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Abstract

Recently, several school districts in the US have adopted or consider adopting the

Student-Optimal Stable mechanism or the Top Trading Cycles mechanism to assign

children to public schools. There is evidence that for school districts that employ

(variants of) the so-called Boston mechanism the transition would lead to efficiency

gains. The first two mechanisms are strategy-proof, but in practice student assign-

ment procedures typically impede a student to submit a preference list that contains

all his acceptable schools. We study the preference revelation game where students

can only declare up to a fixed number of schools to be acceptable. We focus on the

stability and efficiency of the Nash equilibrium outcomes. Our main results identify

rather stringent necessary and sufficient conditions on the priorities to guarantee

stability or efficiency of either of the two mechanisms. This stands in sharp contrast

with the Boston mechanism which has been abandoned in many US school districts

but nevertheless yields stable Nash equilibrium outcomes.

JEL classification: C72, C78, D78, I20

Keywords: school choice, matching, Nash equilibrium, stability, efficiency, Gale-

Shapley deferred acceptance algorithm, top trading cycles, Boston mechanism, acyclic

priority structure
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1 Introduction

School choice is referred in the literature on education as giving parents a say in the

choice of the schools their children will attend. A recent paper by Abdulkadiroğlu and

Sönmez (2003) has lead to an upsurge of enthusiasm in the use of matching theory for

the design and study of school choice mechanisms.1 Abdulkadiroğlu and Sönmez (2003)

discuss critical flaws of the current procedures of some school districts in the US to assign

children to public schools, pointing out that the widely used Boston mechanism has the

serious shortcoming that it is not in the parents’ best interest to reveal their true pref-

erences. Using a mechanism design approach, they propose and analyze two alternative

student assignment mechanisms that do not have this shortcoming: the Student-Optimal

Stable mechanism and the Top Trading Cycles mechanism.

A common practice in real-life school choice situations consists of asking to submit a

preference list containing only a limited number of schools. For instance, in the school

district of New York City each year more than 90,000 students are assigned to about 500

school programs, and parents are asked to submit a preference list containing at most

12 school programs. Until 2006 parents in Boston could not submit more than 5 schools

in their choice list.2 In Spain and in Hungary students applying to a college cannot

submit a choice list containing more than 8 and 4 academic programs, respectively.3 This

restriction is reason for concern. Imposing a curb on the length of the submitted lists

compels participants to adopt a strategic behavior when choosing which ordered list to

submit. For instance, if a participant fears rejection by his most preferred programs, it can

be advantageous not to apply to these programs and use instead its allowed application

slots for less preferred programs.

The matching literature usually assumes that individuals submit their true preferences

when either the Student-Optimal Stable mechanism or the Top Trading Cycles mecha-

1Recent papers include Abdulkadiroğlu (2005), Abdulkadiroğlu, Pathak, and Roth (2005, 2008), Ab-

dulkadiroğlu, Pathak, Roth, and Sönmez (2005), Chen and Sönmez (2006), Erdil and Ergin (2008), Ergin

and Sönmez (2006), Kesten (2005), and Pathak and Sönmez (2008).
2Abdulkadiroğlu, Pathak, and Roth (2005) report that in New York about 25% of the students submit

a preference list containing the maximal number of school programs, which suggests that the constraint

is binding for a significant number of students. Interestingly enough, the school district of Boston re-

cently adopted the Student-Optimal Stable mechanism without a constraint on the length of submittable

preference lists for the school year 2007–2008 (see Abdulkadiroğlu, Pathak, Roth and Sönmez (2006)).
3In Spain and Hungary colleges are not strategic, for the priority orders are determined by students’

grades. So college admission in these countries is, strictly speaking, akin to school choice.
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nism is used. However, little is known about the properties of the these two mechanisms

(i.e., the structure of equilibrium profiles and equilibrium outcomes) when individuals

do not necessarily submit their true preferences. In this paper we aim at filling this

gap by exploring the effects of imposing a quota (i.e., a maximal length) on the submit-

table preference lists of students. Thereby we revive an issue that was initially raised by

Romero-Medina (1998), who shows that any stable matching can be sustained at some

Nash equilibrium under the Student-Optimal Stable mechanism.4 In this paper we con-

sider and compare three matching mechanisms that are or have been employed or proposed

in many US school districts: the Boston (BOS), the Student Optimal Stable Matching

(SOSM) and the Top Trading Cycles (TTC) mechanisms.

The model considered in this paper is the school choice problem (Abdulkadiroğlu and

Sönmez, 2003) where a number of students has to be assigned to a number of schools,

each of which has a limited seat capacity. Students have preferences over schools and

remaining unassigned and schools have exogenously given priority rankings over students.5

We introduce a preference revelation game where students can only declare up to a fixed

number (the quota) of schools to be acceptable. Each possible quota, from 1 up to the

total number of schools, together with a student assignment mechanism induces a strategic

“quota-game.” Since the presence of the quota eliminates the existence of a dominant

strategy when the mechanism at hand is the SOSM or TTC, we focus our analysis on the

Nash equilibria of the quota-games. Regarding SOSM, our approach complements the

work of Roth (1984), Gale and Sotomayor (1985a), and Alcalde (1996) who characterized

the set of Nash equilibrium outcomes when the schools are strategic.6 As for TTC, so far

little has been known about its Nash equilibria.

Our preliminary results concern the existence and the structure of the Nash equilibria

under BOS, SOSM, and TTC. For all three mechanisms and for any quota, there are Nash

equilibria in pure strategies. We establish that for the three mechanisms the associated

4Kojima and Pathak (2007) consider the game played by schools when for each student only a small

set of schools is acceptable.
5Priorities are the counterpart of schools’ preferences over students in the college admissions problem

(Gale and Shapley, 1962).
6Roth (1984) and Gale and Sotomayor (1985a) characterized the set of Nash equilibrium outcomes

when schools are strategic agents in a college admissions problem, assuming that students truthfully

reveal their (whole) preferences. In particular, they showed that Nash equilibria yield stable matchings

and that any stable matching can be obtained as a Nash equilibrium outcome. Alcalde (1996) went one

step further assuming that students may not necessarily use their weakly dominant strategy. He showed

that the set of Nash equilibrium outcomes coincides with the set of individually rational matchings.
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quota-games have a common feature: the equilibria are nested with respect to the quota.

