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ABSTRACT. Given a model that can be simulated, conditional moments at a trial param-
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a long simulation. With such conditional moments in hand, standard method of moments
techniques can be used to estimate the parameter. Because conditional moments are cal-
culated using kernel smoothing rather than simple averaging, it is not necessary that the
model be simulable subject to the conditioning information that is used to define the mo-
ment conditions. For this reason, the proposed estimator is applicable to general dynamic
latent variable models. The estimator is consistent and has the same asymptotic distribution
as that of the infeasible GMM estimator based on the same moment conditions. Monte
Carlo results show how the estimatod may be applied to a range of dynamic latent variable
(DLV) models, and that it performs well in comparison to several other estimators that have
been proposed for DLV models. An application to weekly spot exchange rate data further
illustrates use of the estimator.
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1. INTRODUCTION

Dynamic latent variable (DLV) models are a flexible and often natural way of model-
ing complex phenomena. As an example, consider a macroeconomic model. A model
may specify behavioral rules, learning rules, a social networking structure, and information
transmission mechanisms for a large group of possibly heterogeneous agents. If the model
is fully specified, it can be used to generate time series data on all of the agents’ actions. In
attempting to use real world data to estimate the parameters of such model, one finds that
real world data is much more aggregated than the data generated by the model. Typically,
individual agents’ actions are not observed - only macroeconomic aggregates are available.
From the econometric point of view, many of the variables generated by the model are la-
tent. In a dynamic, nonlinear context, this can complicate the econometric estimation of the
model’s parameters.

To fix ideas, consider the general DLV model:

(1) DLV:

yt = rt
(
yt−1,y∗t ,εt ;θ

)
y∗t = r∗t

(
yt−1,y∗t−1,εt ;θ

)
where t = 1, ...,n. The observable variables are the ky dimensional vector yt , and y∗t is a
vector of latent variables. Superscript notation is used to indicate the entire history of a
vector up to the time indicated, so yt−1 ≡

(
y′1, ...,y

′
t−1
)′, and y∗t−1 ≡

(
y∗′1 , ...,y∗′t−1

)′. There
is a vector of independent white noises, εt , with a known distribution. Finally, θ is a vector
of unknown parameters1. This definition closely follows that of Billio and Monfort (2003),
with the exception that the same white noise vector enters the equations for both the observ-
able and latent variables, to allow for potential correlations in the innovations of the two sets
of variables. Calculation of the likelihood function requires finding the density of yn, and
as Billio and Monfort make clear, this involves calculating an integral of the same order as
n, a problem that is in general untractable. Without the density of the observable variables,
analytic moments cannot be computed. Thus, maximum likelihood and moment-based es-
timation methods often are not available.

A number of econometric methods have been developed over the last two decades to
deal with the complications that may accompany DLV models. These include the simu-
lated method of moments (McFadden, 1989; Pakes and Pollard, 1989), indirect inference
(Gouriéroux, Monfort and Renault, 1993; Smith, 1993), simulated pseudo-maximum likeli-
hood (Laroque and Salanié, 1993), simulated maximum likelihood (Lee, 1995), the efficient
method of moments (Gallant and Tauchen, 1996), the method of simulated scores (Hajivas-
siliou and McFadden, 1998), kernel-based indirect inference (Billio and Monfort, 2003),
the simulated EM algorithm (Fiorentini, Sentana and Shephard, 2004), nonparametric sim-
ulated maximum likelihood (Fermanian and Salanié, 2004; Kristensen and Shin, 2006) and
simulated nonparametric estimators (Altissimo and Mele, 2007). These methods have been

1The possible presence of observable exogenous variables is suppressed for clarity. The macroeconomic model
of the previous paragraph could be formalized by letting y∗t indicate the vector of all of the agents’ actions, and
letting yt be the observed aggregate outcomes.
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applied to DLV models in a number of contexts. Billio and Monfort (2003) provide numer-
ous references for applications.

As noted by Fermanian and Salanié (2004, pg. 702), there often exists a trade-off be-
tween the asymptotic efficiency of a method and its applicability to a wide range of models.
Simulated maximum likelihood and the method of simulated scores are asymptotically ef-
ficient when they can be applied, but this is not the case when the likelihood function or
the score function cannot be expressed as a function of expectations of simulable quanti-
ties. Nonparametric simulated maximum likelihood (NPSML) is asymptotically efficient
and generally applicable for estimation of static models (Fermanian and Salanié, 2004).
Kristensen and Shin (2006) extend the method to some dynamic models. In general, the
method encounters curse-of-dimensionality problems in the case of dynamic models. Pro-
posed solutions based upon lower dimensional marginals of the likelihood function lead to
a loss of asymptotic efficiency.

The simulated method of moments (SMM) is generally applicable if unconditional mo-
ments are used, but foregoing conditioning information may limit the estimator’s ability to
capture the dynamics of the model, and can result in poor efficiency (Andersen, Chung and
Sorensen, 1999; Michaelides and Ng, 2000; Billio and Monfort, 2003). In the context of
DLV models, the usual implementation of SMM that directly averages a simulator normally
cannot be based upon conditional moments, since it is not in general possible to simulate
from the model subject to the conditioning information. Due to the full specification of the
model, it is easy to simulate a path, ỹn(θ). However, the elements are drawn from their
marginal distributions. It is not in general possible to draw from yt |yt−1;θ . To do so, one
would need draws from y∗t |yt−1;θ . If such draws were available, they could be inserted into
the first line of the DLV model given in equation 1, which, combined with a draw from εt ,
would give a draw from yt |yt−1;θ . The problem is that the observed value of yt−1 is only
compatible with certain realizations of the history of the latent variables, y∗t−1, but what is
the set of compatible realizations is not known. For certain types of model it is possible to
circumvent this problem. For example, Fiorentini, Sentana and Shephard (2004) find a way
of casting a factor GARCH model as a first-order Markov process, and are then able to use
Markov chain Monte Carlo (MCMC) methods to simulate from y∗t |yt−1;θ , which is then
fed into a simulated EM algorithm to estimate the parameter. However, for DLV models
in general, there is no means of simulating from y∗t |yt−1;θ (Billio and Monfort, 2003, pg.
298; Carrasco et al., 2007, pg. 544).

