ϕe

(
Z/Z̄t

)

︸ ︷︷ ︸

entering plants

, (13)

where Xt = KtΦt(Z
∗

t ) is the measure of exiting plants and the total amount

of scrapped capital recovered from exiting plants is equal to θXt.

New plants in t + 1 are created using new machines, IN
t , and machines

recovered from scrapping, θXt, so that the evolution law of the stock of

machines follows:

Kt+1 = Kt −Xt + IN
t + θXt = (1 − δt)Kt + IN

t , (14)

where δt = (1 − θ) Xt

Kt
. The above equation can be easily derived from (13)
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by integrating it over Z ∈ (0,∞). The number of operative machines en-

dogenously depreciates at the obsolescence rate δ.

2.4 Balanced Growth

Let us define the relative productivity z, zt = Zt/Z̄t−1, and the average

production per firm y, yt = Kξ+α−1
t L1−α

t Z̄α
t . In a balanced growth path, the

distribution of relative productivities, the profit and the value functions are

all three stationary, and y is constant. Using the proposed variable changes,

the profit function (8) becomes

π(z) = αzy (15)

The value function (11), after substituting r from the Euler equation (6), the

exit condition (10), and the entry condition (12) become

v (z) =

{
´

∞

0

[

π (z′) + β

gN
v (z′)

]

ϕ (z′gZ/z) dz
′ if z ≥ z∗

θgN/β otherwise
(16)

ˆ

∞

0

[

π (z′) +
β

gN

v (z′)

]

ϕ (z′gZ/z
∗) dz′ =

θgN

β
(17)

ˆ

∞

0

[

π (z′) +
β

gN

v (z′)

]

ϕe(z
′)dz′ =

gN

β
. (18)

Finally, the evolution law of the cumulative probability distribution of

relative productivities across plants Λ(z) derives from (13), after dividing

both sides by Kt, substituting I/K = gN + (θ − 1)Λ(z∗) coming from (14),

and using the definition of δ, and X/K = Λ(z∗):

gNλ (z) =

ˆ

∞

z∗
ϕ (zgZ/z

′) dΛ (z′) + (gN + Λ(z∗))ϕe(z), (19)

where λ is the density associated to Λ.

A balanced growth path equilibrium is a growth rate gZ , an average pro-

duction y, a cutoff point z∗, a value function v(z) and a density function

λ(z), both for z ∈ R+. They solve (16) to (19), with π defined by (15) and
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gN = g
α

1−α−ξ

Z , and
´

∞

z∗
zλ (z) dz = gZ . The last condition comes directly from

the definition of variable z, which has a mean of gZ by construction. An

algorithm designed to solve for it is described in the appendix.

The model distinguishes itself from the evolutionary economics literature

in the line of Nelson and Winter (1982) through equations (17) and (18),

which state that exit and entry follow rational, instead of adaptive, expec-

tations. It distinguishes itself from the industrial evolution literature, which

notably includes papers by Jovanovic (1982) and Hopenhayn (1992), through

equation (19), which states that the average productivity of entering plants

is not exogenous but instead depends on the average productivity of existing

plants. It differs from Luttmer (2007) through the existence of an aggregate

capital stock, and the fact that part of an exiting firm’s capital can be re-

used by entrants (equation 14). This allows us to define a quality-adjusted

measure for aggregate capital, which we then use in order to calibrate the

model.

2.5 Embodied Technological Progress

In this section, we show that the aggregate relations in the above setup can

be rewritten as a model of embodied technical change, in the same line as

Greenwood, Hercowitz, and Krusell (1997), with the novelty that the relative

price of investment and the depreciation rate are both endogenous.

To compute the aggregate technology, we follow Solow (1957) in defining

the quality-adjusted capital stock

Jt = KtZ̄t.

After substituting it in (9), we get

Y N
t = AtJ

α
t L

1−α
t . (20)

From (14), the law of motion of quality-adjusted capital can be written as

Jt+1 =
(

1 − δ̂t

)

Jt + qtI
N
t , (21)
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where δ̂t =
(´

∞

0
ZdΦt (Z) − ψθ

)
Xt

Kt
and qt = ψZ̄t−1.

Equivalent equations to (20) and (21) are in Greenwood, Hercowitz, and

Krusell (1997). Disembodied technical progress is represented by At and

embodied technical progress by qt. Quality adjusted output of the investment

sector, qtI
N
t , grows at the rate

gI = (gZ)
1−ξ

1−α−ξ > gN

at the stationary solution, while the price of investment goods relative to the

price of non-durable goods permanently decreases at the rate gZ .