More precisely, given a quota, any Nash equilibrium is also a Nash equilibrium under

any less stringent quota. This leads to the following important observation: If a Nash

equilibrium outcome in a quota-game has an undesirable property then this is not simply

due to the presence of a constraint on the size of submittable lists. Regarding BOS and

TTC we obtain a much stronger result: Nash equilibrium outcomes are independent of

the quota. This is a powerful result, since it allows us to reduce the analysis to games of

quota 1.

The core of this paper is devoted to the analysis of equilibrium outcomes, focusing on

stability and efficiency. Abdulkadiroğlu and Sönmez (2003) discuss in detail the impor-

tance and desirability of these two properties in school choice. In this paper, we explore

under which conditions the mechanisms implement stable and efficient matchings in Nash

equilibria. Most of our analysis will concentrate on SOSM and TTC. The results for BOS

either are already known or come as byproducts of the characterizations for SOSM.7

Stability is the central concept in the two-sided matching literature and does not

lose its importance in the closely related model of school choice.8 Loosely speaking,

stability of an assignment obtains when, for any student, all the schools he prefers to

the one he is assigned to have exhausted their capacity with students that have higher

priority. Romero-Medina (1998) claims that any Nash equilibrium outcome under SOSM

is stable. We provide an example that shows that this is not true.9 Furthermore, the

unstable equilibrium outcome we present cannot be Pareto ranked with respect to the

set of stable assignments, thereby leaving us with little hope for hitting on a closed form

characterization of equilibrium outcomes under SOSM. We therefore turn to the problem

of implementing stable matchings under SOSM. This turns out to be possible if, and

only if, schools’ priorities satisfy Ergin’s (2002) acyclicity condition. However, we may

understand this as a negative result, for Ergin’s acyclicity is a condition that is likely not

to be met in real-life school choice problems. As for BOS, it is easy to show that the

correspondence of stable matchings is implemented in Nash equilibria. Finally, and for

the sake of completeness, we also consider the stability of equilibrium outcomes under

7Alcalde (1996), Ergin and Sönmez (2006) and Pathak and Sönmez (2008) provide an extensive analysis

of the equilibria under BOS.
8In many centralized labor markets, clearinghouses are most often successful if they produce stable

matchings —see Roth (2002) and the references therein.
9See also Example 3 in Sotomayor (1998), which even applies to a larger class of mechanisms than

SOSM.
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TTC. Like for SOSM, under TTC unstable matchings may obtain in equilibrium. We

show that Kesten’s (2006) acyclicity condition is necessary and sufficient to implement

stable matchings under TTC.

In a school choice problem, efficiency is defined with respect to the preferences of stu-

dents only. It is known that in this case SOSM may not be efficient —see Ergin (2002).

TTC then becomes the most natural mechanism to obtain efficient matchings provided

students do submit their true preferences. However, notice that since TTC is no longer

strategy-proof when choice is constrained it is not clear whether it performs better than

BOS, which is also efficient with respect to submitted preference lists. The efficiency of

TTC turns out to be not robust to the Nash equilibrium operator. In fact, it is easy

to see that an inefficient matching can be sustained by an Nash equilibrium, even if we

restrict to undominated strategies. This negative result motivates then the search for

conditions that ensure efficiency. We show that efficient Nash equilibrium outcomes can

be guaranteed if, and only if, schools’ priorities satisfy a new acyclicity condition called

X-acyclicity. This condition roughly states that two schools cannot prioritize differently

two students that compete for the last available seat in both schools. A similar but slightly

stronger condition, strong X-acyclicity, is necessary and sufficient to guarantee efficient

Nash equilibrium outcomes under both SOSM and BOS. It may come as a surprise that

we find the same necessary and condition for SOSM and BOS. However, since any stable

matching can be obtained as a Nash equilibrium outcome under both SOSM and BOS,

strong X-acyclicity needs to guarantee that there is a unique stable matching (otherwise

the lattice structure of the set of stable matchings implies that not all equilibrium out-

comes are efficient). In fact, nothing more is needed: X-acyclicity is a necessary and

sufficient condition for the set of stable matchings to be a singleton.

The remainder of the paper is organized as follows. In Section 2, we recall the model of

school choice. In Section 3, we describe the three mechanisms. In Section 4, we introduce

the strategic game induced by the imposition of a quota on the revealed preferences. In

Section 5 we provi de existence results and establish the nestedness of equilibrium out-

comes. In Sections 6 and 7 we investigate the implementability of stable and efficient

matchings, respectively. In Section 8, we study Nash equilibria in undominated trunca-

tion strategies for the Student-Optimal Stable mechanism and the Top Trading Cycles

mechanism. Finally, in Section 9, we discuss the policy implications of our results and

our contribution to the literature on school choice. Almost all proofs are relegated to the

Appendices.
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2 School Choice

Following Abdulkadiroğlu and Sönmez (2003) we define a school choice problem by a set

of schools and a set of students, each of which has to be assigned a seat at not more than

one of the schools. Each student is assumed to have strict preferences over the schools

and the option of remaining unassigned. Each school is endowed with a strict priority

ordering over the students and a fixed capacity of seats. Formally, a school choice problem

is a 5-tuple (I, S, q, P, f) that consists of

1. a set of students I = {i1, . . . , in},

2. a set of schools S = {s1, . . . , sm},

3. a capacity vector q = (qs1
, . . . , qsm

),

4. a profile of strict student preferences P = (Pi1 , . . . , Pin), and

5. a strict priority structure of the schools over the students f = (fs1
, . . . , fsm

).

We denote by i and s a generic student and a generic school, respectively. An agent

is an element of V := I ∪ S. A generic agent is denoted by v. With a slight abuse of

notation we write v for singletons {v} ⊆ V .

The preference relation Pi of student i is a linear order over S ∪ i, where i denotes

his outside option (e.g., going to a private school). Student i prefers school s to school

s′ if sPis
′. School s is acceptable to i if sPii. Henceforth, when describing a particular

preference relation of a student we will only represent acceptable schools. For instance,

Pi = s, s′ means that student i’s most preferred school is s, his second best s′, and any

other school is unacceptable. For the sake of convenience, if all schools are unacceptable

for i then we sometimes write Pi = i instead of Pi = ∅. Let Ri denote the weak preference

relation associated with the preference relation Pi.

The priority ordering fs of school s assigns ranks to students according to their priority

for school s. The rank of student i for school s is fs(i). Then, fs(i) < fs(j) means that

student i has higher priority (or lower rank) for school s than student j. For s ∈ S and

i ∈ I, we denote by Uf
s (i) the set of students that have higher priority than student i for

school s, i.e., Uf
s (i) = {j ∈ I : fs(j) < fs(i)}.

