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Abstract

Delayed perfect monitoring in an infinitely repeated discounted game is modelled
by letting the players form a connected and undirected network. Players observe
their immediate neighbors’ behavior only, but communicate over time the repeated
game’s history truthfully throughout the network. The Folk Theorem extends to
this setup, although for a range of discount factors strictly below 1, the set of
sequential equilibria and the corresponding payoff set may be reduced. A general
class of games is analyzed without imposing restrictions on the dimensionality of
the payoff space. This and the bilateral communication structure allow for limited
results under strategic communication only. As a by-product this model produces
a network result; namely, the level of cooperation in this setup depends on the

network’s diameter, and not on its clustering coefficient as in other models.
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1 Introduction

Repeated games are frequently used to model repeated strategic interaction between im-

patient economic agents. Usually, it is possible to sustain equilibria that do not arise in
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a one-shot game by repeating it. The associated payoff vectors, moreover, can be Pareto
superior to the ones achieved in all stage game equilibria. The well-known Folk Theorem
states this result. This paper focuses on infinitely repeated discounted games for which
Fudenberg, Levine and Takahashi (2006), thereafter FLT, obtain the subgame-perfect
Folk Theorem. They dispose of any dimensionality condition previously imposed by Fu-
denberg and Maskin (1986) and by Abreu, Dutta and Smith (1994), thereafter ADS, and
moreover, extend the result of Wen (1994) to (unobservable) mixed actions.

For simplicity, other strong assumptions are normally imposed, such as perfect mon-
itoring. A player observes his opponents’ behavior immediately and perfectly. To relax
this assumption is the aim of the imperfect monitoring literature, in which each player
receives an imperfect private or public signal of the action profile played. Under certain
conditions, the set of sequential equilibria, or of other equilibrium concepts that extend
subgame-perfectness to repeated games of imperfect information, is usually non-empty. In
some cases even the Folk Theorem obtains. The interested reader is referred to a private
monitoring survey by Kandori (2002) and Mailath and Samuelson’s (2006) textbook.

The aim of this paper is to model delayed perfect monitoring by letting the players, that
play an infinitely repeated discounted game, form a connected and undirected network.
In each period, a player observes his neighbors’ action choices and communicates non-
strategically, that is truthfully, these observations and other information he has received
before to all neighbors. In general, the players take decisions under imperfect information
in any but the first period. Since therefore the only proper subgame of the repeated game
is the entire game, the concept of sequential equilibrium is used. Nevertheless, the entire
history of the repeated game spreads gradually throughout the network over time. The
network gives a structure to this heterogeneous flow of information. It is also possible,
however, to interpret the delay in information transmission as being due to the time it
takes a player to process information or to react to new information.!

In reality, impatient economic agents frequently form a network due to which the
information flow is delayed. In many industries, such as the car industry, big producers
are at the center of a large network of suppliers, which may be linked among themselves.
Links are enforced by long-term contracts or relationships and high fines are levied on
firms that break such a contract. (The fines must be credibly enforceable which motivates

the use of sequential equilibrium.) The network is usually organized along the value chain

'Hence, the network may be substituted by a matrix (of dimension "number of players" time "number
of player"), in which each entry specifies the delay with which the corresponding two players obtain infor-
mation about each other. All results are even valid when this matrix is non-symmetric, or equivalently,
for directed networks.



and information about a firm’s non-compliance with certain quality or service standards
spreads only slowly throughout the network until it reaches the center. In turn, the big
firm at the center of the network might communicate changes in quality requirements or
product specifications to its suppliers. Sometimes it also imposes price reductions on their
products. The suppliers decide whether to accept the proposed changes and if or how to
enforce them on their suppliers, respectively. Information may thus flow back again to
the center, for example, when a small firm in the network’s periphery threatens to either
accept a price reduction for its products and to go bankrupt thereafter or to continue
as before. The theoretical model developed in this paper encompasses some of the key
features just described, although it also abstracts from some of them. This model can be
applied in several other contexts, some of which are mentioned in the conclusion.

Under the assumption of truthtelling, the Folk Theorem extends to the delayed perfect
monitoring model, that is, any feasible and strictly individually rational payoft vector can
be supported by a sequential equilibrium strategy profile when the players are sufficiently
patient. Then, they do not mind to receive the repeated game’s history of action profiles
gradually over time. However, for a range of discount factors strictly below 1, the delay
in information transmission caused by the network may trigger a player’s deviation from
some previously agreed sequence of play. The reduction in the set of sequential equilibria
in comparison to the perfect monitoring case, which arises when players are impatient,
seems to reflect many real situations well. Moreover, the concept of punishment reward
is adapted to the network case and in order to analyze a general class of games, no
restriction is imposed on the dimensionality of the payoff space.? As a consequence, the
introduction of strategic communication becomes much more involved and the effective
minmax concept has to be used. Finally, this model also contributes to the network
literature in which the clustering coefficient, or similar measures of local connectedness,
usually determine the level of cooperation sustainable in a network. In this model, to the
contrary, the diameter of the network is decisive. The two measures are not related as is
illustrated in an example.

The related literature can be roughly divided into three setups. In the first one, each
pair of neighbors in a network plays a bilateral repeated game. A player’s communication
and observations are restricted to his neighborhood as well, that is, they are also bilat-
eral. In the second group of models, all players play the same repeated game and a player
observes an imperfect private or public signal of the action profile played, or a bilateral

observation structure imposed by a network is assumed. Communication takes the form

2Whereas in a perfect monitoring model this assumption is purely technical and may be disposed of,
in this setup it makes a huge difference due to the heterogeneity of the information flow.



of public announcements of past signal realizations or of own behavior in the past. Hence,
all players are informed about the repeated game’s history at the same time. All models
in this group, additionally, assume a full-dimensional payoff space and allow for strategic
communication. Finally, a setup as in this paper is characterized by a bilateral commu-
nication and observation network in which all players play the same repeated game, but
never have to report their own action choices. Only Renault and Tomala (1998) also
derive a model with these characteristics.

Nevertheless, two papers from the second group are also important since they assume
a bilateral observation structure. Ben-Porath and Kahneman (1996) study sequential
equilibria of infinitely repeated discounted games in which the players form a (not neces-
sarily connected) network. They assume that players publicly announce their own action
choices and observations made about their neighbors in a strategic way, that is, including
lies. When each group contains strictly more than two players unilateral deviations are
detectable, and hence, do not occur in equilibrium. In Ben-Porath and Kahneman (2003)
this idea is extended. Since monitoring is costly, only one monitor is assigned to every
player. After an incompatible announcement, which in equilibrium does not occur, both
players are punished and the monitor is substituted. Renault and Tomala (1998), in turn,
show how to sustain uniform Nash Equilibria—which is a weaker concept than sequential
equilibrium—in finitely and infinitely repeated undiscounted games when the players form
a 2-connected and directed graph. Since this implies that there are two distinct paths
between any pair of players, lies are prevented in equilibrium. In their model, however,
the payoff accumulation stops during a communication phase and, as in Ben-Porath and
Kahneman (2003), the players, in general, do not receive the repeated game’s history.

The next section introduces notation and definitions. The model without loss of
generality is presented in pure actions. In section 3, the features of the model are demon-
strated in an example. Section 4 is dedicated to derive two concepts, the information
sharing process and the punishment reward phase. Both are prerequisites for the Folk
Theorem, which is stated in section 5, along with conditions under which impatient play-
ers deviate from a given sequence of action profiles. In the same section, moreover, the
model’s extension to strategic communication is discussed and how it relates to the im-
perfect monitoring and the network literature, respectively. Before concluding, remarks

about mixed actions follow.



2 Preliminaries

2.1 Stage Game

Each player 7 in the finite set of players I = {1,...,n} has a finite and non-empty set of
pure actions A;; a pure action a; is an element of this set. The pure action space of the
stage game is A = X,;c;A;, with generic element a, called action profile. To emphasize
the role of player i, pure action profile a is written as (a;,a_;). For any non-empty set
of players S C I, let As = X;ecsA4;, and denote by ag an element of this set. Player i’s
payoff function is a mapping h; : A — R, and the payoff function h : A — R" assigns a
payoff vector to each pure action profile. The stage game in normal form is then the tuple
G = (I,(Ai)ier, (hi)icr). Finally, define the convex hull of the finite set of payoff vectors
corresponding to pure action profiles in G as co(G) = co{x € R" | Ja € A: h(a) = z}.

2.2 Network

The players in set I are the vertices of a network g, whose graph is defined as (I, F),
where I/ C [ x I denotes the set of links or edges between them. A directed link from
player i to player j is denoted by (7, j). Graph (I, F) is undirected, that is, for all 4, j € I,
(i,7) if, and only if, (j,7). Being linked allows players to mutually observe each other’s
behavior and to communicate the actions chosen by other players. A specific description
of this process requires afore the introduction of further notation.