Disembodied technical progress is a direct result of learning-by-doing.

The embodied nature of technical progress is due to the assumption that

imitation takes place at the investment sector. Capital good producers offer

more and more productive investment goods since they are imitating surviv-

ing, successful machines.

3 Calibration

The aim of this section is to study the behavior of a parameterized version

of the model economy, in order to assess the quantitative impact of selection

and imitation on U.S. productivity growth, in analogy to the contribution of

embodied technological change as estimated by Greenwood, Hercowitz, and

Krusell (1997). The length of a period is set to a quarter. The parameters

which need to be calibrated are the preference parameter β, the technology

parameters α and ξ, the scrapping value of capital θ, the variance of idiosyn-

cratic shocks to all plants σ, under the assumption σe = σ, and the average

relative productivity of entering plants ψ.

Gomme and Rupert (2007) find an average capital income share α for the

non-housing and non-government sector of 28.3%. The discount rate β is set

to .99.

In order to impose some rigor on the quantitative analysis, the procedure

advanced by Kydland and Prescott (1982) is followed. Parameters are set

such that the balanced growth path is consistent with some average obser-
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vations from U.S. National Income and Product Accounts (NIPA) for the

period 1948-2000. The Government and housing sectors are netted out of

GDP, given that the selection mechanism which is at work in the model

is specific to a competitive business sector. Also, to avoid the issue of ac-

counting for quality improvements in consumer durables, consumption in the

model is matched up with nondurable goods and non-housing services, as in

Greenwood, Hercowitz, and Krusell (1997).

In order to compute the remaining parameters, the following four mo-

ments of the data were used: the growth rate of per capita consumption,

gN − 1 in the model, the investment share, IN/Y N , the depreciation rate,

δ, and the decline rate of investment prices relative to consumption prices

gZ − 1. The average real growth rate of quarterly non-durable consumption

per capita was 0.48% and the investment share was 18.5%.

Given that current NIPA methodology does not fully take into account

quality improvements when computing investment goods prices, we use esti-

mates from Cummins and Violante (2002) for fixed investment in equipment

and software and Gort, Greenwood, and Rupert (1999) for fixed investment

in structures. Cummins and Violante (2002) find that in post-war US data,

the relative price of equipment in terms of nondurable consumption goods

has decreased by an average of 0.98% per quarter, while the physical depreci-

ation rate of equipment was 2.6%. Gort, Greenwood, and Rupert (1999) find

an average decrease in the relative price of structures of 0.25% per quarter,

and a physical depreciation rate of around 0.48%. When combined, weighted

by their nominal shares, this results in a quarterly decline rate in the relative

price of aggregate investment of 0.72% and a depreciation rate for aggregate

capital of 1.85%.

Parameter ξ is calibrated from gN = g
α

1−α−ξ

Z , using the observed α = 0.283,

gN = 1.0048 and gZ = 1.0072, which imply ξ = 0.29. The remaining three

parameters {θ, σ, ψ} are calibrated jointly following the algorithm described

in the Appendix. Table 3 contains a summary of the calibrated parameters.
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Table 1: Parameter Values
Parameter Value Parameter Value
α .283 σ .413
β .99 θ .215
ξ .29 ψ .554

4 Results

Differently from the exogenous growth framework in Greenwood, Hercowitz,

and Krusell (1997), the economy in this paper faces endogenous growth due

to selection. In case the selection mechanism were shut down, the economy

would stop growing. To estimate the sole contribution of embodied technical

change, we isolate the effect of selection from the aggregate externality by

assuming ξ = 0. In this case, the growth of nondurable consumption would

be reduced by about 40%, meaning that embodied technical change (as well

as the selection mechanism) contributes the remaining 60%. This calculation

is in accordance with the contributions estimated by Greenwood, Hercowitz,

and Krusell (1997) and Luttmer (2007).

Despite within-vintage heterogeneity, the model is calibrated in such a

way that aggregate productivity evolves at the same rate as in Greenwood,

Hercowitz, and Krusell (1997). As an implication, both models have to

generate similar contributions of embodied technical change. How is it the

case that the contribution of selection is similar to the one in Luttmer (2007)?

It is due to the fact that the model has predictions about firm dynamics that

are very close to those in the data.

