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Abstract

In the presence of cost uncertainty, limited liability introduces
the possibility of default in procurement with its associated bank-
ruptcy costs. When �nancial soundness is not perfectly observ-
able, we show that incentive compatibility implies that �nancially
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feasible mechanism. Informational rents are associated with un-
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contractor, stronger price competition (auctions) may not only
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1 Introduction

The high frequency of bankrupt bidders in high-stake auctions and procure-

ment, especially in the construction industry1, has lead researchers to move

away from traditional auction theory with deep pocket bidders to analyze

the possibility of default.2 It is now well understood that limited liability

makes bidders risk-loving by cutting o¤ the downside losses. The implied

tendency of bidders to bid more aggressively increases the probability of con-

tractors�default. Default or bankruptcy may be costly for the sponsor: it

implies delays in the completion of the project, litigation costs,3 the cost of

the new procurement process, etc. The literature explains why broke bid-

ders are frequent - the poorest bidder is the most aggressive -, compares the

performance of di¤erent auction formats,4 and analyses the possibility of in-

surance.5 However, little is known about the constraints that this possibility

of default imposes on the feasible trading mechanisms, or about the optimal

1In the US during 1990-1997 more than 80,000 contractors went bankrupt leaving
un�nished private and public construction projects with liabilities exceeding $21 billion
(Dun & Bradstreet Business Failure Record).

2Examples are Waehrer (1995), Zheng (2001) and Board (2007) in forward auctions
and Calveras et al. (2004) and Engel and Wambach (2006) in procurement auctions.

3White (1989) reports direct administrative costs for liquidating a �rm in the US for
which bankruptcy courts keep record: these make up 7.5%-21% of the liquidation proceeds.

4Board (2007) shows that if bidders have the same budget but di¤erent valuations the
second price auction induces higher prices, higher bankruptcy rates and lower utilities
than the �rst price auction. Engel and Wambach (2006) obtain comparable results for a
procurement setting. They also provide an illustrative comparison between a second-price
auction with a multi-source second-price auction without switching costs and a lottery.
Both papers show that the sponsor�s preferences over di¤erent mechanisms crucially de-
pend on the bankruptcy costs.

5Calveras et al. (2004) focus on the regulatory practice of surety bonds (�nancial
collateral) and show that these bonds reduce and sometimes eliminate the problem of
abnormally low tenders (low bids with high bankruptcy risk).
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mechanism in the presence of limited liability.6 The present paper makes a

�rst step in attacking this problem. We analyze procurement with limited

liability. Bidder heterogeneity is modeled in terms of �nancial assets, and

therefore in terms of �nancial robustness, which is private information.7 We

study a model with a continuum of types (�nancial assets), and common un-

certainty about the cost of carrying out the contract at the time of signing it.

That is, in order to concentrate on the e¤ect of limited liability, we abstract

from cost e¢ ciency di¤erences between contractors.

Under these assumptions, and excluding the possibility of payments not

associated to awarding the contract,8 we show that: (i) the search for the

optimal mechanism can be restricted to mechanisms where the price depends

only on the type of the winner; (ii) it is enough to consider the win prob-

abilities (or only the prices) that mechanisms assign to each type of bidder

when we compare rents and expected costs of di¤erent mechanisms (revenue

equivalence); (iii) limited liability has a �perverse� e¤ect: incentive com-

patibility imposes that win probabilities are monotonically decreasing and

prices monotonically increasing in the �nancial assets of the bidders. In

6Che and Gale (2000) characterize the optimal mechanism for selling to a budget-
constrained buyer. This is equivalent to analyzing the one-bidder no-default case. Pai and
Vohra (2008) extend the previous analysis to n-bidders in a discrete type space.

7Another strand of the literature (e.g. Waehrer 1995, Engel and Wambach, 2006,
Board, 2007) model bidder heterogeneity by assuming equal assets but di¤erent valuations
/ costs. We believe that our approach with di¤erent wealth levels is more interesting since
as shown by Calveras et al, (2004) and Zheng (2001) it destroys the e¢ ciency properties
of auctions and selects the bidder with the lowest assets. Moreover, empirical evidence
seems to con�rm budgetary issues are an important factor in explaining company failure:
Arditi et al. (2002) show that budgetary issues explain 60.2% of the company failures in
the US construction industry.

8In this environment it seems reasonable to assume that sponsors cannot use trading
mechanism with transfers from losers to the winner or from losers to the sponsor. They
are di¢ cult to reconcile with private information on �nancial assets and limited liability.
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other words, in any feasible mechanism and no matter how high bankruptcy

costs are, �rms in a bad �nancial situation are at least as likely to be assigned

the project as �nancially solvent �rms.

This third result, perhaps the most striking one, is in fact intuitive. Given

any contract price, a �rm with fewer assets is better protected against bad

cost realizations than a more sound �rm. Therefore, the former is always

willing to trade price for probability of winning if the latter is.

In our setting, an optimal mechanism should combine the goal of re-

ducing informational rents with the need for limiting the ine¢ ciency of the

allocation, which requires keeping the bankruptcy probability low. Given the

incentive compatibility constraints, the second goal in isolation is achieved

by an optimal posted price, which randomly assigns the contract and there-

fore does not select worse �rms with (strictly) higher probability. A more

striking result is that, contrary to what could be expected, the �rst goal in

isolation is not necessarily achieved by an auction. Even when bankruptcy

costs are negligible (or inexistent), informational rents might not be mini-

mized by a mechanism that minimizes the contracted price by selecting the

�rm with lowest assets. Informational rents here are associated to "bad"

�nancial states and the probability of default. Then lower contracted prices,

which necessarily go hand in hand with higher probabilities of selecting less

solvent �rms and higher probabilities of default, bolster informational rents.