Given network g, path s between a pair of distinct players ¢ and j is denoted by pj;
and defined as a sequence of players 7, ..., %}
1 <m <1 <7 and (if 4,i]), for all 1 <[ < 7. The length of path pf; is r — 1. It is

denoted by [};. The network is assumed to be connected, or in other words, to consist of

such that f = 4, @7 = j, @7, # 4} for all

one component only; that is, each player is connected to at least one other player directly
and to all remaining ones via paths of finite lengths. For any two distinct players ¢ and

j, there is a finite set S;; = {p};, ..., pg” } of different paths between them with lengths

lilj, e lg” , respectively. The number of links along the shortest among all these paths is
called distance between players ¢ and j. It is denoted by d;; and defined as d;; = min [} ;

g
obviously, d;; = dj; and let d;; = 0. Moreover, denote the largest distance betweellf quli;er 1
and any other player in the network by d; = r?ealx d;j, and define the diameter of network
g as the maximal largest distance among all players, that is, d = max d;. Finally, denote
player i’s set of direct neighbors by i(1) = {j € I | d;; = 1} and, in general, for any
1 <m < d;, define his set of m-neighbors as i(m) = {j € I | d;j = m}.



As already mentioned, links between players serve as means of communication when
the stage game is played repeatedly. In each period, a player first chooses an action, in
a way specified below, and then makes observations and communicates with his neigh-
bors. He observes the actions chosen by his immediate neighbors, before receiving the
information they received one period earlier from their neighbors. Similarly, he reveals
to any direct neighbor the action he plays, before communicating him the information he
received one period ago. Hence, information flows one link per period and with a d; — 1
period lag player i gets to know the repeated game’s entire history.® It is assumed that
communication is non-strategic, or in other words, that players always truthfully reveal
what their neighbors did and told them. How to relax this assumption is discussed later.

Additionally, a player has perfect recall. Hence, for any player ¢« € I at any ¢t > 1,
there is a set of observations denoted by ObL, that includes all histories of observations

that player + may have made at the end of period t. It is defined recursively as

Obzl = Az X Ai(l)7
ObZ2 = A? X A?(l) X Ai(g),

for all t > d;, where for any 1 < m < d; and any t > 1, A’;:(m) = (Xjeim)4;)". An
observation made by player i at time ¢ is denoted by obl € Obt. Given G and g, a sequence
of action profiles {a'}2,, where a' € A for all ¢ > 1, generates a sequence of observations

for player 4,*

Obzl = (a}, az‘l(l))a
ob} = (aj, a’il(l)7 a"}(?)? az, a?(l))7
_ —d;
ob; = ({aj}ss, {af(l) =1 {af(z) . {af(di)}izl H})

for all t > d;. At any 1 <t < d;, player ¢ is not yet informed about the behavior of at
least one other player. At ¢t = d;, obfi contains the actions chosen by all players in period

one. Abusing notation, this is referred to as a! € obf" (since a' belongs to A). At any

t—d;+1

t > d;, the action profiles a!, ..., a are identified by player 7, and hence, in an abuse of

3At the end of any t > d;, for example, player 3 knows the actions played in period t by himself and
all players in i(1), the actions played by himself and all players in (1) and i(2) at t — 1, ..., and finally
the actions played by all players at t — d; + 1 and at any point in time before.

4Equivalently, this setup can be interpreted as follows. Each action profile a’ generates a public signal
with a delay of d — 1 periods and certain private signals in all periods s, where t < s <t+d — 1.



terminology, said to be elements of ob!. Thus, at any ¢ > 1, the sequence of action profiles
generates an observation profile ob* € OV, where Ob' = X;c;Obt. The players organized

in this way play an infinitely repeated discounted game.

2.3 Repeated Game with Delayed Perfect Monitoring

In the infinitely repeated discounted game played on the fixed network g, thereafter called
repeated network game, at each point in discrete time, t = 1,2, ..., the stage game G is
played. Set I is assumed to contain at least three players since otherwise the analysis of
the network case is trivial.

Let player i's set of strategies be F; = {{f{}2, | f} € A;,andforallt > 1, f{ : Ob:™! —
A;}. At any t > 1, player i’s strategy f; = {f!}$2, prescribes him to choose some action.
For ¢ > 1, this prescription is a mapping from his set of observations to his action set.
The cartesian product of all players’ strategy sets ' = X;crF;, constitutes the strategy
space of the repeated network game. A strategy profile f = (f1,..., fn) is an element
of F. To emphasize player i’s role, it is written as (f;, f-;). At any ¢t > 1, each f € F

recursively generates a pure action profile a'(f) = (a'(f),...,a’ (f)) and a corresponding

ceey Wy

observation profile ob'(f) = (obi(f),...,ob! (f)): for any player i, let a}(f) = f! and
obi (f) = (a;(f), aly)(f)), and for t > 1 given ob;~'(f) € O™, al(f) = fl(ob]~'(f)) and
ob(f) is defined accordingly. Each f € F thus generates a sequence of action profiles
{a*(f)}$2,, which in turn generates a sequence of observation profiles {ob®(f)}2;.

Given a common discount factor A € (0, 1), the function H* : F — R™ assigns a payoff
vector to each strategy profile of the repeated network game. Given f € F| player i’s pay-
off, HMf) = (1—=X) Y252, X 'hi(at(f)), is the (1 — \)-normalized discounted sum of stage
game payoffs. The repeated network game associated with stage game G, discount factor
A and network g is then defined as the normal form game G9* = (I, (F})icr, (H?)ic1)-

When ¢ is complete, i(1) = I\ {i} for all i € I and G9* is identical to the infinitely
repeated discounted game, referred to as G*. In this case, f; simplifies: for any ¢ > 1 it is
now a mapping from A1 = (x;c;A;)"! to A;, that is, each player conditions his action
choice on the history of action profiles chosen by the players between periods 1 and ¢t — 1.

Moreover, each player has complete information about the game to be played, the form
of the network and the strategy choices available to all players. Finally and importantly,
each player ¢ observes his payoff with a delay of d; — 1 periods in order to prevent him
from deducing other players’ behavior by observing his payoff. At any t > d;, however,
player ¢ knows the action profiles played between periods 1 and ¢ — d; + 1, and hence, he

can calculate or equivalently observe his payoff for all these periods.



2.4 Payoff Vectors Generated by Sequential Equilibria
2.4.1 Individual Rationality without Full-Dimensional Payoff Space

A player’s individually rational payoff is the lowest payoff to which he can be forced in
a stage game. It obtains when a player maximizes his payoff while all others minimize
it, and hence, is called minmax payoft. For any player ¢ € I, the minmax payoff in pure

actions is defined as

v, = Q_I}gll_i gleaji hi(ai,a_;). (1)

ADS use the minmaz payoff to define a player’s individually rational payoff in any re-
peated (network) game,” in which the dimension of the payoff space is equal to the number
of players, or at most of one dimension less. They show that this dimensionality condition
holds whenever no two players have equivalent payoff functions in the corresponding stage
game. Such games fulfill the NEU-condition (of non-equivalent utilities).%

Two distinct players i and j have equivalent utilities (EU), when one player’s payoff
function is the positive affine transformation of the other’s, that is, there are o > 0 and
£ € R such that for all a € A,

hi(a) = ahj(a)+ 5. (2)

This relation between EU-players i and j is denoted by i ~ j. When (2) is violated
for two distinct players ¢ and j, they have non-equivalent utilities, denoted by i ~ j. The
EU-players are partitioned into U sets, Sy, ..., Sy, such that ¢ ~ j holds for all ¢,j € S,
1 <u<U. Let S = Uyep Sy, then i » j holds for all i € S, j € S, such that u # ', and
for alli ¢ S, j € I\ {i}. Finally, assume that no player is universally indifferent among
all action profiles, that is, for all i € I, there are a, o’ € A such that h;(a) # h;(a).

When a stage game does not fulfill the NEU-condition, that is, S # (), a player’s
effective minmax payoff is his individually rational payoff in the corresponding repeated

(network) game. Following Wen (1994), the effective minmaz payoff in pure actions of

5 All results mentioned in this section extend without loss of generality to the repeated network game.

6Intuitively, two players have non-equivalent utilities when the projection of the payoff space on the
corresponding two player plane yields an ellipse or a line with negative slope. Conversely, a positively-
sloped line arises when one player’s payoff increases monotonically in the other’s. A stage game fulfills
the NEU-condition if there is no pair of players whose payoff space is a positively-sloped line and at most
one for which it is a negatively-sloped line.



any player i € S, is defined as’
v, = géigmax{hi(aj,a_j) | j €Sy, aj € Aj}. (3)

In each EU-group, a reference player is selected whose maximization yields any member
of the group who is minimized the largest possible payoff. The effective minmax payoff of
an EU-player, therefore, is larger than or equal to his minmax payoff, while for all other
players i ¢ S the two payoffs are identical.

