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Abstract
The paper proposes and applies statistical tests for poverty dominance that

check for whether poverty comparisons can be made robustly over ranges of
poverty lines and classes of poverty indices. This helps provide both normative
and statistical confidence in establishing poverty rankings across distributions.
The tests, which can take into account the complex sampling procedures that are
typically used by statistical agencies to generate household-level surveys, are im-
plemented using the Canadian Survey of Labour and Income Dynamics (SLID)
for 1996, 1999 and 2002. Although the yearly cumulative distribution functions
cross at the lower tails of the distributions, the more recent years tend to domi-
nate earlier years for a relatively wide range of poverty lines. Failing to take into
account SLID’s sampling variability (as is sometimes done) can inflate signifi-
cantly one’s confidence in ranking poverty. Taking into account SLID’s complex
sampling design (as has not been done before) can also decrease substantially the
range of poverty lines over which a poverty ranking can be inferred.
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1 Introduction
Making comparisons of monetary poverty across time and space usually neces-
sitates making a substantial number of important methodological choices. First,
there is the choice of the nominal measure of living standards. Is it income or
consumption? Is it cash income or comprehensive income (including for instance
the value of the consumption of non-marketed goods and services such as leisure
and public goods and services)? Is it monthly, yearly or lifetime income? Does
it include the imputed value of the service from assets and durable goods, in the
form of housing and car ownership for example?

Second, there is the choice of procedures to compare individual-level real liv-
ing standards. These procedures are needed because individuals differ in several
dimensions other than their levels of nominal income. This includes differences in
household sizes and composition — traditionally taken care of by the application
of equivalence scales — and temporal and spatial differences in the prices faced
by individuals — usually corrected for by the use of time- and space-dependent
price deflators. Third, there is the choice of the unit of poverty analysis — is it
the individual, the family or the household? — as well as whether we can assume
equality of welfare across the members of a same family or household.

To be sure, some consensus has emerged over the best practice for some of
these choices. For instance, it is usually recognized that the measure of income
should be as comprehensive as possible, and that it should also adjust as much as
is feasible for differences in price levels across time and space using the value of
constant commodity baskets that are representative of the consumption habits of
the poor. It has also become standard normative practice to consider the individual
as the fundamental unit of welfare analysis. But other issues are more difficult to
resolve, at least in practice. This is the case for instance for the choice of equiv-
alence scales, for which there exists a myriad of possible forms and values, and
for how equally welfare is distributed within a household, since this necessitates
disentangling difficult within-household allocation issues.

Comparing poverty
Once a measure of individual welfare is agreed upon, there remain at least three
other important sources of methodological sensitivity for poverty measurement.
The main objective of this paper is to address them.

The first source of methodological sensitivity comes from the choice of a
poverty line, be it absolute (such as the official US poverty line) or relative (such
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as one half of median income). Agreement on such a choice is difficult since
there exist many alternatively sound normative and statistical procedures for the
estimation of poverty lines. Forcing the estimation or the use of a single poverty
line usually amounts to forcing a value judgement, and is therefore essentially
arbitrary.

Another important source of arbitrariness comes from the choice of a poverty
index. Such a poverty index is needed to aggregate the distribution of individual
welfare into a single number. There exists, however, a large pool of such indices
in the scientific literature, and most of them can be shown to be quite sensible
on normative grounds. Again, forcing the choice of a single poverty index would
amount to enforcing an essentially arbitrary value judgement.

These sources of arbitrariness might not be of practical concern if they did
not matter empirically. But comparisons of poverty (across time, regions, socio-
demographic groups, or policy regimes, for instance) are often empirically sensi-
tive to the choice of poverty indices and poverty lines. We often find for instance
that poverty is greater in one region than in another for some poverty lines, but
that the opposite is true for some other lines. This can occur for example when
a region exhibits larges pockets of moderate poverty, but smaller pockets of se-
vere poverty, than another one. A policy that redistributes from the not-so-poor to
the very poor may be deemed to reduce poverty for some “distribution-sensitive”
poverty indices, but to increase it for indices that are less sensitive to the inci-
dence of extreme poverty. Given again that there is rarely unanimity as to the
right choice of poverty lines and poverty indices, it follows that such sensitivity
can seriously undermine one’s confidence in comparing distributions or in making
policy recommendations.

Poverty measurement is finally sensitive to the choice of sample used to es-
timate poverty for a population of interest. This naturally suggests the applica-
tion of statistical inference techniques. Although the need for these techniques is
widely agreed, surprisingly little of the empirical poverty literature actually ap-
plies them. The failure to do so can lead to statistically insignificant differences
being presented as reliable evidence on poverty differences. The need for statis-
tical inference is even greater in the context of the complex sampling procedures
that are typically used by statistical agencies. These procedures indeed often lead
to greater sampling variability than the simple random procedures that are usually
assumed by empirical poverty analysts.
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Poverty in Canada
The above discussion is all the more pertinent in Canada as there has been a long-
standing debate in that country over the meaning of the term “poverty”. In fact, the
term “official poverty line” never existed in Canada. Almost all Canadian poverty
work has nevertheless revolved around the definition of Statistics Canada’s Low
Income Cutoffs (LICOs), which was introduced in early 1970s. These cutoffs
are based on a somewhat arbitrarily posited relationship between income and ne-
cessities such as food, shelter and clothing. Over the years Canadian researchers
have used other measures to supplement the LICOs, including the low income
measures (LIM)— that emphasize relative poverty — and the recently developed
market basket measure (MBM) that attempts to identify an income threshold ly-
ing between the poles of subsistence and social inclusion.1 Nevertheless, none of
these other measures can be considered to be free from arbitrariness in defining
poverty or low-income thresholds.