We �nd su¢ cient conditions that guarantee that, even with no costs associ-

ated to default, auctions are suboptimal mechanisms to assign the contract.

Our results can be put in perspective by relating them to those of Manelli
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and Vincent (1995). That paper characterizes the optimal procurement

mechanism in an environment where the valuations of the uninformed buyer

over the potential sellers�goods (quality) are positively correlated with the

seller�s opportunity cost of supplying the good. As in the present paper, auc-

tions or price competition lead to awarding the project to the least preferred

supplier and mechanisms with some randomization in the winning probabil-

ities may be optimal. In our setting, bidders with worse �nancial status are

those that would result in higher default probability for the sponsor and then,

other things (price) equal, are less attractive if default is costly. Although

the relationship is less direct in our case, we can think of this bankruptcy

exposure as a sort of lower quality for the sponsor. However, the parallel

breaks when we consider that even with no bankruptcy costs price com-

petition might still be undesirable for the sponsor. Indeed, in our model

informational rents are more subtle and are linked to the probability of de-

fault, whether default is per se costly or not. This probability is higher when

price competition is more intense. Thus, even under regularity assumptions

on the inverse hazard rate, it may be in the interest of the sponsor to blunt

price competition.

We analyze the implications of these results for the design problem of

sponsors by considering a discrete (three type) parameterized example. We

show that pooling the two higher types may result in a lower cost for the

sponsor even when bankruptcy has no associated costs. This could not be

achieved by pooling the lower types. We also show that these insights extend

to a general K type space. This example lends some justi�cation for blunting
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price competition in the presence of limited liability even for low costs of

default, but raises questions about the right way to do so.

The remainder of the paper is organized as follows. In section 2 we present

the model. Section 3 contains our main results for the continuous type model.

In section 4 we relate our results to those of Manelli and Vincent (1995) and

o¤er conditions that make auctions suboptimal even in the absence of default

costs. We also study a discrete parameterized example to investigate the

types of mechanisms that may be more appropriate in these cases. Section

5 concludes. All proofs are relegated to a technical appendix.

2 The Model

A risk neutral buyer (sponsor) procures an indivisible contract for which he is

willing to pay V , which we assume large enough as to make the possibility of

no contracting unattractive. There are N risk-neutral potential contractors

all with the same cost, c, unknown at the time of signing the contract. Thus,

c is a random shock which we assume to be uniformly distributed on [0; 1].

Potential contractors di¤er in their initial �nancial status. Let Ai � 0 denote

the value of the assets of potential contractor i = 1; 2; :::; N . Ai is private

information of �rm i. Each Ai is an independent realization of a random

variable with support
�
A;A

�
, density function f(�), and distribution F (�).

Without loss of generality, we can restrict attention to the case A � 1
2
.

As will become clear below, a �rm with assets above 1
2
will never default,

and as a consequence any such �rm would behave (and would have to be

treated) as a �rm with assets 1
2
. We denote by A the vector of �rms�types,
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A = (A1; A2; :::; AN).9

Contractors have limited liability, i.e. the losses of �rm i cannot be larger

than Ai. Therefore, when awarded the project �rm i will close down if Ai plus

the net pro�ts from undertaking the project fall below 0 once c is realized.

The sponsor chooses a procurement process to award the contract. After

the contract is awarded at a price P , the cost c is realized and the selected

contractor either �nishes the project or declares bankruptcy. Bankruptcy

may imply extra costs for the sponsor. We summarize these costs by a

constant CB, with CB � 0. Thus, when the selected contractor declares

bankruptcy the sponsor has to bear the realized cost c plus this bankruptcy

cost, but can liquidate and seize the assets of the �rm, Ai (together with

whatever payment he had made, P ). Thus, if the sponsor signs a contract

with �rm i (with assets Ai) at a price P and the realized cost is c, then the

utility of the sponsor is

US =

�
V � P if P � c+ Ai � 0
V � c+ Ai � CB otherwise.

(1)

These payo¤s can be considered the reduced form payo¤s of a continuation

game where the sponsor asks for bids from the rest of contractors once the

realized cost c has been revealed.

Note that we are implicitly assuming that the sponsor cannot use trading

mechanisms with transfers from losers to the winner and/or the sponsor.

Besides being unrealistic, such (meaningful) trading mechanisms would be

di¢ cult to reconcile with limited liability and private information on �nancial

9This way of modeling bidder-heterogeneity is due to Che and Gale (1996) who model
bidder-heterogeneity in terms of wealth instead of value in a forward auction. It is also
used in Zheng (2001).
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assets.

We now summarize the timing of the model:

1. Nature chooses the �nancial value Ai of each �rm. Each �rm privately

learns its �nancial assets.

2. The sponsor announces the procurement process.

3. Firms submit their "bids" or messages, and the project is awarded

according to the rules announced by the sponsor. The price P is set

according to these rules.

4. The cost parameter c is realized. If the assets of the selected �rm i are

such that Ai+P � c � 0, then the �rm �nishes the project. Otherwise

it declares bankruptcy.

5. The sponsor and the �rms realize their payo¤s. The selected �rm re-

tains a �nancial value of maxf0; Ai+P �cg, all other �rms retain their

assets, and the contractor obtains a payo¤ de�ned in (1).

3 Implementable mechanisms

We restrict attention to trading mechanisms where prices are deterministic

after conditioning on all types, A, and the identity of the winner. Thus,

we allow for mechanisms such as the second price auction, but we do not

consider mechanisms where the sponsor uses random devices that are not

related to the primitives of the problem to (partially) determine the price.