Indirect inference is generally applicable, but its efficiency depends crucially upon the
choice of the auxiliary model. The efficient method of moments (EMM, Gallant and Tauchen,
1996) is closely related to the indirect inference estimator, and presumes use of an auxiliary
model that guarantees good asymptotic efficiency, by closely approximating the structural
model. This estimator is both generally applicable and is highly efficient if a good auxil-
iary model is used, and it is fully asymptotically efficient if the auxiliary model satisfies
a smooth embedding condition (see Gallant and Tauchen, 1996, Definition 1). Satisfying
this condition is not necessarily an easy thing to achieve. A common practice is to fit a
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semi-nonparametric (SNP) auxiliary model of the sort proposed by Gallant and Nychka
(1987), augmented by a leading parametric model that is known to provide a reasonably
good approximation. Andersen, Chung and Sorensen (1999) provide Monte Carlo evidence
that shows the importance of the choice of the auxiliary model. They also note that highly
parameterized auxiliary models often cannot be successfully fit when the sample size is not
large. It is important to keep in mind that a parsimonious parametric auxiliary model may
be far from satisfying the smooth embedding condition. This can lead to serious ineffi-
ciency and to failure to detect serious misspecifications of the structural model (Tauchen,
1997; Gallant and Tauchen, 2002). In sum, EMM and indirect inference are clearly attrac-
tive methods, given that the sample is large enough to use a rich auxiliary model. Even if
this is the case, effort and skill are required to successfully use these methods. In the case
of EMM, the documentation of the EMM software package (Gallant and Tauchen, 2004;
2007) makes this clear.

The kernel-based indirect inference (KBII) approach suggested by Billio and Monfort
(2003) proposes an entirely nonparametric auxiliary model in place of the EMM’s highly
parameterized auxiliary model. The use of kernel regression methods is considerably sim-
pler than estimation of models based upon a SNP density with a parametric leading term,
since software can be written to use data-dependent rules that tune the fitting process to a
given data set with little user intervention. The consistency of the kernel regression esti-
mator ensures a good fit to the data. The main drawback with the KBII estimator is that
the binding functions are conditional moments of endogenous variables at certain points
in the support of the conditioning variables. How many such points to use, and exactly
which points to use require decisions on the part of the econometrician. Billio and Monfort
recognize this problem and propose a scoring method to choose the binding functions.

The simulated nonparametric estimators (SNEs) of Altissimo and Mele (2007) are gen-
erally applicable, and are asymptotically efficient when the model is Markovian in the ob-
servable variables. This is often an important limitation, since models that are Markovian
in all variables are usually not Markovian in a subset of the variables (Florens et al. 1993).
When the model is not Markovian in the observable variables, the proposed SNEs are not
asymptotically efficient.

This paper offers a new estimator that is applicable to general DLV models. It is a new
implementation of the simulated method of moments (SMM) that allows use of conditional
moments. Conditional moments are evaluated using nonparametric kernel smoothing of
simulated data. The estimator is very simple to use since it is just an ordinary GMM esti-
mator that uses kernel smoothing to evaluate moment conditions. Because it is a method
of moments estimator, it is not in general asymptotically efficient. However, Monte Carlo
results show that moment conditions may be chosen such it performs well in comparison
to other estimators that have been proposed for estimation of general DLV models. The
estimator is referred to as the simulated nonparametric moments (SNM) estimator.

The next section defines the estimator and discusses its properties and usage. The third
section presents several examples that compare the SNM estimator to other methods, using
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Monte Carlo. Section 4 applies the estimator to weekly spot market exchange rate data, and
Section 5 concludes.

2. THE SNM ESTIMATOR

2.1. Definition of the estimator. The moment-based estimation framework used in this
paper is standard, and is as follows. The sample is Zn = {(yt ,xt)}n

t=1, where yt is the re-
alization of the ky dimensional vector of endogenous variables Yt , and xt is the realization
of the kx dimensional vector Xt , which is formed of lagged endogenous and exogenous
variables. Define the conditional moments φ(xt ;θ) ≡ E [Yt |Xt = xt ;θ ] (these moments are
assumed to exist).

Error functions are of the form

ε(yt ,xt ;θ) = yt −φ(xt ;θ),(2)

An M-estimation approach (Huber, 1964; Gallant, 1987) that down-weights extreme errors
will often be used. In this case, error functions are

(3) ε(yt ,xt ;θ) = tanh
(

yt −φ(xt ;θ)
2

)
Moment conditions are defined by interacting a vector of instrumental variables z(xt) with
error functions:

(4) m(yt ,xt ;θ) = z(xt)⊗ ε(yt ,xt ;θ)

Let the dimension of z(xt) be kz. With kz instruments and kyendogenous variables, the
number of moment conditions is kykz. Average moment conditions are

(5) mn(Zn;θ) =
1
n

n

∑
t=1

m(yt ,xt ;θ)

To simplify the notation, I will often write mn(θ) in place of mn(Zn;θ). The objective
function is

(6) sn(Zn;θ) = m′n(θ)W (τ̂n)mn(θ)

where W (τ̂n) is a weighting matrix that may depend upon prior estimates of nuisance pa-
rameters.

Often, φ(xt ;θ) in equations 2 and 3 has a known functional form, in which case esti-
mation may proceed using the standard generalized method of moments (GMM). When no
closed-form functional form is available it may be possible to define an unbiased simula-
tor φ̃(xt ,u;θ) such that Eu

[
φ̃(xt ,u;θ)

]
= φ(xt ;θ), where the distribution of u conditional

on X = xt is known. If this is so, a simulated error function can be defined by replacing
φ(xt ;θ) in equations 2 and 3 with an average of S draws of φ̃(xt ,us

t ;θ). Doing so, and then
proceeding with normal GMM estimation methods defines the SMM estimator (Gouriéroux
and Monfort, 1996, pg. 27). However, in the case of general DLV models, it is often not
possible to simulate subject to the conditioning information Xt = xt , as was discussed above.
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In this case, the SMM estimator cannot be based upon conditional moments as defined in
equations 2-5. Estimation by SMM using unconditional moments is still feasible, but the
Monte Carlo evidence cited above has shown that this approach often has poor efficiency,
due to the fact that unconditional moments provide little information on the dynamics of a
DLV model.