Throughout the paper we fix the set of students I and the set of schools S. Hence, a

school choice problem is given by a triple (P, f, q), and simply by P when no confusion is

possible.

School choice is closely related to the college admissions model (Gale and Shap-

ley, 1962). The only but key difference between the two models is that in school choice
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schools are mere “objects” to be consumed by students, whereas in the college admissions

model (or more generally, in two-sided matching) both sides of the market are agents with

preferences over the other side. In other words, a college admissions problem is given by

1–4 above and 5’. a profile of strict school preferences PS = (Ps1
, . . . , Psm

), where Ps

denotes the strict preference relation of school s ∈ S over the students.

Priority orderings in school choice can be reinterpreted as school preferences in the

college admissions model. Therefore, many results or concepts for the college admissions

model have their natural counterpart for school choice.10 In particular, an outcome of a

school choice or college admissions problem is a matching µ : I ∪ S → 2I ∪ S such that

for any i ∈ I and any s ∈ S,

• µ(i) ∈ S ∪ i,

• µ(s) ∈ 2I ,

• µ(i) = s if and only if i ∈ µ(s), and

• |µ(s)| ≤ qs.

For v ∈ V , we call µ(v) agent v’s allotment. For i ∈ I, if µ(i) = s ∈ S then student

i is assigned a seat at school s under µ. If µ(i) = i then student i is unassigned under

µ. For convenience we often write a matching as a collection of sets. For instance,

µ = {{i1, i2, s1}, {i3}, {i4, s2}} denotes the matching in which students i1 and i2 each are

assigned a seat at school s1, student i3 is unassigned, and student i4 is assigned a seat at

school s2.

A key property of matchings in the two-sided matching literature is stability. In-

formally, a matching is stable if, for any student, all the schools he prefers to the one

he is assigned to have exhausted their capacity with students that have higher priority.

Formally, let P be a school choice problem. A matching µ is stable if

• it is individually rational, i.e., for all i ∈ I, µ(i)Ri i,

• it is non wasteful (Balinski and Sönmez, 1999), i.e., for all i ∈ I and all s ∈ S,

sPiµ(i) implies |µ(s)| = qs, and

• there is no justified envy, i.e., for all i, j ∈ I with µ(j) = s ∈ S, sPiµ(i) implies

fs(j) < fs(i).

We denote the set of individually rational matchings by IR(P ), the set of non wasteful

matchings by NW (P ), and the set of stable matchings by S(P ).

10See, for instance, Balinski and Sönmez (1999).
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Another desirable property for a matching is Pareto-efficiency. In the context of school

choice, to determine whether a matching is Pareto-efficient we only take into account

students’ welfare. A matching µ′ Pareto dominates a matching µ if all students prefer µ′

to µ and there is at least one student that strictly prefers µ′ to µ. Formally, µ′ Pareto

dominates µ if µ′(i)Riµ(i) for all i ∈ I, and µ′(i′)Pi′µ(i′) for some i′ ∈ I. A matching is

Pareto-efficient if it is not Pareto dominated by any other matching. We denote the set

of Pareto-efficient matchings by PE(P ).

A (student assignment) mechanism systematically selects a matching for each school

choice problem. A mechanism is individually rational if it always selects an individually

rational matching. Similarly, one can speak of non wasteful, stable, or Pareto-efficient

mechanisms. Finally, a mechanism is strategy-proof if no student can ever benefit by

unilaterally misrepresenting his preferences.11

3 Three Competing Mechanisms

In this section we describe the mechanisms that we study in the context of constrained

school choice: the Boston, Student-Optimal Stable, and the Top Trading Cycles mecha-

nisms. The three mechanisms are direct mechanisms, i.e., students only need to report an

ordered list of their acceptable schools. For a profile of revealed preferences the matching

that is selected by a mechanism is computed via an algorithm. Below we give a description

of the three algorithms, thereby introducing some additional notation. Let (I, S, q, P, f)

be a school choice problem.

3.1 The Boston Algorithm

The Boston mechanism was first described in the literature by Alcalde (1996) who called

it the “Now-or-never” mechanism. The term “Boston mechanism” was coined by Ab-

dulkadiroğlu and Sönmez (2003) because the mechanism was used in the Boston school

district until recently. Consider a profile of ordered lists Q submitted by the students.

The Boston algorithm finds a matching through the following steps.

Step 1: Set q1
s := qs for all s ∈ S. Each student i proposes to the school that is ranked

first in Qi (if there is no such school then i remains unassigned). Each school s assigns

11In game theoretic terms, a mechanism is strategy-proof if truthful preference revelation is a weakly

dominant strategy.
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up to q1
s seats to its proposers one at a time following the priority order fs. Remaining

students are rejected. Let q2
s denote the number of available seats at school s. If q2

s = 0

then school s is removed.

Step l, l ≥ 2: Each student i that is rejected in Step l − 1 proposes to the next school

in the ordered list Qi (if there is no such school then i remains unassigned). School s

assigns up to ql
s seats to its (new) proposers one at a time following the priority order fs.

Remaining students are rejected. Let ql+1
s denote the number of available seats at school

s. If ql+1
s = 0 then school s is removed.

The algorithm stops when no student is rejected or all schools have been removed. Any

remaining student remains unassigned. Let β(Q) denote the matching. The mechanism

β is the Boston mechanism, or BOS for short. It is well known that BOS is individually

rational, non wasteful, and Pareto-efficient. It is, however, neither stable nor strategy-

proof.

3.2 The Gale-Shapley Deferred Acceptance Algorithm

The deferred acceptance (DA) algorithm was introduced by Gale and Shapley (1962).

Let Q be a profile of ordered lists submitted by the students. The DA algorithm finds a

matching through the following steps.

Step 1: Each student i proposes to the school that is ranked first in Qi (if there is no

such school then i remains unassigned). Each school s tentatively assigns up to qs seats

to its proposers one at a time following the priority order fs. Remaining students are

rejected.

Step l, l ≥ 2: Each student i that is rejected in Step l − 1 proposes to the next school

in the ordered list Qi (if there is no such school then i remains unassigned). Each school

s considers the new proposers and the students that have a (tentative) seat at s. School

s tentatively assigns up to qs seats to these students one at a time following the priority

order fs. Remaining students are rejected.

