
Sincerity in Simple and Complex Voting Mechanisms

Abstract

We discuss sincere voting when voters have cardinal preferences over alter-

natives. We interpret sincerity as opposed to strategic voting, and thus de�ne

sincerity as the optimal behavior when conditions to vote strategically diminish.

When voting mechanisms allow for only one message type (simple voting mecha-

nisms) we show that eliminating some conditions for strategic voting, individuals�

optimal behavior coincides with an intuitive and common de�nition of sincerity.

In order to obtain a precise de�nition of sincerity in voting mechanisms allow-

ing for multiple message types (complex voting mechanisms) further restrictions

on strategic voting are required. We illustrate our methodological approach using

approval voting (AV) as a prime example of complex voting mechanisms for which

no conclusive de�nition of sincerity exists in the literature.
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1 Introduction

In this paper we discuss we discuss a new approach to de�ning sincerity in voting mechanisms.

A de�nition of sincerity is important since it allows to compare the properties of di¤erent

voting rules with respect to voters�strategic behavior. Under di¤erent voting mechanisms,

and given voters�preferences over alternatives, voters may be better able to favour the election

of preferred outcomes by behaving strategically instead of sincerely and thus, manipulate the

voting mechanism.1 In order to provide a general de�nition of sincerity, our approach is to

consider this strategic component of voting and eliminate it.

There exists ample literature on the de�nition of sincerity for di¤erent voting mechanisms

and on which voting rules may achieve it.2 Brams and Fishburn (1978) de�ne sincere voting

as non-strategic behavior in which individuals vote �directly in accordance with their prefer-

ences�. The problem arises because translating preferences over alternatives to sincere votes

may not be direct under some voting rules, since they may demand to structure votes in a

di¤erent format than preferences may be speci�ed.

Since the majority of the voting literature limits the analysis to ordinal preferences over

alternatives, votes are normally structured in the same format as preferences and thus, this

problem has not been highlighted.3 However, it seems plausible to assume that voters may be

able to quantify di¤erences between alternatives and thus, they may have cardinal preferences

over them. Under cardinal preferences, if a voting mechanism exactly required all cardinal

information, the de�nition of �sincere voting�would be straightforward. A sincere �vote�

would just be the declaration of the cardinal utility that each alternative gives to a voter.

Consider the following example. There are three alternatives x; y and z that yield the

following utilities to a voter: U(x) = 0:8; U(y) = 0:5 and U(z) = 0:1. A voting rule that

required all cardinal information would have associated as �sincere voting�the revelation of

utilities 0:8; 0:5 and 0:1 respectively.

However, the majority of voting mechanisms only require (partial) ordinal information

1Any voting rule is subject to strategic voting behaviour when its range has at least three

alternatives and there are no dictators (Gibbard (1973), Satterwhaite (1975).
2Starting with Farquharson (1969).
3See, for example, Arrow (1951), Fishburn (1973) and Nurmi (1987).
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from voters and thus a de�nition of sincerity may be more complicated. Votes may be

understood as messages since they transmit information on the desirability of the alternatives

for the voters. The translation of cardinal utilities to non-cardinal votes may then depend

on the number (and type) of messages each voting mechanism allows.

If the voting mechanism only allows for one possible message type (simple voting mecha-

nism) then identifying sincere behavior is not so problematic. A sincere vote would be the one

that intuitively �best represents�the order of the cardinal preferences, given the restrictions

of the voting mechanism. For example, the plurality rule is a clear case of a voting rule that

allows for only one message type, since voters can only choose between singletons (with the

meaning of a superior alternative, since the aggregation process will consider positively such

singletons). Thus, sincere voting under Plurality Rule (PR) would intuitively �t with voting

(in the top set) for the alternative that yields highest utility to the voter. In our example, a

sincere voter under PR would then declare her real preferences by voting for alternative fxg.

Intuitively, any other possible message, for example, fzg would be a worse representation of

the voter�s real cardinal preferences and thus, would not be sincere.

There are however several voting rules that allow for more than one message type (complex

voting mechanisms). In such cases, there exists ambiguity about what the best representa-

tion of cardinal preferences would be. Consider Approval Voting (AV) as an example of

complex voting rules. Under AV the decision of whether to include an alternative among the

�approved�ones or not may naturally depend on the di¤erence in cardinal utility between

alternatives: if the voter was only allowed to approve her �best alternative�(to choose from

the set of singletons of 2fx;y;zg) then voting fxg would intuitively be sincere as previously

mentioned. On the other hand, if the voter was only allowed to vote for pairs of alternatives

(which is what Negative Voting would do), then voting fx; yg would be sincere as it best �ts

with her cardinal preferences given the restrictions. However, as AV allows voters to specify

any subset of alternatives as the set of approved options, it may not be clear whether voting

fxg or fx; yg is the sincere message, if at all.

We use a new approach to obtain precise de�nitions of sincere voting behavior for simple

and complex voting mechanisms. We consider a voter under a hypothetical situation in which

conditions to behave strategically are diminished and de�ne sincerity as her optimal voting

strategy under such conditions.
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Strategic voting implies balancing the relative preference for the di¤erent alternatives

against the relative likelihood of in�uencing the outcome of the election.4 Notice that whether

a voter assesses that her vote may a¤ect the outcome depends on how she thinks other voters

will vote. Strategic behavior may thus be enhanced the more information voters have on the

strategies of other voters. Weber (1978) and Merrill and Nagel (1987) go as far as claiming

that in settings where voters have little access to information concerning either the preferences

of other voters or their intended behavior, voters can be presumed to vote sincerely, since the

lack of information means there is no basis for voting �in some clever strategic way�. Our

�rst two results formally study this claim. Theorem 1 shows that Weber�s (1978) intuition is

correct for the class of voting mechanism which we de�ne as simple. We show that in simple

voting mechanisms the optimal strategy of a voter with no information on other voters�

strategies is unique and independent of the size of the electorate. We thus de�ne sincere

voting behavior as this optimal strategy for voting rules that allow for only one message

type.

