
LINKING CONFLICT TO INEQUALITY AND POLARIZATION1

By

Joan Esteban

Instituto de Análisis Económico (CSIC)
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1. INTRODUCTION

In this paper we study a behavioral model of conflict that provides a basis for choosing

certain indices of dispersion as indicators for conflict. We show that a suitable mono-

tone transform of the equilibrium level of conflict can be proxied by a linear function of

the Gini coefficient, the Herfindahl-Hirschman fractionalization index, and a specific

measure of polarization due to Esteban and Ray.

Income inequality has been always viewed as closely related to conflict. In the Intro-

duction of his celebrated book “On Income Inequality”, Sen (1973) asserts that “the

relation between inequality and rebellion is indeed a close one”. Early empirical stud-

ies on the role of inequality in explaining civil conflict have focussed on the personal

distribution of income or of landownership.2

Contemporary literature has shifted the emphasis from class to ethnic conflict. Here

too the initial presumption has been that ethnic diversity is a key factor for ethnic con-

flict. Easterly and Levine (1997) used the index of fractionalization as a measure of di-

versity, and the measure has been used in several different empirical studies of conflict

(see, e.g., Collier and Hoeffler, 2004, Fearon and Laitin, 2003, and Miguel, Satyanath

and Sergenti, 2004). More recently, following on the idea that highly fragmented so-

cieties may not be highly conflictual,3 measures of polarization have also made their

way into empirical studies of conflict.4

These contributions, while loosely based on theoretical arguments, are essentially em-

pirically motivated in an attempt to identify a statistical regularity. The preference for
2See, for instance, Nagel (1974), Muller and Seligson (1987), Brockett (1992) or the survey article by

Lichbach (1989).
3For instance, Horowitz (1985) argues that large cleavages are more germane to the study of con-

flict, stating that “a centrally focused system [with few groupings] possesses fewer cleavages than a

dispersed system, but those it possesses run through the whole society and are of greater magnitude.

When conflict occurs, the center has little latitude to placate some groups without antagonizing others.”
4See Esteban and Ray (1994) and Wolfson (1994) for the earliest development of polarization mea-

sures, and Reynal-Querol (2002) for a special case of the Esteban-Ray measure which is then applied

to a cross-section study of ethnic conflict by Montalvo and Reynal-Querol (2005a). See also the special

issue of the Journal of Peace Research edited by Esteban and Schneider (2008), entirely devoted to the

links between polarization and conflict.
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one particular index or another simply depends on its ability to fit the facts. In con-

trast, there is to our knowledge no behavioral model explaining why should we expect

— to begin with — a relationship between the Gini or the fractionalization indices, and

conflict.5

In this paper we present a behavioral model of conflict that precisely defines the links

between conflict and measures of dispersion, such as inequality and polarization. The

model is general, in that it allows for conflict over both divisible private goods and

(group-based) public goods.6 It is also general in that it allows for varying degrees

of within-group cohesion, running the gamut from individualistic decisions (as in the

voluntary contributions model) all the way to choices imposed by benevolent group

leaders. Our main result is that a particular monotone transform of the equilibrium

level conflict can be proxied by a weighted average of a particular inequality measure

(the Gini coefficient), the fractionalization index used by Easterly and Levine and oth-

ers, and a particular polarization measure from the class axiomatized by Esteban and

Ray (1994). Moreover, the weights depend in a precise way on two parameters: the

“degree of publicness” of the prize and the extent of intra-group “cohesion”. In par-

ticular, our result suggests that if our derived equation were to be taken to the data,

the estimated coefficients would be informative regarding these parameters.

While we link the severity of conflict to these measures, our paper does not address the

issue of conflict onset. As discussed in Esteban and Ray (2008a), the knowledge of the

costs of open conflict may act as a deterrent. For this reason we argue there that the

relationship between conflict onset and the factors determining the intensity of conflict

may not be monotonic. This issue is not contemplated here: we assume that society is

in a state of conflict throughout.

We organize this paper as follows. Section 2 provides a very brief presentation of the

basic measures of inequality and polarization. Section 3 develops a game-theoretic

5Esteban and Ray (1999) do discuss the possible links between polarization and equilibrium con-

flict in a model of strategic behavior. Montalvo and Reynal-Querol (2005b) also derive a measure of

polarization from a rent-seeking game.
6The specific formulation is borrowed from Esteban and Ray (2001).
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model of conflict and some of its basic properties. The main result is obtained in Sec-

tion 4. Section 5 studies the accuracy of our approximation. Section 6 discusses the

nature of the result and shows that it holds in a broader context. Section 7 concludes.

2. INEQUALITY AND POLARIZATION

Suppose that population is distributed over m groups, with ni being the share of the

population belonging to group i. Denote by δij the “distance” between groups i and j

(more on this below). Fix the location of any given group i and compute the average

distance to the other locations. The Gini index G is the average of these distances as

we take each location in the support as a reference point.7 We write it in unnormalized

form8 as

(1) G =
m∑
j=1

m∑
i=1

ninjδij.

We haven’t been very specific about the distance δij . When groups are identified by

their income, δij could be the absolute or relative value of the income difference be-

tween i and j. However, in principle we could apply this index to distributions over

political, ethnic or religious groups. Unfortunately, in most cases where distance is

non-monetary the available information does not permit a reasonable estimate of δij .

This is why it is common to assume (sometimes implicitly) that δij = 1 for all i 6= j

and, of course, δii = 0. In that case, (1) reduces to

(2) F =
m∑
i=1

ni(1− ni)

This is the widely used Hirschman-Herfindahl fractionalization index (Hirschman (1964)).

It captures the probability that two randomly chosen individuals belong to different

7The properties of the Gini index are well known. Its first axiomatization is due to Thon (1982).
8The Gini is typically renormalized by mean distance; this makes no difference to the current

exposition.
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groups. As mentioned before, this measure has been used to link ethnolinguistic di-

versity to conflict, public goods provision, or growth.9 At the same time, we know of

no behavioral model of conflict that explicitly establishes a link between conflict and

inequality (or fractionalization).

Esteban and Ray (1994) introduce the notion of polarization as an appropriate indicator

for conflict.10 Their approach is founded on the postulate that group “identification”

(proxied by group size) and intergroup distances can both be conflictual. Duclos, Es-

teban and Ray (2004) work with density functions over a space of characteristics to

axiomatize a class of polarization measures, which we describe here for discrete dis-

tributions:

(3) Pβ =
m∑
i=1

m∑
j=1

n1+β
i njδij, for β ∈ [0.25, 1]

An additional axiom, introduced and discussed by Esteban and Ray (1994), pins down

the value of β at 1:

(4) P ≡ P1 =
m∑
i=1

m∑
j=1

n2
injδij.

Because (4) is not derived formally for the model studied in Duclos, Esteban and Ray

(2004), we provide a self-contained treatment in the Appendix.

The formal properties of this measure are discussed in detail in Esteban and Ray

(1994).11 It suffices here to focus on the squared term, which imputes a large weight to

9See also Collier and Hoeffler (1998), Alesina, Baqir and Easterly (1999), Ellingsen (2000), Hegre et al.