The fundamental idea of the simulated nonparametric moments (SNM) estimator pro-
posed here is to replace the expectations φ(xt ;θ) that are used to define error functions
in equations 2 and 3 with kernel regression fits based on a very long simulation from the
model. Kernel regression (also known as kernel smoothing) is a well-known nonparametric
technique for estimating regression functions of unknown form (Robinson, 1983; Bierens,
1987; Härdle, 1991; Li and Racine, 2007). Its application here is entirely standard, except
for the use of simulated data.

In the following, tildes will be used to indicate simulated data or elements that depend
upon simulated data. Let Z̃S(θ) = {(ỹs(θ), x̃s(θ))}S

s=1 be a simulated sample of size S from
the model, at the parameter value θ . Kernel regression may be used to fit φ(xt ;θ), using
this simulated data

(7) φ̃(xt ; Z̃S(θ)) =
S

∑
s=1

w̃sỹs(θ)

where the weight w̃s is

(8) w̃s =
K
(
h−1

S [xt − x̃s(θ)]
)

∑
S
s=1 K

(
h−1

S [xt − x̃s(θ)]
)

To avoid notational clutter, I will often write φ̃(xt ;θ) in place of φ̃(xt ; Z̃S(θ)) in the follow-
ing. Note that the same weight w̃s applies to each element of ỹs (which is a kY -vector). To
speed up computations, one should not separately fit each of the kY endogenous variables,
but rather employ a specialized kernel fitting algorithm that saves the weights across vari-
ables. Since xt is of dimension kx, which is in usually greater than one, the kernel function
K(·) is in general multivariate. The bandwidth (or window width) parameter is hS. Note that
the kernel regression fit can be evaluated at xt without requiring that the simulated sequence
contain any realizations such that x̃s = xt . What is required for a good fit at xt is that there
there be a large number of realizations that are "close enough" to xt .

The SNM estimator follows the standard moment-based estimation framework, except
that the kernel fit φ̃(xt ;θ) is used in place of the expectation of unknown form, φ(xt ;θ). To
be explicit, the SNM estimator is based on error functions of the form

ε̃(yt ,xt ; Z̃S(θ)) = yt − φ̃(xt ;θ),(9)

or

(10) ε̃(yt ,xt ; Z̃S(θ)) = tanh

(
yt − φ̃(xt ;θ)

2

)
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The moment function contribution of an observation is

(11) m̃(yt ,xt ; Z̃S(θ)) = z(xt)⊗ ε̃(yt ,xt ; Z̃S(θ))

Average moment conditions are

(12) m̃n(Zn; Z̃S(θ)) =
1
n

n

∑
t=1

m̃(yt ,xt ; Z̃S(θ))

To clarify the notation, I will often write m̃n(θ) in place of m̃n(Zn; Z̃S(θ)). The objective
function that defines the SNM estimator is

(13) s̃n(Zn; Z̃S(θ)) = m̃′n(θ)W (τ̂n)m̃n(θ)

where W (τ̂n) is a weighting matrix that may depend upon prior estimates of nuisance pa-
rameters. The SNM estimator is the minimizer of this function:

(14) θ̃n = argmin s̃n(Zn; Z̃S(θ)).

To simplify the notation, the objective functions that define the GMM and SNM estimators
will often be written as sn(θ) and s̃n(θ), respectively.

2.2. Properties of the SNM estimator. This section deals with the consistency and as-
ymptotic normality of the SNM estimator. The proof offered here is high level, in the sense
Assumptions 2 and 3 below are made without detailing assumptions on the DLV model of
equations 1 that would cause them to hold. Given a more concrete formulation of the DLV
model, one could provide more low level assumptions that would imply Assumptions 2 and
3. This is not done here since the intention is not to focus on any particular model.

The first assumption defines the true parameter value:

Assumption 1. The sample Zn = {(yt ,xt)}n
t=1 is generated by the DLV model of equations

1, at the true parameter value θ0.

Next, assume that the chosen endogenous variables, conditioning variables, and instru-
ments define a GMM estimator that is consistent and distributed asymptotically normally.
Of course, this estimator normally is not feasible if the SNM estimator is under considera-
tion, but abstractly, it is assumed to have the usual desirable properties:

Assumption 2. Let θ̂n = argminsn(Zn;θ) where sn(Zn;θ) is defined in equation 6. This
(infeasible) GMM estimator is consistent: θ̂n

a.s.→ θ0 and asymptotically normally distributed:
√

n
(

θ̂n−θ0

)
d→ N (0,V∞) where V∞ is a finite positive definite matrix.

Next, assume that the kernel regression estimator used to define the SNM error functions
in equations 9 and 10 is strongly consistent, uniformly over the conditioning variables, as
the length of the simulation, S, tends to infinite:

Assumption 3. φ̃S(xt ;θ) a.s.→ φ(xt ;θ), for almost all xt , as S→ ∞.



A number of results can justify this assumption, depending on the nature of the model.
For example, supposing that the data Zn generated by the DLV model constitutes a strictly
stationary α-mixing sequence, Lu and Cheng (1997) show that Assumption 3 holds.

Assumption 4. The parameter space Θ over which minimization is done is compact.

With a compact parameter space, the convergence of Assumption 3 holds uniformly over
Θ.

Assumption 5. The simulation length, S, is greater than the sample size, n.

This will allow us to focus on asymptotics as n tends to infinity, without separately deal-
ing with S.

Assumption 6. The instruments are bounded in probability: z j(xt) = Op(1), j = 1,2, ...,kz.

Proposition 1. This is being worked on

Proof of Proposition 1: See the Appendix.
By making S suitably large, it is possible to make φ̃S(xt ;θ) as close as is desired to the

true moment φ(xt ;θ). In principle, S could be chosen large enough so that the differences
between the error functions in equations 2 and 9 (or the M-estimation analogues in equations
3 and 10) are smaller than the machine precision of a digital computer. If this is the case,
the SNM estimator essentially is the infeasible GMM estimator.