However, our theorem 2 shows that the previous result cannot be directly extended to

complex voting mechanisms. We show that in complex voting mechanisms the optimal strat-

egy for any voter when information on others�strategies is eliminated may not be unique.

For example, it may depend on other conditions that facilitate strategic behavior, such as the

size of the electorate. Thus, it cannot be the case that we consider this optimal behavior as

a precise de�nition of sincerity, since how sincere a vote is should not vary with the number

of voters.

We thus consider new conditions that may diminish strategic behavior. A natural intuition

emerging from the example used to prove Theorem 2 is that the larger the electorate the lower

the manipulative e¤ect of a strategic vote on the outcome of the election may be. Therefore,

following our approach, we de�ne sincere voting as the optimal strategy when i) there is no

information on other voters�preferences over alternatives and, ii) the size of the electorate

tends to in�nity.

Finally, we check this de�nition of sincerity for a particular example of complex voting

mechanisms: Approval Voting (AV). Theorem 3 shows that the optimal strategy under these

conditions coincides with an ad-hoc de�nition of sincerity in AV previously discussed in the

4See Fisher and Myatt (2002).
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literature. This de�nition considers �sincere�to approve all alternatives that yield (cardinal)

utility above the average of the utilities. Our result thus provides new support to this intuitive

de�nition as a consequence of eliminating those features of the problem that generate strategic

behavior.

We have focused on the case of three alternatives x; y and z: Although this case is of course

special, it is the simplest one allowing to di¤erentiate between voting rules while maintaining

conditions for strategic voting to appear.5

The rest of the paper is organized as follows. Section 2 shows the notation and the basic

assumptions made. Section 3 discusses a �rst de�nition of sincerity when information on

voters�preferences is eliminated and its validity for simple and complex voting mechanisms

(Theorems 1 and 2). In Section 4 we present a second de�nition of sincerity by imposing

additional requirements and we use it to describe sincerity in Approval Voting (Theorem 3).

Section 5 concludes.

2 Notation and De�nitions

Consider a set of n agents f1; 2; :::; ng and a set of three alternatives X = fx; y; zg: Individuals

are endowed with cardinal utilities over alternatives U = (Uj(k)) with j 2 f1; 2; :::; ng;

k 2 X and Uj(k) 2 [0; 1]. For the elegance of the exposition, assume that there are not two

alternatives providing the same utility to each agent.6

In general, every voting system does not allow voters to make explicit their utility over

alternatives. Each voting mechanism has an associated codi�ed method of communicating

such utilities, which restricts and standardizes the information that voters can transmit.

Assume there exists a set of messages M from which each agent has to choose one. Such

message is the agent�s vote and transmits information on her preferences. In this paper we

consider sets of messages M containing either linear orders over X or subsets of X:7

Consider any bijective mapping � : X ! X. Given a message m 2 M , with m being a

5See Myerson and Weber (1993), Myerson (2002) and Dhillon and Lockwood (2004).
6Parallel results are obtained without such assumption, although proofs become tedious

without adding further insights.
7Messages on linear orders or subsets of alternatives are the most common approach to

voting.
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linear order, then �(m) is a linear order such that: x �(m)y , �(x) m �(y): Given a message

m 2 M , with m being a subset of alternatives m = fx1; :::; xtg; then �(m) denotes a subset

of alternatives such that: �(m) = f�(x1); :::; �(xt)g: We say that two messages m and m0

belong to the same message type if there exists a bijective mapping � : X ! X such that

m0 = �(m). We now impose an additional condition on the valid sets of messages in order

to avoid voting mechanisms to be biased towards alternatives: if the set of possible messages

M contains a message m then it also contains any other message of the form �(m), i.e.,

m 2M;� : X ! X a bijective mapping =) �(m) 2M . The class of messages which belong

to the same message type as m is denoted by [m]:

A voting mechanism V : Mn ! 2fx;y;zg can be de�ned as the composition of a set of

messages (among which the voters can choose one) and an aggregation process of the collected

messages such that some alternatives are chosen.8 We refer to elements of Mn as m =

(m1; :::;mn) with mj 2 M for j = 1; :::; n: We naturally denote �(m) = (�(m1); :::; �(mn)):

Finally, we denote, as usual, m�j = (m1; :::;mj�1;mj+1; :::;mn):

A voting mechanism may allow a set of possible messages with several message types.

We �rst classify voting mechanisms according to the number of message types associated to

them. The crucial property to study sincerity will be whether voting mechanisms have a

single or several message types associated to them.

De�nition 1 A voting mechanism is said to be simple if it only allows for one message type:

Otherwise, it is said to be complex.

Two examples of simple voting mechanisms are the Borda Rule and the Plurality Rule.

In the former, the set of possible messages contains all linear orders over alternatives while

in the latter, the set of possible messages contains all singletons, i.e., M = ffxg; fyg; fzgg:

A prime example of a complex voting mechanism is Approval Voting. We will formally

de�ne it below as we will discuss it thoroughly in the following.