Thus, a mechanism is a pair (�; P ), where P :
�
A;A

�N ! RN , and � :
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�
A;A

�N ! �N . We interpret �i(A) as the probability that supplier i is

assigned the project when A is the vector of assets, and Pi(A) as the price

of the contract if the vector of assets (types) is A and supplier i is assigned

the project. Incentive compatibility, IC, in this setting means that for all Ai

and bAi, and all i,10
EA�i�i(A)

"Z minf1;Pi(A)+Aig

0

(Pi(A) + Ai � c)dc� Ai

#
� (2)

EA�i�i(A�i;
bAi)"Z minf1;Pi(A�i; bAi)+Aig

0

(Pi(A�i; bAi) + Ai � c)dc� Ai# :
This is one of the constraints on the sponsor�s choice. The sponsor also faces

individual rationality constraints, IR: for all i and for all Ai,

Ui(Ai;�; P ) � EA�i�i(A)
"Z minf1;Pi(A)+Aig

0

(Pi(A) + Ai � c)dc� Ai

#
� 0:

The sponsor�s goal is to minimize the cost of the project. That is, to minimize

EA
P

i �i(A)

�
Pi(A) +

Z 1

minf1;Pi(A)+Aig
(c+ CB � Pi(A)� Ai)dc

�
:

First we show that the sponsor needs to consider only mechanisms where the

price depends on the type and identity of the winner, but not on the types

of other bidders.

Lemma 1 For any IC, IR mechanism (�; P ), there exists a mechanism�
�; P

�
, where P i(A) is constant on A�i,

�
�; P

�
is also IC and IR, results

in the same expected rents for each �rm i and each value of Ai, and results

in expected (weakly) lower cost for the sponsor.

10Note that we are implicitly assuming that bankruptcy cannot be claimed when funds
are su¢ cient to cover the cost. That is, that assets cannot be hidden once the supplier
has applied for bankruptcy.
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Proof. See appendix.

From now on we will only consider mechanism where the payments are

independent of types other than that of the winner. Thus, let us de�ne

	i(Ai) = EA�i�i(A). 	i(Ai) is the expected probability that bidder i obtains

the contract when conditioning on its information, Ai. Incentive compatibil-

ity implies a crucial monotonicity property of trading mechanisms. Indeed,

Lemma 2 If (�; P ) is IC, then Ui(Ai;�; P ) is continuous and monotone

decreasing in Ai. Monotonicity is strict if 1 > Pi(Ai) + Ai.

Proof. See appendix.

Lemma 2 implies that informational rents are linked to low asset hold-

ings, not to solvency. This monotonicity result also implies monotonicity of

allocation and prices. This is our most important result.

Lemma 3 In any IC mechanism 	i(Ai) is monotonically decreasing and

P (Ai) monotonically increasing.

Proof. See appendix.

Lemma 3 unveils the "perverse e¤ects" of limited liability. By cutting

o¤ the downside losses, limited liability makes �rms risk-loving. The fewer

assets a �rm has, the stronger is this e¤ect. Firms with many assets will

be more conservative since they have more to lose. Therefore, they are only

willing to procure the project at higher prices. Firms with fewer assets can

imitate �rms with higher assets and will only be stopped from doing so and

accept a lower price if this increases their win probabilities. In other words,

even when choosing the procurement mechanism optimally �rms in a bad
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�nancial situation are at least as likely to win the project as more solvent

�rms. Indeed, from continuity and monotonicity, Ui(Ai;�; P ) is di¤erentiable

almost everywhere if it is bounded. It is bounded from below by IR and can

be bounded above in a search for an optimal mechanism. Now, let Ui be

di¤erentiable at Ai. Applying the envelope theorem, the derivative of Ui at

Ai is

� [1� (Pi(Ai) + Ai)] 	i(Ai): (3)

when Pi(Ai) +Ai < 1, and zero otherwise. Recall that [1� (Pi(Ai) + Ai)] is

the probability that �rm i defaults if assigned the contract. Thus, the source

of informational rents is the probability of default. This allows us to obtain

a "revenue equivalence" result in this setting.

Lemma 4 Two mechanisms that share 	i(Ai) and give the same rents to

bidders of the highest type also share Pi(Ai).

Proof. See appendix

Thus, we need only consider 	i(Ai), i.e., �, when we compare rents and

expected costs of two di¤erent mechanisms.

We can write the expected payment for the sponsor as the sum of the

expected cost of the project, expected utility payments and expected bank-

ruptcy costs.

c+
P

iEAUi(Ai;�; P ) + EA
P

i �i(A) [1� (Pi(Ai) + Ai)]CB (4)

On the other hand, from (3)

Ui(Ai;�; P ) = Ui(A;�; P ) +
R A
Ai
[1� (Pi(x) + x)] 	i(x)dx:
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Using this equation we can write

EAiUi(Ai;�; P ) = Ui(A;�; P ) + EA
R A
Ai
�i(A�i; x) [1� (Pi(x) + x)] dx:

Hence we can rewrite (4) as:

c+
P

i Ui(A;�; P ) +P
iEAi

hR A
Ai
	i(x) [1� (Pi(x) + x)] dx+	i(x) [1� (Pi(Ai) + Ai)]CB

i
:

Notice that the third term of this expression captures the informational rents

and the bankruptcy costs incurred. This third term can be written as

P
i

R A
0

hR A
Ai
	i(x) [1� (Pi(x) + x)] dx+	i(Ai) [1� (Pi(Ai) + Ai)]CB

i
f(Ai)dAi

or, changing the order of integration,

P
i

R A
0
	i(Ai) [1� (Pi(Ai) + Ai)]

�
F (Ai)

f(Ai)
+ CB

�
f(Ai)dAi (5)

=
P

i

R A
0
EA�i�i(A) [1� (Pi(Ai)� c+ Ai)]

�
F (Ai)

f(Ai)
+ cB

�
f(Ai)dAi

= EA
P

i �i(A) [1� (Pi(Ai) + Ai)]
�
F (Ai)

f(Ai)
+ CB

�
:

We know from Lemma 3 that Pi(Ai) is monotonically increasing, hence

Pi(Ai)+Ai also increases in Ai. Therefore, the probability of default, namely

max [0; 1� (Pi(Ai) + Ai)] decreases in Ai. So lower types are always asso-

ciated with higher bankruptcy costs. It is not so clear what happens with

informational rents since [1� (Pi(Ai) + Ai)] F (Ai)f(Ai)
might not be monotone

even under the assumption that the inverse hazard rate is monotonically

increasing.