A simple Monte Carlo exercise illustrates this point. Samples of size n = 30 were gener-
ated using the classical linear model (CLM)

(15) CLM:


y = β1 +β2x+ ε

x ∼U(0,1)

ε ∼ N(0,1)

The parameters β1 and β2 were randomly drawn (separately) from U(0,1) distributions at
each of 1000 Monte Carlo replications. The maximum likelihood (ML) estimator is the
ordinary least squares (OLS) estimator obtained by regressing y on a constant and x. The
ML estimator may be thought of as a GMM estimator that uses the single (ky = 1) error
function εt = yt −β1−β2xt and the instruments (1,xt). The SNM estimator was applied,
using the endogenous variable yt , the conditioning variable xt and instruments (1,xt). The
simulation length was S = 500000, and the hS = S−1/(4+kx) is chosen using a simple rule-
of-thumb procedure 2. A standard Gaussian kernel was used.

Table 1 gives results that compare the distribution of the difference between the SNM
and GMM estimators to the distribution of the GMM estimator, over the 1000 Monte Carlo
replications. We can see that the difference between the two estimators is distributed tightly
around zero, and that the dispersion of the difference is much less than that of the GMM
estimator. If the value of the SNM estimator is regressed on a constant, the value of the

2See Li and Racine, 2007, pg. 66. Recall that kx is the number of conditioning variables (kx = 1 in the present
case).



GMM estimator, and the value of the true parameter, the results are (estimated standard
errors in parentheses), for the constant, β1:

β̂1(SNM) =−0.00106912
(0.00023012)

+ 1.00292
(0.00030566)

β̂1(GMM)−0.00267236
(0.00050332)

β1

For the slope, β2, we obtain

β̂2(SNM) = 2.50475e-5
(0.00038392)

+ 1.00389
(0.00029626)

β̂2(GMM)−0.000178451
(0.00073023)

β2

In both cases, R2 is higher than 0.999. We see that the SNM and GMM estimators are
essentially identical, independent of the true parameter value.

Recall that the GMM estimator is fully asymptotically efficient for this model. Compar-
ing root mean squared error (RMSE) over the 1000 Monte Carlo replications, the RMSE
of the SNM estimator relative to RMSE of the fully efficient GMM estimator is 1.003 in
the case of β1, and 1.004 in the case of β2. Since the estimators are essentially the same,
so are their efficiencies. The SNM estimator can be very efficient if moment conditions are
well-chosen.

These results illustrate the fact that when a long enough simulation is used the SNM
estimator essentially is the GMM estimator that uses the same endogenous variables and
the same conditioning variables. The GMM estimator adds information about the functional
form of the moment condition, while the SNM estimator fits it nonparametrically. When
S is large enough, the nonparametric fit is so good that the SNM estimator is practically
identical to the GMM estimator. Of course, one would only use the SNM estimator when
the functional form of φ(xt ;θ) is unknown, so that the GMM estimator is infeasible.

2.2.1. Inference and estimation of the optimal weight matrix. Given that the SNM estimator
has the same asymptotic distribution as the infeasible GMM estimator, one can use standard
methods and asymptotic results for GMM estimators to make statistical inferences with the
SNM estimator. For example, an overidentified model’s specification may be tested using
the familiar χ2 test based upon n s̃n(θ̃n), (assuming that an optimal weight matrix is used).

The asymptotic covariance matrix of the moment conditions is

(16) Ω = lim
n→∞

E
[
nm̃n(θ 0)m̃n(θ 0)′

]
where m̃n(θ 0) is defined in equation 12. A consistent estimator of this matrix is needed
if one wishes to use an efficient weight matrix, and in any event it is also needed for hy-
pothesis testing. In the ordinary GMM setting without a fully simulable model, this covari-
ance matrix must be estimated using only the sample data, which requires use of one of
the kernel-based heteroscedasticity and autocorrelation-consistent covariance matrix esti-
mators (for example, that of Newey and West, 1987). It is well-known that inferences based
upon such covariance estimators can be quite unreliable (Hansen, Heaton and Yaron, 1996;
Windmeijer, 2005).
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In the context of the SNM estimator, or any other moment-based estimator that relies
on a fully simulable model, is is possible to estimate Ω though Monte Carlo. The moment
conditions of equation 12 may be simulated many (say, R) times, given an initial consis-
tent estimate of the model’s parameter. Following notation previously used, a simulation of
length equal to the real sample size (n), at the initial consistent estimate θ̃ may be repre-
sented by Z̃n(θ̃) =

{(
ỹt(θ̃), x̃t(θ̃)

)}n

t=1
. We may generate R such samples of size n, and

for each of them calculate simulated moment conditions as in equation 12. The rth such
replication (r = 1,2, ...,R) is(˜̃mn

)
r
= m̃n(

(
Z̃n(θ̃)

)
r
;
(

Z̃S(θ̃)
)

r
)

where
(

Z̃n(θ̃)
)

r
and

(
Z̃S(θ̃)

)
r

are independent simulations of lengths n and S, respectively.

Let m be the average of the R draws of
(˜̃mn

)
r
, and define vr =

(˜̃mn

)
r
−m. Then Ω of

equation 16 may be estimated using

(17) Ω̃ =
n
R

R

∑
r=1

vrv′r

This procedure requires R evaluations of the moment conditions, where R is a reasonably
large number. This is not unduly burdensome computationally, since a large number of
evaluations of the moment conditions is done during the course of iterative minimization of
the objective function s̃n(θ) of equation 13. If it is computationally feasible to minimize
s̃n(θ), then it is also computationally feasible to estimate Ω using the above procedure. This
method has the advantage that it obviates the need for decisions regarding lag lengths, pre-
whitening and so forth that attend the use of kernel-based covariance matrix estimators that
use only the sample data.

To provide some rudimentary evidence of this covariance estimator’s performance, a
Monte Carlo study of 1000 replications was done. Data was generated using the classical
linear model of equations 15. The SNM estimator was applied using a sample size n = 30,

a simulated sample size S = 10000, and R = 1000 draws were used to estimate Ω for each
of the 1000 Monte Carlo replications. The true value of Ω for this model is Ω11 = 1,
Ω12 = 1/2, Ω22 = 1/3. Over the 1000 Monte Carlo replications, the mean and standard
errors (in parentheses) of the replications of Ω̃ are Ω11 : 1.036 (0.048), Ω12 : 0.517 (0.025),
Ω22 : 0.343 (0.015). For this simple model, the covariance of the moment conditions is
estimated quite well using the proposed simulation method. The small upward bias is likely
due to the shortness of the simulation length, S. More careful investigation of the empirical
performance of this covariance matrix estimator is left for future work.