Once we have discussed messages, we now brie�y refer to the aggregation process. In

particular, we now de�ne some properties on how voting mechanisms may aggregate messages

to select alternatives.
8Merril and Nagel (1987) also di¤erentiate between balloting methods and the decision

rules that produce an outcome.
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De�nition 2 A voting mechanism V is Neutral in alternatives if for any permutation � of

the set of alternatives and any m in Mn; then V (�(m)) = � (V (m)) :

Neutrality in alternatives implies that the names of the alternatives do not a¤ect their

election.

Our second de�nition refers to the monotonicity of the aggregation process. We distin-

guish between voting mechanisms composed by linear orders or subsets as messages.

De�nition 3 A voting mechanism V with M containing linear orders (respectively subsets

of alternatives) is weakly monotonic if for any alternative x; for all y; z 2 Xnfxg; for all j 2

f1; :::; ng and for any pair of messages�collections m and m0 with y mj z () y m0
j z and x

mj y =) x m0
j y; (respectively y 2 m() y 2 m0 and x 2 mj =) x 2 m0

j) , then:

x 2 V (m) =) x 2 V (m0) ;

fxg = V (m) =) fxg = V (m0) :

Our monotonicity condition is mild. It just implies that if an agent�s message is modi�ed

such that it favours an alternative x, the voting mechanism responds accordingly. Thus, if

x was in the elected set before modifying agent�s message in a particular way, then it is also

elected under the new message. Similarly, if x is the only elected alternative then it must

also be the only elected alternative under the new message.

Finally, we de�ne Approval Voting, which is an example of a voting rule that satis�es

Neutrality in alternatives and Monotonicity. We will use it in sections 3 and 4.

De�nition 4 A voting mechanism V is Approval Voting if M = 2fx;y;zg and the selected

alternatives are those that maximize the number of messages in which they appear. 9

Using the above de�nitions, our goal is to de�ne sincere voting behavior for voting mech-

anisms. We understand sincere voting behavior as opposed to strategic behavior. The latter

9In the spirit of Merril and Nagel (1987), they would claim that AV is our balloting

method, while, given our de�nition, the outcome of the election is decided under Plurality

Rule. Our de�nitions consider both characteristics of voting rules, i.e., the set of available

messages and the way to aggregate them.
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comprises the possibility of favouring the election of preferred outcomes by misrepresenting

sincere messages. There exist some conditions that may facilitate the appearance of strategic

behavior. For instance, the in�uence of an individual agent�s message on the outcome of the

election or the amount of information agents have on others�preferences over alternatives.

Our approach is to de�ne sincere voting as the optimal voting strategy when the conditions

that ease strategic behavior are diminished. Since such approach requires to study how agents

react to uncertainty, we impose the following two assumptions.

Assumption 1 In the absence of information on other agents� preferences over alter-

natives, agents believe that any possible combination of others�messages is equally probable.

Formally, for all j and for all m�j 2 Mn�1; pj(m�j) = ( 1]M )
n�1 where pj(m�j) is the

probability with which agent j beliefs other agents will transmit messages m�j :

Notice that the probability each agent assigns to any combination of messages by other

agents clearly depends on the cardinality of the set of messages. In particular, for the case

of AV, 8j and for all m�j 2Mn�1; pj(m�j) =
�
1
2]X

�n�1
:

Assumption 2 Given agents�beliefs, they maximize their expected utility over alterna-

tives.

Assumptions 1 and 2 are a simple way for voters to resolve the uncertainty about others�

preferences. Notice that we aim to strengthen conditions that eliminate strategic voting

and thus, our assumptions refer to cases in which agents can not form clear expectations

about how others will vote. Moreover, these assumptions may have a behavioral support.

Both assumptions are also the common starting point to de�ne k-levels of rationality in the

literature on degrees of cognitive complexity which has found certain experimental validity.10

3 Sincerity and Informational Conditions

We aim to de�ne sincere voting as the best response strategy when the possibility of strategic

behavior is diminished. In particular, in this section we study whether we can de�ne sin-

cere voting behavior as the optimal behavior when voters do not have information on other

10See Stahl (1993), Stahl and Wilson (1994, 1995), McKelvey and Palfrey (1995), Costa-

Gomes, Crawford and Broseta (2001) and Goeree and Holt (2004).
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voters�preferences. Theorem 1 shows that when voting mechanisms are simple, eliminating

such information uniquely identi�es the optimal voting strategy, which we de�ne as sincere.

Notice that this result con�rms the intuition that under simple voting mechanisms sincerity

implies transmitting pieces of ordinal information contained in agents�cardinal preferences

over alternatives.

Theorem 1: Let V be a simple voting mechanism satisfying Neutrality in alternatives

and Weak Monotonicity: Assume, there is no information on agents� preferences over al-

ternatives X = fx; y; zg and assumptions 1 and 2 hold. Then, for any number of agents n;

agent i�s best response (sincere behavior) is:

� For M = [m] with m being a linear order, the linear order such that x m y m z ,

Ui(x) > Ui(y) > Ui(z).

� For M = [m] with m being a subset of alternatives, the subset of the ]m alternatives

which provide highest utility to agent i:

Proof: We proceed to prove separately the cases in which the set of messages is the set

of linear orders and the cases in which the set of messages is a collection of subsets of X.