(2001), Alesina et al. (2003) and Fearon (2003) among others.
10Foster and Wolfson (1992) and Wolfson (1994, 1997) proposed an alternative measure of polariza-

tion specifically designed to capture the “disapearence of the middle class”. Later, alternative mea-

sures of polarization have been proposed by Wang and Tsui (2000), Chakravarty and Majumder (2001),

Zhang and Kanbur (2001), Reynal-Querol (2002), Rodrı́guez and Salas (2002), and Esteban, Gradı́n and

Ray (2007).
11Although in Esteban and Ray (1994) and Duclos, Esteban and Ray (2004) groups are identified by

their income — and hence δij is the income distance between the two groups — the notion and measure
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group identification. This weighting of group size implies that P does not satisfy Dal-

ton’s Transfer Principle (or equivalently, compatibility with second-order stochastic

dominance of distance distributions). In this fundamental aspect it behaves differently

from Lorenz-consistent inequality measures. In particular, P attains its maximum at a

symmetric bimodal distribution.

As in the case of fractionalization, a situation of particular relevance is one in which

group distances are binary: δij = 1 for all j 6= i and δii = 0. In this case P reduces to

(5) P̃ =
m∑
i=1

n2
i (1− ni),

This is the measure of polarization proposed by Reynal-Querol (2002).

3. A MODEL OF CONFLICT

We wish to explore the relationship between the measures described in the previous

section and the equilibrium level of conflict attained in a behavioral model in which

agents optimally choose the amount of resources to expend in conflict.12

3.1. Public and Private Goods. Consider a society composed of individuals situated

in m groups. Let Ni be the number of individuals in group i, and N the total number

of individuals, so that
∑m

i=1Ni = N . These groups are assumed to contest a budget

with per capita value normalized to unity. We shall suppose that a fraction λ of this

budget is available to produce society-wide public goods. One of the groups will get

to control the mix of public goods (as described below), but it is assumed that λ is

of polarization can be naturally adapted to the case of “social polarization”. Duclos, Esteban and Ray

(2004) consider the case of “pure social polarization”, in which income plays no role in group identity

or inter-group alienation. For that case they propose (4) as the appropriate polarization measure (pp.

1759) with δij interpreted as the alienation felt by an individual of group i with respect to a member of

group j.
12We build on the model of conflict in Esteban and Ray (1999).
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given. The remaining fraction, 1 − λ, can be privately divided, and once again the

“winning” group can seize these resources.13

All individuals derive identical linear payoff from their consumption of the private

good, but differ in their preference over the public goods available. All the members

of a group share the same preferences. Each group has a mix of public goods they

prefer most. Using the private good as numeraire, define uij to be public goods payoff

to a member of group i if a single unit per-capita of the optimal mix for group j is

produced. We may then write the per capita payoff to group i as λuii + (1 − λ)(N/Ni)

(in case i wins the conflict) and λuij (in case some other group j wins).14

The parameter λ can also be interpreted as an indicator of the importance of the public

good payoff relative to the “monetary” payoff used as numeraire.

We presume throughout that uii > uij for all i, j with i 6= j. These payoff differences

define a natural notion of “distance” or “alienation” across groups: δij ≡ uii − uij .15

3.2. Conflict Resources and Outcomes. We view conflict as a situation in which there

is no agreed-upon rule aggregating the alternative claims of different groups. The

success of each group is taken to be probabilistic, depending on the expenditure of

“conflict resources” by the members of each group. We now describe this conflict.

Let r denote the resources expended by a typical member of any group. We take such

expenditure to involve a cost of c(r), and assume

13This description may correspond to a conflict for the control of the government. Once in govern-

ment the group may decide to change the types of public goods provided and the beneficiaries of the

various forms of transfers in the budget. But it is not possible to substantially modify the structure of

the budget.
14Note that there is no exclusion in the provision of public goods. These are always provided to the

entire population; only the mix differs depending on which group has control. The implicit assumption

is that a scaling of the population requires a similar scaling of public goods output in order to generate

the same per-capita payoff. Because we hold the per-capita budget constant (and therefore change total

budget with population), this gives us exactly the specification in the main text.
15While our main result does not presume symmetry — δij = δji for all i and j — the subsequent

checks on accuracy do assume it. We do not impose the triangle inequality, however.



7

[C] c(r) is thrice differentiable with c(0) = c′(0) = 0, c′(r) > 0 and c′′(r) > 0 for all

r > 0, and c′′′(r) ≥ 0 for all r ≥ 0.

Condition [C] is standard except for its restriction on the third derivative of c. This

condition will be used to guarantee the uniqueness of conflict equilibrium.16 A special

case of interest is isoelastic cost: c(r) = (1/θ)rθ. Condition C is satisfied if θ ≥ 2.

Denote by ri(k) the contribution of resources by member k of group i, and define

Ri ≡
∑

k∈i ri(k). Our measure of societal conflict is the total of all resources supplied

by every individual:

(6) R =
m∑
i=1

Ri.

Let pi be the probability that group i wins the conflict. We suppose that

(7) pi =
Ri

R

for all i = 1, . . . ,m, provided that R > 0.17 Thus the probability that group i will

win the lottery is taken to be exactly equal to the share of total resources expended in

support of alternative i.

3.3. Payoffs and Extended Utility. We may therefore summarize the overall expected

payoff to an individual k in group i as

πi(k) =
m∑
j=1

pjλuij + pi
(1− λ)N

Ni

− c(ri(k))

=
m∑
j=1

pjλuij + pi
(1− λ)

ni
− c(ri(k)),(8)

where ni ≡ Ni/N is the population share of group i.

16While the current model is more general, the argument in Esteban and Ray (1999) can be applied

here, as can their counterexample to uniqueness when the condition on c′′′ fails.
17Assign some arbitrary vector of probabilities (summing to one) in case R = 0. There is, of course,

no way to complete the specification of the model at R = 0 while maintaining continuity of payoffs

for all groups. So the game thus defined must have discontinuous payoffs. This poses no problem for

existence; see Esteban and Ray (1999).
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We now turn to a central issue: how are resources chosen? For reasons that will be-

come clear, we wish to allow for a flexible specification in which (at one end) indi-

viduals choose r to maximize their own payoff, while (at the other end) there is full

intra-group cohesion and individual contributions are chosen to maximize group pay-

offs. We permit these cases as well as a variety of situations in between by defining a

group-i member k’s extended utility to be

(9) Ui(k) ≡ (1− α)πi(k) + α
∑
`∈i

πi(`),

where α lies between 0 and 1. When α = 0, individual payoffs are maximized. When

α = 1, group payoffs are maximized. Note that k enters again in the summation term

in (9), so the weight on own payoffs is always 1.

We are open to various interpretations of α.18 It could represent altruism, as in the

study of cooperatives by Sen (1966), or in models of voting behavior (see, e.g., Edlin

et al. (2007), Fowler (2006) and Evren (2009)), or in intergenerational models (Barro

and Becker (1989)). But this is not the only possible interpretation. An equivalent (but

somewhat looser) view is that α is some reduced-form measure of the extent to which

within-group monitoring, along with promises and threats, manages to overcome the

free-rider problem of individual contributions. One way to formalize this is to sup-

pose that a “group leader” has as her goal the maximization of the utilitarian objective∑
`∈i πi(`), while a particular individual k is simply concerned with the selfish objec-

tive πi(k). A compromise is achieved through bargaining and negotiation, resulting

in the convex combination described in (9). In this case α may be viewed as the “bar-

gaining power” of the group leader. For a similar shorthand in a different context, see

Grossman and Helpman (1994) and Epstein and Nitzan (2002).19

18However, it will not matter whether extended utility is defined on other individual’s payoffs (the

specification here), or their gross expected payoff excluding resource cost, or indeed on others’ extended

utility. (In this last case we would need a contraction property for extended utility to be well-defined.)