Denote the vector of effective minmax payoffs in pure actions by v, and the pure
action profile forcing player ¢ to his effective minmaz payoff by a’. It is one solution to the
optimization problem on the right-hand-side of (3), on which the players agreed. Without
loss of generality the effective minmax payoff of all players is normalized to 0, that is, for
all 7 € I, hy(a') = 0. All players with equivalent utility to i’s obtain a payoff of 0 as well
when he is forced to his effective minmax payoff.

In a perfect monitoring model, the decisions of all players in an EU-group are identical
since they are based on the same information—the commonly observed history of the
repeated game. Hence, one player could represent the entire group. Conversely, in the
repeated network game, each member of an EU-group chooses an action based on the

observations he made thus far, and usually, these do not coincide.

2.4.2 Set of Feasible and Strictly Individually Rational Payoff Vectors

The set of feasible payoff vectors of the repeated (network) game is defined as
F={ocR"|3I{a'}2,: Vt>1,a €A andVicl, v; =(1-X)> N hi(a)}.
t=1

Following Sorin (1986) and Fudenberg, Levine and Maskin (1994), any payoff vector in

co(G) is feasible for A € (1 — 1, 1), where z is the number of vertices of co(G). For any

discount factor in this range, the sets F and co(G) coincide. Moreover, any feasible payoff

vector is achievable by a sequence of pure action profiles in the repeated (network) game.
The set of feasible and strictly individually rational payoff vectors is denoted by F*.

It contains all feasible payoff vectors that are larger than v = (0, ...,0) and is defined as
F* = F N {zeR"|z>v}

Any payoff vector in this set is a candidate to be supported by a sequential equilibrium.

"Wen (1994) defines the effective minmazx concept in mixed actions, assuming however, that a player’s
deviation within the support of his mixed action is observable to the other players. For the general case,
which includes unobservable deviations from mixed actions, this concept is defined by FLT.



2.4.3 Sequential Equilibrium

Although Kreps and Wilson’s (1982) definition of sequential equilibrium is for finite ex-
tensive form games of imperfect information, it extends to such games when they are
infinite. A strategy profile and a system of beliefs are a sequential equilibrium if they are
sequentially rational and consistent, respectively. In the repeated network game, for any
equilibrium strategy profile at least one consistent system of beliefs exists, in which the
limit of the players’ beliefs coincides with the (already known or still unknown) history of
the repeated network game. Hence, beliefs are not modelled explicitly and a sequential

equilibrium is said to exist when the condition of sequential rationality is fulfilled.

Definition 1. A strategy profile f € F is a sequential equilibrium of G, if for all t > 1
and given any ob® € Ob', {]‘;7(067_1)}2‘;1“rl is such that for alli € I and all f; € F;,

(1= ilvlhxaw > (1)) ilx“hxa%ﬁ,ﬂi)).

When ¢ is complete this definition includes G* and the concepts of sequential and
subgame-perfect equilibrium coincide. For simplicity, equilibria of G9* and G* are called
sequential when Definition 1 is satisfied, and the corresponding sets of sequential equi-
librium strategy profiles are denoted by SE(G9*) and SE(G?), respectively. A strategy
profile is a sequential equilibrium if, and only if, any player’s finite unilateral deviation at

any point in time is not profitable.®

3 The network makes a difference

The following example illustrates how imposing a network on a set of players may affect
the set of sequential equilibria of a repeated game. Let G = (I, A, h) be a generalized
Prisoner’s Dilemma game, where n > 2. At each point in time, a player chooses between
two pure actions: C' which stands for cooperate and D which stands for defect. The payoff
function of any player ¢ € I is defined as follows: for each a € A,
(3 ifa;=C,Vj el
0 ifg,=Cand3jel\{i}st a;=D
hi(a) = 4 ifa,=Danda; =C,Vjel\{i}
2 ifa,=D,3Fjel\{i}st.aj=Dand3Ilel\{ij}st. aq=C
1 ifa;=D,Vjel.

\

8Since A < 1, a player’s gain from a deviation of infinite length can be approximated by that of a finite
deviation. Therefore, unilateral deviations of finite length from a strategy profile are not profitable if,
and only if, it is a sequential equilibrium of the repeated network game (Mailath and Samuelson (2006)).

10



The unique Nash Equilibrium of stage game G is the action profile in which all players
choose D, since it is a strictly dominant action. In the repeated Prisoner’s Dilemma,
however, it is possible to sustain strategy profiles that yield a higher payoff to all players
and are sequential equilibria under certain conditions, such as the trigger strategy profile.
It prescribes each player to cooperate as long as all other players cooperate and to defect
forever if any other player defected. Given any network g, the trigger strategy of player
i, denoted by f; € F}, is defined as follows: f! = C, and for t > 1, given ob € OU!,

D if 31 <7 <t such that for a” € ob}, a7 = D, while a” ; = C

C otherwise.

fz’tH (obf) = {

Given f € F, observe that for all i € T and all ¢ > 1, first a/(f) = C, and second,

obt(f) is such that for all aj € obt(f), aj = Cas well forall 1 <7 <tandalljel
Hence, for all i € I, HMf) = (1 = X) 202, M (0! (F) = (1= A) 52, A 13 = 3.

3.1 The Players form a Star

Consider a star with n = 3, where the graph of ¢ is £ = ((1,2),(2,1),(2,3),(3,2)),
represented in Figure 1. (Figure 2 represents G forn = 3, where player 1 chooses rows,
player 2 columns and player 3 matrices.) The trigger strategy profile is a sequential
equilibrium of G9* if, and only if, all players are patient enough, that is, A is higher than
some threshold value. Then, none of them ever deviates. Corresponding conditions on A
must be found for the truncation of the repeated network Prisoner’s Dilemma after any
point in time, and therefore, given any observation profile. However, to keep this example
simple, only unilateral deviations are considered, that is, simultaneous deviations of two
or more players, by convention, do not occur.” Then, three classes of unilateral deviations
can be identified. Any deviation that may arise in the course of play can be uniquely

allocated to one class. The three classes are

1) initial unilateral deviations,
2) subsequent unilateral deviations (before the initial is known by all players), and

3) unilateral deviations when the punishment takes place.

Obviously, unilateral deviations during the punishment are not profitable since all

players play D. The resulting action profile is the stage game Nash Equilibrium in strictly

9For example, player 1 in Figure 1 cannot distinguish between a unilateral deviation by 2 and a
multilateral (simultaneous) one by 2 and 3 until he knows the action profile of the period in which 2
deviated. Multilateral deviations are abstracted from here, but taken into account from section 4 on.

11



1—2—3

Figure 1: Three players form a Star

3
C D
12] C D 12] C D
C [3,3,3/0,4,0 C [0,0,4]0,2 2
D [4,0,0]22,0 D [20,2]111

Figure 2: Prisoner’s Dilemma for three players

dominant actions. Hence, every player plays his best-reply independently of g and of A.
For the same reason, no player can deviate profitably from the trigger strategy profile
in part 2. After a player’s initial deviation, he and any player who knows about it are
best-off to play D forever (rather than to deviate and to choose C' at any point in time).

It remains to show that no player has a profitable unilateral deviation from the trigger
strategy profile when all players play C. Given A, player 2 (who is directly observed by 1

and 3) does not deviate in any period 7 if, and only if,

o0 T—1 oo
(T=X)33N > (1=A) 3N 41— )N T (1=A) X 1Y
t=1 t=1

t=7+1

(1=A) S 2271 > (1=

t=74+1
227 > (1= M),

A=

Wl

The value of % is not only the threshold value for player 2 in this example but also the
one for all players in a complete network. The network affects, however, the threshold
value of the remaining two players in this example. Given A, player 1 (and similarly 3)

does not deviate from the trigger strategy profile in any period 7 if, and only if,

%) T—1 S
(T=X)33M > (1T =XN) 3N 41 =N H21 = )A +(1=N) S 1A
t=1 t=1

t=142

12



=MV +(1=A) 3 241 > (1= A
t=742

which can be simplified to 2\ + A> — 1 > 0. The only positive solution for A in this
quadratic equation is approximately 0.414. Hence, in part 1 of the sequential equilibrium
conditions the requirement on A, or the patience of the players, is higher in the star with
three players considered here than in a complete network. This is due to the one period
delay with which players 1 and 3 obtain information about each other’s action choice.