Furthermore, given the difficulty of measuring resources and of defining poverty
thresholds, the issue of choosing an ethically acceptable poverty aggregation in-
dex has been rarely discussed in Canada. The usual practice is to calculate the
headcount ratio, often called the poverty rate, which measures the proportion of
individuals below a poverty threshold. Only occasionally have other indices, such
as the average poverty gap, been used in addition to the poverty rate.2

Finally, nearly all empirical poverty or low income research in Canada and
elsewhere derives their statistics from survey data (in Canada, this is currently
the Survey of Labour and Income Dynamics) that are drawn using a complex
and multi-stage sampling design.3 As mentioned above, complex sampling pro-
cedures often lead to greater sampling variability. Unfortunately, poverty research
in Canada has been forced to overlook that issue since the key sampling design
identification variables (such as stratum, primary sampling unit and secondary
sampling unit) were simply not available in the datasets. This raises an important
reliability issue for all of the statistical comparisons of poverty found in existing
studies of poverty in Canada. Indeed, the same reliability issue certainly arises for

1See Giles (2004) and Human Resources and Social Development Canada (2006) for a detailed
discussion on LICOs, LIM and MBM measures.

2Some exceptions include Osberg (2002) and Chen (2008). They both use distribution-
sensitive indices in addition to the poverty rates and they demonstrate that poverty comparisons
can differ markedly with the aggregation index chosen.

3Only a handful of poverty and low income research uses data from administrative tax records
— such as the Longitudinal Administrative Database (see, for example, Picot, Hou, and Coulombe
(2007).
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all other countries although it has not, to our knowledge, been investigated in any
of them, at least in the context of dominance testing.

Objective of paper
To help alleviate these concerns, the paper proposes and applies a methodology
that checks for whether poverty comparisons can be considered robust to the
choice of poverty lines and poverty indices. This methodology is based on tests
for poverty dominance of a distribution (say, A) against another (B, say). In doing
this, the paper focuses on ordinal comparisons of “distributions” (“In which year
or region is poverty greatest?”) as opposed to cardinal comparisons (“How much
poverty is there in a particular distribution?”). An important feature of the paper
is also to propose and apply statistical tests of poverty rankings and thus to make
poverty comparisons robust to sampling variability. This serves to help provide
statistical confidence (in addition to normative confidence) in ranking A and B.

The most obvious advantage of the paper’s methodology is that it can provide
clear-cut and robust conclusions on whether poverty is larger in A or in B. This
serves among other things to avoid fixation on one or only a few poverty lines, thus
avoiding costly debates and investment on the identification and the estimation of
poverty lines. Furthermore, such conclusions are robust over a set of poverty
indices, thus removing the need to argue and agree on the selection of aggregating
procedures. Because of this, robust poverty rankings are also less susceptible to
distorsion and misuse by policymakers and policy analysts, and can thus generate
greater public confidence.

Not all poverty comparisons made using the paper’s methodology will end
up being robust over wide ranges of poverty lines and broad classes of indices.
In the absence of such robustness, the paper’s methodology can nevertheless be
used to provide the more limited sets of measurement assumptions over which
the poverty ranking of A and B does happen to be conclusive. This can therefore
help clarify and settle methodological disputes over poverty rankings. It can also
serve to highlight the differences in the distributions that create ambiguity in their
ranking. Again, this can provide greater transparency in poverty analysis than the
use of selective poverty statistics by policymakers and policy analysts.

In some cases, however, the use of this paper’s methodology will lead to the
conclusion that the poverty ranking of A and B is too sensitive, either to the choice
of measurement assumptions (poverty lines, poverty indices) or to the presence of
sampling variability (the statistical significance of differences in poverty being
too low). The poverty orderings will then be deemed to be ambiguous. This type
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of outcomes may be thought of as being “negative”. We believe this would be
an incorrect assessment of the value of such results. Ambiguous results reveal
that ranking poverty across A and B could perhaps still be made but only at an
assignable cost in terms of normative and statistical confidence.

An important feature of this paper’s methodology is then to focus away from
thinking about poverty levels towards thinking about poverty rankings. Poverty
levels are intrinsically arbitrary: their value necessarily depends on the precise
measurement choices that are made. Poverty levels are also subject to sampling
variability: statistically speaking, we can only think in terms of ranges of poverty
levels, not about their precise values. Inference on poverty rankings can be a lot
more precise. Since poverty rankings essentially deal with the sign of poverty
differences, and not with their precise numerical value, they can be made both
normatively and statistically strong.

The rest of the paper runs as follows. Section 2.1 illustrates briefly how
poverty comparisons can be sensitive to the choice of important measurement
assumptions. Section 2.2 outlines how a focus on robust poverty rankings can
alleviate concerns for such sensitivity, and describes techniques for checking for
poverty dominance. Section 3 presents procedures for testing dominance using
two alternative sets of test statistics. Section 4 illustrates the application of the
paper’s methodology using Statistics Canada’s Survey of Labor and Income Dy-
namics.

2 Poverty rankings

2.1 Sensitivity of poverty comparisons
2.1.1 Ordinal sensitivity

We start by illustrating why and how poverty comparisons can be sensitive to the
choice of measurement assumptions. Let the FGT indices of poverty (see Foster,
Greer, and Thorbecke 1984) be defined for parameter α ≥ 0 and poverty line z as

PA(z; α) =

∫ z

0

(
z − y

z

)α

dAF (y) (1)

where FA(y) is the distribution function for distribution A.
Consider the hypothetical example of Table 1. The second, third and fourth

lines in the table show the incomes of three individuals in two hypothetical dis-
tributions, A and B. Thus, distribution A contains three incomes of 0.4, 1.1 and
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2 respectively. The bottom 3 lines of the table show the value of the two most
popular indices of poverty, the headcount P (z; 0) and the average poverty gap
P (z; 1) indices, at two alternative poverty lines, z = 0.5 and z = 1. The poverty
headcount gives the proportion of individuals in a population whose income falls
underneath a poverty line. At a poverty line of 0.5, there is only one such person
in poverty in distribution A, and the headcount is thus equal to 0.33 (shown on the
fifth line of Table 1. The average poverty gap index is the sum of the distances
(normalized by z) of the poor’s incomes from the poverty line, divided by the total
number of people in the population. For instance, at a poverty line of 1, there are
2 people in poverty in B, and the sum of their distances from the poverty line is
((1-0.6)+(1-0.9))=0.5. Divided by 3, this gives 0.166 as the average poverty gap
in B for a poverty line of 1 (shown on the last line of Table 1).

At a poverty line of 0.5, the headcount in A is clearly greater than in B, but
this ranking is radically reversed if we consider instead the same headcount index
but at a poverty line of 1. The ranking changes again if we use the same poverty
line of 1 but now focus on the average poverty gap P (z; 1): PA(1; 1) = 0.2 <
0.166 = PB(1; 1). Clearly, the poverty ranking A and B can be quite sensitive to
the precise choice of measurement assumptions.