On the other hand, by the individual rationality constraint Ui(A;�; P ) �

0. Since the highest type has no incentive problems to reveal its type, one
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may expect that the optimal mechanism assigns zero rents to this type. How-

ever, Ui(A;�; P ) also determines the probability of default, hence it also af-

fects bankruptcy costs. Thus, it might be worthwhile to leave some rents

to the highest type if this reduces the probability of default su¢ ciently and

bankruptcy costs are high. To see this assume that CB ! 1: In this case

it is optimal to avoid bankruptcy altogether, which can be achieved only if

Pi(A) + A � 1, which in turn implies that Pi(A) + A > 1, so that, by IC,

Ui(A) > 0.

4 Implications for the design of optimal mech-
anisms

From now on we can dispense with the subscript that refers to a particular

bidder. The problem we have been analyzing shares some important features

with the problem studied by Manelli and Vincent (1995). In their paper,

suppliers with cost (type) c supply a good of unobservable quality v(c). If

the buyer trades with a supplier with cost c at a price P , then the buyer�s

surplus is v(c)� c� �. Given �, and assuming that v(c)� c is increasing in

c, the buyer prefers high type c suppliers. However, IC also imposes that the

probability of trade is non increasing in c. In our problem, we could denote

the probability of non-default by �, and de�ne a transformed willingness to

pay for the project as V 0 = V � (1� �)CB. If the buyer trades with a type

A supplier, the buyer�s surplus is V 0 � � � Ec. Since � = maxf(P + A); 1g

is increasing in A, we have that when CB > 0, V 0 is increasing in the type

A just as in Manelli and Vincent (1995). Moreover, IC also implies that the
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probability of trade is non increasing in A. Thus, our results can be read in

the light of Manelli and Vincent: price competition selects bad types, and

then it may be in the interest of the buyer to avoid it. Limited liability and

private information about the �nancial state introduce some sort of quality

di¤erential correlated to the bidders�privately known willingness to supply.

However, this is where the parallel stops. Indeed, the interaction between

price competition and the buyer�s surplus is complicated by the dependency

of � on A and P . While informational rents can be represented by the inverse

hazard rate in Manelli and Vincent (1995), in our problem this term is

(1� �)F (A)
f(A)

= [1� (P (A) + A)] F (A)
f(A)

:

Put in other terms, U
0
i = �(1 � �)	(A). Thus, apart from the direct e¤ect

that a change in 	(A) (and so in P ) has on the rents of suppliers, it also

has an indirect e¤ect through its e¤ect on the probability of default (1� �).

As a result, even if the inverse hazard rate is monotone, it may well be that

(1��)F (A)
f(A)

(which depends on the mechanism itself) is not. In this case, even

if the default cost CB is zero, so that V 0 is independent of the supplier�s type,

the optimal mechanism does not need to be one that selects the lowest type.

That is, an auction needs not be that optimal mechanism. The following

Lemma shows that under weak conditions an auction will be suboptimal.

Lemma 5 For any CB � 0, there exist non strictly monotone, IC mecha-

nisms that result in higher surplus for the buyer than mechanisms that assign

the contract to the bidder with lowest A (auctions) if f 0(A) exists and is neg-

ative for A close to A.
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Proof. See appendix.

It is not di¢ cult to understand this possibility. Increasing the probability

that higher types win the contract by, say, pooling a certain interval of types,

the mechanism not only results in a higher contract price: it also results

in a higher expected value of the assets of the winner. Thus, it increases

the probability that the contract price will coincide with the realized cost

for the sponsor. In contrast, the auction selects the contractor with lowest

assets, so that although it minimizes the contract price it also maximizes the

probability that the realized cost for the sponsor exceeds that price.

We can further investigate the type of simple mechanisms that may be

optimal from the point of view of the sponsor by substituting a discrete

type space for the continuous type space that we have been assuming up

to this point. In particular, assume that A can take on three values, Ak,

k = 0; 1; 2, and for simplicity assume that A0 = 0; A1 2
�
0; 1

2

�
and A2 = 1

2
.

We denote the probability of the three types, respectively as �0; �1; and

�2 = 1 � (�0 + �1). Also for simplicity, we will assume that there are only

two bidders. It will become clear below that none of these assumptions, not

even the three-type assumption, are restrictive.

A mechanism in this setting can be represented by a set of six values,

(	0;	1;	2) and (P0; P1; P2) that denote the probability of winning and the

price for each of the three types. Notice that we are only considering symmet-

ric mechanisms. Also, notice that 	k is positive for all k, since in case both

bidders draw the same type each is assigned the contract with probability

half (the contract is always allocated). That is, 	k � �k
2
. Then, individual
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rationality for type 2 amounts to P2 � 1=2: The fact that the probability of

allocation is one also eliminates one degree of freedom in the choice of 	k.

Then, the sponsor�s problem is to choose four values (say 	0;	1; P0; P1) to

minimize the cost of the contract. The (other) constraints that the spon-

sor faces are the incentive compatibility constraints for types 0 and 1, and

monotonicity of 	k together with the conformity of 	 with some probability

�.

These are the elements that de�ne the problem for the sponsor whose

solution is the optimal mechanism. For now, let us consider a simpler ques-

tion: would a mechanism that selects the lowest type with probability one

and then guarantees the lowest expected contract price be always optimal

for the sponsor if CB = 0? Or else, would the sponsor prefer to pool some of

the types even when there are no costs associated to bankruptcy?