This example extends to the case where n > 3 and the players form a star. The player
at the center of the star has the same role as player 2 in this example, and for all other

players the same conditions apply as for players 1 and 3 in this example.

3.2 The Repeated Prisoner’s Dilemma Played in any Network

A similar result can be derived for any network. Suppose that n > 3 and that all players
in a network follow the trigger strategy profile. Then, an analogous calculation to the
one for players 1 and 3 in the above example yields a condition such that no player ¢ € T
deviates. The corresponding expression is 2\ + A% — 1 > 0. Although it depends on d;,
even in very large networks the threshold value for A is bounded above by % Hence, for
"moderately patient" players, the trigger strategy profile is a sequential equilibrium in
any repeated network Prisoner’s Dilemma when there are no multilateral deviations.

Another general result for the Prisoner’s Dilemma as defined before can be obtained—
still abstracting from multilateral deviations. Given g and ), it is possible to determine
for any sequence of action profiles, and not only the one generated by the trigger strategy
profile, whether it can be supported by a sequential equilibrium strategy profile. The key
step is to calculate each player’s worst payoff which he can ensure himself by playing D
forever from any point in time on. A player’s worst payoff is determined by the largest
distance between him and any other player in the network. This is the time it takes until
all players punish him, thereby best-replying to his deviation. It also depends on the
sequence of action profiles played by the other players until they are informed about his
deviation. A given sequence of action profiles can be generated by a sequential equilibrium
strategy profile, if it yields each player at any point in time a continuation payoff that is
larger than the player’s corresponding worst payoff at that point in time.

It is possible to calculate an upper and a lower bound to a player’s worst payoff. For
any f € SE (CA}’Q’)‘), the worst payoff of any player ¢ in the repeated network Prisoner’s

Dilemma lies between the two identified bounds. The lower bound is identical to player i’s
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(effective) minmaz payoff 7; = 1. (The two concepts coincide in the Prisoner’s Dilemma
since it fulfills the NEU-condition.) It is obtained when all players play D forever after
his deviation (and it is independent of the network and the discount factor). The upper
bound depends on a player’s position in the network and on the discount factor. It is
achieved, for example, for the trigger strategy profile. In this case, a deviator can gain
most since all players play C' until they become aware of his deviation.

The trigger strategy profile f € F generates a sequence of action profiles such that for

~

all i € I and any t > 1, a'(f) = C. After deviating unilaterally player i receives

(T=N2+2 4+ +2X52 4 1\% 4] =

di—]. o
(1—=XN[> 207+ ST 1A =
t=1 t=d;

2 — AL

This upper bound of a player’s worst payoff is strictly larger than 1, unless the network
is complete, that is, d; = 1 for all players. For different values of A and depending on a
player’s position in the network it lies between 1 and 2, as depicted in Figure 3. For small
values of ), it is close to 2 even when player i’s largest distance is small. Conversely, for A
close to 1, the upper bound of a player’s worst payoff is close to 1 even in large networks.

Hence, the network may reduce the set of discount factors for which a strategy profile
is a sequential equilibrium, and moreover, for a given discount factor the set of sequential
equilibrium strategy profiles and the corresponding set of payoff vectors may be strictly
smaller in the repeated network game than in the version with complete network. The

next step is to extend this result to repeated network games based on any stage game.

4 Information Sharing and Punishment Reward

In general, the conditions for sequential equilibria are not as simple as in the repeated net-
work Prisoner’s Dilemma. First, the action profile forcing a player to his effective minmazx
payoff does not coincide with a stage game Nash Equilibrium in strictly dominant actions,
and hence, punishment is non-symmetric and may be costly for some players. Second,
the players’ behavior after multilateral deviations has to be determined. The approach
taken here, is to let the players wait until everyone knows whether a deviation was uni- or
multilateral. This allows the players, moreover, to coordinate their punishment. In this

section both issues are dealt with starting with the second one.
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Figure 3: Upper bound of a player’s worst payoff in the Prisoner’s Dilemma

Until all players in the network know about an initial deviation, they are required to
follow the sequence of action profiles, although the deviator may continue to deviate or
subsequent deviations by other players may occur. Once all players have identified the
initial deviator, they start to punish him. In case the initial deviation was multilateral,
however, the players ignore it.!® This phase of information transmission is called Infor-
mation Sharing Process (I.SP). Note, that the [.S P-payoff is not normalized by (1 — A).

Definition 2. Given f € F) the Information Sharing Process payoft of player i following

an initial deviation in period t' only is defined as
ISPY = hi(a™(f)) + ... + X 7Zhy(a?t(f)).

Note, that an action profile is known by all players after d — 1 periods. The ISP can
be extended easily to cover a deviation of finite length by any player. Any subsequent
unilateral deviator with non-equivalent utility to the initial one starts a new ISP which,
however, may overlap with the ongoing one. Once every player has identified the last
deviator, he is forced to his effective minmax payoff at least until his entire gain from
deviating is taken away or until another subsequent deviator is punished. All players

that contribute to the punishment may incur a loss in their own payoff as long as it

10Tn this case, the limit of the players’ beliefs is as follows. A player believes that all others follow the
strategy profile, unless he observes an initial deviation. Then, he either believes that it was unilateral or
multilateral or any average of both until knowing the truth. In equilibrium, any such belief is consistent.
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lasts. Hence, punishment should be restricted to a minimal amount of time, and the
punishers should be rewarded thereafter. Obviously, the reward must not be beneficial
for the deviator—otherwise the punishment would be reversed again.

Assume without loss of generality that all NEU-players occupy positions 1, ...,7 in I,
and that thereafter all players in the distinct EU-groups S; to Sy follow. In analogy
to ADS, given any feasible and strictly individually rational target payoff vector x € F*,
for all NEU-players there are player-specific punishment reward payoff vectors denoted by
Wl w. T hey can be achieved by sequences of pure action profiles and have the following
properties. For any player ¢ ¢ S, z; > w! > 0, and for two distinct players i = j, w! < wg ,
that is, the i-th component of vector i is strictly smaller than that of any other one.

For EU-players the punishment reward phase is simpler. Some time after player i € S,
deviated, all members of S, are subjected to the same punishment reward since their
payoffs are equivalent to i’s. Hence, it is enough to define one punishment reward payoff
vector for each EU-group. A cascade of deviations by players in S, is prevented by
taking away the gain each of the deviators in this EU-group obtained, that is, by forcing
the players in S, to their effective minmax payoff for a long enough amount of time.
Thereafter, the group’s punishment reward phase is played. Hence, for each group S,
1 < u < U, there is one punishment reward payoff vector w>«.

Given any target payoff vector x € F*, the punishment reward payoff vectors

1 S1
y eos

w', ..., w%, w , w3 have the following properties:
i) foralli¢ S, z;>w!>0,
and for any 1 <u < U and all 1 € 5,,, xi>wf“ > 0.

i) a)Foralli#j, i,j¢5, w <uw,
b) forany 1 <u<U, allie S, and all j ¢ S, w? < w! and wg < wf“,
c) foralli € S,, j € Sy such that u # v/, w™ < wf“' and wf"' < wf’“,
d) and for any 1 <u < U, and all ,j € S,, there are « > 0 and § € R
such that w = awf“ + 3.

The conditions in part i) are target payoff vector domination and individual rational-
ity. The ones in part ii) ensure that a player is worst off during his or his EU-group’s
punishment reward phase, but that he can be rewarded otherwise.

The existence of the punishment reward payoff vectors for any = € F* follows from
ADS, who construct them explicitly and give the following geometric interpretation,

graphically illustrated in Figure 4. For two distinct players ¢ ~ j, the projection of
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Figure 4: Construction of Punishment Reward Payoff Vectors for EU- and NEU-Players

the payoff space on the corresponding two player plane yields an ellipse or a line (with
negative slope), whereas for all others it is a line (with positive slope). In the first case,
the smallest ¢- and j-coordinates on a ball with arbitrarily small radius € > 0 about the
target payoff vector gives the payoff that the corresponding player receives in his punish-
ment reward phase. In any other case, the EU-group’s punishment reward payoff vector is
the lowest point, in which the line and the e-ball about the target payoft vector intersect.

This intersection determines the punishment reward payoff of each player in the group.

5 The Results

5.1 Folk Theorem

As explained above, a strategy profile in the repeated network game is a sequential equi-
librium if, and only if, given any observation profile, no player’s unilateral deviation from
the continuation strategy profile is profitable. Since each observation profile that may
arise can be uniquely allocated to one of a small number of classes of observation profiles,
it is necessary and sufficient to show for each class that any player’s finite unilateral de-
viation is not profitable. The outline and proof of the Folk Theorem (which can be found

in appendix A) adapt some arguments of ADS and Wen to the network case.