2.1.2 Cardinal sensitivity

As seen above in the context of Table 1, differences in simple poverty indices
can be deceptive when it comes to order distributions. They can also quantify
deceptively distances between distributions even when the poverty rankings are
held constant. To illustrate this, consider Table 2 with distributions A and B and
a poverty line z = 1. The three FGT poverty indices P (1; α) agree that poverty
has not increased in moving from A to B. But the quantitative change in poverty
varies significantly with the value of α. With the poverty headcount, poverty
remains the same, but the average poverty gap falls by 33% and the “squared-
poverty-gap” index (P (z; α = 2)) falls by 56%.

2.2 Poverty dominance
2.2.1 Poverty rankings

A focus on robust poverty rankings can fortunately allay the above sensitivity
problems. Robust poverty rankings simply order distributions; for this, estimates
of cardinal differences in poverty indices are not needed. The method described
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below draws from the literature on stochastic dominance. Its application to poverty
comparisons is thus usually denoted as poverty dominance. Important references
to that literature include Atkinson (1987), Foster and Shorrocks (1988a) and Fos-
ter and Shorrocks (1988b).

Making robust ordinal comparisons of poverty involves using classes of poverty
indices. It is useful to define these classes by referring to “orders of normative (or
ethical) judgements”, an order being denoted as s = 1, 2, .... Whether an ordering
of poverty is valid for all of the indices that are members of a class of order s is
tested through poverty dominance tests, which happen to be convenient variants of
well-known stochastic dominance tests also of order s. When two poverty domi-
nance curves of a given order s do not intersect, all poverty indices that obey the
ethical principles associated to this order s of dominance then order in the same
manner the two distributions.

2.2.2 First-order dominance

We focus in this paper on first-order poverty dominance comparisons, although it
is relatively straightforward also to consider high-order dominance comparisons4.
The poverty indices that are ranked by first-order poverty dominance have four
properties. The first is that they should show (weakly) a fall in poverty when-
ever someone’s income increases, everything else being the same. These poverty
indices must therefore obey a property akin to that implied by the well-known
Pareto principle.

The second property deals with differences in population sizes. It forces
poverty indices to be invariant to adding an exact replicate of a population to
that same population, and derives from the population invariance principle.

The third property follows from an anonymity principle: everything else being
the same, whether it is an individual named a rather than b that enjoys some given
level of income should not affect the value of a distributive index. It also follows
from this property that interchanging two income levels should not affect the value
of the poverty indices.

The fourth property follows from the focus principle: for a fixed poverty line z,
poverty indices are invariant to marginal changes in those incomes that are above
the poverty line z.

The first-order class of poverty indices — denote it by Π1(z+) — then re-
groups all of the poverty indices P (z) that are anonymous, that are population

4Higher orders of poverty dominance are discussed in Duclos and Araar (2006).
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invariant, that show a (weak) poverty improvement following an increase in in-
comes below a poverty line z, that are insensitive to increases in any income above
z, and whose poverty line z does not exceed z+.

We then have (for a proof, see for instance Foster and Shorrocks 1988a):

Theorem 1 First-order poverty dominance

PA(z)− PB(z) ≥ 0 for all P (z) ∈ Π1(z+)
if and only if FA(y) > FB(y) for all y ∈ [0, z+].

(2)

An example of an ordering provided by Theorem 1 is shown in Figure 1. Fig-
ure 1 shows two poverty dominance curves, one for A and one for B. FA(y) is
always larger than FB(y) at all y between 0 and z+. Hence, we can invoke Theo-
rem 1 to declare poverty in A, PA(z), to be larger than poverty in B, PA(z), for all
of the poverty indices P (z) in Π1(z+) and thus for any choice of poverty lines z
below z+. Note that this orders poverty across a large class of poverty indices, in-
cluding all of the FGT indices as well as virtually all of the indices that have been
proposed and used in the literature. Thus, this is a powerful ordering of poverty.
In fact, we could extend it up to all of the poverty indices in Π1(z++) since we
have that FA(y) − FB(y) ≥ 0 for all y between 0 and z++. Π1(z++) is also the
largest set of poverty indices that all declare poverty to be larger in A than in B.

Figure 1 provides an attractive and simple-to-understand test of the ranking of
poverty across distributions. We saw that since we are able to order the distribution
functions FA(y) and FB(y) over the range [0, z++], we are also able to order
poverty across A and B for all of the poverty indices and poverty lines consistent
with Π1(z++).

Practically speaking, however, we may not be able to do this. One reason for
this is that testing over the entire range of [0, z++] may be statistically too de-
manding, since it involves comparisons of poverty dominance curves over ranges
where there may be too little information. A proof that it is generally impossible
to test down to the lower bound of 0 is given in Davidson and Duclos (2006).
The sampling distribution of a crossing point such as z++ in Figure 1 is provided
in Davidson and Duclos (2000), also suggesting that statistical prudence would
usually prevent us from inferring dominance up to a point that is too close to z++.

Hence, it may make more practical and statistical sense to focus on poverty
dominance restricted to a domain Z = [z−, z+], say, that lies strictly inside the
wider range of [0, z++]. From a normative point of view, there are also arguments
that favor such a restriction — some of them are reviewed in Davidson and Duclos
(2006). This leads to the definition of a class of restricted first-order indices,
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namely, indices that use poverty lines restricted to the range Z = [z−, z+]. The
indices that are members of Π1(Z) are insensitive to changes in incomes when
these take place outside of Z: they thus behave somewhat like the headcount
index outside Z, being invariant to marginal changes in income either below z−

or above z+.

3 Testing for poverty dominance
We now turn to how the conditions in Theorem 1 can be tested statistically. 5

Consider again two cumulative distribution functions FA and FB. As mentioned
above, distribution B is said to poverty-dominate distribution A at first order if,
for all y ∈ Z, FA(y) > FB(y). Testing for such dominance using sample data,
however, requires leaping over a number of hurdles.

• First, there is the possibility that population dominance curves may cross
when the sample ones (denote these by F̂A(y) and F̂B(y)) do not.