Thus, we assume away bankruptcy costs, CB = 0, in which case the goal

for the sponsor is to minimize
P3

k=1 �kU(Ak). We begin by comparing a

mechanism that assigns the contract to the lowest type to one where the

two higher types are pooled. That is, a mechanism with 	0 = (1� �0
2
) and

	1 = (1� �0 � �1
2
) with one with 	P2 = 	

P
1 =

1��0
2
. Note that in this latter

case P P2 = P P1 = 1=2, and that only the incentive compatibility for type 0

will bind. That constraint can be written as

(1� �0
2
)

Z P0

0

(P0 � c)dc �
1� �0
2

Z 1=2

0

(
1

2
� c)dc

or

UP (A0) = (1�
�0
2
)
P0

2

2
� 1� �0

2

1

8
; (6)

which at the optimum (among such mechanisms) is satiated. Therefore (6)
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with equality determines the rents of a type 0 bidder in such mechanism. On

the other hand, the rents for type 1 are

UP (A1) =
1� �0
2

(

Z 1
2
+A1

0

(
1

2
+A1�c)dc�A1) =

1� �0
2

(
(1
2
+ A1)

2

2
�A1): (7)

Since (6) is satiated and type 2 expects no rents, the expected rents for a

bidder are

3X
k=1

�kU
P (Ak) = �0

1� �0
2

1

8
+ �1

1� �0
2

(
(1
2
+ A1)

2

2
� A1):

Let us turn to a mechanism that assigns the contract to the lowest type.

It will have to guarantee incentive compatibility for the two lower types.

That is

U(A0) = (1�
�0
2
)
P 20
2
� (1� �0 �

�1
2
)
P 21
2
; (8)

for type 0, and

U(A1) = (1��0�
�1
2
)[
(P1 + A1)

2

2
�A1] �

1� �0 � �1
2

(
(1
2
+ A1)

2

2
�A1); (9)

for type 1. Again, notice that there is no reason to leave any slack, so

that both constraints will be satiated at the optimal (in this restricted set)

mechanism. Therefore, (9) with equality determines P1, and then (8) with

equality determines P0. As a function of P1 de�ned implicitly by (9) with

equality, the expected rents in this mechanism are

3X
k=1

�kU(Ak) = �0(1� �0 �
�1
2
)
P 21
2
+ �1

1� �0 � �1
2

(
(1
2
+ A1)

2

2
� A1):

Notice that UP (A1) > U(A1). Indeed, the probability that type 2 ob-

tains the contract is larger in the pooled mechanism and the price in both

mechanisms is the same for this type. Since type 1 obtains its rents from
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the possibility of imitating type 2 bidder, its rents must be larger in the

pooled mechanism. This argument is independent on the number of types

and in particular of the existence of type 0. This immediately implies that

with CB = 0 the optimal mechanism with only two possible types must min-

imize the probability that the high type obtains the contract, i.e., assign the

contract to the lowest type.

However, in a three type case pooling the two largest types reduces the

probability that type 1 obtains the contract, and therefore the probability

that type 0 still obtains the contract if it decides to imitate type 1. Since

this possibility of imitation is the source of rents for type 0 (i.e., since (8)

holds with equality), and since type 0 is mainly interested in the probability

of obtaining the contract, this pooling of the two high types reduces the rents

of type 0 bidder. Whether or not the mechanism that pools the two highest

types does better than the one that assigns the contract to the lowest type

depends on which of the two e¤ects dominates. We now provide examples

for both cases.

Example 1 Assume that �0 = :8; �1 = :1; and A1 = :1. In this case, the

price P1 de�ned implicitly by (9) is 0:403322 in the mechanism that assigns

the contract to the lowest type. The rents for type 0 are 9:76 � 10�3, and

the rents for type 1 are 4� 10�4. Total expected rents in this mechanism are

1:016� 10�2. In the pooled mechanism,the rents for type 0 are 0:01 and for

type 1 are 8� 10�4 so that total expected rents are 1:08� 10�2:

Example 2 Assume that �0 = :1; �1 = :1; and A1 = :3. In this case, the

price P1 de�ned implicitly by (9) is 0:486 65 in the mechanism that assigns the
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contract to the lowest type. The rents for type 0 are 0:100 65, and the rents

for type 1 are 7:997 7 � 10�3. Thus total expected rents in this mechanism

are 1:086 5�10�2. In the pooled mechanism, the rents for type 0 are 0:056 25

and for type 1 are 0:009 so that the expected rents are 6:525� 10�3.

Thus, pooling of the two highest types may reduce informational rents

and the resulting expected price for the sponsor. Could this be attained by

pooling the two lower types instead? The answer is in the negative. Indeed,

if the two low types are pooled, then type 1 would still expect the same rents,

whose source would be the possibility of imitating the una¤ected high type 2

bidder. Moreover, these rents would now come from an increased probability

of obtaining the contract and a lower price. If that trade o¤ leaves type 1

indi¤erent, then an imitating type 0 will prefer the higher probability. Thus,

the rents of type 0 would certainly be higher in the mechanism that pools

the two low types. Moreover, this e¤ect of pooling the two low types is

independent of whether type 1 is itself pooled to type 2 or not. That is, total

pooling (a posted price P = 1
2
) always leaves more rents to contractors than

a mechanism that only pools the two high types.11

Do these insights extend to a general, K type case? The answer is in the

positive. Indeed, pooling the two lowest types could never be optimal. To see

this, assume that there are additional types A2; A3:::; AK , with Ak > Ak�1.