Theorem 1. Let G and g be gwen. Then, for all x € F*, there is A < 1 such that for
each X € (\, 1), there is a corresponding f € F such that f € SE(G9") and H(f) = =.
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Intuitively, strategy profile f prescribes the players to punish a unilateral deviator once
all of them know that he deviated at least until his entire gain is taken away. Thereafter,
his or his EU-group’s punishment reward phase is played. Given any observation profile,
unilateral deviations from f are not profitable when A is close enough to 1. The Folk
Theorem can be proved as well, possibly even for lower discount factors than )\, using
other strategy profiles, as discussed in the next subsection. However, most of them are
technically and intuitively more involved than f .

Patient players in the network do not mind to obtain the history of the repeated game
gradually over time. Immediate punishment or punishment that sets in after a finite
delay are equivalently strong threats for the players in this case. In the limit, the network
specific effects disappear and the same set of payoff vectors can be generated by sequential

equilibria in the repeated game and in its network version.

Corollary 1. Let G and g be given. Then, there is A < 1 such that for all A € (), 1) and
all z € F*, there are f € SE(G9) and f € SE(G*) such that {a'(f)}2, = {a'(f)}2,,
and HM(f) = HMf) = «.

There is also a lower bound of the discount factor A\, and the corollary holds as well
for all A € [0,)]. For this range of discount factors, only sequences of action profiles
that prescribe the infinite repetition of stage game Nash Equilibria can be supported by

sequential equilibria in both games. Another Folk Theorem follows from Theorem 1.

Corollary 2. Let G, g and f € F be given and assume there is A\ < 1 such that f €
SE(G9). Then, for all X € [\, 1), f € SE(G) and H>(f) > 0.

Since network ¢ is assumed to be undirected, a simple structure on the information
transmission obtains. As already hinted in the introduction, however, the players may
not be able to obtain information about each other simultaneously. The Folk Theorem
extends to repeated games played on directed networks that are connected since each
player still gets to know the repeated game’s history with a finite delay. Apart from
this, the observation and the communication network may not coincide. A player may
observe a neighbor, but not be able to communicate with him. Denote by (I, E®) and
(I, EY“™) the observation and the communication graph of the observation network g©

Com

and the communication network g“°", respectively. The two graphs are defined as (I, E).

However, both may be directed and fulfill the following connectedness property. Each
player is observed by at least one other player. The players communicate their observations

Com

via a directed network g such that all of them obtain the repeated network game’s
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history after a finite delay.!! For any network ¢°“, consisting of an observation network

¢°® and a communication network ¢“°™, the Folk Theorem holds.

Corollary 3. Let G and ¢g°C be given. Then, for all x € F*, there is A < 1 such that for

each A € (\, 1), there is a corresponding f € F such that f € SE(GQOC’)‘) and H(f) = x.

Finally, note that for a given set of players the network in which the delay after which
punishment starts is largest in a tree, that is, a line of length n — 1. In this case, the
diameter among all networks that can be formed from the set of players is maximal.
Given G, let § be an arbitrary tree network formed by the players in set /. Then, the

following corollary follows from Theorem 1.

Corollary 4. Let G, § and f € F be given. Assume that f € SE(G9) for all A € (), 1).
Then, for any g formed by set I and all \ € (5\, 1), f € SE(G9) and H*(f) > 0.

In other networks than trees the diameter is lower, and hence also the requirement
on the players’ level of patience. In general, f may be a sequential equilibrium even for

lower discount factors when the players form any other network than a tree.

5.2 Impatient Players

For impatient players, or in other words, for a range of discount factors strictly below
1, the network may make a difference. For the Prisoner’s Dilemma this was shown in
section 3 abstracting, however, from multilateral deviations. The aim in this section is
to derive a similar result for any stage game, any network and including multilateral
deviations. Ideally, it should state that for all discount factors larger than ), identified
after Corollary 1, and smaller than or equal to A, identified in the Folk Theorem, the set of
payoff vectors generated by sequential equilibria in the repeated game is a strict superset
to the corresponding payoff set in its network version. However, as already mentioned,
the Folk Theorem may hold for lower discount factors than A when other strategy profiles
than f are used. To identify them allows to reduce the effects due to the imposition of
the network on a repeated game. Two profiles which achieve this are described. Under
both, the players use the information they receive earlier than under f .

Given any network, a player can start to punish a deviator, for example, when he
knows the action profile of the period, in which the deviation occurred. Until then, he
cannot rule out that the deviation was multilateral. Hence, with respect to any player ¢,

the time delay, with which the players can identify player i’s unilateral deviation, induces

HUT am very grateful to Elchanan Ben-Porath who suggested the idea of two separate networks.
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a partition of the set of players such that all players in a group observe the action profile
played in the period of i’s deviation with the same delay. After some initial delay, during
which ¢’s deviation is unpunished, the players which first identified i’s deviation start to
punish him. Since the network is connected the group of punishers, thereafter, grows
strictly in each period until it comprises all players, d periods after i’s deviation. At the
end of the previous period, all players know that the deviation occurred.

Alternatively, all players may immediately punish any deviating neighbor.'? In sub-
sequent periods the group of punishers grows strictly until it comprises all players. The
delay until this is the case is determined by the deviator’s largest distance. For at least
one pair of players, this coincides with the network’s diameter (which is the maximal
largest distance between any pair of players). If a player becomes aware that the initial
deviation was multilateral, he resumes playing the sequence of action profiles.

In both cases, a consistent system of beliefs exists, for example, as described in footnote
10. To illustrate both ideas, consider a network whose graph is as depicted in Figure 1
and any stage game G. A unilateral deviation by player 1 (and similarly by player 3) is
immediately identified by player 2 since he also observes player 3’s action choice in the
period of player 1’s deviation. Hence, from the subsequent period on, player 2 punishes
player 1. Player 3 contributes to the punishment only from one period afterwards on.

In the repeated network game, the diameter of the network thus determines when
the group of punishers comprises all players. Only then, punishment can be as effective
as in a complete network already one period after the deviation. Hence, the threat of
punishment in any network is always equally or less strong than in a complete one.

It remains to determine a form of punishment which eliminates the deviator’s gain
entirely but at the same time minimizes the loss the punishers may incur. In general, this
is impossible without specifying the stage game, the network, the discount factor and the
sequence of action profiles, since it is not obvious, if it is better to "minmax" a deviator,
to start a punishment reward phase or some other sequence of action profiles. However,
in a sequential equilibrium strategy profile, unilateral deviations cannot be ignored, and
hence, the time delay caused by the imposition of a network on a repeated game may
reduce the set of sequential equilibria. This is expressed formally in Corollary 5, which is

complementary to Corollary 1 and the condition stated thereafter.

Corollary 5. Let G and g be given. Then, there are 0 < A < X\ < 1 such that for all
Ae AL {a' (N2 | f e SE(G)} C {{a' (N} | f € SE(GY)}

12Suppose S = 0, that i deviates at ¢’ from {a'}?°; and that any deviator is "minmaxed" at once. Then,
t'+1)

—1

. ) . . t'+1
one period after, i’s payoff is ming, , ex; ;) a, MaXq, e 4, hi(ai, a1y, a_(iUi(l))) < maxg,ca, hi(a;,a
In case S # (), an analogous condition can be found.
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When the network is complete, the lower and upper bound of A coincide and the
corollary is trivially true. Otherwise, it is easily proved by induction with the arguments
given above. The interplay between the delay in information transmission caused by the
network and the patience of a player may reduce the set of sequential equilibria and the
corresponding payoff set, although for large enough discount factors the Folk Theorem
holds. Comparative statics on g have similar effects on SE(G9*), when due to the removal
or addition of a link the network’s diameter or some player’s largest distance changes.

Finally, formal conditions are identified under which the network reduces the set of
sequential equilibria for impatient players. Given G, A and g, assume that f € SE(G?)
and let {a'}2, = {a’(f)},. Say that the network has an impact with respect to f, as
defined in Theorem 1, if f does not support {a‘}$°, as a sequential equilibrium of G9.
(Note, however, that this does not rule out that there is some other strategy profile f # f
such that f € SE(G9) and {a!(f)}2, = {a'}$2,). Suppose that player i can gain

T4+d—1
BT = Y AN T[maxgeaq, hi(a;,al;) — hi(a')]

t=1

by a deviation (of length d — 1) from {a'}$°; that starts at 7. If i ¢ S, let

ST(T) = X AT h(at) — (1= )" wi
t=7+d
for T' > 2d—2. (It takes d— 1 periods until all players know about i’s deviation, and 2d — 2
periods after it, all of them know if ¢ deviated again one period before his punishment
started.) An analogous expression can be obtained when i € S. Then, Proposition 1

identifies conditions under which the network has an impact with respect to f.