• Second, the sample curves may be too close to allow a statistically signifi-
cant ranking of the population curves.

• Third, there may be too little sample information from the tails of the dis-
tributions to be able to distinguish dominance curves statistically over the
entire domain Z.

• Fourth, testing for dominance involves testing differences in curves over a
large (or infinite) number of points in Z.

• Fifth, the overall testing procedure should take into account the dependence
of the large number of tests carried out jointly over Z.

• Sixth, we should take into account of the sampling design of the survey.

• Finally, dominance tests are always performed with finite samples, and this
may give rise to concerns whenever the properties of the procedures that are
used are known only asymptotically.

5A considerable empirical literature has sought to test for stochastic dominance in recent
decades. This includes inter alia Beach and Davidson (1983), Bishop, Formby, and Thistle (1992),
Anderson (1996), Dardanoni and Forcina (1999), Davidson and Duclos (2000), Barrett and Donald
(2003) and Linton, Maasoumi, and Whang (2005).
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Until now, the most common procedure to test whether there is stochastic
dominance has been to posit a null hypothesis of dominance, and then to study
test statistics that may or may not lead to rejection of this hypothesis. Rejection
of a null of dominance is, however, an inconclusive outcome in the sense that it
fails to rank the two populations. It may thus seem preferable to posit a null of
non-dominance, since, if we succeed in rejecting this null, we may legitimately
infer the only other possibility, namely dominance.

This is what we do by setting up, as in Davidson and Duclos (2006), a test of
a null of non-dominance against an alternative of dominance. The literature has
offered until now two approaches to proceed to such a test.

1. The first approach (Kaur, Prakasa Rao, and Singh 1994 and Howes 1993)
uses the minimum over y ∈ Z of the t-ratios of the differences between the
poverty dominance curves. Formally, let

tmin = min
y∈Z

∆̂(y)

σ̂∆̂(y)

(3)

where

∆̂(y) = F̂A(y)− F̂B(y) (4)

and where σ̂∆̂(y) is the estimate of the standard error on the estimator of
∆(y). For a test size of 100c%, the decision rule is then to reject the null
of non-dominance if tmin exceeds the 1 − c quantile of the standard nor-
mal distribution. For instance, if we want to test the null hypothesis of the
non-dominance of A by B at a level of 5%, we reject the null and infer dom-
inance if and only if tmin is larger than 1.65, which is the 95% quantile of
the standard normal distribution.

2. The second approach (Davidson and Duclos 2006) is based on an empir-
ical likelihood ratio statistic. The procedure first maximizes the loglikeli-
hood function of the sample (or the “empirical” loglikelihood function, or
ELF), without constraints. Second, it maximises the ELF under the con-
straint of the null of non-dominance, that is, by imposing the condition that
FA(y) = FB(y) for some y ∈ Z. The constrained maximum of the ELF
is obtained by choosing the value of y that gives the greatest value of the
constrained ELF. The empirical likelihood ratio (ELR) statistic that is used
is the difference between the unconstrained and the constrained ELF.
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Besides providing a statistic for testing this null, the empirical likelihood ap-
proach also produces a set of probabilities that can be understood as estimates of
the population probabilities under the assumption of non-dominance. These prob-
abilities can be used to set up a bootstrap data-generating process that lies on the
frontier of the null hypothesis of non-dominance. As documented in Davidson
and Duclos (2006), bootstrap tests that make use of the bootstrap data-generating
process can yield more satisfactory inference than tests based on the asymptotic
distributions of the statistics, such as the normal distribution used above in the
first approach.

The Appendix (see page 18) provides the details of the technique in the context
of a complex sampling design. As mentioned above, this is important since such
design is typically used by statistical agencies, and since it can lead to greater
sampling variability than under simple random design — see for instance Howes
and Lanjouw (1998).

4 Illustration using Canadian data
We illustrate in this section each of the above two approaches using the Cana-
dian Survey of Labour and Income Dynamics (SLID)— a longitudinal dataset
that consists of two overlapping samples, each of which is followed for only six
years with the last of three years of the older panel overlapping with the first three
years of the newer panel. Like most survey data, the samples for SLID are drawn
from a complex sampling structure based on a stratified, multi-stage design that
uses probability sampling. In fact, the SLID sample is selected from the monthly
Labour Force Survey (LFS) and thus shares the latter’s sample design6. Except
for the first SLID wave (1993-98), variables relating to sampling designs (strata
and clusters) can be obtained by linking the SLID master file and the LFS files7.
These variables therefore enable us to account for complex sampling design in
computing estimates and test statistics. We also restrict our analysis to fresh sam-

6The LFS sample is drawn from an area frame and is based on a stratified multi-stage design.
That is, within a given stratum the many clusters are first randomly organized and six or a multiple
of six clusters are then usually selected within the stratum. Most of the LFS strata are 1-stage
design (i.e. strata and primary sampling units). There are only a handful of 2-stage design strata
(strata, primary sampling units and secondary sampling units). The LFS total sample is composed
of six independent samples, called rotation groups, because each month one sixth of the sample
(or one rotation group) is replaced. The SLID sample is composed of two panels. Each panel
consists of two LFS rotation groups and includes roughly 17,000 households.

7We thank Statistics Canada’s income statistics division for providing these variables.
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ples drawing from years in which a new panel started (i.e., 1996, 1999, and 2002).
This is because samples that were drawn from the later years of each panel may
contain a single sampling unit within a stratum due to panel attrition. This is not in
conflict with the survey design, but it poses an identification problem in estimating
precision.

As is standard normative practice, we consider the individual as the basic
unit of poverty analysis, and assume equal sharing of disposable income between
household members. That is, we divide household net income (after tax/transfer)
by an equivalence scale defined as h0.5, where h is household size. All incomes
are inflation-adjusted in 2000 constant dollars. All household observations are
weighted by the product of household sample weights and household size. Re-
sulting household sample sizes are 14,659 for 1996, 14,274 for 1999, and 13,596
for 2002.