� We �rst consider the case in whichM = flinear orders over Xg: Consider wlog. Ui(x) >

Ui(y) > Ui(z): Consider the linear order m such that x m y m z. We have to prove

that m is agent i�s best response independently of the number of agents in society.

We show that m is a better response than m0, where y m0 x m0 z: To see this, let us

analyze all the possible situations in which transmitting m0 could be bene�cial for agent i:

Consider any combination of messages by the other agents in society, m�i. Then, given that

the voting mechanism is Weakly Monotonic, we know that x 2 V (m�i;m0)) x 2 V (m�i;m)

and y 2 V (m�i;m) ) y 2 V (m�i;m0). We also know that fxg = V (m�i;m0) ) fxg =

V (m�i;m) and fyg = V (m�i;m) ) fyg = V (m�i;m0): The following table speci�es all

possible outcomes of the election in which declaring m0 instead of m may be bene�cial for

agent i: Any other combination of others�messages always yields a worse outcome when

declaring m0. For instance, outcome fx; yg whenever i states m yields lower utility than

outcome fx; zg whenever i states m0, since Ui(z)+Ui(x)
2 < Ui(y)+Ui(x)

2 and thus declaring m0
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would not be bene�cial. Notice also that not every pair of outcomes can be associated to

messages m and m0: For example, the outcome fy; zg whenever i states m and outcome fx; yg

whenever i states m0 is not possible since x 2 V (m�i;m0) but x =2 V (m�i;m):

Messages Outcome

m fx; zg fx; y; zg fx; zg fx; zg fx; y; zg fy; zg fzg fzg

m0 fx; yg fx; yg fx; y; zg fyg fyg fyg fyg fy; zg

Cases 1) 2) 3) 4) 5) 6) 7) 8)

Notice that under cases 3); 4) and 5); m0 yields higher expected utility than m only when

Ui(y) >
Ui(x)+Ui(z)

2 :

In order to prove that message m is a better response than m0, we show that, for any

of the previous cases (associated to a combination of messages by the others), there exists

another combination of messages by the others such that:

1. Its probability of occurrence is larger.

2. The bene�t from transmitting m instead of m0 is larger than the bene�t from trans-

mitting m0 instead of m in the initial case:

Consider the bijection � : X ) X, where �(x) = y; �(y) = x and �(z) = z. For k;

k 2 f1; :::; 8g; consider the combination of others�messagesmk
�i which makes transmittingm

0

bene�cial with respect to m. Consider also the combination of others�messages �(mk
�i): By

Assumption 1, individual i assigns the same probability to messages �(mk
�i) and m

k
�i: Since

�(m) = m0 and �(m0) = m; by Neutrality in alternatives, it must be that V
�
m;�(mk

�i)
�
=

�
�
V
�
m0;mk

�i
��
and V

�
m0; �(mk

�i)
�
= �

�
V
�
m;mk

�i
��
: Thus, we can compute parallel cases

(with equal probability) to those of the previous table. The outcomes of the voting mechanism

now are:

Messages Outcome

m fx; yg fx; yg fx; y; zg fxg fxg fxg fxg fx; zg

m0 fy; zg fx; y; zg fy; zg fy; zg fx; y; zg fx; zg fzg fzg

Cases 1�) 2�) 3�) 4�) 5�) 6�) 7�) 8�)
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For cases k�; k 2 f1; :::; 8g; the bene�t obtained from declaring m instead of m0 is, in all

the cases, at least as large as the loss for the corresponding case k. Given that any of these

cases has the same probability as its counterpart, m guarantees a expected utility at least as

large as m0:

Showing that any other message m00 yields lower expected utility than m follows exactly

the same reasoning.11 Thus, m is agent i�s best response.

� We now consider situations in which M is a family of subsets of X: In order to have a

simple voting mechanism, there only exist four possibilities:

M1 = f�g;M2 = fXg;M3 = ffxg; fyg; fzgg and M4 = ffx; yg; fx; zg; fy; zgg:

M1 and M2 are trivial cases given that agents can not decide which message to transmit.

Plurality Rule is a prime example of a voting mechanism using M3. Negative Voting (or

Antiplurality) is an example of a voting mechanism using M4:
12 We here prove the result for

M3 and leave the analogous proof for M4 for the reader.

Consider M3 = ffxg; fyg; fzgg and wlog. Ui(x) > Ui(y) > Ui(z): We �rst show that

transmitting fxg is better than transmitting fyg: Consider any combination of messages

in society, m�i. Then, given that the voting mechanism is Weakly Monotonic, we now

that x 2 V (m�i; fyg) ) x 2 V (m�i; fxg) and y 2 V (m�i; fxg) ) y 2 V (m�i; fyg).