If the win probability of the other types k > 1 is una¤ected, then pooling

11Indeed, in the former the rents of type 1 would be higher: they would still be given by
the right hand side of (7) with only substituting 1

2 for
1��0
2 . But the rents of type 0 would

also be higher. They would still be given by the right hand side of (6) also substituting
1
2 for

1��0
2 . That is, not only the win probability of type 2 would be higher, but also the

win probability of type 1, the one that could be imitated by type 0.
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of types 0 and 1 (and consequently, changing both P0 and P1 so that the IC

constraints for these types still hold with equality), would result in the same

rents for type 1: once more, its rents would equal those obtained by imitating

type 2, for which the mechanism would still look the same. However, these

rents would now be obtained with a higher value 	1 and a lower value P1. So

the rents for type 0 will be higher. Thus, for arbitrary discrete type spaces we

conclude that pooling the lowest types will never be optimal when CB = 0.

A trivial corollary is that total pooling will never be optimal either under

these circumstances.

Similarly, for arbitrary discrete type spaces, pooling of the two highest

types will always increase the rents of the second highest type (the value of

	K goes up and PK remains unchanged, determined by the IR constraint

for type K, so that by imitating type K type K � 1 can guarantee higher

rents). However, every other type below K � 1 will see its rents reduced.

On the one hand, the values of 	k for k < K � 1 are una¤ected. On the

other hand, using exactly the same argument used in the three type case for

type 0, the rents for type K � 2 will be lower, which means that PK�2 is

also lower. Iterating this argument, we conclude that Pk will be lower for all

types k < K � 1. That is, the possibility of reducing rents by pooling the

higher types is not particular to the three types case.

What this discussion tells us is that a price ceiling (obtained, for instance,

by a �oor in the score assigned to price o¤ers, coupled with a price ceiling

as such) may be desirable in a procurement mechanism in this setting, but

a (binding) price �oor often used by public administrations will never be.12

12Once we have pooled the two lowest types, we could consider pooling the third lowest
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Not surprisingly, as the cost of bankruptcy CB increases, pooling of types

becomes even more attractive. Also, the relative impact of pooling at the top

and at the bottom becomes less clear cut. Indeed, our discussion above has

shown that pooling at the top increases the price (and thereby decreases the

probability of default) for the pooled types but reduces all prices (and hence

increases the probability of bankruptcy) for lower types. This latter e¤ect is

absent when pooling at the bottom. However, the prices of the pooled types

move in di¤erent directions. Indeed, the higher of the types pooled now has

a higher probability of obtaining the contract, and therefore sees its price

reduced (and hence its probability of default increased). However, the price

for the lowest type who now has lower probability of obtaining the contract

but has to be guaranteed higher rents, must increase (and consequently its

probability of default must decrease). It is not di¢ cult to construct exam-

ples where one or the other partial pooling is more e¤ective in reducing the

probability of default.13 Of course, complete pooling unambiguously reduces

the probability of default. Thus, when CB is large enough, complete pooling,

i.e. posted prices, are optimal mechanisms for assigning the contract.

type as well. The argument used to show that pooling the two lowest types increases the
rents of contractors shows that this could only further increase the contractors�expected
rents. Thus, a price �oor, whether it only pools the two lowest types or some larger set of
types at the bottom, is never optimal.
13For instance, in our example 2 above, pooling at the bottom reduces this probability

of default more than pooling at the top. But if we change the value of A0 to .1 then the
opposite is true.
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5 Conclusions

We have shown that limited liability may introduce a perverse selection in

procurement when the cost of the project is common but uncertain, and �rms

di¤er in their �nancial strength. Indeed, in this case incentive compatibil-

ity implies that selecting the more sound �rm is not feasible. In fact, the

stronger the price competition the more likely it is to select the �nancially

weakest �rm. This is an unfortunate aspect of price competition when the

costs of default are high. Perhaps more surprisingly, even if these costs are

inexistent, �ercer price competition, and so a higher likelihood of selecting

�nancially weaker �rms, may be against the interest of the sponsor. Indeed,

informational rents, and not only default costs, are linked to the probability

of default. Thus, mechanisms that give rise to higher probability of default

may also result in higher informational rents. We have provided su¢ cient

conditions under which the sponsor will always prefer to curtail price compe-

tition somehow when the space of types is a continuum. These are far from

necessary. By considering a �nite type space, we have argued that limited

liability may give some foundations to the usual practice in public procure-

ment of blunting price competition even if default costs are low. However

just what sort of limits to price competition are appropriated is a delicate

issue. For instance, our discussion shows that price �oors, which are com-

monly used by some public procurers and tend to pool �rms at the lower

levels of �nancial strength, may be counterproductive.14

14Another mechanism that is commonly used to limit price competition is the average
bid auction in which the bidder closest to the average bid wins. Decarolis (2008) provides
empirical evidence using data on the road construction Industry in Italy that the average
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Our analysis has abstracted from e¢ ciency di¤erentials. Allocational ef-

�ciency is usually appropriately managed by price competition. Thus, our

results should be handled with care. When e¢ ciency di¤erentials are sus-

pected to be important, one needs to search for the optimal balance between

the two goals of selecting the most e¢ cient �rm and the �nancially �ttest.

This is an issue left for further research.

6 Appendix

Lemma 1 For any IC, IR mechanism (�; P ), there exists a mechanism�
�; P

�
, where P i(A) is constant on A�i,

�
�; P

�
is also IC and IR, results

in the same expected pro�ts for each �rm i and each value of Ai, and results

in (weakly) expected lower cost for the sponsor.