The results are insensitive to the exact choice.
19In these models, the payoff to a government is effectively a convex combination of social welfare

and the payoff to special interest groups, but not because the government intrinsically cares about those

groups.
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We are comfortable with either interpretation, but formally take it that each individual

acts to maximize the expectation of extended utility, as defined in (9).

3.4. Equilibrium. The choice problem faced by a typical individual member k of group

i is easy to describe: given the vector of resources expended by all other groups and

by the rest of the members of the own group, choose ri(k) to maximize (9). This prob-

lem is well-defined provided that at least one individual in at least one other group

expends a positive quantity of resources.

Some obvious manipulation shows that the maximization of (9) is equivalent to the

maximization of

[(1− α) + αNi]

[
pi

1− λ
ni

+ λ
m∑
j=1

pjuij

]
− c(ri(k))− α

∑
`∈i;` 6=k

c(ri(`))

by the choice of ri(k). To write this expression more conveniently, recall our definition

of “distance” from i to j: δij ≡ uii − uij . Now define (for every i and j) ∆ii ≡ 0, and

∆ij ≡ λδij + (1 − λ)/ni for all j 6= i, and let σi ≡ (1 − α) + αNi. Then our individual

equivalently chooses ri(k) to maximize

(10) −σi
m∑
j=1

pj∆ij − c(ri(k)).

Provisionally assuming that rj(`) > 0 for some ` ∈ j 6= i, the solution to the choice of

ri(k) is completely described by the interior first-order condition:

(11)
σi
R

m∑
j=1

pj∆ij = c′(ri(k))

where we use (6) and (7).

An equilibrium is a collection {ri(k)} of individual contributions where for every group

i and member k, ri(k) maximizes (10), given all the other contributions.20

PROPOSITION 1. An equilibrium always exists and it is unique. In an equilibrium, every

individual contribution satisfies the first-order condition (11). In particular, in every group,

members make the same contribution: ri(k) = ri(`) for every i and k, ` ∈ i.

20This is exactly a Nash equilibrium, though we simply refer to “equilibrium” in what follows.
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Proof. First observe that in any equilibrium, Rj > 0 for some group j.21 But this means

that every member of every group other than j must satisfy (11). This proves that in

equilibrium, Ri > 0 for all i, and that for every group i and k ∈ i, (11) is satisfied. In

particular, we see that ri(k) = ri(`) for every i and k, ` ∈ i.

Call this common value ri. Multiply both sides of (11) by ri and use (7) to see that

σi
Ni

m∑
j=1

pipj∆ij = ric
′(ri),

and now define vij ≡ σi∆ij/Ni for all i to obtain the system

(12)
m∑
j=1

pipjvij = ric
′(ri)

for all i. This is precisely the system described in Proposition 3.1 of Esteban and Ray

(1999), with s in place of p. Under [C], the proof of Proposition 3.2 applies entirely

unchanged to show that the system (12) has a unique solution.

When the cost function is quadratic (isoelastic with θ = 2), we can express the equi-

librium of the conflict game in particularly crisp form. For each i, the equilibrium

condition (12) can now be written as

m∑
j=1

pjvijn
2
i = piρ

2,

where ρ ≡ R/N is “per-capita conflict”. Denote by W the m × m matrix with n2
i vij

as representative element. Then the equilibrium probability vector p and per-capita

conflict level ρ must together solve

(13) Wp = ρ2p,

so that ρ2 is the unique positive eigenvalue of the matrixW and the equilibrium vector

of win probabilities p is the associated eigenvector on them-dimensional unit simplex.

21If this is false, thenRi = 0 for all i so that each group has a success probability given by the arbitrary

probability vector specified in footnote 17. For at least one group, say j, this probability must be strictly

less than one. But any member of j can raise this probability to 1 but contributing an infinitesimal

quantity of resources, a contradiction.
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4. POLARIZATION, INEQUALITY AND CONFLICT

In this section, we introduce our central formula, one that links equilibrium conflict to

a linear combination of the distributional measures discussed earlier. The formula is

not an exact description of the “true” equilibrium outcome, but the remainder of the

paper will argue that it yields a good approximation.

Let γi stand for the ratio of group i’s win probabilities pi to its population share ni:

γi ≡ pi/ni. This variable captures the deviation of win probability from population

share that is created by the equilibrium variation of individual effort r across groups.

If there were no such differences across groups, win probabilities would simply equal

group population shares. Thus the γi’s may be thought of as “behavioral correction

factors”.

Let us see how the correction factors enter into the determination of per-capita equi-

librium conflict. Recall the equilibrium condition (11) with ri(k) = ri for all k ∈ i, as

asserted in Proposition 1:
σi
R

m∑
j=1

pj∆ij = c′(ri).

Multiply both sides of this equation by ρpi and use γi = pi/ni to obtain, for each i:

(14)
m∑
j=1

γiγjninj
σi∆ij

N
= ρpic

′(γiρ).

Multiplying both sides of (14) by c′(ρ)/c′(γiρ), and summing over all i, we have

(15)
m∑
i=1

m∑
j=1

φ(γi, γj, ρ)ninj
σi∆ij

N
= ρ

m∑
i=1

pic
′(ρ) = ρc′(ρ),

where

(16) φ(γi, γj, ρ) ≡ c′(ρ)γiγj
c′(γiρ)

.

Define a unique solution ρ̂ to the identity

(17) ρ̂c′(ρ̂) ≡
m∑
i=1

m∑
j=1

ninj
σi∆ij

N

Now notice from (16) that φ(γi, γj, ρ) = 1 if γi and γj are both set equal to 1. With

this in mind, we say that ρ̂, as defined in (17), is a shorthand for the value of per-capita

equilibrium conflict, as obtained in (15). This yields
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PROPOSITION 2. Suppose that all behavioral correction factors are neglected; i.e., set equal to

1. Then the resulting shorthand for equilibrium per-capita conflict is determined by a combi-

nation of the three distributional measures G, P and F as follows:

(18) ρ̂c′(ρ̂) = ω1 + ω2G+ α[λP + (1− λ)F ],

where ω1 ≡ (1− λ)(1− α)(m− 1)/N , ω2 ≡ λ(1− α)/N , and the “distances” used in G and

P are precisely the public-goods utility losses δij = uii − uij .

In particular, when population is large, the shorthand ρ̂ is determined by a convex combination

of only P and F , provided that group cohesion α > 0.

Proof. Given the discussion up to (15) and (16), it only remains to prove that the iden-

tity (17) yields (18). This is a matter of direct inspection by unpacking the σi’s and the

∆ij’s in (17).

The proposition states that provided we can neglect the behavioral correction factors in

the way described above, the theory yields a remarkably spare description of conflict.

To be sure, barring special cases, we cannot neglect the correction factors and hope for

an exact equality of shorthand and true value. However, (a) for the remainder of this

section we will treat the shorthand as a good approximation and explain the insights

that it provides, and (b) in Section 5 we will discuss the ways in which in fact the

approximation is a good one.

The proposition asserts that equilibrium conflict ρ is “approximately” the same as a

shorthand measure ρ̂, and provides the formula in (18) for the shorthand. The left-

hand side of (18) is a strictly monotone function of ρ̂; on the right-hand side is a sim-

ple linear combination of three familiar distributional indices; the Gini coefficient, the

Herfindahl-Hirschman fractionalization index, and the Esteban-Ray polarization mea-

sure with coefficient β = 1 (see (4)).