Additionally, fxg = V (m�i; fyg) ) fxg = V (m�i; fxg) and fyg = V (m�i; fxg) ) fyg

= V (m�i; fyg): The following table, which is in fact equivalent to the case of linear orders,

speci�es all possible outcomes in which transmitting fyg may be bene�cial for agent i:
11Since all the proofs rely in the same construction, for simplicity we explicitly exclude

them. They are, however, available upon request.
12One is tempted to think that Negative Voting also uses M3, given that agents transmit

their least preferred alternative. However, for Negative Voting to satisfy weak monotonicity,

its messages must be interpreted as transmitting all the alternatives but the least preferred

one.
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Messages Outcome

fxg fx; yg fx; yg fx; y; zg fxg fxg fxg fxg fx; zg

fyg fy; zg fx; y; zg fy; zg fy; zg fx; y; zg fx; zg fzg fzg

Cases 1) 2) 3) 4) 5) 6) 7) 8)

The analysis is parallel to the case of linear orders, but proving that fxg strictly yields a

larger expected utility than fyg: Reproducing the analysis with strategies fyg and fzg it can

be shown that fyg strictly yields a larger expected payo¤ than fzg: Thus, transmitting fxg

strictly yields a larger expected utility than fyg and fzg, concluding the proof for M3. �

We have therefore shown that our �rst de�nition of sincerity is appropriate for simple

voting mechanisms. Voters�optimal strategy under no information conditions is to assign

votes in a manner that maintains some ordinal information of their true preferences. Notice

that in simple mechanisms this behavior does not depend on the weight of an individual

agent�s vote on the outcome of the election. However, Theorem 2 shows that the absence of

information is not enough to guarantee a precise de�nition of sincerity for complex voting

mechanisms. The reason is that best responses may depend, for instance, on the number of

agents participating in the election.

Theorem 2: There exists complex voting mechanisms for which eliminating all informa-

tion on other voters� preferences does not uniquely identify an optimal voting strategy. In

particular, optimal voting may depend on the size of the electorate.

Proof: We prove it by showing that the optimal voting behavior in a particular complex

voting mechanism V varies with the size of the electorate. Let V be Approval Voting.

Under AV agents can transmit a large variety of messages. For example, in the case of three

alternatives, AV allows for the set of messages M = 2fx;y;zg: This set is composed by the

following four di¤erent message types M1 = f�g; M2 = fXg; M3 = ffxg; fyg; fzgg and

M4 = ffx; yg; fx; zg; fy; zgg.

Assume Ui(x) > Ui(y) > Ui(z): Assume, there is no information on agents�preferences

over alternativesX = fx; y; zg and assumptions 1 and 2 hold. We claim that agent i optimally
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transmits message fx; yg if and only if Ui(y) � �(n)Ui(x)+(1��(n))Ui(z) with �(n) 2 (0; 1).

Otherwise, agent i optimally transmits message fxg.

Let Ui(x) > Ui(y) > Ui(z): In Theorem 1, we have proved that fxg is a best response

among strategies in M3 = ffxg; fyg; fzgg whenever the domain of the voting rule V is M3:

Notice that using the same procedure as the proof of Theorem 1, we can indeed show that fxg

is a best response among strategies inM3 = ffxg; fyg; fzgg whenever the domain of the voting

rule V is 2fx;y;zg: Given that AV satis�es Neutrality in alternatives andWeak Monotonicity,

we can ensure that fxg is a best response among strategies inM3 = ffxg; fyg; fzgg: A similar

argument applies for M4:

Therefore, the only messages worth considering are f�; X; fxg; fx; ygg: We �rst show

that voting fxg is always better than voting X (respectively �): Suppose that voting X

(respectively �) leads to have S 6= fxg as the set of elected alternatives.13 If x 2 S 6= fxg, then

transmitting fxg leads to have x as the unique elected outcome, which obviously dominates

S for agent i. If x =2 S, transmitting fxg leads either to have S as the set of elected outcomes

or to have S [ fxg as the set of elected outcomes. This is clearly preferable to the outcome

obtained when transmitting X (respectively �). Thus we focus on fx; yg and fxg:We present

here the situations in which fx; yg and fxg could yield di¤erent outcomes:

Messages Outcome

fxg fxg fzg fx; yg fx; zg fy; zg fx; y; zg

fx; yg fx; yg fy; zg fyg fx; y; zg fyg fyg

Cases 1) 2) 3) 4) 5) 6)

The previous table shows all possible combinations of others agents�messages in which

messages fx; yg and fxg yield di¤erent outcomes. In order for these situations to occur, the

distribution of other agents�messages must satisfy the following conditions:

13Obviously if S = fxg then transmitting fxg has the same e¤ect on the election of out-

comes.
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1) ax = ay > az � 1 4) ax + 1 = ay + 1 = az

2) ax + 1 < ay + 1 = az 5) ax + 1 < ay = az

3) ax = ay � 1 > az � 1 6) ax + 1 = ay = az;

where ak represents the number of times alternative k appears in other agents�messages,

excluding agent i:

� Under Assumption 1, the probabilities Pq of each of these six conditions are:
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1CCCA
(23)n�1

P4 =

n�1P
t=1

0BBB@ n� 1

t� 1

1CCCA
0BBB@ n� 1

t� 1

1CCCA
0BBB@ n� 1

t

1CCCA
(23)n�1

P5 =

n�1P
t=2

t�2P
s=0

0BBB@ n� 1

s

1CCCA
0BBB@ n� 1

t

1CCCA
0BBB@ n� 1

t

1CCCA
(23)n�1

P6 =

n�1P
t=1

0BBB@ n� 1

t� 1

1CCCA
0BBB@ n� 1

t

1CCCA
0BBB@ n� 1

t

1CCCA
(23)n�1

Hence, the expected utility of messages fxg and fx; yg under assumption 1 can be

expressed in terms of these probabilities. For message fxg, the expected utility equals:

P1Ui(x) + P2Ui(z) + P3

�
Ui(x) + Ui(y)

2

�
+ P4

�
Ui(x) + Ui(z)

2

�
+P5

�
Ui(y) + Ui(z)

2

�
+ P6

�
Ui(x) + Ui(y) + Ui(z)