Once the covariance of the moments is estimated, hypothesis testing may then be done
using standard results for GMM estimators with an inefficient weight matrix, or a second
round of estimation may be done using the inverse of Ω̃ to estimate the efficient weight
matrix.
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2.2.2. Choice of the kernel and the bandwidth. To implement the SNM estimator, the ker-
nel function K(·) in equation 8 must be chosen, as must the bandwidth, hS. Regarding the
kernel, in this paper attention is restricted to local constant kernel regression estimators (Li
and Racine, 2007). In this context, much theoretical and empirical evidence shows that the
choice of the particular kernel function has relatively little effect on the results, as long as
the bandwidth parameter is chosen appropriately, given the kernel (Li and Racine, 2007).
For this reason, this paper uses Gaussian product kernels exclusively, accompanied by prior
rotation of the data to approximate independence of the conditioning variables. Gaussian
product kernels lead to error functions that are continuous and relatively smooth in the pa-
rameters, which facilitates iterative minimization. Kernels such as the radial symmetric
Epanechnikov are relatively inexpensive to compute, but can lead to error functions that are
discontinuous in the parameters, which complicates minimization of the objective function
that defines the SNM estimator. This paper leaves the possibility of SNM estimation based
on local linear or local polynomial kernel methods for future work.

Given the kernel function, the bandwidth must be chosen. The bandwidth does have an
important effect upon the quality of the kernel regression fit. Too large a bandwidth over-
smooths the data, and induces a fit with low variance but high bias. Too small a bandwidth
has the opposite effect. The bandwidth may be chosen using data-driven methods such as
leave-one-out cross validation, or by using rule-of-thumb methods that are known to work
well in certain circumstances but may perhaps perform poorly in others. In this paper, a
simple rule-of-thumb method is used throughout, since investigation of data-driven methods
would add substantially to the computational burden of the Monte Carlo work presented
below. It is expected that use of a data-driven method would improve the performance of
the SNM estimator. Future work will address this issue more carefully.

2.2.3. Computational issues. Estimation of a complicated model using long simulation
may become computationally burdensome, since kernel smoothing is a computationally
intensive procedure. In common with normal GMM estimators (Chernozhukov and Hong,
2003, especially pp. 296-298), the SNM objective function is not globally convex, so one
needs to take care to find the global minimum by using estimation methods such as simu-
lated annealing (Goffe et al., 1994). One may seek to use data-based methods to choose the
bandwidth, as well. These factors imply that use of the SNM estimator is computationally
intensive. However, kernel regression fitting, which is at the heart of the SNM estimator,
is easily parallelized (Racine, 2002; Creel, 2005), as is Monte Carlo work (Creel, 2007).
The widespread availability of multicore processors is an invitation to take advantage of
parallelization opportunities in econometric work. All of the results reported in this paper
were obtained on a computational cluster that provided a total of 16 CPU cores, running
the PelicanHPC distribution of GNU/Linux3. To give an idea of the computational demands

3PelicanHPC is described at http://pareto.uab.es/mcreel/PelicanHPC. It is the evolution of the
ParallelKnoppix distribution of GNU/Linux, which was described in Creel (2007).

http://pareto.uab.es/mcreel/PelicanHPC


12 MICHAEL CREEL

associated with the SNM estimator, the results reported in this paper required roughly 10
days of computational time on this cluster.

3. MONTE CARLO RESULTS

This section presents Monte Carlo results that compare the SNM estimator to other esti-
mators that have been proposed for estimation of DLV models. The intention is to show that
the SNM estimator can be used to successfully estimate a variety of DLV models, that the
SNM estimator performs well in comparison to alternative estimators, and to give examples
of how the moment conditions that define the SNM estimator may be chosen.

All of the simulations shared the following features. The SNM estimator was imple-
mented using a Gaussian product kernel. Both the simulated and real conditioning variables
were transformed in two ways before applying the Gaussian kernel. First, they were individ-
ually shifted and scaled so that their minima and maxima were -4 and 4, respectively. This
”compactification” ensures that trial parameter values cannot generate extreme outliers that
have no neighbors close enough to generate a positive weight when evaluating the kernel.
This transformation is done to provide numeric stability, which is needed when many Monte
Carlo replications of a nonlinear minimization are to be done. The second transformation is
to multiply by the inverse of the Choleski decomposition of the sample covariance matrix of
the real conditioning variables (after the first transformation), before applying the Gaussian
kernel. The transformed variables are thus more nearly independent, which makes use of a
product kernel more reasonable. In all cases the rule of thumb bandwidth h = S−1/(4+kx) was
used, where kx is the number of conditioning variables. Likewise, the M-estimation error
functions of equation 3 were always used, since they were found to provide good numerical
stability during the course of many nonlinear minimizations. Future work could explore ef-
ficiency issues with regard to the choice of error functions. In all cases a simulation length
of S = 10000 was used, to limit the computational burden. For the same reason, only first
round estimates using an identity weight matrix were calculated. For each problem, 500
Monte Carlo replications were calculated. Because the SNM objective function is not nec-
essarily globally convex, care is needed to ensure that the global minimum of the objective
function is found. For each Monte Carlo replication, minimization was done using an initial
course of simulated annealing that involved at least 300 trial values for the parameter vector,
followed by use of a quasi-Newton method iterated to convergence.

3.1. Stochastic volatility. Andersen, Chung and Sorensen (1999) provide Monte Carlo
results comparing EMM with GMM in the context of a simple stochastic volatility model.
Adapting the notation to conform with the general DLV model of equation 1, the model is

(18) SV1:

yt = exp(y∗t /2)ε1t

y∗t = α +βy∗t−1 +σε2t

where the white noise εt = (ε1t ,ε2t)
′ is distributed i.i.d. N(0, I2). The stochastic volatility

model of equation 18 will be referred to as SV1. Andersen, Chung and Sorensen apply
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GMM using a number of unconditional moments (see Andersen and Sorensen, 1996, for
details), and they implement EMM using a number of auxiliary models, including some
that use a semi-nonparametric density.