Moreover, the weights on the combination tell us when each measure is likely to be

a more important covariate of conflict. Specifically, the weights associated to each of

these three indices depend on the degree of publicness of the prize, as captured by

λ, and on the level of intra-group cohesion, as described by α. They also depend on

overall population.
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The formula simplifies further in an important special case. As population grows

large, the weight on the “intercept term” as well as the Gini coefficient converges to

zero. Conflict is proxied by a convex combination of polarization and fractionalization,

no matter what the value of cohesion, as long as the latter is positive. Thus, as long as we

believe that population size is “large”, the existence of group cohesion matters, but

not its extent.

More intuition and discussion can be found in Sections 5.2, where we conduct some

numerical exercises, and in Section 6, where we discuss some extensions of our results.

The merit of a decomposition such as (18) depends on whether it yields a deeper and

more intuitive understanding of the factors influencing conflict beyond the abstrac-

tions of a specific model. We would claim that our decomposition does accomplish

this to some degree. It seems reasonable to classify the main forces driving conflict

into three categories: group size, group objectives (public versus private prizes) and

group ability to circumvent the free-rider problem (“cohesion” or “identification”).

These are precisely the ingredients emphasized in Esteban and Ray (1994) and Duclos,

Ray and Esteban (2004) as the main determinants of conflict.

Suppose that we observe a situation of conflict in which all groups fight for the control

of an excludable private good (such as the revenue from valuable natural resources).

Then the only feature distinguishing the different groups is their size. There is no

“primordial” inter-group alienation relevant to this conflict. In that case we should

expect that the distribution of group sizes will be the most relevant explanatory factor

for conflict. Any measure designed to capture inter-group “distances” should have

little to say here. Indeed, the decomposition above with full privateness — λ = 0 —

leaves group fractionalization as the sole relevant indicator for conflict.

At the other extreme, full publicness brings out the natural differences in group pref-

erences over public goods. Now fractionalization plays no role, and only the measures

reflecting inter-group alienation remain: the Gini and the polarization index.

In the special case of pure contests, individuals make no distinction between the dif-

ferent mixes of public goods chosen by the rivals, so that uij is independent of j for

every group i. In this case, P reduces to P̃ , the specific polarization measure defined
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in (5). Moreover, G reduces to a multiple of F .22 We are therefore left with just F and

P̃ as correlates of conflict.23 As is well known, these two indices, in spite of their ap-

parent similarity, behave quite differently. F is the sum of a concave transformation of

the ni and hence increases with the equalization of population sizes among any subset

of groups. In contrast, P̃ is the sum of functions of ni that are convex for low values of

n — certainly for ni ≤ 1/3 — and concave for higher values, around 1/2. Hence, the

equalization of the sizes of small groups will decrease polarization, while the change is

the opposite if we equalize the size of large groups. Therefore, the behavior of F and

P̃ in this approximation is significantly different.

In summary, what is remarkable about Proposition 2 is that three measures — and

only these three — are highlighted by our model of conflict. It is the simplicity of this

relationship which is the main contribution of the paper.

However, we reiterate that this extremely simple structure depends on the (seemingly

arbitrary) restriction that all behavioral correction factors equal unity. We now judge

the accuracy of our shorthand by studying the exact solution for conflict and compar-

ing this with the approximate solution described in Proposition 2.

5. ACCURACY OF THE SHORTHAND

Our exercise would be seriously incomplete if we did not examine the accuracy of

our formula. Not only will behavioral correction factors generally depart from unity,

there are questions for which this departure is of first order interest. For example,

Esteban and Ray (1999) study the “activism” of “extremist” groups (those that are

positioned at one end of a line in preference space), defining activism precisely by the

ratio of pi to ni. Or consider the well-known Pareto-Olson thesis, which argues that

small groups have a higher ratio of pi to ni, in part because of the higher per-capita

gains at stake. These are important issues in their own context, and indeed our model

exhibits these features, but they are not under consideration here. So it is legitimate

22In this case, δij = δ for all i 6= j. Setting δ = 1 involves an additional normalization which can be

absorbed by adjusting the value of λ.
23However, F enters “twice”, once by itself and once as a special case of the Gini. As the discussion

in Section 6 reveals, these two entries stem from different forces.
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to ask whether sacrificing the correction factors can significantly alter the structural

relationship asserted in Proposition 2.24

We approach this question from different angles. First, we explore the most restrictive

case, providing conditions under which every correction factor equals one. As we’ve

mentioned, an accurate shorthand does not require such a strong restriction, so we turn

next to numerical simulations that establish correlations between equilibrium conflict

and our shorthand. Finally, we establish a general analytical result on accuracy for the

case of high conflict.

5.1. When Are Correction Factors All Equal to Unity? There is a restrictive subclass

of models for which all correction factors are unequivocally equal to 1. In this smaller

domain, our formula is exact. It is possible to completely characterize this domain.

PROPOSITION 3. Fix any cost function satisfying Condition C. Then the correction factors γi

equal 1 for all i if and only if the eigenvector of the matrix W with representative term n2
i vij ,

as defined in Section 3.4, is n.

Proof. Recall (11), and multiply both sides of this first-order condition by ni/N to ob-

tain
m∑
j=1

pjni(σi∆ij/N) = nic
′(ri)ρ.

Using pj = γjnj , ri = γiρ, and wij = n2
i vij = niσi∆ij/N , we see that

(19)
m∑
j=1

γjnjwi = nic
′(γiρ)ρ,

for i = 1, ...,m.

Clearly, if γi = 1 for all i, (19) shows right away that n is the eigenvector of W , which

establishes necessity. Conversely, if n is the eigenvector of W , then (19) is satisfied by

24This sort of shorthand is common in economics. For instance, we use GNP as a shorthand of

social welfare or the Gini index of the distribution of personal income as a shorthand for the level of

equality. In both cases these measures abstract from the effects of endogenous individual choices, such

as labor effort or consumption decisions (among other things). Yet, we find them useful indicators for

the complex variables they intend to capture. Sacrificing the behavioral correction factors is exactly in

the same spirit.
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setting all γi = 1, and ρ such that c′(ρ)ρ is the eigenvalue of W , and this describes an

equilibrium. It is the only one, by the assumed properties of the cost function.

This condition is restrictive; as we have said, correction factors will generally depart

from unity. But we can give some simple examples in which these conditions are

indeed met.

The first example is one with public goods alone (so that λ = 1) and just two groups.

Then, provided we also assume that cohesion is perfect α = 1 or that N is large,

W =

 0 n2
1δ12

n2
2δ21 0

 .
If the utility loss from the opponent’s victory is symmetric across the two groups, then

δ12 = δ21, and it is easy to see that the eigenvector condition is necessarily satisfied for

any population distribution.

Our second example is one in which all groups are of the same size and the overall

utility losses from rival public goods being implemented are the same for all groups:∑
j δij is independent of i. (The case of pure contests guarantees the second require-

ment.) Then, once again, the eigenvector condition is satisfied, independently of the

values of α, λ or N .

These examples do highlight the fact that our condition is not vacuous. But they also

reveal just how unlikely it is that the condition will hold in any situation that departs

from these special cases. (However, we later discuss a context in which one of these

cases acquires particular relevance.) In order to illustrate how restrictive this condi-

tion is, extend the first example to three groups. It can now be shown that for every

arbitrary preference profile, there is just one strictly positive population vector n such

that the eigenvector condition is satisfied.

We can therefore conclude that barring the first two examples, it is generally an excep-

tional outcome that γi = 1 for all i. At the same time, it is important to appreciate that

this condition is far from necessary to obtain the nearness of the expression

ρc′(ρ) =
m∑
i=1

m∑
j=1

φ(γi, γj, ρ)ninj
σi∆ij

N
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to its counterpart

ρ̂c′(ρ̂) =
m∑
i=1

m∑
j=1

ninj
σi∆ij

N
,

where φ is defined in (16). Thus our second approach relies on a numerical examina-

tion of this question. Our objective is to see how close ρ is to ρ̂ in a variety of simulated

exercises.