Proposition 1. Let G, A < 1 and g be given. Suppose there is f € SE(G*), i € I and
T > 1, such that for all positive integers T > 2d — 2, B7 > 0. (T'). Then, the network has

an tmpact with respect to f :

Appendix B contains the proof of Proposition 1. Intuitively, player ¢ deviates from
{a'}s2,, if the punishment threat prescribed by strategy profile f is discounted by too
much, and hence, not strong enough to prevent ¢’s deviation. Therefore, the strategy
profile defined in Theorem 1 does not support the sequence of action profiles {a'}2; as a
sequential equilibrium of G9*, and the network has an impact with respect to f . Similar

conditions can be identified for any other strategy profile than f.
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5.3 Strategic Communication and Related Literature

Although in certain cases strong social or legal norms may impose truthtelling on impa-
tient economic agents, this assumption should be relaxed. The players could either decide
whether to transmit information or not, or even lie. A player can be easily prevented from
stopping the information transmission by the threat to punish him as if he had deviated.
The second type of deviation, therefore, is more interesting but also more involved. In a
sequential equilibrium initial as well as subsequent deviations have to be prevented and
a sequence of different liars and deviators may be impossible to disentangle for a player.
To assume that players may lie is standard in the literature. Compte (1998) and Kan-
dori and Matsushima (1998), for example, model imperfect private monitoring in repeated
games (without network) as follows. Each player receives a distinct distorted private sig-
nal of the period’s action profile. By publicly announcing these private observations every
K > 0 periods, the players restore a public history on which they condition their action
choices and a Folk Theorem obtains. Without communication the players’ beliefs about
where in the game tree they are might diverge and some player’s profitable deviation may
be undetectable. Kandori (2003) uses a similar idea in the case of imperfect public moni-
toring in which all players observe the same imperfect signal of the period’s action profile
and publicly announce their own action choices. Under strategic communication a Folk
Theorem obtains under weaker conditions than without communication.!® In all cases, a
payoff transfer mechanism provides incentives for the players to make truthful announce-
ments. A player’s payoff increases or decreases depending on his announcement. A similar
mechanism induces the players in Ben-Porath and Kahneman (1996 and 2003) to truth-
fully announce their own and any neighbor’s action choice publicly. These constructions
require a full-dimensional payoff space which is even stronger than the NEU-condition.
In the repeated network game, the payoff of an EU-group may have to be increased
and decreased at the same time under such a payoff transfer mechanism. This, however, is
impossible. The presence of EU-players may also create the following problem. Suppose
that two or three players that monitor each other belong to the same EU-group. Then,
cooperation immediately breaks down because all other players anticipate a sequence of
deviations by the EU-players which these will, obviously, not reveal when communicating
their mutual observations of each other. Since in this setup a player does not communicate
his own action choice, but only those of his neighbor(s), the problem can be solved by

isolating the EU-players. They would, for example, occupy the places of players 1 and 3

13The Folk Theorem under imperfect public monitoring without communication in Fudenberg, Levine
and Maskin (1994) holds if the public signal allows the players to statistically detect unilateral deviations.
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in the graph depicted in Figure 1, while a NEU-player would take player 2’s.!4

Nevertheless, due to the bilateral communication structure, strategic communication
is difficult to introduce to the repeated network game. Each player receives different
information gradually over time, and hence, all players can never simultaneously condition
their action choices on the same (communicated) information. To prevent lies, therefore,
requires, apart from isolating the EU-players in a network, to adapt the punishment
reward phase. In order not to tell the lie that another player deviated, for each player i € I,
let z; > w! for all j ¢ S, and z; > w™ for all S,. By lying a player makes himself worse
off under this condition. To induce a player to truthfully reveal any neighbor’s deviation,
additionally, for all i € I, let w¥ > max, ca, hi(ag,a’ ) for all k € i(1) with k ¢ S and any
t > 1. The analogous condition must hold when k£ € S. Then, by tolerating k’s deviation
1 is worse off than by reporting it. The information that k& deviated flows throughout the
network only, if this incentive constraint holds sequentially for all players in k(1), k(2),
and so on. Then, lies are unprofitable for X close enough to 1 and restricting the players to
initial deviations only. After a history that includes lies and deviations, the construction of
the punishment reward payoff vectors has to be revised in order to maintain the incentives
for truthtelling and complying with the strategy profile. The punishment reward phase
thus becomes history dependent and to show that it can be adapted adequately is very
complicated, if not impossible without making further assumptions.

However, there is a possibility to prevent lying in this setup. Since each player ¢ € [
observes his payoff with a delay of d; — 1 periods, the players can revert to a stage game
Nash Equilibrium forever, if this observation is not compatible with the payoff calculated
using the prescribed sequence of action profiles. When each player’s deviation changes
the payoff of all players, all payoff vectors which dominate that of a stage game Nash
Equilibrium can be supported by sequential equilibria in the repeated network game with
strategic communication. If players can, moreover, (statistically) detect which player
deviated, Theorem 1 obtains and truthtelling is achieved endogenously.

To allow for strategic communication is appealing for two reasons. First, imperfect
private monitoring, which so far is imposed exogenously in many models, could be made
endogenous in a general class of games. Instead of letting each player obtain a prob-
abilistically determined amount of information, more realistically, this amount should
depend on strategic decisions of other players. Second, information asymmetries that
arise in repeated strategic interaction, such as hidden actions or hidden knowledge, could

be modelled in this way. Therefore, this seems a promising direction for further research.

14 Cooperation can be sustained in any star as well when the player at the center has a constant payoff.
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Figure 5: a) two triads b) no triad

5.4 Network Analysis

The result that in a repeated game played on a (fixed) network its diameter determines
whether cooperation is sustainable, for a given discount factor, is new to the network lit-
erature. Conversely, various results in this literature emphasize that cooperation depends
on the clustering coefficient, which gives the ratio of triads or circles of three players in a
network relative to all possible combinations of three players in I. Whereas the diameter is
a global measure, the clustering coefficient measures local connectedness. Its importance
in the network literature is due to two sociology papers. Granovetter (1973) defines the
concept of strong links which exist, for example, between three friends when they form a
triad (or a circle). This facilitates cooperation since the three friends mutually observe
each other’s behavior. Coleman (1988), in turn, develops the concept of closures, which
are circles of connected people as well but not necessarily of size three.

To see that a lower diameter in a network need not imply a higher clustering coefficient,
consider the two networks depicted in Figure 5; for both n = 6. The network in part a)
has 7 links and two triads, whereas the wheel in part b) has 9 links and no triad. The
diameter of network a) is 3 and the one in part b) is 2. The clustering coefficient of
the wheel is zero, whereas the other network’s one is positive. Hence, the relationship
between the clustering coefficient and the diameter in a network need not be monotonic.
(Obviously, one could construct other examples in which the monotonic relation holds.)

Cooperation in the setup of this paper can be sustained more easily in network b).
Hence, given any stage game, for a certain range of discount factors, there are sequential
equilibria in network b) which generate sequences of action profiles that do not arise from
sequential equilibria in network a). (However, as the Folk Theorem implies, for patient
players this difference disappears.) Conversely, in the network literature, network a) would
fare much better in terms of sustaining cooperation than the one in part b) of Figure 5.

The importance of the clustering coefficient is emphasized, for example, in Lippert
and Spagnolo (2005), who model relational contracts by letting each linked pair of players

play a bilateral repeated discounted Prisoner’s Dilemma until one player deviates, which
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severs the link. They analyze different informational setups, including a case in which
players can choose not to transmit information, and conclude that closures are crucial to
sustain cooperation, modelled in form of sequential equilibria. Another example is Vega-
Redondo, Marsili, and Slanina (2005), who let each linked pair of players play a bilateral
Prisoner’s Dilemma, in which the payoffs are stochastically decaying over time. A player
severs a link once his payoff falls below some threshold, although as a consequence he is
punished by all mutual neighbors the two players have. However, a player can create new
links in each period. This yields a dynamic process whose parameter choice influences the
form of the network in the long-run. Both papers are examples of setups, in which the
repeated game played as well as the communication and observation process are bilateral.