The algorithm stops when no student is rejected. Each student is assigned to his final

tentative school. Let γ(Q) denote the matching. The mechanism γ is the Student-Optimal

Stable mechanism, or SOSM for short. SOSM is a stable mechanism that is Pareto

superior to any other stable matching mechanism (Gale and Shapley, 1962). An additional

important property of SOSM is that it is strategy-proof (Dubins and Freedman, 1981;

Roth, 1982b). However, it is not Pareto-efficient.
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3.3 The Top Trading Cycles Algorithm

The Top Trading Cycles mechanism in the context of school choice was introduced by

Abdulkadiroğlu and Sönmez (2003).12 Let Q be a profile of ordered lists submitted by

the students. The Top Trading Cycles algorithm finds a matching through the following

steps.

Step 1: Set q1
s := qs for all s ∈ S. Each student i points to the school that is ranked

first in Qi (if there is no such school then i points to himself, i.e., he forms a self-cycle).

Each school s points to the student that has the highest priority in fs. There is at least

one cycle. If a student is in a cycle he is assigned a seat at the school he points to (or to

himself if he is in a self-cycle). Students that are assigned are removed. If a school s is

in a cycle and q1
s = 1, then the school is removed. If a school s is in a cycle and q1

s > 1,

then the school is not removed and its capacity becomes q2
s := q1

s − 1.

Step l, l ≥ 2: Each student i that is rejected in Step l − 1 points to the next school in

the ordered list Qi that has not been removed at some step r, r < l, or points to himself

if there is no such school. Each school s points to the student with the highest priority

in fs among the students that have not been removed at a step r, r < l. There is at least

one cycle. If a student is in a cycle he is assigned a seat at the school he points to (or to

himself if he is in a self-cycle). Students that are assigned are removed. If a school s is

in a cycle and ql
s = 1, then the school is removed. If a school s is in a cycle and ql

s > 1,

then the school is not removed and its capacity becomes ql+1
s := ql

s − 1.

The algorithm stops when all students or all schools have been removed. Any remaining

student is assigned to himself. Let τ(Q) denote the matching. The mechanism τ is the

Top Trading Cycles mechanism, or TTC for short. TTC is Pareto-efficient and strategy-

proof (see Roth, 1982a, for a proof in the context of housing markets and Abdulkadiroğlu

and Sönmez, 2003, for a proof in the context of school choice). The mechanism is also

individually rational and non wasteful. However, it is not stable.

12The Top Trading Cycles mechanism was inspired by Gale’s Top Trading Cycles algorithm which was

used by Roth and Postlewaite (1977) to obtain the unique core allocation for housing markets (Shapley

and Scarf, 1974). A variant of the Top Trading Cycles mechanism was introduced by Abdulkadiroğlu

and Sönmez (1999) for a model of house allocation with existing tenants.
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3.4 An Illustrative Example

We illustrate the impact of the quota on the length of submittable preference lists through

the following example.

Let I = {i1, i2, i3, i4} be the set of students, S = {s1, s2, s3} be the set of schools,

and q = (1, 2, 1) be the capacity vector. The students’ preferences P and the priority

structure f are given in the table below. So, for instance, Pi1 = s2, s1, s3 and fs1
(i1) <

fs1
(i2) < fs1

(i3) < fs1
(i4).

Pi1 Pi2 Pi3 Pi4 fs1
fs2

fs3

s2 s1 s1 s2 i1 i3 i4

s1 s2 s2 s3 i2 i4 i1

s3 s3 s3 s1 i3 i1 i2

i4 i2 i3

One easily verifies that if there is no quota on the length of submittable preference lists

and if the students truthfully report their preference lists, then the mechanisms yield the

following three matchings:

β(P ) = {{s1, i2}, {s2, i1, i4}, {s3, i3}}

γ(P ) = {{s1, i1}, {s2, i3, i4}, {s3, i2}}

τ(P ) = {{s1, i3}, {s2, i1, i4}, {s3, i2}}.

Note that if in a direct revelation game under γ or τ students could only submit a

list of 2 schools, student i2 would remain unassigned (and the other students unaffected),

provided that each student submits the truncated list with his two most preferred schools.

Therefore, if students can only submit short preference lists, then (at least) student i2

ought to strategize (i.e., list school s3) to ensure a seat at some (acceptable) school. In

particular, the profile of truncated preferences does not constitute a Nash equilibrium.

Under both mechanisms in the constrained setting, truncating one’s true preferences is in

general not a (weakly) dominant strategy.

4 Constrained Preference Revelation

Fix the priority ordering f and the capacities q. We consider the following school

choice procedure. Students are asked to submit (simultaneously) preference lists Q =

12



(Qi1 , . . . , Qin) of “length” at most k (i.e., preference lists with at most k acceptable

schools). Here, k is a positive integer, 1 ≤ k ≤ m, and is called the quota. Subsequently,

a mechanism ϕ is used to obtain the matching ϕ(Q) and for all i ∈ I, student i is assigned

a seat at school ϕ(Q)(i).

Clearly, the above procedure induces a strategic form game, the quota-game Γϕ(P, k) :=

〈I,Q(k)I , P 〉. The set of players is the set of students I. The strategy set of each stu-

dent is the set of preference lists with at most k acceptable schools and is denoted by

Q(k). Let Q := Q(m). Outcomes of the game are evaluated through the true preferences

P = (Pi1, . . . , Pin), where with some abuse of notation P denotes the straightforward ex-

tension of the preference relation over schools (and the option of remaining unassigned) to

matchings. That is, for all i ∈ I and matchings µ and µ′, µPiµ
′ if and only if µ(i)Piµ

′(i).

For any profile of preferences Q ∈ QI and any i ∈ I, we write Q−i for the profile of

preferences that is obtained from Q after leaving out preferences Qi of student i. A profile

of submitted preference lists Q ∈ Q(k)I is a Nash equilibrium of the game Γϕ(P, k) (or

k-Nash equilibrium for short) if for all i ∈ I and all Q′
i ∈ Q(k), ϕ(Qi, Q−i)Riϕ(Q′

i, Q−i).

Let Eϕ(P, k) denote the set of k-Nash equilibria. Let Oϕ(P, k) denote the set of k-Nash

equilibrium outcomes, i.e., Oϕ(P, k) := {ϕ(Q) : Q ∈ Eϕ(P, k)}.

Remark 4.1 Setting the same quota for all students is without loss of generality since

in the proofs we never compare the values of the quota for different students.