5.2. Numerical Analysis. We run a series of simulations based on random draws for

the parameter values describing group sizes and preferences. For each of these ran-

domly drawn societies we compute the exact level of conflict ρ, and compare it to our

linear approximation ρ̂, given by

(20) ρ̂c′(ρ̂) = ω1 + ω2G+ α[λP + (1− λ)F ],

where ω1 and ω2 are as described in Proposition 2. We want to verify how closely our

approximation ρ̂ is correlated with the true value ρ. To cut down on the number of

possibilities, we presume that costs come from the isoelastic class c(r) = (1/θ)rθ, for

θ ≥ 2.

We also focus (though not exclusively) on the case of large populations. This means

that we can discard from our shorthand the constant term and the Gini index. Inter-

estingly enough, controlling for population distribution across groups, we can also

discard α as long as it is positive. Study the condition (12) with constant elasticity,

using the observation that (σi/Ni) ≈ α for N large. Then each rθi becomes roughly

proportional to α, while the equilibrium win probabilities become insensitive to it. We

can conclude that for large populations, ρθ is roughly proportional to α.

Meanwhile, the same is true of our approximation, which states that

ρθ ≈ α[λP + (1− λF )]

for large N . It follows that the relative accuracy of our approximation is independent

of α when the population is large (as long as α is positive). This is why in the simu-

lations below we shall fix α at one positive value (say 0.5) in the case of large popula-

tions. The specific value of α will matter, however, when population is “small”.
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5.2.1. A Baseline Case. Our baseline exercise is the case of large populations and con-

tests with quadratic costs, so that the elasticity θ equals 2. By the discussion above we

take α = 0.5. We examine several degrees of publicness in the payoffs: λ = 0, 0.2, 0.8

and 1.0 (we report on λ = 0.5 in a later variation). In each of these cases, we take

numerous random draws of a population distribution over five groups.

 

FIGURE 1. APPROXIMATE AND TRUE CONFLICT: BASELINE CASE

Notice that in this case, ρc′(ρ) = ρ2. Figure 1 depicts the scatter plot of the approximate

and true values of ρ2. In each situation (and in all successive figures as well), we plot

the true value of conflict on the horizontal axis and the approximation on the vertical

axis. We also use the same units for both values, so that the diagonal, shown in every

figure, is interpretable as equality in the two values. The top two panels perform
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simulations when private goods are dominant (λ = 0.0, 0.2) and the bottom panels do

the same when public goods are dominant (λ = 0.8, 1.0).

We obtain a very strong correlation between the true and the shorthand values for

equilibrium conflict suggesting that the “behavior correction factors” do not play a

critical role in explaining conflict.

Notice how our formula understates the true value of conflict when λ is small, and

overstates it when λ is close to 1. There is a good reason for these biases and it is con-

nected to the Pareto-Olson argument. When the conflict is over private goods (which

is the case with λ small), small groups will put in more resources per-capita, and large

groups will put in less. This means that society is really more “polarized” than a

measure based on group numbers alone would suggest. Because our approximation

ignores this effect, it underestimates conflict. By a converse argument, we tend to over-

estimate conflict (for small values of conflict) when λ is close to 1. With public goods

at stake, small groups put in less resources compared to their population share, and

large groups put in more. Therefore society is less “polarized” than what the popula-

tion numbers alone suggest, and our measure overstates the extent of conflict. Because

this observation is not central to our paper, we omit a more detailed discussion.

Over- or under-statement apart, the correlation between the two variables is unaf-

fected and the relationship appears broadly linear. What is remarkable is how close

the relationship is, and yet how difficult it appears to be to get a full handle on this an-

alytically. That there is no simple relationship between the two values is evident from

the highly nontrivial (yet concentrated) scatter generated by the model. One feature

that merits particular comment — and that persists through all the variations we later

consider — is that the accuracy of our formula improves quite dramatically at high

levels of conflict. This phenomenon is closely related to the characterization result of

Proposition 3. It provides strong support for our restriction on correction factors. We

back this up analytically in the next section (5.3).

A high correlation between ρ and ρ̂ is retained in all the reasonable variations that we

have studied. Some examples follow.
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FIGURE 2. APPROXIMATE AND TRUE CONFLICT: VARYING UTILITY DISTANCES

5.2.2. Inter-Group Distances. The next set of simulations studies varying inter-group

distances, instead of pure contests. Recall that distances are to be interpreted as losses

from having the other public goods in place, instead of the group’s favorite. We mod-

ify the previous simulation and now permit utility losses to vary across groups pairs

(retaining the symmetry restriction that uij = uji). This is done by taking numer-

ous independent draws of the matrix describing pairwise utility losses. We retain the

baseline specification in all other ways. The results are reported in Figure 2, for various

values of λ. As in the baseline case, the top panels perform simulations with private

goods (λ = 0.0, 0.2) and the bottom panels do the same for public goods (λ = 0.8, 1.0).
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The correlations continue to be extremely high and the general features of the baseline

case are retained.

5.2.3. Small Populations. We return to the case of contests (with quadratic cost func-

tions) and now study “small” populations so that the Gini index can have a role. We

suppose that there are 50 individuals in the economy, and consider numerous alloca-

tions of this population to the five groups. We report results for one case in which

private goods are dominant (λ = 0.2) and another in which public goods are domi-

nant (λ = 0.8). Notice that with small populations, the value of group cohesion α will

generally matter. The top panel of Figure 3 reports our results for private goods under

two values of α, 0.5 and 1.0. The bottom panel does the same for public goods. As

before, the correlations continue to be very high and the other features discussed for

the baseline case are retained.

5.2.4. Other Cost Elasticities. Finally, we explore a set of variations in which we change

the cost function from quadratic to other isoelastic specifications. We report four sets

of results in Figure 4, all for the case with λ = 0.5 and large populations. One is for the

baseline quadratic case. The remaining three are for progressively higher elasticities

of the cost function: θ = 3, 4 and 10.

Once again, the large correlations that we obtain remain undisturbed. Indeed, the sim-

ulations suggest that as the elasticity of the cost function goes up, our approximation

improves even further. This is intuitive, as a highly curved cost function will lead

to greater uniformity in the per-capita contribution of resources, thereby bringing the

behavioral correction factors closer to unity.

It is certainly possible to try different combinations of these variations. We have done

so, but do not report these results for the sake of brevity. In all the specifications we

have tried, the shorthand we use appears to be more than satisfactory.

5.3. An Analytical Result on Accuracy. We return to the observation — borne out in

the numerical simulations — that the accuracy of the formula appears to improve for

high values of conflict. In a sense, this high accuracy provides strong justification for
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FIGURE 3. APPROXIMATE AND TRUE CONFLICT: SMALL POPULATION

our restriction on behavioral correction factors. It would therefore be useful to supple-

ment this aspect of the numerical results by an analytical argument. (We agree that it

would be even better to analytically establish the high observed correlation between

ρ and ρ̂ throughout, not just at high levels, but this task will have to be postponed to a

later investigation.)

In what follows, we consider the case of “pure contests”, in which δij = 1 for all

i 6= j. The normalization is without loss of generality as λ can be adjusted to capture

differences in preference intensities across public and private goods. We also presume

— but only for expositional convenience — thatN is large enough so that we can think

of population shares in each group as a continuous variable.
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FIGURE 4. APPROXIMATE AND TRUE CONFLICT: NONQUADRATIC COSTS

Fix group identities and preferences and consider all possible population distributions

over the m groups. Then it is easy to see that ρ̂ must range over some compact interval

[0, Û ].