3

�

whereas for message fx; yg the expected utility equals:

P1

�
Ui(x) + Ui(y)

2

�
+ P2

�
Ui(y) + Ui(z)

2

�
+ P3Ui(y) +

P4

�
Ui(x) + Ui(y) + Ui(z)

3

�
+ P5Ui(y) + P6Ui(y)
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Therefore, using Assumption 2, the condition for preferring to transmit fx; yg has to be

that it yields a higher expected value than transmitting fxg, i.e.,�
P1
2 +

P3
2 +

P4
6 +

P6
3

�
Ui(x)+

�
P2
2 +

P4
6 +

P5
2 +

P6
3

�
Ui(z) �

�
P1
2 +

P2
2 +

P3
2 +

P4
3 +

P5
2 +

2P6
3

�
Ui(y)

Denoting:

f(n) =
�
P1
2 +

P3
2 +

P4
6 +

P6
3

�
g(n) =

�
P2
2 +

P4
6 +

P5
2 +

P6
3

�
h(n) =

�
P1
2 +

P2
2 +

P3
2 +

P4
3 +

P5
2 +

2P6
3

�
;

we can express the previous inequality as f(n)
h(n)Ui(x) +

g(n)
h(n)Ui(z) � Ui(y). Since f(n) +

g(n) = h(n); we only need to consider the function �(n) = f(n)
h(n) to conclude the proof. Since

any Pq : q = 1; :::; 6 is di¤erent from zero, it follows that �(n) 6= 1 and �(n) 6= 0. �

Theorem 2 shows that when voting mechanisms are not simple, the result in Theorem

1 does not hold, as optimal behavior does not only depend on the available information on

candidates�preferences. In the case of ÁV, whether the alternative yielding second highest

utility to an agent is included in her transmitted message depends on its relative cardinal

utility with respect to the utilities yielded by the most and least preferred alternatives. Such

dependence rests on the weights measured by the function �(n); which varies with the size

of the electorate n: For example, if U(x) = 0:9; U(y) = 0:7 and U(z) = 0:1, basic calculus

shows that an agent optimally transmits message fxg when the size of the electorate is 2:

On the other hand, the same agent transmits message fx; yg when the size of the electorate

is 3: It seems unreasonable that how sincere a voting strategy is depends on the size of the

electorate. Thus, in the following subsection we further impose conditions to diminish the

possibility of strategic voting in order to obtain sincere behavior.

4 Sincerity and the Size of the Electorate

The previous section shows that our �rst de�nition of sincerity, although valid for a large class

of frequently used voting mechanisms, is not valid for complex voting mechanisms, as optimal

behavior does not only depend on the available information on candidates�preferences.

The in�uence of an individual agent�s vote on the outcome of an election diminishes the

bigger the size of an electorate. Notice that in the proof for Theorem 2, we already identi�ed

15



the size of the electorate as a source of heterogeneity in optimal behavior for approval voting,

which is a particular example of a complex voting mechanism.

Following our methodological approach we consider a second de�nition of sincerity by

eliminating other sources of manipulability. According to our de�nition, sincere voting is

identi�ed as the optimal strategy when voters do not have information on other voters�

preferences and the size of the electorate tends to in�nity.

We �nally check the applicability of this de�nition of sincere voting to a particular case:

Approval Voting. Previous literature has discussed at least two ad-hoc de�nitions of sincerity

for AV. The �rst one speci�es that if one alternative is voted in the top set (approved),

all alternatives that yield higher cardinal utility to the individual should also be included

in the top set to be considered sincere.14 Notice that this de�nition is somewhat weak as

several messages would then be considered sincere. For the case of three alternatives and

using the numerical example shown in the introduction, fx; y; zg (meaning �all alternatives

are approved�); � (meaning �all alternatives are disapproved�), fxg and fx; yg would all be

considered sincere under this weak de�nition.

Translating this argument to cardinal utilities and using our notation, we establish a

de�nition of weak sincerity :

De�nition 5 Agent i�s message m is Weak Sincere under AV if for all x; y such that Ui(x) >

Ui(y); y 2 m implies x 2 m:

We refer to such de�nition as weak because it does not determine a unique message as

sincere, which may be an appealing property.

Corollary 6 Let V be Approval Voting. Assume, there is no information on agents�prefer-

ences over alternatives X = fx; y; zg and assumptions 1 and 2 hold. Then agent i�s optimal

behavior satis�es the weak de�nition of sincerity.

Proof. Notice that following Theorem 2, the only possible optimal messages are fxg and

fx; yg; and thus, it easily follows that the weak de�nition of sincerity always holds.
14See Brams and Fishburn (1981) and Niemi (1984) .
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A second and more restrictive de�nition identi�es sincerity with voting for those alterna-

tives that yield the individual more cardinal utility than the average of all alternatives.15 In

the numerical example, the only sincere voting representation would then be to vote for both

x and y (i.e. fx; yg) since both provide more cardinal utility than the average (0:8 > 0:47

and 0:5 > 0:47).