If the quota is smaller than the total number of schools, i.e., k < m, then students

typically cannot submit their true preference lists and hence there is no weakly dominant

strategy for SOSM and TTC. The next result shows that nevertheless there is a class of

undominated strategies.

One piece of advice about which preference list a student should submit follows from

the strategy-proofness of the Student-Optimal Stable mechanism and the Top Trading

Cycles mechanism in the unconstrained setting: it does not pay off to submit a list of

schools that does not respect the true order. More precisely, a list that does not respect

the order of a student’s true preferences is weakly dominated by listing the same schools

in the “true order.” Let ϕ be a mechanism. Student i’s strategy Qi ∈ Q(k) in the game

Γϕ(P, k) is weakly k-dominated by another strategy Q′
i ∈ Q(k) if ϕ(Q′

i, Q−i)Riϕ(Qi, Q−i)

for all Q−i ∈ Q(k)I\i.

Lemma 4.2 Let P be a school choice problem. Let 1 ≤ k ≤ m. Let i ∈ I be a student.

Consider two strategies Qi, Q
′
i ∈ Q(k) such that (a) Qi and Q′

i contain the same set of
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schools, and (b) for any two schools s and s′ listed in Qi (or Q′
i), sQ′

is
′ implies sPis

′.

Then, Qi is weakly k-dominated by Q′
i in the games Γγ(P, k) and Γτ (P, k).

Proof Let ϕ := γ, τ . The result follows directly from the strategy-proofness of γ (Dubins

and Freedman, 1981; Roth, 1982b) and τ (Abdulkadiroğlu and Sönmez, 2003) by using

Q′
i as student i’s “true preferences:” ϕ(Q′

i, Q−i)(i) is ranked higher than ϕ(Qi, Q−i)(i) by

Q′
i, hence ϕ(Q′

i, Q−i)(i) is ranked higher than ϕ(Qi, Q−i)(i) by Pi. �

The message of Lemma 4.2 is clear: a student cannot lose (and may possibly gain) by

submitting the same set of schools in the true order.

5 Existence and Nestedness of Equilibria

Our main interest in this section is to analyze the extent to which Nash equilibria are

affected by the value of the quota. To avoid vacuously true statements, we first establish

the existence of (pure) Nash equilibria in any constrained school choice problem for all

three mechanisms, for any value of the quota.13

Proposition 5.1 For any school choice problem P and quota k, Eϕ(P, k) 6= ∅, for ϕ =

β, γ, τ .

Understanding whether the presence of a quota affects the set of equilibria and equi-

librium outcomes is crucial in our analysis of constrained school choice games. The next

results describe how the equilibria vary when the quota changes. Fortuitously, Proposi-

tion 5.1 is a direct corollary to these results.

For BOS it turns out that the equilibrium outcomes do not depend on the quota.

Proposition 5.2 For any school choice problem P and quota k, Oβ(P, k) = Oβ(P, 1).

The existence of equilibria under BOS is therefore a straightforward implication of Propo-

sition 5.2 and Oβ(P, m) 6= ∅ (implied by Ergin and Sönmez, 2006, Theorem 1 or a slight

adaptation of Alcalde, 1996, Theorem 4.6), where m is the number of schools. We do

13An adaptation of the arguments in the proofs of Alcalde (1996, Theorem 4.6) or Ergin and

Sönmez (2006, Theorem 1) establishes Theorem 5.1 for the case of β (any k) and γ (with k = 1). Also

notice that when k = m, the result for γ and τ follows from the strategy-proofness of the unconstrained

mechanisms.
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not give a proof of Proposition 5.2 as it is a direct consequence of Theorem 6.1, which

provides a characterization of the equilibrium outcomes under BOS.

As for SOSM, an equilibrium (outcome) for a given value of the quota is also an

equilibrium (outcome) for any higher value of the quota, i.e., equilibria are nested.

Theorem 5.3 For any school choice problem P and quotas k < k′, Eγ(P, k) ⊆ Eγ(P, k′).

Notice that when k = 1 there is only one round in the Boston and the DA algorithm, and

this round is the same for both algorithms. So, the existence of equilibria for SOSM for

any value of the quota follows directly from the existence of equilibria for BOS.

Finally, the set of equilibrium outcomes under TTC is invariant with respect to the

quota.

Theorem 5.4 For any school choice problem P and quota k, Oτ (P, k) = Oτ (P, 1).

Notice that the true strategy profile P is an equilibrium for k = m (because TTC is

strategy-proof). Hence, Theorem 5.4 implies the existence of Nash equilibria for any

value of the quota under TTC.

The fact that under BOS and TTC the set of equilibrium outcomes does not depend

on the value of the quota will simplify to a great extent our analysis. Indeed, for these

two mechanisms it will be enough to consider strategy profiles in which students submit

a list containing at most one school. As for SOSM, the implications of Theorem 5.3 are

not as sharp.

6 Implementation of Stable Matchings

We address in the section the question of the stability of equilibrium outcomes. Among

the three mechanisms we consider, only SOSM is designed to produce stable matchings —

provided agents are truthful. However, when agents are constrained it is not clear whether

a particular mechanism, including SOSM, yields stable matching in equilibrium. While

SOSM is the most natural candidate when studying the stability of equilibrium outcomes

we also consider BOS and TTC.

We first start with BOS. Quite surprisingly, it turns out that any equilibrium outcome

is stable.
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Proposition 6.1 For any school choice problem P and any quota k, the game Γβ(P, k)

implements S(P ) in Nash equilibria, i.e., Oβ(P, k) = S(P ).

This result is obtained through a straightforward adaptation of the proof of Theorem 1 in

Ergin and Sönmez (2006). Alcalde (1996, Theorem 4.6) obtained a similar result in the

context of a marriage market (i.e., when both sides of the market are strategic agents) but

without any constraint on the size of the submittable preference lists. A slight adaptation

of his arguments also leads to a proof of Theorem 6.1. Its proof is therefore omitted.

We now turn to the analysis of equilibrium outcomes when the mechanism in use is

SOSM. Since for quota k = 1 BOS and SOSM coincide, the games Γγ(P, 1) and Γβ(P, 1)

also coincide. Hence, Proposition 6.1 implies that the game Γγ(P, 1) implements S(P )

in Nash equilibria, i.e., Oγ(P, 1) = S(P ). Together with the nestedness of the equilibria

under SOSM (Theorem 5.3) it follows that any stable matching can be obtained as an

equilibrium outcome under SOSM, for any value of the quota.