PROPOSITION 4. Assume pure contests and a large population. Then for every ε > 0, there

exists η > 0 such that whenever ρ̂ > Û − η,

|ρ− ρ̂| < ε

for every possible value of conflict ρ under a population distribution that generates ρ̂.

This proposition shows that the accuracy of our “shorthand” formula becomes ex-

tremely high as ρ̂ reaches its upper bound. The proof of this result relies on the ob-

servation (see Lemma 1 in the Appendix) that at high values of ρ̂, the occupied groups
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are of equal size. With that lemma in place, the proof follows quickly from the exact

representation conditions established in Proposition 3.

The observation of the lemma is central to the argument (see Appendix for details).

When all prizes are public, so that λ = 1, this observation follows from the fact that

the Esteban-Ray polarization measure is maximized at a bimodal distribution. When

all prizes are private, so that λ = 0, this observation follows from the fact that fraction-

alization is maximized with equal population in every group. The question implicitly

posed by the lemma is whether the common property of population uniformity (over

all occupied groups) persists for intermediate values of λ. As the proof of Lemma 1

shows, this requires a nontrivial and subtle argument. The reason is that our formula

does not have any particular curvature with respect to population vectors; it is both

locally convex and locally concave in different zones.

We conjecture that our argument extends to all public goods “distances” that are sym-

metric. However, we do not have an analytical proof of this result (the simulations

continue to support high accuracy at high values of ρ̂ for such cases).

6. DISCUSSION

We have developed a behavioral model of conflict and have shown that the equilib-

rium level of conflict can be represented by a linear function of inequality, fractional-

ization and polarization. This function does not represent an exact fit, but numerical

simulations together with some analytical observations show that the connection is

remarkably strong.

One might legitimately wonder about the generality of the result. How robust is

Proposition 2 to perturbations of the underlying model? In this section, we briefly

examine how the results might change when we consider different variations on the

model.

Let us review the general picture. We describe inter-group conflict over two objects:

privately divisible resources, and public goods. Private resources yield a payoff if the

group wins, and none otherwise. Public goods payoffs are more complex: a particular
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group will, in general, enjoy different payoffs if different opponents get to implement

their favorite mix of public goods.25

Irrespective of the particular model used, then, as long as there is some cohesion within

a group, the following two points apply:

1. A high component of publicness in payoffs forces inter-group differences in public-

goods preferences to play a bigger role in behavior. Yet, at the same time, the payoff

from public goods is not dissipated by group size. This, coupled with the existence

of some group cohesion, brings a measure of polarization to the forefront. There-

fore the very same features that emphasize inter-group distances also enhances the

explanatory power of polarization. This is why an increase in λ increases the weight

on polarization, and it is also why inter-group distances enter the polarization index.

Note that to get polarization to matter, we need both some group cohesion and some

publicness (in the prize).

2. In contrast, when payoffs are private, inter-group “distances” are no longer impor-

tant. With only a concern for private payoffs, inter-group differences are binary: either

you are a winner, or you are not. At the same time, private payoffs — which are di-

vided by group size — dwindle as the group gets larger. The importance of group size

is thereby reduced, and a measure of fractionalization takes center stage. This is why

a decrease in λ increases the weight on fractionalization, and it is also why inter-group

distances do not enter the fractionalization index. Note that to get fractionalization to

matter for large populations, we need both some group cohesion and some privateness

(in the prize).

There is an exception to these two points, and this has to do with the possibility that

purely selfish motives — quite apart from group cohesion —might also drive resource

contributions to public- and private-goods conflicts. However, the effect will vanish

as the population grows large. This feature is captured by the point that the Gini

25One might conceive of a similar possibility for private goods, with a group experiencing different

payoffs (“hate”, “envy”) depending on the identity of the opponent that wins the private resources. But

this, by definition, would be classified as a public goods payoff, and λ would be suitably defined to

incorporate it.
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coefficient (with distances) does appear as an explanatory variable in our formula,

but with vanishing weight as population size goes to infinity. In short, the Gini with

public-goods distances can matter only for “small populations.

The virtue of the model we have developed is that it permits us to neatly uncover

these interactions that, we firmly believe, transcend the particular specification we

have used.

We remark on some specific extensions.

6.1. Cohesion Depending on Group Objectives. As already discussed, the parame-

ter α captures the degree of group cohesion. In effect, it measures the weight that each

individual assigns to the welfare of the group vis-a-vis her own. We have taken α to

be exogenous, while in many situations it may well be determined by other model

parameters. While endogenous group cohesion is a project in its own right, a few

remarks may be useful here.

First, individuals might display different levels of group cohesion, depending on the

particular issue at stake. Controlling for the number of people in the group, the extent

of group cohesion may well be affected in, say, a civil-rights movement, relative to a

tussle for private resources. In short, the nature of the objective the group is fighting

for may have an influence on α. A second argument is that the size of the group may

modify the level of group cohesion, and it is likely (though not inevitable) that the

influence will be negative.

Consider the first point: that cohesion might be influenced by the nature of the ob-

jective. We explore the simplest case, in which the degree of altruism is equal to the

degree of publicness: α = λ. Note that this modification will just affect the term σi∆ij

in (14) and hence the shorthand is exactly the same, with the corresponding substitu-

tions. Performing these changes one obtains

ρ̂c′(ρ̂) = ω̃1 + ω̃2G+ λ[λP + (1− λ)F ],

where ω̃1 ≡ (1− λ)2(m− 1)/N and ω̃2 ≡ λ(1− λ)/N .
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Now, full privateness, λ = 0, makes the three indices irrelevant as explanations of

conflict. Full publicness, λ = 1 leaves polarization P as the sole essential index. The

importance of the Gini and fractionalization indices is maximal at the intermediate

value λ = 1
2
. Making α endogenous in this particular way has not made significant

changes to our exercise.

6.2. Cohesion Depending on Group Size. The second point concerns the systematic

dependence of α on group size. Fix N , and assume that α = nε, where ε is likely

negative, though we do not insist on this. Here again this change simply modifies

the term σi in (14) and hence the shorthand continues to be the same, modulo the

corresponding substitution. Indeed, performing this substitution one gets

ρ̂c′(ρ̂) =
m∑
i=1

m∑
j 6=i

ninj

[
1− nεi
N

+ nεini

] [
λδij +

1− λ
ni

]
.

Letting (1/N) ≈ 0, we now obtain

(21) ρ̂c′(ρ̂) = λP (ε) + (1− λ)F (ε),

where

P (ε) =
m∑
i=1

m∑
j=1

n2+ε
i njδij and F (ε) =

∑
i

(1− ni)n1+ε
i

are the general polarization index in Esteban and Ray (1994) — with the restriction

that 1 + ε ∈ [0, 1.6] — and a variant of the fractionalization index, respectively.

Note that P (ε) satisfies the properties of a polarization measure for discrete distribu-

tions as long as the effect of group size on altruism is not too large and positive (ε < 0.6)

or not too large and negative (ε > 0).