Here I report Monte Carlo results for SNM estimation of this model, using the parameter
values (α,β ,σ) = (−0.736, 0.9, 0.363), which is the case on which Andersen, Chung and
Sorensen focus. The sample size is n = 1000 observations. The endogenous variables used
to define the error functions are y2

t and y2
t y2

t−1(scaled to make their transformed standard
errors of the same order of magnitude). The first of these seems a natural choice to provide
information on α and σ . The second is intended to capture the temporal correlation of
the variance, which should give information on β . The conditioning variable is y2

t−1. The
instruments are the same conditioning variable, plus a vector of ones. Two endogenous
variables and two instruments imply a total of four moment conditions. Estimation was
done by minimizing the objective function in equation 13, using the M-estimation error
functions, as in equation 10.

Of the 500 replications, one failed to converge to the specified tolerances for the function,
gradient and change in parameters within the limiting number of iterations, though it did not
crash. Inclusion or exclusion of this replication does not change the results in any important
way. The results presented in Table 2 use the 499 replications that iterated to convergence.
These results can be compared to those given in ACS’s Table 2 (page 72), which gives results
for GMM and EMM estimators, using the same sample size. For purposes of comparison,
the last row of Table 2 gives the lowest RMSE from ACS’s Table 2. For the α and β

parameters, the SNM estimator obtains a considerably lower RMSE than the best of the
estimators considered by ACS. In the case of σ , the infeasible GMM estimator and several
of the EMM estimators do a little better than the SNM estimator.

Fermanian and Salanié (2004) and Altissimo and Mele (2007) perform Monte Carlo
studies using a similar stochastic volatility model, parameterized as

(19) SV2:

yt = σb exp(y∗t /2)ε1t

y∗t = φy∗t−1 +σεε2t

The stochastic volatility model of equation 19 will be referred to as SV2. The design of the
parameters in both of these papers is (φ ,σb,σε) = (0.95,0.025,0.260), and in both cases a
sample size of n = 500 observations is used. I use the same design and sample size here.

The SNM estimator was used to estimate the SV2 model using the endogenous variables
yt , y2

t and y2
t y2

t−1(with scaling to make the variables’ standard errors of the same order of
magnitude) and conditioning variables yt−1and y2

t−1. The instruments are the same condi-
tioning variable, plus a vector of ones. Three endogenous variables and three instruments
imply a total of nine moment conditions used to estimate the three parameters. All of the
500 Monte Carlo replicates converged to the required tolerances. In Table 3 we can see
that the SNM estimator gives a considerably more precise estimate of φ than do the other
estimators. For σε and σb, all of the estimators obtain similar RMSEs.
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Comparing Tables 2 and 3, we see that the SNM estimator is considerably biased for the
σ parameter of the SV1 model and the σε parameter of the SV2 model. Use of different
moment conditions or an optimal weight matrix could possible reduce this bias. However,
interest usually centers on the autoregressive parameter of the latent process, and for this
parameter the SNM estimator performs quite well.

3.2. Autoregressive Tobit. Fermanian and Salanié (2004) used an autoregressive Tobit
model to illustrate their nonparametric simulated maximum likelihood (NPSML) estimator.
This model, with notation adapted to follow the general DLV model of equation 1 of this
paper, may be written as:

(20) AR Tobit:


yt = max(0,y∗t )

y∗t = α +βy∗t−1 +σεt

εt ∼ IIN(0,1)

This model has one observable variable, yt , a single latent variable, y∗t and a scalar white
noise εt . Fermanian and Salanié’s Monte Carlo example used the true parameter values
(α,β ,σ) = (0.0, 0.5, 1.0) and the sample size n = 150. This same design is used here. To
apply the SNM estimator, four error functions are used. The four endogenous variables used
to define error functions are yt (to provide information on α), y2

t (to provide information on
σ ), and ytyt−1 and ytyt−2 (to provide information on β ). Each of the four error functions is
conditioned on yt−1. The instruments are the same conditioning variable, plus a vector of
ones. With 4 endogenous variables and two instruments, a total of 8 moment conditions is
used to estimate the three parameters of the model

Table 4 reports the results, along with Fermanian and Salanié’s results for comparison.
Of the 500 Monte Carlo replications, 499 converged properly. The other replication had
not converged within the limiting number of iterations of the quasi-Newton algorithm, and
it is dropped (its inclusion does not cause any significant change in the results). The SNM
estimator has lower standard errors, but is more biased than the NPSML estimator. For α,

the SNM estimator has the lowest RMSE. For β the two estimators have similar RMSEs,
and for σ the NPSML estimator has the lowest RMSE. One might note that the conditioning
variable in this case is not a strictly continuous random variable, and as such, a Gaussian
kernel may not be a good choice. Methods for kernel estimation using mixed discrete/con-
tinuous regressors are discussed by Li and Racine (2007).

3.3. Factor ARCH. Billio and Monfort (2003) illustrate the kernel-based indirect infer-
ence (KBII) estimator with several Monte Carlo examples, one of which is a simple factor
ARCH model. The model has a scalar common latent factor, y∗t , and two observed endoge-
nous variables, yt = (y1t ,y2t)

′. The 2×1 dimensional parameter β has its first element set to
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1, for identification. The model, referred to as FA, is

(21) FA:


yt = βy∗t + ε1t

y∗t =
√

htε2t

ht = α1 +α2
(
y∗t−1

)2

t = 1,2, ...,n, where ε1t ∼ N(0,σ2I2) and ε2t ∼ N(0,1) . The parameter vector design is
(α1,α2,σ ,β2) = (0.2, 0.7, 0.5, −0.5).

The error functions for SNM estimation of the FA model were defined using three en-
dogenous variables: the squares of the two components of yt , and the cross product, zt ≡
y1ty2t . Use of the cross product was found to be helpful for obtaining precise estimates of
β2. These variables were each conditioned on the squares of the two components of yt−1 and
on the lag of the cross product, zt−1. The instruments were the same conditioning variables,
plus a vector of ones. With four instruments and three endogenous variables, a total of 12
moment conditions were used in estimation.