Proposition 6.2 (Romero-Medina, 1998, Theorem 7) For any school choice problem P

and any quota k, S(P ) ⊆ Oγ(P, k).

However, the next example shows that for higher values of the quota, not all Nash

equilibrium outcomes are necessarily stable.14

Example 6.3 An Unstable Nash Equilibrium Outcome in Γγ(P, k)

Let I = {i1, i2, i3} be the set of students, S = {s1, s2, s3} be the set of schools, and

q = (1, 1, 1) be the capacity vector. The students’ preferences P and the priority structure

f are given in the table below. Let k = 2 be the quota and Q ∈ Q(2)I as given below.

Pi1 Pi2 Pi3 fs1
fs2

fs3

s1 s3 s3 i3 i3 i1

s3 s1 s2 i1 i1 i2

s2 s2 s1 i2 i2 i3

Qi1 Qi2 Qi3

s1 s1 s3

s3 s2 s1

One easily verifies that at γ(Q) = {{i1, s1}, {i2, s2}, {i3, s3}} (which is indicated by the

square boxes) student i2 has justified envy for school s3. So, γ(Q) is not stable. (In fact

the unique stable matching is γ(P ) = {{i1, s1}, {i2, s3}, {i3, s2}}, indicated in boldface.)

14We are not the first to provide an example with an unstable equilibrium outcome. Example 3 in

Sotomayor (1998) already made this point for a class of mechanisms that includes SOSM. However, the

generality of her example comes at the cost of using dominated strategies.
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Routine computations show that i2 has no profitable deviations. So, Q ∈ Eγ(P, 2). Notice

also that γ(Q) does not Pareto dominate γ(P ), nor is it Pareto dominated by γ(P ).

Finally, and in view of Proposition 4.2, notice that (1) none of the students’ strategies in

the equilibrium exhibits “dominated reversals” of schools and (2) all students submit a

preference list with the maximum number k of schools. ⋄

Example 6.3 and Theorem 5.3 suggest that unstable equilibrium outcomes are difficult

to avoid in the quota-game under SOSM. Hence, the only degree of freedom that is left

to obtain stable equilibrium outcomes is the schools’ priority structure. The next result

provides a condition on the priority structure under which SOSM implements the corre-

spondence of stable matchings in Nash equilibria. The relevant condition is an acyclicity

condition introduced by Ergin (2002). Loosely speaking, Ergin-acyclicity guarantees that

no student can block a potential improvement for any other two students without affecting

his own assignment.

Definition 6.4 Ergin-Acyclicity (Ergin, 2002)

Given a priority structure f , an Ergin-cycle is constituted of distinct s, s′ ∈ S and i, j, l ∈ I

such that the following two conditions are satisfied:

Ergin-cycle condition: fs(i) < fs(j) < fs(l) and fs′(l) < fs′(i) and

ec-scarcity condition: there exist (possibly empty and) disjoint sets Is, Is′ ⊆ I\{i, j, l}

such that Is ⊆ Uf
s (j), Is′ ⊆ Uf

s′(i), |Is| = qs − 1, and |Is′| = qs′ − 1.

A priority structure is Ergin-acyclic if no Ergin-cycles exist. △

Theorem 6.5 Let k 6= 1. Then, f is an Ergin-acyclic priority structure if and only if

for any school choice problem P , the game Γγ(P, k) implements S(P ) in Nash equilibria,

i.e., Oγ(P, k) = S(P ).

Ergin (2002) showed that Ergin-acyclicity of the priority structure is necessary and suf-

ficient for the Pareto-efficiency of SOSM.15 Therefore, Theorem 6.5 shows that Ergin-

acyclicity has a different impact depending on whether one considers SOSM per se or in

the context of the induced preference revelation game.

15Ergin (2002) also showed that Ergin-acyclicity is sufficient for group strategy-proofness and consis-

tency of SOSM as well as necessary for each of these conditions separately. In the setting of a two-sided

matching model where also schools are strategic agents, Kesten (2007) showed that schools cannot ma-

nipulate by under-reporting capacities or by pre-arranged matches under SOSM if and only if the priority

structure is Ergin-acyclic.

17



Obviously, TTC was not introduced to produce stable matchings. It is easy to con-

struct an example for which not every equilibrium outcome is stable.

Example 6.6 A School Choice Problem P with S(P ) ∩ Oτ (P, 1) = ∅

Let I = {i1, i2, i3} be the set of students, S = {s1, s2} be the set of schools, and q = (1, 1)

be the capacity vector. The students’ preferences P and the priority structure f are given

in the table below.

Pi1 Pi2 Pi3 fs1
fs2

s2 s1 s1 i1 i3

i2 i2

i3 i1

It is easy to check that the unique stable matching is µ = {{i1, s2}, {i2, s1}, {i3}}. We

show that µ cannot be sustained at any Nash equilibrium of the game Γτ (P, 1). Suppose

to the contrary that µ can be sustained at some Nash equilibrium. In other words, there is

a profile Q ∈ Q(1)I such that τ(Q) = µ and Q ∈ Eτ (P, 1). Since τ(Q) = µ, Qi1 = s2 and

Qi2 = s1. If Qi3 = s1, then τ(Q)(i3) = s1 6= µ(i3). So, Qi3 6= s1. But then τ(Q′)Pi3τ(Q)

for Q′ := (Qi1 , Qi2 , s1). Hence, Q 6∈ Eτ (P, 1), a contradiction. ⋄

However, if we are to compare the three mechanisms we need to find a sufficient and

necessary condition on the priority structure that guarantees stability, in very much the

same way as we have done for SOSM. In the case of TTC the crucial necessary and

sufficient condition for the stability of equilibrium outcomes is Kesten-acyclicity (2006).

Definition 6.7 Kesten-Acyclicity (Kesten, 2006)

Given a priority structure f , a Kesten-cycle is constituted of distinct s, s′ ∈ S and i, j, l ∈ I

such that the following two conditions are satisfied:

Kesten-cycle condition fs(i) < fs(j) < fs(l) and fs′(l) < fs′(i), fs′(j) and

kc-scarcity condition there exists a (possibly empty) set Is ⊆ I\{i, j, l} with Is ⊆ Uf
s (i)∪[

Uf
s (j)\Uf

s′(l)
]

and |Is| = qs − 1.