As for F (ε), this too becomes a polarization index in the Esteban-Ray (1994) class when

ε > 0. If, however, we agree that ε is generally negative, then F (ε) behaves as a mod-

ified fractionalization index. For instance, F is the sum of a concave transformation

of the n. Hence, given the number of groups m, F is maximized when all the groups

have equal size 1
m

. Further, in that case, F increases with the number of groups. It can

be readily verified that both properties are shared by F (ε) when ε ≤ 0, so that we can

consider F (ε) as a generalized version of the fractionalization index.
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We can thus conclude that under the assumption that α depends on the population

size we still obtain proxies that can be expressed as a function of inequality, fraction-

alization and polarization, although now we will need to use generalized forms for

polarization and fractionalization. Furthermore, we continue to retain the same prop-

erties that more publicness increases the relevance of polarization and decreases that

of fractionalization.

6.3. Costs of Conflict. We’ve considered a somewhat sanitized scenario in which con-

flict affects win probabilities but does not directly destroy social budgets. But it is easy

to extend these arguments to a case in which the disposable budget shrinks with more

intense conflict. Suppose that the disposable budget is some differentiable nonincreas-

ing function f(ρ) of the extent of conflict. Each agent k in group i then chooses ri(k) to

maximize a variant of (10):

−σi
m∑
j=1

pj∆ijf(ρ)− c(ri(k)).

Exactly the same arguments apply to show that ri(k) has a common value ri, described

by an analogue of (14):

[f(ρ)− ρf ′(ρ)]
m∑
j=1

γiγjninj
σi∆ij

N
= ρpic

′(γiρ).

Thereafter exactly the same argument leading up to Proposition 2 can be followed,

with the only proviso that the left-hand side of (17) will need to be replaced by the

strictly increasing function
ρ̂c′(ρ̂)

f(ρ̂)− ρ̂f ′(ρ̂)

instead of just ρ̂c′(ρ̂). The variable ρ̂ is still a shorthand for ρ.

6.4. Contest Success Functions. We conclude these robustness tests of the model by

examining the implications of departing from the standard specification of the contests

success function given by (7). Let us suppose instead that the win probabilities are

pi =

∑
k∈i ϑ(ri(k))∑

j

∑
k∈j ϑ(rj(k))

,
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for some ϑ strictly increasing. Now, individual resources r are assumed to turn into

“effective” conflict resources z, so that z = ϑ(r), and this is what determines the win

probabilities.

Notice, though, that we can rewrite the utility cost in therms of z instead of r. We then

see that individuals choose zi(k) with a utility cost of c̃(z) = c
(
ϑ−1
(
zi(k)

))
. Then, as

long as c̃(·) satisfies condition [C], an equilibrium exists and it is unique. It is obvi-

ous that our previous analysis goes through by reinterpreting z as the choice variable.

Consequently, the linear function of the three distributional indices would now ap-

proximate the “effective” aggregate resources per capita expended in conflict, ρ̃.

7. CONCLUDING REMARKS

We have set up a behavioral model of conflict that provides a basis for the use of F,G

and/or P as indicators for conflict.

[A] We have shown that the equilibrium level of resources expended in conflict can be

approximated by a linear combination of the three indices, using the degree of altruism

and of publicness as weights.

[B] The higher is the altruism the more pertinent fractionalization and polarization are

in explaining conflict. The higher the degree of publicness the pertinent indices are

inequality and polarization.

[C] In simulations we find a very high correlation between our approximation and the

true value of per capita conflict. This suggests that the behavior correction factors do

not play a critical role.

Most importantly, this paper suggests new key features in explaining conflict: the de-

gree of publicness in the payoff and the level of group cohesion in individual behavior.

While ours is not an empirical exercise, it is clear that our results provoke two sorts

of approaches to the data. One could take the structural stance of specifying a cost

function, so that the object ρc′(ρ) is well-defined, and then use the formula (18) to

estimate the implied parameters of publicness, privateness and group cohesion. It

should be noted, however, that for large populations, α cannot be separately identified
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from a multiplicative coefficient on the cost function. On the other hand, the ratio of

the coefficients on polarization and fractionalization is informative about λ, the degree

of publicness.26

Under a less structural view, one can treat (18) in a looser way: as an indicator of

which distributional variables might be related to conflict in different situations, and

then examining such predictions via reduced-form techniques. We remain agnostic

about either approach.

At a more basic level, one might think of two issues in taking this exercise to the data.

The first is precisely what one means by “conflict”. Most of the literature has identi-

fied social conflict with civil war. To this effect, a country is recorded as having conflict

whenever the number of deaths goes above a given threshold (see, for example, the

studies by Collier and Hoeffler (1998, 2004) and Fearon and Laitin (2003)). But so-

cial conflict need not manifest itself in civil war alone, and there are various other

measures (that incorporate, for instance, strikes, demonstrations, riots, assassinations,

political prisoners and the like). Our model should certainly not be seen as an attempt

to explain the onset of civil war, and perhaps should not be used in such a context. It

may be somewhat better for civil war incidence, but its most satisfactory application

should be — data permitting — as a potential explanation for the broader range of

conflicts described here.

A second issue of interest is the choice of groups over which the distributional mea-

sures are to be defined. Presumably, certain groupings are salient in any particular

society, but the model developed here yields no insights regarding the identification

of such groupings. The theory here will therefore need to be combined with others that

study salience (see, for example, Esteban and Ray (2008)), or one will have to take the

leap of committing, at the outset, to the study of certain groupings, such as ethnicity

or religion (see, for example, Montalvo and Reynal-Querol (2005)).
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APPENDIX

An Axiomatization of the Quadratic Polarization Index. Esteban and Ray (1994) and Duclos,

Esteban and Ray (2004) axiomatize the following class of polarization measures. Let popula-

tion be distributed on [0,∞) with density f(x). The class is given by

Pβ = K

∫ ∫
f(x)1+βf(y)|x− y|dxdy, for some constant K > 0 and β ∈ [0.25, 1].
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Axiom 5. Suppose that a distribution consists of three equi-spaced uniform basic densities of

sizes r, p and q, as shown in Figure 5, each of support 2ε. Assume that p = q + r. Then there is

η > 0 such that if 0 < r < η and 0 < ε < η, any uniform transfer of population mass from r to

q cannot decrease polarization.

r p q

0 a 2a
2! 2! 2!

FIGURE 5. Figure for Axiom 5.

Intuitively, this axiom asserts that if the group of size r is extremely small, it cannot be con-

tributing much on its own to social tension. If instead the population is transferred from that

group to another group which is “equally opposed” to the largest group of size p (and of mass

slightly smaller than p), then polarization cannot come down.

THEOREM 1. Under the additional Axiom 5, it must be that β = 1, so the unique polarization measure

that satisfies the five axioms is proportional to∫ ∫
f(x)2f(y)|y − x|dydx.

Proof. Consider a distribution generated from three copies of a uniform basic density as in

Axiom 5, exactly as shown in Figure 5. The bases are centered at locations 0, a and 2a. Each

has width 2ε. The heights are r, p and q.

First we show necessity. Suppose that the axiom is true. Take parameters z ≡ (p, q, r, ε) to

satisfy the conditions of the axiom, and transfer a small amount δ uniformly from the r-mass

to the q-mass. Then polarization (viewed as a function of δ and the other parameters z) is given

by the three “internal” polarizations of each basic density as well as the pairwise effective
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antagonisms across each pair of basic densities, which makes for nine terms in all:

P (δ, z) = I(ε)
[
(r − δ)2+β + p2+β + (q + δ)2+β

]
+ C2(ε)

[
(r − δ)1+β(q + δ) + (q + δ)1+β(r − δ)

]
+C(ε)

[
(r − δ)1+βp+ p1+β(q + δ) + (q + δ)1+βp+ p1+β(r − δ)

]
,

where I(ε) is the “total internal distance” within each rectangle:

I(ε) ≡
∫ ε

−ε

∫ ε

−ε
|x− y|dxdy =

8ε3

3
,

C(ε) is the “total distance” across neighboring rectangles:

C(ε) ≡
∫ ε

−ε

∫ a+ε

a−ε
(x− y)dxdy = 4aε2,

and C2(ε) is the “total distance” between the side rectangles:

C2(ε) ≡
∫ ε

−ε

∫ 2a+ε

2a−ε
(x− y)dxdy = 8aε2.