We start using samples from 1996 and 2002 to highlight some hurdles com-
monly faced in the analysis of dominance, and thus to emphasize the impor-
tance of proper tests for poverty dominance. Table 3 shows the estimated head-
count poverty rates F̂year(z) for a grid of poverty lines that lie between $500 and
$20,000. Also note that throughout this illustration we make an arbitrary choice
of a maximum possible poverty line z+ equal to $20,000 of equivalent income8.
The estimated differences F̂2002(z) − F̂1996(z) as well as associated t-statistics
for each of these points are also presented. One immediate observation from Ta-
ble 3 is that we are unable to rank distributions F1996(z) and F2002(z) over the
entire range of [$500, $20,000] because the two cumulative distribution functions
cross at the lower tails of the distributions. This leads to the emphasis on restricted
dominance.

The second observation is that even if we focus on restricted dominance, the
estimates of the lower/upper thresholds may vary depending on how many num-
bers of points in Z are included in testing differences between two curves. At a 5%
significance level, Table 3 reveals poverty dominance of F2002(z) over F1996(z)
over a range [$7,000, $20,000] of poverty lines. However, the range of restricted
dominance becomes wider as fewer points in Z are evaluated: [$6,000, $20,000]
when a grid of 20 points (at intervals of $1,000) is used, and [$4,000, $20,000]
when only 10 points (at intervals of $2,000) are used. This suggests that test-
ing for poverty dominance should involve testing for differences in curves over a

8Although arbitrary, the upper bound of $20,000 would seem to be sufficiently reasonably
high to encompass most of the plausible poverty lines for an adult equivalent. To put this into
perspective, the commonly used Canadian Low-Income Cutoff (LICO) for an adult in a large city
(population size of 500,000 and above) equivalent is about $15,353 (in 2000 dollars).
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sufficiently large number of points.
Note that in Table 3 the t-statistics of the difference for each of these points

examined take full account of survey design. This is done not only by using
sampling weights to compute correctly the point estimates, but also by considering
the stratification and the clustering of the survey design to get the standard errors
right.

Stratification partitions the population into parts (or strata) that (generally)
differ significantly from each other. Sampling then draws information systemat-
ically from each of those parts. With stratification, no part of the sampling base
goes totally unrepresented in the final sample. Because of this, information from
a stratified population leads on average to more precise estimators; a failure to
take into account stratification in the computation of standard errors then typi-
cally overestimates them.

Clustering (or multi-stage sampling) can generate an inverse bias. Variables
of interest (such as incomes) usually vary less within a cluster than between clus-
ters. Ceteris paribus, clustering then reduces the informational content provided
by a sample and leads to a less informative coverage of the population. Cluster-
ing therefore tends to decrease the precision of estimators; failure to take it into
account will generally underestimate standard errors.

To show the inference impact of testing dominance with and without taking
into account the complex survey design of the SLID data, we show differences in
distribution functions for 3 pairs of years (1996 minus 2002, 1999 minus 2002,
and 1996 minus 1999) in Figures 2, 3 and 4 respectively. The 90% confidence
intervals of the estimated differences calculated using survey design (SVY) are
designated by dark shading; the confidence intervals without taking account sur-
vey design — thus assuming simple random sampling (SRS) — are marked by
light shading.

Overall, the confidence intervals are generally wider with an account for sur-
vey design than without. That is, ignoring the complexity of the SLID survey
design will usually produce standard errors that are smaller than their real value.
Those Figures also reveal however that the impact of ignoring sample design is
negligible for the SLID estimators of distribution functions (and therefore for
SLID poverty rates), particularly for lower values of z.

It is nevertheless important to stress that such a finding is data-dependent. For
most complex surveys, the presumption (and the usual finding) is that the effect
of clustering dominates by far the effect of stratification (see for instance Asselin
1984 and Howes and Lanjouw 1998); taking into account survey design often
doubles the size of standard errors. That the effect of clustering is roughly undone
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by the effect of stratification with the SLID is due to the very fine stratification
observed in SLID (an average of around 1,000 strata per sample). Even with the
SLID, the net standard error effect varies with the years and the estimators. For
instance, complex survey design yields 90% confidence intervals that are visibly
(although modestly) different from those obtained under the assumption of SRS
for the 1999-2002 comparison (Figure 3), but SVY yields almost identical results
to SRS for the 1996-1999 comparison (Figure 4).

We now perform tests of the null of non-dominance that Fearly year(z) ≤
Frecent year(z) against the alternative that Fearly year(z) > Frecent year(z) over a
range of $500 (z−) to $20,000 (z+). The results are shown in Table 4 for 3 pairs
of sample years, and for both the minimum t-statistics (with and without survey
design, labelled by SRS and SVY respectively) and the empirical likelihood ratio
(ELR) approaches as described above. Test statistics are evaluated at each income
value observed in the sample over this range. For comparison purposes, column 1
(under “Estimates”) of Table 4 also reports the “crossing” point of the two empir-
ical distribution functions, without taking into account the sampling variability of
those functions.

Overall, recent years poverty dominate earlier years for a wide range of poverty
lines. This is consistent with macro conditions, since 1996 is at the start of a pe-
riod of economic recovery that was followed until 2002 by years of expansion.
Table 4 also suggests that the estimated range of dominance can vary significantly
with the procedures employed. In all cases, it shows that poverty comparison
without taking into account sampling variability can largely inflate the range of
dominance. This is particularly true in comparing 1996 with 2002 and 1999 with
2002: restricted dominance ranges from [$1704, 20,000$] to [$6879 , 20,000$]
and from [$975 , 20,000$] to [$9,562 , 20,000$] respectively SRS sampling vari-
ability (under column “SRS”) is imputed to the estimates shown under column
“Estimates”. Again, however, the extent to which these differences exist is nec-
essarily data-dependent; here the differences are particularly strong for the 1999-
2002 comparison.

With respect to tests based on the minimum t-statistics, the results of Table
4 that take full account of survey design (SVY) have larger standard errors and
thus narrower ranges of dominance. For instance, we would reject the null of non-
dominance of 2002 over 1996 at a 5% significance level for a range of [$6,953,
$20,000] with the SVY procedure; we would do this for a range of [$6,879,
$20,000] with the SRS procedure. In other words, a failure to take account of
survey design results in this case in a modestly $74-wider range of poverty lines

15



over which we can infer dominance. Table 4 also demonstrates that the effect
of ignoring survey design can be data-dependent and sensitive to the significance
levels specified. Using a 5% test for a 1999-2002 comparison under SVY as op-
posed to SRS decreases by more than $3,600 the range of poverty lines over which
dominance can be inferred.