A priority structure is Kesten-acyclic if no Kesten-cycles exist. △

Kesten (2006) showed that Kesten-acyclicity of the priority structure is necessary and

sufficient for the stability of the Top Trading Cycles mechanism when students report their

true preferences.16 Kesten-acyclicity implies Ergin-acyclicity (Lemma 1, Kesten, 2006).

It is easy to check that the reverse holds if all schools have capacity 1.

16Kesten (2006) also showed that Kesten-acyclicity is necessary and sufficient for the Top Trading
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Theorem 6.8 Let 1 ≤ k ≤ m. Then, f is a Kesten-acyclic priority structure if and only

if for any school choice problem P , the game Γτ (P, k) implements S(P ) in Nash equilibria,

i.e., Oτ (P, k) = S(P ).

Kesten’s (2006) result and Theorem 6.8 have in common that Kesten-acyclicity is both

necessary and sufficient for the stability of the Top Trading Cycle mechanism. Yet, it is

important to note that, contrary to Kesten (2006), in our game students typically cannot

reveal their true preferences.

Theorem 6.8 is easily proved. If f is Kesten-cyclic then for some school choice problem

P , τ(P ) is not stable (Kesten, 2006, Theorem 1). Yet P is an m-Nash equilibrium (τ

is strategy-proof), so by Theorem 5.4 for any k there is a k-Nash equilibrium Q with

τ(Q) = τ(P ) /∈ S(P ). Conversely, if f is Kesten-acyclic then it is also Ergin-acyclic

(Kesten, 2006, Lemma 1) and γ and τ coincide (Kesten, 2006, Theorem 1), so the stability

of equilibrium outcomes under TTC follows from Theorem 6.5.

Since Kesten-acyclicity implies Ergin-acyclicity we can compare in a straightforward

way the three mechanisms regarding the stability of equilibrium outcomes. If our criterion

is determined by the domain of “problem-free” priority structures, then BOS outperforms

SOSM, and SOSM in turn outperforms TTC.

7 Implementation of Pareto-Efficient Matchings

In this section we address the implementation of Pareto-efficient matchings. The main

candidate in this case is TTC since it was designed to produce Pareto-efficient match-

ings —provided agents are truthful. To obtain a full comparison as in the previous section

we shall also consider the other two mechanisms.

If we do not impose any restriction on the priority structure then equilibrium outcomes

under TTC may not be Pareto-efficient. To see this, consider the following situation

with 2 students and 2 schools, each with 1 seat. Let P (i1) = s1, s2, P (i2) = s2, s1,

fs1
(i2) < fs1

(i1), and fs2
(i1) < fs2

(i2). Then, Q = (s2, s1) is a Nash equilibrium, but

τ(Q) = {{i1, s2}, {i2, s1}} is not Pareto-efficient.17 The key element in this example is

that student i1 has higher priority at one school and student i2 has higher priority at

Cycles mechanism to be resource monotonic and population monotonic. In addition, he also proved that

the Top Trading Cycles mechanism coincides with the Student-Optimal Stable mechanism if and only if

the priority structure is Kesten-acyclic.
17Note that neither Qi1

= s2 nor Qi2
= s1 are dominated strategies.
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the other school. If one of the schools, say school s1, had a capacity greater than 1, say

c + 1, then we would still be able to sustain a Pareto-inefficient equilibrium provided we

can find a set of students not including i2 that (1) can fill c seats at school s1 and (2)

have a higher priority at school s1 than student i2. The condition we introduce below,

X-acyclicity,18 formalizes this intuition.

Definition 7.1 X-Cycles and X-Acyclicity

Given a priority structure f , an X-cycle is constituted of distinct s, s′ ∈ S and i, i′ ∈ I

such that the following two conditions are satisfied:

X-cycle condition: fs(i) < fs(i
′) and fs′(i

′) < fs′(i) and

xc-scarcity condition: there exist (possibly empty and) disjoint sets Is ⊆ I\i, Is′ ⊆ I\i′

such that Is ⊆ Uf
s (i), Is′ ⊆ Uf

s′(i
′), |Is| = qs − 1, and |Is′| = qs′ − 1.

A priority structure is X-acyclic if no X-cycles exist. △

The next result establishes that X-acyclicity is a necessary and sufficient condition to

guarantee that all equilibrium outcomes under TTC are Pareto-efficient.

Theorem 7.2 Let 1 ≤ k ≤ m. Then, f is an X-acyclic priority structure if and only

if for any school choice problem P , all Nash equilibria of the game Γτ (P, k) are Pareto-

efficient, i.e., Oτ (P, k) ⊆ PE(P ).

We now consider the question of the efficiency of equilibrium outcomes under BOS

and SOSM. First of all, note that under either mechanism any stable matching can be

sustained at some equilibrium (see the discussion after Proposition 6.1). Hence, by the

lattice structure of the set of stable matchings, BOS and SOSM typically induce Pareto-

inefficient equilibrium outcomes. We now provide a necessary and sufficient condition

that ensures that all equilibrium outcomes under BOS and SOSM are Pareto-efficient.

Note that although the set of equilibrium outcomes under BOS is a subset of the set of

equilibrium outcomes under SOSM, the condition is the same for both mechanisms. This

does not come as a big surprise since for both mechanisms we have to make sure that the

set of stable matchings is a singleton (otherwise there is a Pareto-inefficient equilibrium

outcome).

The relevant condition is a slight variant of X-acyclicity.

18The X represents the cross in the priority structure that results from connecting the two entries of

i1 and the two entries of i2.
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Definition 7.3 Weak X-Cycles and Strong X-Acyclicity

Given a priority structure f , a weak X-cycle is constituted of distinct s, s′ ∈ S and i, i′ ∈ I

such that the following two conditions are satisfied:

X-cycle condition: fs(i) < fs(i
′) and fs′(i

′) < fs′(i) and

wxc-scarcity condition: there exist (possibly empty and) disjoint sets Is ⊆ I\i, I ′
s ⊆ I\i′

such that Is ⊆ Uf
s (i′), Is′ ⊆ Uf

s′(i), |Is| = qs − 1, and |Is′| = qs′ − 1.

A priority structure is strongly X-acyclic if no weak X-cycles exist. △

Remark 7.4 Note that if ((s, s′), (i, j, l)) constitutes an Ergin-cycle, then ((s, s′), (i, l))

constitutes a weak X-cycle. Hence, strong X-acyclicity implies Ergin-acyclicity.