Using our notation and for the case of three alternatives, such de�nition can be expressed

as follows:

De�nition 7 Agent i�s message m is Strong Sincere under AV if for all x 2 X:

x 2 m, Ui(x) �
1

3

X
y2X

Ui(y):

The strong de�nition of sincere voting under AV implies voting for those alternatives that

yield more utility than the average of utilities. This de�nition, although intuitively appealing,

has not been given a complete formal justi�cation. In particular, it has been de�ned under a

restrictive set of assumptions, such as imposing speci�c probabilities on the number of votes

each alternative receives. As in the previous subsections, we obtain our results by precisely

calculating these probabilities using a cognitive process based only on initial beliefs over

individual votes. In the remainder of the paper, we show that the best response of an agent

under conditions that diminish the possibility of behaving strategically is precisely voting for

those alternatives that yield more than the average of utilities. Therefore, we provide stronger

support for this second de�nition of sincerity, which uniquely determines which message is

sincere in AV.

In the proof for Theorem 2, we identi�ed agents�best response in AV in the absence of

information. Under such conditions, to include in the transmitted message the alternative

yielding the second highest utility partially depends on the size of the electorate through the

weighting function �(n): Theorem 3 determines the limit of �(n) when n goes to in�nity.

Theorem 3: Let V be Approval Voting. Assume there is no information on agents�

15See, for instance, Weber (1978), Ho¤man (1982), Merrill (1983), Merrill and Nagel (1987)

who present some results characterizing this behavior under a very restrictive set of assump-

tions.
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preferences over alternatives X = fx; y; zg and assumptions 1 and 2 hold, then:

lim
n�!1

�(n) =
1

2
:

Proof: Following notation introduced in the proof of Theorem 2, we want to prove that

lim
n�!1

�(n) = lim
n�!1

f(n)
h(n) =

1
2 : Given that

f(n) + g(n) = h(n);

this is equivalent to proving,

lim
n�!1

f(n)� g(n)
h(n)

= 0:

Notice that f(n); g(n) and h(n) are functions of the probabilities of each of the six possible

races between alternatives. Substituting their values and using basic calculus, we obtain that,

f(n)� g(n)
h(n)

=
1
2(P1 � P5)
h(n)

+
1
2(P3 � P2)
h(n)

�
1
2(P1 � P5)

1
2P5

+
1
2(P3 � P2)

1
2P2

=
P1 � P5
P5

+
P3 � P2
P2

:

Hence, given the positivity of (P1 � P5) and (P3 � P2) (see below the combinatorial

decomposition), P1�P5P5
+ P3�P2

P2
is an upper bound for f(n)�g(n)h(n) : Thus, proving

lim
n�!1

�
P1 � P5
P5

+
P3 � P2
P2

�
= 0;

implies lim
n�!1

f(n)�g(n)
h(n) = 0:

Actually, we here prove that lim
n�!1

P1�P5
P5

= 0 and lim
n�!1

P3�P2
P2

= 0; which is stronger than

what is needed. We start by proving that lim
n�!1

P1�P5
P5

= 0 . Notice that the combinatorial

expressions for P1 and P5 appear in the proof of Theorem 2.

Consider the following two standard properties of combinatorial numbers which apply to

any non-negative integers k; i for k � i :

Property 1:

0@ k

i

1A+
0@ k

i� 1

1A =

0@ k + 1

i

1A :
Property 2 (symmetry):

0@ k

i

1A =

0@ k

k � i

1A :
18



In order to prove lim
n�!1

P1�P5
P5

= 0; we �rst use Property 1.

lim
n�!1

P1 � P5
P5

= lim
n�!1

n�1P
t=2

264
0@ n� 1

t

1A2 240@ n� 1

t

1A+
0@ n� 1

t� 1

1A35
375

n�1P
t=2

0@ n� 1

t

1A2

t�2P
s=0

0@ n� 1

s

1A
=

= lim
n�!1

n�1P
t=2

264
0@ n� 1

t

1A2 240@ n

t

1A35
375

n�1P
t=2

0@ n� 1

t

1A2

t�2P
s=0

0@ n� 1

s

1A
:

We only consider the cases in which n is even (a similar reasoning would follow for the

case in which n is odd). From the last expression and using Property 2 we can derive,

lim
n�!1

P1 � P5
P5

= lim
n�!1

n�1P
t=2

264
0@ n� 1

t

1A2 240@ n

t

1A35
375

n�1P
t=2

0@ n� 1

t

1A2

t�2P
s=0

0@ n� 1

s

1A
= lim
n�!1

B1 +B2 +B3
C1 + C2 + C3

where,

B1 =

n�2
2P
t=2

0@ n� 1

t

1A2 240@ n

t

1A+
0@ n

n� t� 1

1A35,

B2 =

0@ n� 1

n� 2

1A20@ n

n� 2

1A ;

B3 =

0@ n� 1

n� 1

1A20@ n

n� 1

1A :
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C1 =

n�2
2P
t=2

0@ n� 1

t

1A2 24t�2P
s=0

0@ n� 1

s

1A+ n�t�3P
s=0

0@ n� 1

s

1A35 ;

C2 =

0@ n� 1

n� 2

1A2

n�4P
s=0

0@ n� 1

s

1A ;

C3 =

0@ n� 1

n� 2

1A2

n�3P
s=0

0@ n� 1

s

1A :

Notice that lim
n�!1

B1+B2+B3
C1+C2+C3

can be expressed as lim
n!1

TP
t=1

bt(n)

TP
t=1

ct(n)

, with bt(n) and ct(n) being

products of combinatorial numbers.

Notice also that lim
n!1

TP
t=1

bt(n)

TP
t=1

ct(n)

� lim
n!1

bkn
ckn

where kn is the value that maximizes
bt(n)
ct(n)

for

dimension n: Therefore, it is su¢ cient to prove that lim
n!1

bkn
ckn

= 0.