Next we consider test results based on empirical likelihood function (ELR)
statistics. As discussed above, this procedure draws inference from bootstrap
tests in which the empirical distribution function is drawn from bootstrap sam-
ples through a data-generating process that satisfies the null hypothesis of non-
dominance. The procedure does not use an asymptotic distribution of the statistics
as required in the minimum t-statistics approach. Since the bootstrap test statis-
tics that are used here are pivotal, in that their distribution does not depend on
unknown parameters, the true size of the test can also be expected to converge
more rapidly to the nominal size used.

However, this methodological advantage comes at some cost in terms of com-
plexity. This is because, in addition to greater computational time, one needs
the drawing of the bootstrap samples to follow the complex survey design of the
original survey. This involves following the different procedures and stages (i.e.,
stratification and clustering) involved in the original sampling of the data (see
Section 6.3 for a detailed procedure for applying bootstrap tests). In principle,
this is of course a surmountable difficulty. We found, however, that this procedure
may be more problematic for complex survey designs that contain many strata and
relatively few primary sampling units within each stratum, as is the case for the
SLID data9. Bootstrap samples being drawn being replacement, the probability of
drawing repeatedly the same single sampling unit within a small stratum may be
relatively large. We find that this event indeed occurs often with the SLID data.

Fortunately, we saw previously (recall Figures 2, 3 and 4) that complex survey
design yields confidence intervals with SLID that are close to those obtained under
the assumption of simple random sampling. More usefully perhaps, we can com-
pare the performance of the bootstrap ELR tests and of the minimum t-statistics
under the assumption of simple random sampling with the SLID. We therefore
ignore sampling design information in computing the ELR statistics.

The result is reported in the last column of each pair comparison in Table 4.
In all cases, bootstrap tests were based on 399 bootstrap samples. In general, the
use of ELR statistics shows a relatively modest increase in the ranges of poverty

9There are more than 1,000 strata in each single year of the SLID data we use; within a stratum,
there are usually only 2-24 clusters (with an average of 6).
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lines over which we may reject the null of non-dominance. At a level of 5%,
the bootstrap test for the 1996-2002 comparison leads to a restricted dominance
range [$6,876, $20,000] that is slightly wider than the range [$6,953, $20,000]
obtained with the asymptotic test (SVY) — namely, an extension of about $77 in
the range of poverty lines over which 2002 can be declared to have less poverty.
The range extension provided by ELR is slightly larger ($157) for the 1999-2002
comparison, but is even smaller ($17) for the 1996-1999 comparison.

5 Conclusion
Recent years have seen an increased interest in comparing poverty across space
and time. Comparing poverty, however, involves making a substantial number of
important and difficult methodological choices. Agreement on an official poverty
line in Canada has not been possible, and the value and contribution of using
poverty aggregation indices that are more ethically acceptable than the traditional
headcount ratio have rarely been discussed in Canada.

In view of this, this paper proposes and applies statistical tests for poverty
dominance that check for whether poverty comparisons can be made robustly
over ranges of poverty lines and classes of poverty indices. The tests are also
implemented for the first time in the context of the complex sampling procedures
that are typically used by statistical agencies to generate household-level surveys.
This helps provide both normative and statistical confidence in ranking two distri-
butions in terms of poverty.

The procedures are implemented using the Canadian Survey of Labour and
Income Dynamics (SLID). SLID data are drawn from a complex sampling struc-
ture based on a stratified, multi-stage design that uses probability sampling. Three
years are compared, 1996, 1999 and 2002.

We are unable to rank these years over the entire range of poverty lines [$500,
$20,000] (in 2002 dollars) since the cumulative distribution functions cross at the
lower tails of the distributions. We are, however, able to infer restricted dominance
over ranges that use closer lower and upper thresholds for these ranges. Thus,
dominance tests can be used to provide rankings of poverty that are valid (even)
over relatively short periods of time and that are robust to the type of measurement
choices that have been difficult to make in Canada.

Overall, we find that recent years in Canada poverty dominate earlier years for
a relatively wide range of poverty lines. The estimated range of dominance can,
however, vary significantly with the procedure that is employed. Estimates of the
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critical value of poverty thresholds can depend on how many numbers of points are
included in testing differences between two distribution functions; it is therefore
find useful to proceed by performing the tests at each observed income point in the
samples. More generally, poverty comparisons that fail (as is still often the case)
to take into account sampling variability can inflate significantly one’s confidence
in making dominance comparisons. This is certainly an important warning for
those interested in poverty comparisons for evaluative and/or policy purposes.

Taking full account of survey design (SVY) also leads to larger standard errors
and thus to narrower ranges of dominance than (wrongly) assuming simple ran-
dom sampling (SRS). Given SLID’s important stratification, this latter effect is,
howeverm relatively modest in Canada. But the effect of ignoring survey design
can be expected to be highly data-dependent (and to be larger for other types of
surveys and for other countries). We find for instance that a 5% test for a 1999-
2002 comparison under SVY as opposed to SRS decreases by more than $3,600
the range of poverty lines over which poverty dominance can be inferred. This is
an important result given that issues of sampling design have been given little (if
any) attention until now by poverty analysts around the world.

Finally, the use of bootstrapped empirical likelihood ratio statistics leads to
a relatively modest increase in the ranges of lines over which we may reject the
null of non-dominance. This modest increase in power, which can arise from
the fact that these bootstrapped statistics are pivotal, is again data specific and
could presumably be larger if one were to use smaller-size samples or comparisons
across subgroups of the population.