Concerning firm dynamics, the model implies an entry rate of 10.9% per

year, which is slightly more than the average entry rate for firms observed for

the years 1989 - 1995, which is 9.76%.5 Figure 1 shows the observed produc-

tivity distributions of firms and establishments,6 along with the distribution

5Own calculations, based on data from the OECD Firm-Level Project, which are orig-
inally from the U.S. Census Bureau’s Longitudinal Business Database (LBD).

6The data for the distribution of firms according to the number of employees is for the
year 2005 and was obtained from the Small Business Administration internet site, while
the distribution of establishments is for 2004 and was obtained from the County Business
Patterns database.
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Figure 1: The Distribution of Production Units
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implied by the model. The slope of the log right tail probability of the size

distribution, with size measured by the log of employment, is -1.15. The

implied model distribution is more compressed than the observed firm distri-

bution, which has a slope of -1.06, but less compressed than the distribution

of establishments, which has a slope of -1.37; the definition of production

units in the data which corresponds most closely to the one in our model is

that of establishments. Consequently, the model implies a rate of firm entry

which is only slightly larger, as well as a distribution of production units

whose tail index is only slightly smaller, than in the data.

5 Conclusion

This paper sets up a simple model of endogenous growth incorporating both

embodied technical progress and a selection mechanism across heterogeneous

plants. We show that under the assumption that only new plants can use

the latest technology, those sources of growth are in fact one and the same.

The model is calibrated using US NIPA aggregates and the usual measure

of investment-specific technical progress. Surprisingly, the model predicts

very well some key moments of establishment-level data. We conclude that
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assuming that new technologies spread through new plants is not overly

restrictive, and that the literatures on embodied technical change and on firm

selection are measuring similar concepts. One should then not be surprised

that they yield similar answers as to what proportion of productivity growth

is due to the mechanisms they examine.

A Algorithm

1. Set α, β, δ, θ, gZ and gN as described in section 3. Average output

per machine y is fixed to its estimated value over the balanced growth

path, which is (gN − 1 + δ) divided by the investment share.

2. Guess θ and σ.

3. Choose a vector

~z =







z1
...

zn







of productivity levels; construct the transition matrix

T =







P (z1 | z1) · · · P (zn | z1)
...

. . .
...

P (z1 | zn) · · · P (zn | zn)






,

where P (zn | z1) is the probability, given a productivity level of z1

today, to have productivity level zn tomorrow.

4. Make an initial guess for the value function

~v =







v1

...

vn






.

From this guess, iterate on v = max
[

α · ~z · y/gZ + β

gN
· T · ~v, θ · gN/β

]

until convergence. This equation is the discretized equivalent of (16).
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Also, E (α · z · y) = α·z ·y/gN , since profits are linear in z and expected

relative productivity growth is 1/gZ . So now we have the (discretized)

value vector ~v for the values of σ and θ which we guessed. The cutoff

point z⋆ is equal to the sth element of ~z, where s is the index of the

topmost element of ~v which is larger than θ · gN/β.

5. Guess ψ, and get the corresponding distribution of entrants ~e, where

~e =







e1
...

en






.

Use the discretized version of the zero profit condition in equation (18)

to update ψe:

[

α · ~z · y/gZ +
β

gN

T · ~v

]′

· ~e− gN/β = 0. (22)

If the left-hand side of (22) is greater than zero, then ψ should be

revised downwards, and vice-versa.

6. Guess a distribution of machines across productivity levels

~k =







k1

...

kn






.

The discretized equivalent of the evolution law for the relative produc-

tivity distribution in equation (19) is

~k =
1

gN

[

P · ~k +
(

gN −
[

1 · · · 1
]

· P · ~k
)

· ~e
]

, (23)

where

P =







0 · · · 0 P (z1 | zs) · · · P (z1 | zn)

0 · · · 0
...

. . .
...

0 · · · 0 P (zn | zs) · · · P (zn | zn)
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is the transpose of T , but for which all entries to the left of the cut-

off point zs = z⋆ have been replaced by zero (because the transition

function in (19) is censored below z⋆). Iterate on equation (23) to get
~k.

7. Check the normalization condition

~z′ · ~k = 1 (24)

If the left-hand side is larger than one, then revise σ upwards, and

vice-versa. Restart from point 3.

8. Once equation 24 holds, we still need to match the physical depreciation

rate, which in the model is equal to

δ = (1 − θ)
(

1 −
[

1 · · · 1
]

· P · ~k
)

, (25)

One then needs to revise the guess for θ, and restart from point 3 until

equation (25) holds.
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