All of the 500 Monte Carlo replications obtained normal convergence. Table 5 reports
the results, together with the lowest RMSE that Billio and Monfort obtain using several
versions of kernel-based indirect inference, indirect inference, and simulated method of
moments (see Billio and Monfort, 2003, Table 5, page 317). For all four parameters, the
SNM estimator dominates the estimators considered by Billio and Monfort in terms of low-
est RMSE, though for α2 the bias of the SNM estimator is somewhat larger than one would
like.

3.4. Summary. This section has illustrated how the SNM estimator may be applied in the
estimation of several DLV models. Moment conditions can be chosen with an eye to the
information that they provide about specific parameters. The combination of M-estimation
error functions, compactification of the conditioning variables, and use of simulated an-
nealing to find good start values lead to a numerically stable estimator that almost always
converges. The SNM estimator has been applied subject to several limitations: 1) the sim-
ulation length in all cases was quite short (S = 10000); 2) the bandwidth parameter (hS in
equation 8) has in all cases been a naive rule-of-thumb rather than a data-based rule that can
adapt to the nature of the data that a model generates; and 3) an efficient weighting matrix
has not been used.

4. APPLICATION: DOLLAR-MARK EXCHANGE RATE

To illustrate application of the SNM estimator to real data, and to offer an additional
comparison of the SNM estimator to the EMM estimator, this section presents SNM esti-
mates of the parameters of the stochastic volatility model used by Gallant and Tauchen in
the User’s Guide to the EMM software package (Gallant and Tauchen, 2007) to illustrate
the EMM estimator. The data consists of 834 observations of the weekly percentage change
of the US dollar to German mark exchange rate, over the years 1975 to 1990. The data is
included with the EMM software, and is used here without any alterations. The model used
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by Gallant and Tauchen, with notation adapted to that of the general DLV model of equation
1, and referred to in the following as the SV3 model, is

(22) SV3:


yt = α0 +α1(yt−1−α0)+ exp(y∗t )ε1t

y∗t = β0 +β1(y∗t −β0)+ν∗t

ν∗t = s
(

rε1t +
√

1− r2ε2t

)
This model includes the possibility of correlation between the innovations of the observable
and latent variables (”leverage”), though the inclusion of ε1t in the first and third equations.
It also allows for slight predictability of returns though the autoregressive term in the first
equation.

The SNM estimator is applied using M-estimation error functions, and a simulation
length of S = 100000. The rule-of-thumb window width is used. The three endogenous
variables used to define the error functions are yt , zt ≡ (yt − ȳ)2 and ztzt−1. The condition-
ing variables are yt−1 and yt−2. The instruments are the same two conditioning variables,
plus a vector of ones. There are 3 endogenous variables and three instruments, for a total of
9 moment conditions used to estimate the 6 parameters θ = (α0,α1,β0,β1,s,r)′.

Table 6 presents the SNM estimation results, along with EMM estimation results taken
from Gallant and Tauchen (2007), for comparison. The first column gives SNM results
using an identity weight matrix, while the second column reports results based on the esti-
mated efficient weight matrix (equation 17), using R = 2000 replications. Comparing the
first and second columns, one may note that use of the efficient weight matrix does not
have an important effect on the parameter estimates, nor on the estimated standard errors.
The two versions of the SNM estimator give very similar results. Comparing the first two
columns with the third, we see that the EMM estimator gives estimates of β1 and r that
are somewhat higher than the SNM estimates. The SNM estimates suggest that leverage is
negative (r < 0), so that a negative shock to returns is associated with a positive shock to
volatility. This is in line with previous evidence (Yu, 2005). The EMM estimates imply a
positive leverage effect. For the SNM estimator, the χ2 test based on the sample size times
the objective function value4 strongly suggests rejection of the model, though the reliability
of this test in the case of the SNM estimator is unknown at present. The EMM estimator
also suggests that the model might suffer from misspecification, though the p-value of the
χ2 test is not so low as is the case with the SNM estimator.

5. CONCLUSION

This paper has proposed a simulated method of moments estimator that allows use of
conditional moments, in the case of general dynamic latent variable models. The estimator
is consistent and asymptotically normally distributed, with the same asymptotic distribution
as that of the infeasible GMM estimator defined by the same moment conditions. The Monte
Carlo results show that use of conditional moments allows the proposed simulated method

4The test statistic is n s̃n(θ̃n), where s̃n(θ̃n)is given in equation 13. There are 3 degrees of freedom.
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of moments estimator to obtain efficiency that is very competitive with other estimation
methods.

The SNM estimator relies on the user specifying the moment conditions to use in estima-
tion, as is the case with any method of moments estimator, but the rest of the process can be
automatized in software to a high degree. In the present implementation, the kernel function
is a Gaussian product kernel, and the bandwidth is chosen using a given rule that depends
only on the number of conditioning variables and on the simulation length. One can use
the proposed Monte Carlo estimator of the efficient weight matrix that requires no tuning or
pre-whitening decisions. Some of the other estimators to which the SNM estimator is com-
pared in this paper require much more active decision making on the part of the modeler.
An example is the newer version of the EMM estimator that uses MCMC methods, as pre-
sented in Gallant and Tauchen (2007). This version of EMM requires estimation of a SNP
density augmented by a leading parametric model to define the score generator. Selection of
the parameterization of the score generator is complicated by the fact that it involves many
parameters. After estimation of the score generator, the model is estimated using MCMC
methods that also require judgement about proper tuning of the Markov chain. Another
example is the KBII estimator proposed by Billio and Monfort. Selection of the points at
which the binding functions are evaluated is a non-trivial issue which requires judgement.
The Monte Carlo results reported here suggest that the SNM estimator can give good per-
formance without requiring the modeler to make any decisions other than the set of moment
conditions to use.