6 Appendix: Stochastic dominance and empirical
likelihood statistics

6.1 Empirical likelihood statistics
Sections 6.1.1 and 6.2 draw significantly from Davidson and Duclos (2006).

6.1.1 Unconstrained likelihood

Let two distributions, A and B, be characterized by their cumulative distribution
functions FA and FB. As explained in the paper, distribution B poverty-dominates
A at first order if, for all y ∈ Z, FA(y) > FB(y). Suppose that we have two
independent samples, one each drawn from the distributions A and B. Let NA and
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NB denote the sizes of the samples drawn from distributions A and B respectively.
Let Y A and Y B denote respectively the sets of (distinct) realizations in samples A
and B, and let Y be the union of Y A and Y B. For K = A,B, let yK

t be a point
in Y K and wK

t be the sum of the sampling weights associated to yK
t , relative to

the overall sum in the sample of K. When we look at poverty among Canadian
individuals in Section 4 above, these sample weights are given by the product
of household sampling weights and household size. The empirical distribution
functions (EDFs) of the samples can then be defined as follows. For any y ∈ Y ,
we have

F̂K(y) =
∑

yK
t ∈Y K

wK
t I(yK

t ≤ y), (5)

where I(·) is an indicator function, with value 1 if the condition is true, and 0
if not. If it is the case that F̂A(y) > F̂B(y) for all y ∈ Z, we say that we have
first-order poverty-dominance of A by B in the sample.

For a given sample, the parameters pK
t of the empirical likelihood for the sam-

ple of K are the probabilities associated with each point yK
t in Y K . The empirical

loglikelihood function (ELF) is then the sum of the logarithms of these probabili-
ties. The ELF is hence NK

∑
yK

t ∈Y K wK
t log pK

t . In the absence of constraints, the
ELF is maximized by solving the problem

max
pK

t

NK
∑

yK
t ∈Y K

wK
t log pK

t subject to
∑

yK
t ∈Y K

pK
t = 1, (6)

for which the solution is pK
t = wK

t for all t. The maximized ELF is then NK
∑

t w
K
t log wK

t .
With two samples, A and B, the maximized ELF is therefore

NA
∑

yA
t ∈Y A

wA
t log wA

t + NB
∑

yB
t ∈Y B

wB
t log wB

t . (7)

The null hypothesis we wish to consider is that B does not poverty-dominate
A, that is, that there exists at least one y ∈ Z such that FA(y) ≤ FB(y). If there
is a y ∈ Z such that F̂A(y) ≤ F̂B(y), there is non-dominance in the samples,
and, in such cases, we do not wish to reject the null of non-dominance. If there
is dominance in the samples, then the constrained estimates must be different
from the unconstrained ones, and the empirical loglikelihood maximized under
the constraints of the null is smaller than the unconstrained maximum value.
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6.1.2 Constrained likelihood

In order to maximise the ELF under the constraint of the null, we begin by com-
puting the maximum where, for a given y ∈ Z, we impose the condition that
FA(y) = FB(y). We then choose for the constrained maximum that value of y
that gives the greatest value of the constrained ELF.

For given y, the constraint we wish to impose can be written as
∑

yA
t ∈Y A

pA
t I(yA

t ≤ y) =
∑

yB
s ∈Y B

pB
s I(yB

s ≤ y). (8)

The maximisation problem can thus be stated as follows:

max
pA

t ,pB
t

∑

yA
t ∈Y A

NAwA
t log pA

t +
∑

yB
t ∈Y B

NBwB
t log pB

t (9)

subject to
∑

yA
t ∈Y A

pA
t = 1,

∑

yB
t ∈Y B

pB
t = 1,

∑

yA
t ∈Y A

pA
t I(yA

t ≤ y) =
∑

yB
t ∈Y B

pB
t I(yB

t ≤ y).(10)

Letting NA + NB = N , NK(y) =
∑

t N
KwK

t I(yK
t ≤ y) and MK(y) = NK −

NK(y), the probabilities that solve this problem can be written as

pA
t =

NAwA
t I(yA

t ≤ y)

ν
+

NAwA
t (1− I(yA

t ≤ y))

λ
(11)

and pB
t =

NBwB
t I(yB

t ≤ y)

N − ν
+

NBwB
t (1− I(yB

t ≤ y))

N − λ
(12)

with

ν =
NNA(z)

NA(z) + NB(z)
(13)

and

λ =
NMA(z)

MA(z) + MB(z)
. (14)

We may use this to express the value of the constrained ELF as
∑

t N
AwA

t log(NAwA
t ) +

∑
s NBwB

s log(NBwB
s )

−NA(z) log ν −MA(z) log λ−NB(z) log(N − ν)−MB(z) log(N − λ).
(15)

Twice the difference between the unconstrained maximum in (7) and the con-
strained maximum in (15) is an empirical likelihood ratio (ELR) statistic at z.

We now see how to use the probabilities in (11) and (12) in order to test the
hypothesis of non-dominance.
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6.2 Testing restricted dominance with simple random sampling
To test for restricted dominance, a natural way to proceed, in cases in which there
is dominance in the sample, is to seek an interval [ẑ−, ẑ+] over which one can
reject the hypothesis

max
z∈[ẑ−,ẑ+]

FB(z)− FA(z) ≥ 0. (16)

As the notation indicates, ẑ− and ẑ+ are random, being estimated from the
sample.

We have at our disposal two test statistics to test the null hypothesis that dis-
tribution B does not dominate distribution A, the ELR statistic given by (6) and
(13) and the t-ratio tmin statistic given by (3). Again, it is only when there is
dominance in the sample that there is any possible reason to reject the null of
non-dominance. Then the minimum t statistic (which will be positive if there is
dominance in the sample) can be found by minimizing t(y) over Z – this gives ỹ
and t(ỹ). There is no loss of generality in restricting the search for the maximizing
y to the intersection of Y and Z since t(y) is constant between sorted elements of
Y

⋂
Z.

Since the EDFs are the distributions defined by the probabilities that solve the
problem of the unconstrained maximisation of the empirical loglikelihood func-
tion, they define the unconstrained maximum of that function. The constrained
empirical likelihood estimates of the CDFs of the two distributions can be written
as

F̃K(z) =
∑

yK
t ∈Y K

pK
t I(yK

t ≤ z), (17)

K = A,B, where the probabilities pK
t are given by in (11) and (12) with y = ỹ.

The distributions F̃A and F̃B are on the frontier of the null hypothesis of non-
dominance, and they represent those distributions contained in the null hypothesis
that are closest to the unrestricted EDFs by the criterion of the empirical likeli-
hood.