Since usually a player’s payoff depends not only on his and his neighbor’s decisions
but also on decisions of other players in the network, even if they are "far away", it seems
realistic to consider repeated games played on a fixed network.'” The three papers most
closely related to this, however, also obtain that closures are decisive to sustain equilib-
ria. A crucial condition for Ben-Porath and Kahneman (1996) to sustain a sequential
equilibrium in their repeated game with public announcements is that there are at least
three players in each group. Then, any liar can be detected in equilibrium. This is ex-
actly identical to strong links. In their paper with costly monitoring, Ben-Porath and
Kahneman (2003) require a similar condition to hold. In Renault and Tomala (1998), in
which strategic communication includes lying as well, cooperation can be sustained only
in networks that are 2-connected. Intuitively, this requires two distinct paths to exist
between any pair of players and is just the formal description of a closure.

The delayed perfect monitoring model yields a different result since it assumes bilat-
eral communication. Players become informed about the repeated network game’s history
gradually over time. To the contrary, after a public announcement in Ben-Porath and
Kahneman (1996 and 2003), all players can immediately punish any deviator. In mod-
els, in which communication, observations and the repeated games played are bilateral,
punishment is also immediate. In Renault and Tomala (1998), play is interrupted until
all players know who has cheated. Simultaneously, the payoff accumulation stops, which
is unimportant since the repeated game is undiscounted. In the repeated network game,
the impatient players—except of the deviator—may suffer from the delay, during which
punishment is less effective than in a complete network. The diameter of the network

captures this delay and determines together with the discount factor whether a strategy

15 However, a network formation game might precede the repeated network game, and as mentioned in
subsection 5.2, comparative statics on the topology of the network are straightforward. Hence, this setup
can be extended to explicitly take into account incentives to form or maintain links.
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profile is a sequential equilibrium. This result extends to cases where the players can lie
but truthtelling prevails in equilibrium. Other assumptions may also be responsible for
the different outcomes. In particular, a deeper analysis of the matrices that contain the

distinct networks might yield interesting results.'®

6 Final Remarks

6.1 Mixed Actions

The extension of the Folk Theorem to mixed actions is straightforward in the complete
network. Additionally, a player’s deviation within the support of his mixed action, which
is not observed by the other players, must be prevented. FLT achieve this in the complete
network setting by making future play dependent on the realized action profile today. By
letting a high payoff today follow a low one tomorrow, and vice versa, FLT can make each
player exactly indifferent among all pure actions in the support of a mixed one.!”

The Folk Theorem for the repeated network game can be extended to mixed actions
using FLT’s idea. A player who is punished would be forced to his effective minmax payoff
in mixed actions. After the number of periods equivalent to the diameter of the network
has passed, every player knows the pure action profile generated by the mixed action in
the first punishment period. Punishment continues, anyway, at least until this period,
and then, FLT’s strategy can be used to compensate the players for their choices in the
first punishment period. Thereafter, the second punishment period is compensated, and
so on. This process stops in finite time. The main advantage of this extension is that a
larger set of payoff vectors can be sustained by sequential equilibria. However, patient

players can achieve first best outcomes already with pure actions.

6.2 Conclusion

In this paper, delayed perfect monitoring in an infinitely repeated discounted game is
modelled by letting the players form a connected (and undirected) network. The Folk

Theorem obtains since patient players do not mind to receive the repeated game’s history

6 Network g can be expressed in a symmetric matrix which is of dimension n x n. Each entry in the
off-diagonal represents the distance between the corresponding two players and all entries in the diagonal,
by convention, are set equal to 1. Similar matrices can be generated for the other models.

1"The main difficulty arises for players with positively and negatively related payoff functions since
their payoff space is a line. Since it is only possible to move "up" and "down" the line in the future, it
is non-trivial to define a continuation strategy which makes each player indifferent among the support of
the mixed action. However, FLT construct a strategy profile which achieves this task in finite time.
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gradually over time. To achieve truthtelling endogenously is complicated, however, due
to the bilateral communication structure and the less than full-dimensional payoff space.
For impatient players the network may make a difference which need not be big, as shown
for the Prisoner’s Dilemma. The interplay between the diameter of the network and the
patience of the players leads to the reduction in the set of sequential equilibria. This
paper also contributes to the network literature, which so far emphasized the importance
of the clustering coefficient for the level of cooperation sustainable in a network.

As already mentioned in the introduction, this setup can be applied to various specific
contexts. Not only companies, but also impatient people form networks and interact
strategically over time, such as within a company, in any other organization, or in society
at large. As long as all of them are on the same hierarchical level, this model applies. Also
macroeconomic applications can be thought of. The players in a network thus might be all
the companies in an economy and a deviation could be interpreted as one of them going
bankrupt.!® The network effects in repeated strategic interaction can also be observed
in financial markets. For example, innovative financial strategies, such as those used by
hedge funds, spread throughout a network over time. Whereas at the beginning only few
players use a certain strategy, over time everyone adopts a successful one.

Finally, extending the idea of worst payoff introduced in section 3, an upper and a
lower bound of a player’s payoff after deviating can be calculated and a recursive structure
in this setup may be obtained. By applying dynamic programming arguments, it may then
be possible to obtain a superset and a subset of the set of equilibrium payoffs. Also, noise
can be introduced into this setup by letting the players only observe distorted signals of
each other’s behavior. Moreover, an imperfect signal’s informativeness might be decaying
over time, that is, along the shortest path between two players the quality of the signal

about each other’s action choice deteriorates.
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Appendix A Proof of Theorem 1

Given GG and g, fix x € F* and note that x, as well as any other payoff vector in co(G), is
feasible when A € (1 — 1,1), where z is the number of vertices of co(G)—see subsection
2.4.2. Hence, let \ = max{j\, 1-— %}, where A < 1 is determined below. Then, for each
A€ ()\, 1), there is a corresponding sequence of pure action profiles {a®}°, which yields
x. When A changes, the sequence of action profiles that generates = may differ. Hence,
strategy profile f € F, which thereafter is defined and shown to be a sequential equilibrium
of G9* for any \ € ()\, 1), may prescribe a different sequence of action profiles for each A,
although its structure is unchanged. For any j € I, define f] € F; as follows:

o 1 : t—1 t—1 : : rtfopt—1\
fi = aj, and for t > 1, given ob;"" € Ob}"", in a slight abuse of notation, let f;(ob;") =

1) a, unless there is 1 < ' <t such that for a" € ob}™", a! # al’, while a"; = a

In this case, switch to phase 2 at t' + d; and let aj = aj, for all s > 1.

it

2) d;, if ' +d; <t <t +d, unless player [, where [ # i and [ ¢ S, if i € S,
deviates at any t”, where t' + d > t” > t'. Then, restart phase 2, set t' = t”
and choose a; accordingly. Otherwise, switch to phase 3 at ' + d.

3) c_zé, ift/! +d<t<t'+T, where T is determined below. If any player | devi-
ates at any ¢, where t' +7T >t > t' + d, restart phase 2, set ' = ¢ and choose
a; accordingly. Otherwise, switch to phase 4 at ¢’ + T + 1.

4) ¢, ift >t + T + s, where {c*}32, is the sequence of action profiles that yields
either w' if i ¢ S, or wo if i € S,. If any player [ deviates at any 7 >t + T, te-
start phase 2, set t' = 7 and choose a} accordingly. If [ =4 or 7,1l € S,, restart

{c*}22, where it was truncated by [’s deviation, once phase 4 is reached again.

Phase 2 corresponds to the 1.5 P, phase 3 to the effective minmax punishment of the
last deviator, and phase 4 to the punishment reward phase.

After any subsequent unilateral deviation, the phase in which the game is at the time
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of the deviation prescribes the play of the following d — 1 periods—in general, phase 2 is
restarted. Then, the new deviator is punished. In case, the same player deviates again in
phase 2 (and no other one does), however, this phase is not restarted, but his punishment
begins d periods after his first deviation. His entire gain is eliminated, that is, he is forced
to his effective minmaz payoff for at least d — 1 periods, or longer, if necessary. After
d — 1 periods of punishment, all players know if he deviated again in the period before his
punishment started, and hence, for how long it has to continue in order to eliminate his
entire gain from deviating. A similar argument applies for several unilateral deviations
by distinct players of an EU-group during phase 2. After punishing the initial deviator
(for at least d — 1 periods), the gain of the subsequent one(s) is eliminated.

By construction, the players can ignore multilateral deviations from f , and it remains
to show that no player’s unilateral deviation from f is ever profitable for large enough .
The Folk Theorem holds trivially when o' is a stage game Nash Equilibrium for all ¢, and
hereafter, only strategy profiles that do not generate such sequences of action profiles are
considered. Finally, a consistent system of beliefs, given f, is specified in footnote 10.