The Monte Carlo results provided in this paper show that the SNM estimator achieves
root mean squared errors that are often better than those of alternative estimators, and are
rarely worse. These results are quite acceptable as they stand, but it is anticipated that they
may be improved upon in the future, for two reasons. First, use of an estimated optimal
weight matrix is likely to improve efficiency of estimation. Preliminary results suggest that
the covariance matrix of the moment conditions can be estimated quite reliably using a
Monte Carlo estimator. Future work will investigate the performance of the SNM estimator
using an estimated optimal weight matrix. Secondly, a data-based method of choosing the
smoothing parameter could improve the fit of the kernel smoother to the true conditional
expectations, which would likely improve the results of the SNM estimator. These are sim-
ple, obvious extensions to expore. Additional topics for further research include methods to
obtain a high precision fit to the conditional moments that define the estimator while using
less computational time. Possibilities include the use of sieve estimation methods instead
of kernel smoothing, use of approximate nearest neighbors, and use of high performance
algorithms for kernel smoothing, such as the improved fast Gauss transform (Yang et al.,
2003). Use of an optimal bandwidth may also be helpful for this purpose, since it may be
possible to obtain the same quality of fit to φ(xt ;θ) while using a shorter simulation length.
Another interesting possibility is to attempt to use optimal or approximately optimal instru-
ments. Use of a local linear kernel function instead of the local constant kernel used in this
paper would automatically provide estimates of the derivatives ∂φ(xt ;θ)/∂x′t (see equation
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2) of conditional moments with respect to each of the conditioning variables, which could
be of use in attempting to approximate optimal instruments.

A CD image that provides the current implementation of the SNM estimator with exam-
ples is available on request from the author.

6. APPENDIX

Proof of Proposition 1: As n grows, Assumptions 3 and 5 let us state that

(23)
(

φ(xt ;θ)− φ̃(xt ;θ)
)

j
= op(1)

for j = 1,2, ...,ky. Recall that there are kykz moment conditions. Considering the difference
between m(xt ;θ) (defined in (4)) and m̃(xt ;θ) (defined in (11)), focus on the qth of the kykz

elements of these vectors. Say that this element is the interaction between the jth error
function and the rth instrument (r = 1,2, ...,kz). Then

(m̃(xt ;θ)−m(xt ;θ))q = (z(xt))r

(
yt − φ̃(xt ;θ)

)
j
− (z(xt))r (yt −φ(xt ;θ)) j

= (z(xt))r

(
φ(xt ;θ)− φ̃(xt ;θ)

)
j

= Op(1)op(1)

= op(1),

by Assumption 6 and equation 23. Averaging over all observations gives

(m̃n(θ)−mn(θ))q =
1
n

n

∑
t=1

op(1)

= op(n−1)

Furthermore, this holds for all of the moment conditions q = 1,2, ...,kykz. Given this, the
objective function that defines the SNM estimator can be written as

s̃n(θ) = m̃′n(θ)W (τ̂n)m̃n(θ)

= m′n(θ)W (τ̂n)mn(θ)+op(n−1)

= sn(θ)+op(n−1)

Need to finish this!
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TABLES

Table 1: Monte Carlo Results: CLM (equation 15). SNM-GMM is the difference between
the SNM and the GMM estimators.

β1 β2
Mean St. Dev. Min Max Mean St. Dev. Min Max

SNM-GMM -0.001 0.004 -0.015 0.014 0.002 0.007 -0.020 0.025
GMM 0.489 0.473 -0.867 2.143 0.524 0.723 -1.510 2.964

Table 2: Monte Carlo Results: SV1 (equation 18).
* = source: Andersen et al. (1999, Table 2, page 72)

α =−0.736 β = 0.90 σ = 0.363
Mean St. Dev. RMSE Mean St. Dev. RMSE Mean St. Dev. RMSE

SNM -0.653 0.190 0.208 0.916 0.025 0.029 0.285 0.099 0.126
EMM/GMM* -0.80 0.32 0.33 0.89 0.04 0.04 0.35 0.10 0.10

Table 3: Monte Carlo Results: SV2 (equation 19).
* = source: Fermanian and Salanié (2004, Table 4, page 717)
** = source: Altissimo and Mele (2007, Table 1, page 48)

φ = 0.95 σb = 0.025 σε = 0.26
Mean St. Dev. RMSE Mean St. Dev. RMSE Mean St. Dev. RMSE

SNM 0.973 0.031 0.038 0.023 0.002 0.003 0.131 0.093 0.158
NPSML* 0.913 0.10 0.107 0.022 0.003 0.004 0.318 0.17 0.180

CD-SNE** 0.909 0.102 0.110 0.024 0.003 0.003 0.229 0.131 0.134
J-SNE** 0.942 0.095 0.095 0.027 0.005 0.005 0.297 0.144 0.149

Table 4: Monte Carlo Results: AR Tobit (equation 20).
* = source: Fermanian and Salanié (2004, Table 1, pg 715)

α = 0.0 β = 0.5 σ = 1.0
Mean St. Dev. RMSE Mean St. Dev. RMSE Mean St. Dev. RMSE

SNM 0.102 0.117 0.155 0.411 0.109 0.140 0.700 0.130 0.327
NPSML* -0.010 0.215 0.215 0.510 0.151 0.151 0.810 0.184 0.264
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Table 5: Monte Carlo Results: FA (equation 21).
* = source: Billio and Monfort (2003, Tables 3, 4 and 5, pp. 313-317). The ”other” estimator
is that with the lowest RMSE for the given parameter.

α1 = 0.2 α2 = 0.7
Mean St. Dev. RMSE Mean St. Dev. RMSE

SNM 0.172 0.087 0.092 0.516 0.134 0.227
Other* 0.244 0.125 0.132 0.659 0.306 0.309

σ0 = 0.5 β20 =−0.5
Mean St. Dev. RMSE Mean St. Dev. RMSE

SNM 0.503 0.053 0.053 -0.480 0.109 0.111
Other* 0.461 0.135 0.141 -0.445 0.263 0.269

Table 6: Estimation Results: SV3 (equation 22) model for dollar-mark exchange rate
* = source: Gallant and Tauchen (2007, pp. 51-52). The EMM estimate is the mode, and
the EMM standard errors are those based upon the Hessian matrix.

SNM, inefficient weights SNM, efficient weights EMM∗

χ2(3) =51.15 (p=0.000) χ2(3) =8.67 (p=0.02)
Est. s.e. Est. s.e. Est. s.e.

α0 0.048 0.010 0.047 0.010 0.066 0.024
α1 0.039 0.009 0.038 0.008 0.035 0.028
β0 -0.048 0.012 -0.044 0.014 0.098 0.098
β1 0.874 0.007 0.858 0.012 0.940 0.023
s 0.154 0.006 0.165 0.011 0.181 0.019
r -0.069 0.016 -0.076 0.018 0.117 0.085
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