The minimum over Z of the asymptotic t statistic is asymptotically pivotal
for the null hypothesis that the distributions A and B lie on the frontier of non-
dominance of A by B. This means that we can use the bootstrap to perform tests
that should benefit from asymptotic refinements in finite samples – see Beran
(1988). On this frontier, the empirical likelihood ratio statistic is asymptotically
pivotal, by which it is meant that they have the same asymptotic distribution for
all configurations of the population distributions that lie on the frontier.
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6.3 Test for poverty dominance with complex survey design
The following outlines a procedure for the use of the above tmin and empirical
likelihood statistics with samples drawn using stratification and multi-stage sam-
pling. Such a survey design was followed by Statistics Canada for the Canadian
SLID data used in this paper.

1. We first set a value for z− and z+; this defines Z.

2. We then compute the asymptotic t-ratio statistic of the difference FA(z) −
FB(z) in the distribution functions of two populations at each value of Z
that is observed in the samples. This is done taking into the sampling design
(stratification and clustering) of the survey – see for instance Chapter 16 and
Section 16.5 in Duclos and Araar (2006).

3. We then find the point ỹ at which this t-ratio is minimized. Denote by t0 the
value of this t-ratio.

4. We then compute the probabilities pA
t and pB

t using (11) and (12) at y = ỹ.

5. We then bootstrap β samples from the two distributions now defined by
these probabilities pA

t and pB
t . Each of these β samples is a combination

of two samples, one drawn with replacement from A and the other drawn
with replacement from B. In drawing such bootstrap samples, we follow
the sampling design of the original surveying process. For this, we must
therefore take into account the clustering (the different levels of sampling)
and stratification of the surveys.

Say:

• that our survey of A contains SA strata, s = 1, ..., SA;

• that, within a stratum s, a number CA
s of primary sampling units have

been drawn, with the set of such primary sampling units being given
by cA

s ;

• that within each primary sampling unit c1 in the set cA
s , a number of

final sampling units CA
s,c1 has been drawn, with the set of such final

sampling units being given by cA
s,c1.

Denote by πA
s,u the relative probability of primary sampling unit u being

drawn from the set of all of the primary sampling units that belong to stra-
tum s; this is given by
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πA
s,u =

∑
t∈cA

s,u
pA

t∑
t∈cA

s
pA

t

, u ∈ cA
s . (18)

Similarly, define πA
s,c1,u as the relative probability of final sampling unit u

being drawn from the set of all of the final sampling units that belong to the
primary sampling unit c1 of stratum s:

πA
s,c1,u =

pA
u∑

t∈cA
s,c1

pA
t

, u ∈ cA
s,c1. (19)

6. For each of b = 1, ..., β, the bootstrap process then consists of two steps:

(a) from each stratum s, select randomly CA
s primary sampling units with

replacement from the original sample A, each with probability πA
s,u;

(b) from each primary sampling unit c1 selected above, select randomly
CA

s,c1 final sampling units with replacement from the set of final sam-
pling units cA

s,c1, each with probability πA
s,c1,u.

Repeat the process for all β samples.

7. For each bootstrap b, calculate the minimum t-statistic as in points 2 and 3
on page 22 above, but using as weights those that correspond to the empir-
ical likelihood probabilities of being selected in the sample, namely, those
given by the πK of (18) and (19).

8. Once this has been done for B bootstraps, compute the proportion of the
B minimum t-statistics that exceed t0. If this proportion is below a reason-
able significance level (say 5%), then reject the null of non-dominance and
accept the alternative hypothesis of dominance.

7 Tables and figures
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Table 1: Sensitivity of poverty comparisons to choice of poverty indices and
poverty lines

Distribution A Distribution B
First individual’s income 0.4 0.6

Second individual’s income 1.1 0.9
Third individual’s income 2 2

P (0.5; 0) 0.33 0
P (1; 0) 0.33 0.66
P (1; 1) 0.2 0.166

Table 2: Sensitivity of differences in poverty to choice of indices

Individuals Indices
Distributions First Second P (1; α = 0) P (1; α = 1) P (1; α = 2)

A 0.25 2 0.5 0.375 0.28125
B 0.5 2 0.5 0.25 0.125

PA − PB no change fall of 33% fall of 56%
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Table 3: Difference between poverty incidence curves for 1996 and 2002 for var-
ious income-based poverty lines. Incomes are equivalent incomes; squared-root
household size is used as equivalence scale. t-statistics take full account of survey

design.

Poverty line z F̂1996(z) F̂2002(z) F̂1996(z)− F̂2002(z) t-statistics
500 0.003 0.004 -0.001 -1.060

1000 0.004 0.005 -0.001 -0.780
1500 0.005 0.005 0.000 -0.079
2000 0.006 0.005 0.001 0.748
2500 0.008 0.006 0.002 1.546
3000 0.009 0.007 0.002 1.506
3500 0.010 0.008 0.002 1.275
4000 0.013 0.010 0.003 1.658
4500 0.014 0.011 0.002 1.419
5000 0.016 0.013 0.003 1.623
5500 0.018 0.014 0.004 1.813
6000 0.020 0.016 0.004 1.773
6500 0.022 0.019 0.004 1.552
7000 0.026 0.022 0.004 1.793
7500 0.033 0.025 0.008 2.816
8000 0.039 0.029 0.010 3.643
8500 0.048 0.036 0.012 3.818
9000 0.060 0.043 0.017 4.480
9500 0.072 0.051 0.021 5.175
10000 0.084 0.056 0.027 6.237
10500 0.095 0.063 0.031 6.469
11000 0.104 0.070 0.033 6.577
11500 0.114 0.076 0.037 7.043
12000 0.125 0.086 0.039 6.852
13000 0.150 0.104 0.046 7.361
14000 0.182 0.123 0.059 8.723
15000 0.211 0.148 0.063 8.677
16000 0.244 0.169 0.075 9.645
17000 0.278 0.201 0.078 9.252
18000 0.313 0.226 0.087 10.069
19000 0.343 0.253 0.090 10.046
20000 0.370 0.280 0.091 9.917
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Figure 2: Differences in distribution functions, 1996 minus 2002, with 90% con-
fidence intervals, with (SVY) and without (SRS) taking account of survey design
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Figure 3: Differences in distribution functions, 1999 minus 2002, with 90% con-
fidence intervals, with (SVY) and without (SRS) taking account of survey design

in the computation of the standard errors
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Figure 4: Differences in distribution functions, 1996 minus 1999, with 90% con-
fidence intervals, with (SVY) and without (SRS) taking account of survey design

in the computation of the standard errors
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