We now identify the value kn: It is not di¢ cult to see that this value has to belong to

B1 and C1: With respect to B1; notice that by Property 2,

0@ n

n� t� 1

1A =

0@ n

t+ 1

1A :
Applying Properties 1 and 2 to B1, we obtain:

B1 =

n�2
2P
t=2

0@ n� 1

t

1A20@ n+ 1

t+ 1

1A :
Hence, one of the values can be expressed:

bt
ct
=

0@ n� 1

t

1A20@ n+ 1

t+ 1

1A
0@ n� 1

t

1A2 24t�2P
s=0

0@ n� 1

s

1A+ n�t�3P
s=0

0@ n� 1

s

1A35
=

0@ n+ 1

t+ 1

1A
24t�2P
s=0

0@ n� 1

s

1A+ n�t�3P
s=0

0@ n� 1

s

1A35
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and therefore,

bt+1
ct+1

=

0@ n+ 1

t+ 2

1A
24t�1P
s=0

0@ n� 1

s

1A+ n�t�4P
s=0

0@ n� 1

s

1A35
:

Notice also that t+1 � n�2
2 implies t+2 � n

2 �
n+1
2 . Thus,

0@ n+ 1

t+ 2

1A �

0@ n+ 1

t+ 1

1A :With
respect to the denominators, it is clear that

24t�2P
s=0

0@ n� 1

s

1A+ n�t�3P
s=0

0@ n� 1

s

1A35�
24t�1P
s=0

0@ n� 1

s

1A+ n�t�4P
s=0

0@ n� 1

s

1A35 =
0@ n� 1

n� t+ 3

1A�
0@ n� 1

t� 1

1A :

By property 2 this is equivalent to

0@ n� 1

t+ 2

1A�
0@ n� 1

t� 1

1A > 0; and therefore btct �
bt+1
ct+1

:

Therefore, the maximal value is obtained when t = n�2
2 .

lim
n!1

bt
ct
� lim

n!1

0@ n+ 1

n
2

1A
24n�6

2P
s=0

0@ n� 1

s

1A+ n�4
2P
s=0

0@ n� 1

s

1A35
:

Applying property 2 we obtain

lim
n!1

bt
ct
� lim

n!1

0@ n� 1
n
2

1A
n�1P
s=0

0@ n� 1

s

1A�
0@ n� 1

n�2
2

1A�
0@ n� 1

n
2

1A�
0@ n� 1

n+2
2

1A
=
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lim
n!1

0@ n+ 1

n
2

1A
2n�1 �

0@ n� 1
n�2
2

1A�
0@ n� 1

n
2

1A�
0@ n� 1

n+2
2

1A
= 0:

The proof for lim
n!1

P3�P2
P2

= 0 is similar, and thus we omit it. This concludes the proof. �

Theorem 3 says that as the size of the electorate increases, agents� best response in

AV consists in voting for those alternatives that yield more than the average of utilities.

Given that we have eliminated the possibly most important components of strategic behavior,

namely information on others�preferences and the weight of an individual vote in determining

the outcome, we interpret such best response as sincere voting behavior under AV.

Notice that previous attempts to de�ne sincere behavior in AV did not di¤erentiate be-

tween the implications of Theorems 2 and 3.16 The reason is that they assumed that the

probability of a tie between the number of votes that two alternatives received was equal

to the probability of one of the alternatives surpassing the other by just one vote. As a

by-product of our Theorem 3, we have shown that such assumption only holds true in the

limit.

Thus, in this section we have suggested a possible way of complementing the restrictions

imposed in section 2 to obtain a unique de�nition of sincerity for complex voting mechanisms.

Finally, we have also tested its validity for the particular case of AV.

5 Discussion

Identifying sincere voting behavior under a variety of voting rules is an important starting

point in the discussion of adopting new voting mechanisms. A de�nition of sincerity is almost

straightforward when simple voting mechanisms are considered. However, we have seen that

under complex voting mechanisms such as Approval Voting de�ning sincerity is cumbersome.

We conjecture that the di¢ culty in de�ning sincerity arises as a consequence of the presence

of several message types in complex mechanisms.

16See for instance, Merrill (1979) and Ho¤man (1982).
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Our approach to de�ne sincere voting behavior consists in opposing sincere behavior to

strategic behavior. We methodologically contribute to obtain a formal de�nition of sincerity

by omitting the elements that facilitate strategic behavior; namely, by increasing the size

of the electorate and by eliminating information on other agents�preferences. The optimal

behavior obtained under such conditions is thus what we de�ne as sincere voting behavior.

Our aim in this paper has been to provide a de�nition of sincere voting behavior. Nev-

ertheless, this is not equivalent to identifying sincere voting from the results of an election.

Knowledge on the cardinal value that the alternatives yield to the voters is required in empiri-

cal tests of our results. An experiment controlling for such utility values may be a worthwhile

avenue to explore how individuals vote when informational conditions or the weight of their

votes are changed.

Finally, we have also contributed to the approval voting literature. Notice that following

our approach, our de�nition of sincerity for AV coincides with the previously provided strong

de�nition of sincerity. Our technical contribution consists in calculating optimal voting be-

havior by assessing explicitly the probability of each of the possible races between alternatives

that can occur instead of assuming they all have the same probability. Therefore, we have

provided stronger support to an intuitive de�nition of sincerity when agents have cardinal

utilities over three alternatives.
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