Proof. Given Ai, and for all A�i, and slightly abusing notation, de�ne

P i(A) � P i(Ai) as the solution to the following equation in P

EA�i�i(A)

Z minf1;P+Aig

0

(P + Ai � c)dc =

EA�i�i(A)

Z minf1;Pi(A)+Aig

0

(Pi(A) + Ai � c)dc:

This number exists. Indeed, for P 6= 1, the derivative of the left hand side

with respect to P is EA�i�i(A)
R minf1;P+Aig
0

dc � 0. Also, for P = �Ai the

left hand side takes a value of 0, whereas for P = supA�i Pi(A) it takes a

value (weakly) larger than the right hand side. Thus, IR implies that P i(Ai)

exists and is unique. IR and IC follow trivially. Thus, we only need to

prove the last claim, namely that the expected cost with �; P is lower. Let

bid auctions have generated both signi�cant ine¢ ciencies in contract�s allocation and high
costs of procurement.
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C(�0; P 0) represent this expected cost for an arbitrary mechanism (�0; P 0).

Then, substituting the de�nition of P , note that

C(�; P )� C(�; P ) =

CB
P

iEAi
�
EA�i�i(A)

�
(1�minf1; P (A) + Aig)� (1�minf(1; P (Ai) + Aig)

�	
If P (Ai) + Ai � 1 this is nonnegative. Assume that P (Ai) + Ai � 1 and

P (A) + Ai � 1 for all i and all A. Then

C(�; P )� C(�; P ) = cB
P

iEAi
�
EA�i�i(A)

�
P (Ai)� P (A)

�	
:

But in this case, from the de�nition of P ,

EA�i�i(A)(P (Ai) + Ai)
2 = EA�i�i(A)(Pi(A) + Ai)

2:

Note that if we de�ne ��i as �(A�i) =
1

EA�i�i(A)
�i(A�i; Ai), a density that

measures the probability that other suppliers have types A�i and supplier

i obtains the contract conditional on supplier i�s type and on supplier i

obtaining the project, then

EA�i�i(A)(Pi(A) + Ai)
2 = EA�i�i(A) �

�
E��i(Pi(A) + Ai)

2
�

= EA�i�i(A) �
h
V ar��iPi(A) +

�
E��iPi(A) + Ai

�2i
:

and similarly,

EA�i�i(A)(P (Ai) + Ai)
2 = EA�i�i(A) �

h
V ar��iP (Ai) +

�
E��iP (Ai) + Ai

�2i
= EA�i�i(A) �

�
P (Ai) + Ai

�2
;

since P (Ai) is non random in A�i. Since V ar��iPi(A) � 0, we conclude that

P (Ai)EA�i�i(A) � EA�i�i(A)P (A). A similar argument can be used when
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P (Ai) + Ai � 1 and P (A) + Ai > 1 for some i and all A. (Note that it

could not happen for all A.) In this case, and for each Ai, we can divide the

support of A�i in two sets, one where P (A) is larger than 1 � Ai, and one

where this inequality is reversed. We could repeat the argument this time

using the variance of P (A) on the latter.

Lemma 2 If (�; P ) is IC, then Ui(Ai;�; P ) is continuous and monotone

decreasing in Ai. Monotonicity is strict if 1 > Pi(Ai) + Ai.

Proof. Continuity is trivial. Now let Ai > A
0
i. From IC,

Ui(Ai;�; P )� Ui(A
0

i;�; P ) �

	i(Ai)

"Z minf1;Pi(Ai)+Aig

0

(Pi(Ai) + Ai � c)dc� Ai

#
�

	i(Ai)

"Z minf1;Pi(Ai)+A
0
ig

0

(Pi(Ai) + A
0

i � c)dc� A
0

i

#

= 	i(Ai)

"Z minf1;Pi(Ai)+Aig

minf1;Pi(Ai)+A
0
ig
(Pi(Ai)� c)dc

�Ai [1�minf1; Pi(Ai) + Aig] + A
0

i

h
1�minf1; Pi(Ai) + A

0

ig
ii

� �A0

i

h
minf1; Pi(Ai) + Aig �minf1; Pi(Ai) + A

0

ig
i

�Ai [1�minf1; Pi(Ai) + Aig] + A
0

i

h
1�minf1; Pi(Ai) + A

0

ig
i

= �
�
Ai � A

0

i

�
[1�minf1; Pi(Ai) + Aig] � 0:

The penultimate inequality follows from the fact that Pi(A)� c is decreasing

in c, and an integral increases if we substitute the maximum of the integrand

for the integrand itself.

Lemma 3 In any IC mechanism 	i(Ai) is monotonically decreasing and

P (Ai) monotonically increasing.
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Proof. Let A0i > Ai. De�ne for arbitrary values P , x

�i(P; x) =

Z minf1;P+xg

0

(P + x� c)dc� x

Then by incentive compatibility

	(Ai)�i(P (Ai); Ai) � 	(A0i)�i(P (A
0
i); Ai) (10)

	(A0i)�i(P (A
0
i); A

0
i) � 	(Ai)�i(P (Ai); A

0
i) (11)

Combining these two equations we get

	(Ai) [�i(P (Ai); Ai)� �i(P (Ai); A0i)] � 	(A0i) [�i(P (A0i); Ai)� �i(P (A0i); A0i)]

(12)

Note that �i(P;Ai) is decreasing in Ai and increasing (non-decreasing) in P .

Also, �i(P;Ai)� �i(P;A0i) is decreasing in P . Indeed,

�i(P;Ai)� �i(P;A0i) =

=

8><>:
R P+A0i
P+Ai

(c� P � Ai)dc+
R 1
P+A0i

(A0i � Ai)dc if P < 1� A0i;R 1
P+Ai

(c� P � Ai)dc if 1� A0i � P < 1� Ai;
0 if P � 1� Ai

Thus, if P < 1� Ai,

d [�i(P;Ai)� �i(P;A0i)]
dP

= � [max(1; P + A0i)� (P + Ai)] < 0

Now, assume for contradiction that P (A0i) < P (Ai) which since �i(P;Ai) �

�i(P;A
0
i) is decreasing in P implies that

[�i(P (Ai); Ai)� �i(P (Ai); A0i)] � [�i(P (A0i); Ai)� �i(P (A0i); A0i)] (13)

Given (13) the inequality(12) can only be satis�ed if 	(A0i) � 	(Ai). But

P (A0i) < P (Ai) and 	(A
0
i) � 	(Ai) violates the incentive compatibility con-

straint of type A0i (equation 11). Hence P (A
0
i) > P (Ai). But then 	(A

0
i) �
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	(Ai). Otherwise the incentive compatibility constraint of type Ai would be

violated (equation 10).