The proof is organized as follows. The result for phase 2 is shown first since it
introduces arguments used thereafter to prove the results of phases 4, 1 and 3. Note, that
the following 6 combinations of players’ deviations have to be shown to be unprofitable;
for the first four ¢ ~ j holds, whereas for the remaining two i ~ j holds: i # j and
either 7,7 ¢ S; ori € S, but j ¢ S;or j € S, buti ¢ S;ori € S,, j € Sy such
that u # u'; and finally, 7, j € S,,, or i = j. For each phase, the proof proceeds in this order.

PHASE 2

Figure 6 illustrates the order of time periods in phase 2. Suppose player i ¢ S deviated
at t'. During the ISP player j # i, j ¢ S, receives [ SPf. By deviating at t”, where
t" < t" < t' 4 d, he can maximally gain b; = max,ca[max; ca, h;j(d;, a_;) — hj(a)], since
his remaining IS P-payoff is unchanged. However, from period t” +d on, he is forced to his
effective minmax payoff of 0, and then, his punishment reward phase is played. Player j’s

deviation at ¢’ is not profitable when for some positive integer 75, where ¢ +d < t' + Tb,

7 : t/+T2 " . 17 "o
(1= X)b;+A20] — (1= X) S AN h@) - AWl <o,
t=t"+d
t/+T2 ” ) o L, R )
I=Xb;—(1=X) > N (@) < APRTTwE - AP (4)

t=t"+d
Substituting AT with AT makes the right-hand-side of (4) smaller. Since t"” > t/,
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a) time structure of part 1in phase 2

. e .
player ;s punish- player /s punish-
player/ deviates ment starts ment reward starts
”

N
t t+d t+T,+1

N
ty t’ + d ty + T2+ 1
player 7 deviates  player /s punish- player 7’ punish-
ment starts ment reward starts

b) time structure of part 2 in phase 2

punishment punishment re-
player; deviates againstj1 S starts  ward of 5, starts
t t+2d-1 t+T,+1
t t+d t+2d-1 t
player / deviates  punishment punishment re-
against il S, starts  ward of § starts

Figure 6: Order of time periods in phase 2

AP+~ 5 AT hiolds for all A < 1. Hence, (5) implies (4) and it suffices to show (5).

(1—X)b; — (1—N) tiTQ AN @) < ABlwh - W) (5)
t=t"+d

As A converges to 1, (5) is fulfilled: its left-hand-side converges to zero whereas its right-
hand-side is strictly positive since wé > wi This may hold for several distinct pairs of
discount factor and strictly positive integer. (The last inequality is fulfilled trivially when
player j’s gain from punishing player ¢ is larger than b;). An analogous argument holds,
whenever i « j. The case t” 4+ d > t' + T} is simpler since the sum on the left-hand-side of
(5) drops out as well as j’s payoff in the first period(s) of i’s punishment reward phase,

which for A\ close to 1 is negligible.
For i, j € S, after player j’s deviation at any t”, where t’ < t” < t'+d, the ISP about
i’s deviation continues. Once all players know about i’s deviation, a’ is played for at least
d — 1 periods, that is, at least until period ¢’ 4+ 2d — 2. Then, a/ = @’ is played until period
' 4+ Ty, to take away player j’s gain from deviating at ¢”. Since j’s punishment lasts at
least one period, Ty > 2d — 2. Thereafter, the EU-group’s punishment reward phase is
played. Player j’s deviation at ¢” is not profitable, if for some positive integer Ty > 2d — 2,

(1 — A)by + APty — \FHRd=2=t7, 8 g,

(1 o )\)bj < ()\t +2d—2—t o At +T2—t )w]Su7
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by < AUHRIR( (1 - T G2y

When A\ converges to 1, the right-hand-side converges to (T2 —2d + 2)wf“ > 0, by
I'Hospital. Since b; is a fixed positive number, the inequality is fulfilled for a large enough
Ty. A similar argument applies when several distinct players with equivalent utility to ¢’s
deviate sequentially during the ISP about ¢’s deviation or when ¢ = j, that is, one player
deviates in several (subsequent) periods. Finally, select a large enough, strictly positive

integer T5 such that no player can deviate profitably in phase 2.

PHASE 4 and PHASE 1
The result for phase 4 is stated first since it implies the result for phase 1. Suppose that
player i # j, that ¢,j ¢ S, and that 7 is the last deviator. Player j does not deviate at T,

the first period of i’s punishment reward phase, if for some positive integer T},

(1= ) maxgea, by, cly) + AL = VISP + Xl —wf <0,

(1 — N maxg,ea, hy(ag,ct,) + A1 = NISPT < wi— ATi)

When A converges to 1, the left-hand-side of the last inequality converges to zero
whereas the right-hand-side is strictly positive (since wé» > w;:, and for any A < 1, AT < 1).
The same argument holds whenever ¢ ~ j, and when player j deviates in any other than
the first period of player i’s punishment reward phase since for A close to 1, the payoff
obtained at the beginning of any punishment reward phase is negligible.

If ¢ = j, player ¢ cannot deviate profitably in the 7th period of his own punishment

reward phase, if there is a positive integer T, such that
(1= A)bi + A(1 = ISP+ ATl —wil®.,, < 0,
where 7 =t/ + Ty + 7 and wi[®. ., = (1 — A\) 12, | A* 'hy(c®). This simplifies to

(1= A)b; + A1 = NISPT < wile. | — A=,

b+ MSPT < UP2Puie (6)

When A converges to 1, the left-hand-side of (6) is bounded above by a positive
number and the right-hand-side, by 1'Hospital, converges to T4w 12,41 > 0. (Although,
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wi|,,, differs from w?, for A close to 1, this difference is negligible and w!|>® ., has the
same properties as w!). For Ty large enough, (6) holds. A similar argument applies when
1,7 € 9, and j deviates in the punishment reward phase of his EU-group. This argument
together with the one used in phase 2 above demonstrates that any player’s unilateral
deviation of finite length is neither profitable in phase 4. Finally, let T, be the smallest
positive integer such that no player can deviate profitably in phase 4.

The result of phase 4 extends to phase 1 since by assumption any player’s target
payoff is strictly larger than his punishment reward payoff. Moreover, neither finite
deviations by one player nor subsequent deviations by distinct players in an EU-group
are profitable in phase 1. Hence, also for phase 1 there is a discount factor A < 1 and a

positive integers T} such that no player can deviate profitably from strategy profile f.

PHASE 3
Suppose player i is forced to his effective minmax payoff because he deviated at t'. By
definition, neither player ¢ nor any player j ~ 4 can deviate profitably in this phase.

Hence, suppose i, ¢ S. Player j does not deviate at any ¢, where ¢’ +d <t <t + Ty, if

— . T g . / .
(1= N)b; + A(L = NISP 4+ ABw! — (1= \) z N h(at) — ATt <0,
t=t

J

_ T3 _ . . .
(1= X)bj + ML= NISPI— (1= M) A Thy(@) < X7l — Aol (7)

t=t
Proceeding as in phase 2, that is, substituting on (7)’s right-hand-side ATt
with AT (for any A < 1, A=) 5 AT gince # > ) and taking the limit of A
converging to 1, fulfills (7) for at least one pair of discount factor A < 1 and strictly
positive integer T5. An analogous argument holds for deviations, or a sequence of de-

viations, by EU- and NEU-players. Choose T3 large enough to prevent any such deviation.

Let T = max{Ty,T5,T3,T,}, and let A be the lowest discount factor, for which,
given T, no player can deviate profitably in any phase. (If there are several pairs of T
and A\ for which the proof holds, the pair with the lowest discount factor is selected.)
Finally, let A\ = max{\,1 — 1}. Then, for any \ € (A, 1), f is a sequential equilibrium

strategy profile of G9* and H*(f) = .
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Appendix B Proof of Proposition 1

Fix G, A < 1 and g. Select f € SE(G?) that generates the sequence of action profiles
{a'(f)}2, = {a'}s°,. Take a strategy profile with the same structure as f, defined in
Theorem 1, to support this sequence of action profiles as a sequential equilibrium of G9.
Then, the network has an impact with respect to f if some player can deviate profitably.

Consider first, that for some i ¢ S, some 7 > 1, and all positive integers 7' > 2d — 2,

T+d—1 ) [es)
(1—=X) > N Tmaxgeq hiasat,) +Xwl > (1 =X AN hi(ah),
t=1 t=1
T4+d—1 ] [es)
ST AT maxg,eq, hiag, ab ) — hi(@)] + (1= X)) wi > S AT ().
t=1 t=7+d

Subtracting (1 — A\)~'A’w! from both sides yields 57 > 67(T). The network has an
impact with respect to f if either the last inequality holds for some i ¢ S or an analogous

condition for some i € S. In the second case, w! is substituted with ws™.
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