Differentiating P (δ, z) with respect to δ (write this partial derivative as P ′(δ, z)) and evaluating

the result at δ = 0, we see that

P ′(0, z) = (2 + β)I(ε)
[
q1+β − r1+β

]
+ (1 + β)C(ε)

[
qβp− rβp

]
− C2(ε)

[
q1+β − r1+β + (1 + β)(rβq − qβr)

]
.

Substituting the values for I(ε), C(ε) and C2(ε), we see that

1
4
ε−2P ′(0, z) = (2 + β)

2ε
3

[
q1+β − r1+β

]
+ (1 + β)ap

[
qβ − rβ

]
− 2a

[
q1+β − r1+β + (1 + β)(rβq − qβr)

]
.(22)

The axiom insists that P ′(0, z) must be nonnegative for all values of z such that p = q + r and

r sufficiently small. Fixing p and a, take a sequence of z’s such that r → 0, q → p and ε → 0.

Noting that P ′(0, z) ≥ 0 throughout this sequence, we can pass to the limit in (22) to conclude

that

(1 + β)− 2 ≥ 0,

which, given that β ≤ 1, proves that β = 1.
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To establish the converse, put β = 1 and consider (22) again. We see that for any configuration

with q > r,

1
4
ε−2P ′(0, z) = 2ε

[
q2 − r2

]
+ 2ap [q − r]− 2a

[
q2 − r2

]
> 2ap [q − r]− 2a(q − r)(q + r)

= 2ap [q − r]− 2ap [q − r] = 0,

where the penultimate equality uses the restriction that p = q + r.

Proof of Proposition 4. The central argument behind the proposition is

LEMMA 1. Under the pure contest and large population assumptions, the value of ρ̂must be maximized

at a configuration which involves equal population in all groups with nonzero population.

Proof. Use (17), along with the pure contest and large population assumptions, to see that

1
α
ρ̂c′(ρ̂) =

m∑
i=1

∑
j 6=i

n2
inj

[
λ+

1− λ
ni

]

= (2λ− 1)
m∑
i=1

n2
i − λ

m∑
i=1

n3
i + (1− λ).

Pick any population distribution with the property that population is unequal across at least

two groups with positive population shares. Without loss of generality n1 = a and n2 = b, and

a > b > 0. Suppose, contrary to our assertion, that such a distribution maximizes ρ̂.

For any ε ∈ (−b, a− b), define n1(ε) ≡ a− ε, n2(ε) ≡ b+ ε, and ni(ε) ≡ ni for all i 6= 1, 2, and let

A(ε) ≡ (2λ− 1)
m∑
i=1

n2
i (ε)− λ

m∑
i=1

n3
i (ε) + (1− λ).

Notice that A(ε) is just the value of ρ̂c′(ρ̂)/α when the population distribution is (a − ε, b +

ε, n3, . . . , nm). Because ρ̂ is maximized at n by assumption, it must be that A′(0) = 0. Differen-

tiate A(ε) to see that

A′(ε) = −2(2λ− 1)[n1(ε)− n2(ε)] + 3λ[n2
1(ε)− n2

2(ε)]

= [n1(ε)− n2(ε)] {3λ[n1(ε) + n2(ε)]− [4λ− 2]} .(23)

Evaluating the result at ε = 0, we must conclude that

(24) a+ b =
4λ− 2

3λ
≡ τ.
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Notice in passing that equation (24) already establishes a contradiction when λ ≤ 1/2, so from

now we presume that λ > 1/2.

It is obvious that τ ≤ 2/3, so there exists i 6= 1, 2 such that ni > 0. For every such i, ni must

equal either a or b. For if this were false for some i, we would violate (24) simply by choosing

groups 1 and k and redoing the above exercise.

We now claim that for every i 6= 1, 2 with ni > 0, we have ni = a. Suppose not; then ni = b for

some index i = k. Permute the labels 1 and k, and redo exactly the above exercise with the two

groups of equal size b. Differentiate again in (23) to see that

A′′(ε) = 4(2λ− 1)− 6λ[n1(ε) + n2(ε)].

Evaluate this result at ε = 0, and use (24) along with a > b to conclude that A′′(0) > 0. But

this is a contradiction to the maximality of n: a small population transfer of ε between the two

groups of size b will necessarily raise ρ̂. This proves the claim.

We must therefore conclude that n has S − 1 groups of size a and exactly one group of size b,

where a > b and S ≥ 3, and all other groups have zero size. Moreover, (24) holds.

For any ε ∈ (−b, [S − 1][a − b]), define ni(ε) ≡ a − (ε/[S − 1]) for all i such that ni = a and

nj(ε) ≡ b+ ε for the single group j of size b. Define a new function

B(ε) ≡ (2λ− 1)
m∑
i=1

n2
i (ε)− λ

m∑
i=1

n3
i (ε) + (1− λ).

Note — as in the case of A(ε) — that B(ε) is the value of ρ̂c′(ρ̂)/α when the population distri-

bution is (b+ ε; a− (ε/[S − 1]), . . . , a− (ε/[S − 1])). Differentiate once to see that

B′(ε) = 2(2λ− 1)
[
b− a+

εS

S − 1

]
+ 3λ

[(
a− ε

S − 1

)2

− (b+ ε)2
]
,

and differentiate again to obtain

B′′(ε) = 2(2λ− 1)
S

S − 1
− 6λ

[
1

S − 1

(
a− ε

S − 1

)
+ (b+ ε)

]
.

Evaluate this expression at ε = 0 to see that

(25) (S − 1)B′′(0) = 2(2λ− 1)S − 6λ[a+ b(S − 1)].

Now recall (24) and the fact that a(S − 1) + b = 1 to conclude that

(26) a =
1− τ
S − 2

and b =
(S − 1)τ − 1

S − 2
.
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Using this information in (25), we see that

(S − 1)B′′(0) = 2(2λ− 1)S − 6λ
[

1− τ
S − 2

+
(S − 1)2τ − (S − 1)

S − 2

]
= 2(2λ− 1)S − 6λ(Sτ − 1)

= 2[S − λ(2S − 3)],(27)

where the last equality uses the definition of τ in (24).

Now a > b. Using this information in (26), we see that

1− τ > (S − 1)τ − 1,

or equivalently,

S − λ(2S − 3) > 0.

Using this information in (27), we must conclude that B′′(0) > 0. But now we contradict the

presumption that n maximizes ρ̂: a suitably chosen population transfer between the groups

will raise the value of ρ̂.

Now we return to the main proof. We observe that when ρ̂ is at its maximal value Û , there

is only one possible value of ρ, and it is Û as well. To see this, use Lemma 1 to argue that

the necessary and sufficient condition for all behavioral correction factors to equal unity (see

Proposition 3 and the second example following it) is indeed satisfied. Therefore ρ must equal

ρ̂.

Define U(ρ̂) and u(ρ̂) as the maximum and minimum respectively of all possible values of

conflict ρ, as we range over all population distributions that generate ρ̂. By a simple continuity

argument, both U(ρ̂) and u(ρ̂) must converge to Û as ρ̂→ Û , which completes the proof.