Lemma 4 Two mechanisms that share 	i(Ai) and give the same rents

to bidders of the highest type also share Pi(Ai).

Proof. Given that Pi(Ai) is monotone increasing, assume that Pi(A) +A �

1. Otherwise, what follows would hold true just by substituting supfAi :

Pi(Ai) � 1g for A. Let us �x Ui(A;�; P ). We can compute Ui(Ai;�; P ) as:

Ui(Ai;�; P ) = 	i(Ai)

"Z Pi(Ai)+Ai

0

(Pi(Ai)� c+ Ai)dc� Ai

#
:

Therefore, the derivative of the utility whenever this derivative and P
0
i exist,

is

	
0

i(Ai)

"Z Pi(Ai)+Ai

0

(Pi(Ai)� c+ Ai)dc� Ai

#
+	i(Ai)

h
(Pi(Ai) + Ai)(P

0

i (Ai) + 1)� 1
i
=

	
0

i(Ai)

"Z Pi(Ai)+Ai

0

(Pi(Ai)� c+ Ai)dc� Ai

#
+	i(Ai)(Pi(Ai) + Ai)P

0

i (Ai)

�(1� (Pi(Ai) + Ai))	i(Ai):

But from IC we know that U
0
i (Ai;�; P ) = � [1� (Pi(Ai) + Ai)] 	i(Ai). There-

fore we conclude that in an IC mechanism

	
0
i(Ai)

	i(Ai)
= � Pi(Ai) + AiR Pi(Ai)+Ai

0
(Pi(Ai)� c+ Ai)dc� Ai

P
0

i (Ai): (14)

Thus, given P , 	
0
i is determined at all points where 	

0
i and P

0
i exist. Since

both P and 	 are monotone and bounded, these derivatives exist almost

everywhere. Continuity of Ui also implies that jumps in P determine the size

of jumps in 	 uniquely. Then the lemma follows.
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Lemma 5 For any CB � 0, there exist non strictly monotone, IC mech-

anisms that result in higher surplus for the buyer than mechanisms that

assign the contract to the bidder with lowest A (auctions) if f 0(A) exists and

is negative for A close to A.

Proof. Given 	(A) = [1 � F (A)]n�1, and P (A), where we dispense with

subscripts by virtue of symmetry, construct a new mechanism 	�(A); P �(A)

where 	�(A) = 	(A) for all A � A�, and for all A > A�, 	�(A) =

[1�F (A�)]n�1
n

, for some value A�. Note that 	� is obtained by assigning the

contract to the �rm with lowest type if that type is below A�, and other-

wise randomizing the allocation. That is, �� exists. Also, for A > A�, let

P �(A) = P (A), and P �(A�) be such that U(A) is continuous at A�. This

completely determines the mechanism. Moreover, the mechanism is incentive

compatible and individually rational. We now show that for A� su¢ ciently

close to A the �rms�rents are lower in the new mechanism than in the orig-

inal. In fact, it su¢ ces to show that, for A� su¢ ciently close to A, the rents

of a bidder with type A� in the auction, U(A�), are larger than in the new

mechanism, U�(A�). Indeed, the slope of the rents in both mechanisms is

the same for types below A�, and the di¤erence in rents U�(A) � U(A) for

types above A� is bounded above by U�(A�). For A� su¢ ciently close to A,

both U�(A�) and (1� F (A�)) approach zero, and therefore its product is of

second order. So, let us consider

U�(A�)� U(A�) =Z A

A�
[1� (P (A) + A)] [1� F (A

�)]n�1

n
dA�

Z A

A�
[1� (P (A) + A)][1� F (A)]n�1dA:
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The derivative of this expression with respect to A� is

�[1� (P (A) + A�)] [1� F (A
�)]n�1

n
+ [1� (P (A�) + A�)][1� F (A�)]n�1

�
Z A

A�
[1� (P (A) + A)]dAn� 1

n
f(A�)[1� F (A�)]n�2:

This is 1
n
f(A�)[1� F (A�)]n�2 times�

�[1� (P (A) + A�)] + n[1� (P (A�) + A�)]
� 1� F (A�)

f(A�)
(15)

+(n� 1)
Z A

A�
[1� (P (A) + A)]dA:

The derivative of (15) with respect to A� is

(1� n[P 0(A�) + 1])1� F (A
�)

f(A�)
+ (n� 1)[1� (P (A) + A�)] +

d

dA�

�
1� F (A�)
f(A�)

� �
�[1� (P (A) + A�)] + n[1� (P (A�) + A�)]

�
:

The �rst term is negative, since P � > 0. Also, if f 0 < 0 then d
dA�

h
1�F (A�)
f(A�)

i
<

�1, and so the second and third terms together are smaller than

n
�
[1� (P (A) + A�)]� [1� (P (A�) + A�)]

�
< 0:

Thus, (15) is decreasing in A� and attains a value of 0 at A� = A. Therefore,

for A� close to A it takes a positive value. This proves that U�(A�)�U(A�)

is increasing in A� for values of A� close to A. Since U�(A�)�U(A�) = 0 for

A� = A, we conclude that U�(A�) < U(A�) for values of A� close to A. This

proves the result.
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