Clearly, strong X-acyclicity is very restrictive. In fact, it is easy to see that strong

X-acyclicity implies both X-acyclicity and Ergin-acyclicity. Nevertheless it is a necessary

(and sufficient) condition to guarantee the Pareto-efficiency of all equilibrium outcomes

under SOSM as well as BOS.

Theorem 7.5 Let f be a priority structure. Let 1 ≤ k ≤ m. Then, the following are

equivalent:

(i) f is strongly X-acyclic.

(ii) For any school choice problem P , S(P ) is a singleton.

(iii) For any school choice problem P , all Nash equilibria of the game Γγ(P, k) are Pareto-

efficient, i.e., Oγ(P, k) ⊆ PE(P ).

(iv) For any school choice problem P , all Nash equilibria of the game Γβ(P, k) are Pareto-

efficient, i.e., Oβ(P, k) ⊆ PE(P ).

Since strong X-acyclicity implies X-acyclicity we can also compare the three mecha-

nisms regarding the Pareto-efficiency of equilibrium outcomes. If our criterion is deter-

mined by the domain of “problem-free” priority structures, then TTC outperforms both

SOSM and BOS, and SOSM performs equally well as BOS.

Remark 7.6 Below we show that apart from [Kesten-acyclicity ⇒ Ergin-acyclicity],

[strong X-acyclicity ⇒ Ergin-acyclicity], and [strong X-acyclicity ⇒ X-acyclicity], there

are no other logical implications regarding pairs of acyclicity conditions. The Venn dia-

gram in Figure 1 summarizes these facts.19 Each node indicates the existence of a priority

structure that satisfies the associated requirements.
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Figure 1: Venn diagram of the acyclicity conditions

We have made use of four different acyclicity conditions. Below we indicate the absence

or existence of each of the 12 possible logical implications between pairs of acyclicity

conditions.

• [Kesten-acyclicity ⇒ Ergin-acyclicity]: Kesten (2006, Lemma 1);

• ¬ [Kesten-acyclicity ⇒ Ergin-acyclicity]: Example 2 in Kesten (2006) which is given

by fs1
= i1, i2, i3 and fs2

= i3, i1, i2, qs1
= 1 and qs2

= 2;

• [strong X-acyclicity ⇒ X-acyclicity]: immediate from definition;

• ¬ [X-acyclicity ⇒ strong X-acyclicity]: Example 2 in Kesten (2006) which is given

by fs1
= i1, i2, i3 and fs2

= i3, i1, i2, qs1
= 1 and qs2

= 2;

• [strong X-acyclicity ⇒ Ergin-acyclicity]:

if ((s, s′), (i, j, l)) constitutes an Ergin-cycle, then ((s, s′), (i, l)) constitutes a weak

X-cycle;

• ¬ [strong X-acyclicity ⇒ Kesten-acyclicity]:

fs1
= i1, i2, i3 and fs2

= i3, i1, i2, qs1
= 1 and qs2

= 3;

• ¬ [X-acyclicity ⇒ Kesten-acyclicity]: follows from [strong X-acyclicity ⇒ X-acyclicity]

and ¬ [strong X-acyclicity ⇒ Kesten-acyclicity];

19A proof that [Kesten-acyclicity and X-acyclicity ⇒ strong X-acyclicity] is as follows. Suppose that
the priority structure is Kesten-acyclic, X-acyclic, but not strongly X-acyclic. By Theorem 7.5(ii)⇒(i),

there is a school choice problem P with |S(P )| ≥ 2. By Theorem 6.8, S(P ) = Oτ (P, k). By Theorem

7.2, Oτ (P, k) ⊆ PE(P ). Hence, S(P ) ⊆ PE(P ) and |S(P )| ≥ 2, which contradicts the optimality of the

Student-Optimal Stable matching.
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• ¬ [Ergin-acyclicity ⇒ X-acyclicity]:

fs1
= i1, i2 and fs2

= i2, i1, qs1
= qs2

= 1;

• ¬ [Ergin-acyclicity ⇒ strong X-acyclicity]: follows from [strong X-acyclicity ⇒

X-acyclicity] and ¬ [Ergin-acyclicity ⇒ X-acyclicity];

• ¬ [Kesten-acyclicity ⇒ X-acyclicity]:

fs1
= i1, i2 and fs2

= i2, i1, qs1
= qs2

= 1;

• ¬ [Kesten-acyclicity ⇒ strong X-acyclicity]: follows from [strong X-acyclicity ⇒

X-acyclicity] and ¬ [Kesten-acyclicity ⇒ X-acyclicity];

• ¬ [X-acyclicity ⇒ Ergin-acyclicity]:

fs1
= i1, i4, i5, i2, i3 and fs2

= i2, i4, i5, i3, i1, qs1
= qs2

= 2.

Finally, we give an example of a priority structure that satisfies the requirements that are

associated with each of the 7 nodes in Figure 1. Note that all examples can be extended to

incorporate additional students or schools by (1) giving additional students lower priority

and (2) introducing multiple copies of the priority ordering of an existing school.

1. fs1
= i1, i2 and fs2

= i2, i1, qs1
= qs2

= 1;

2. fs1
= i1, i2, i3, i4 and fs2

= i3, i1, i4, i2, qs1
= 1 and qs2

= 2;

3. any f where schools have identical priority over students;

4. fs1
= i1, i2, i3 and fs2

= i3, i1, i2, qs1
= 1 and qs2

= 3;

5. Example 2 in Kesten (2006) which is given by fs1
= i1, i2, i3 and fs2

= i3, i1, i2,

qs1
= 1 and qs2

= 2;

6. fs1
= i1, i2, i3 and fs2

= i3, i2, i1, qs1
= 1 and qs2

= 1;

7. fs1
= i1, i4, i5, i2, i3 and fs2

= i2, i4, i5, i3, i1, qs1
= qs2

= 2.
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8 Equilibria in Truncations

In this section we focus on “truncation” strategies which are shown to be undominated

in the quota-games induced by both the Student-Optimal Stable mechanism and the Top

Trading Cycles mechanism. We first strengthen the negative side of Theorems 6.5 and 6.8

by providing and example that admits a strong Nash equilibrium in truncations that

induces an unstable matching. Next, again for both mechanisms, we will show that in

general there is also no relation between the set of unassigned students at equilibrium

and the set of unassigned students in stable matchings. However, for Nash equilibria in

truncations we do obtain a positive result in this respect for the Student-Optimal Stable

mechanism.

A truncation of a preference list Pi is a list P ′
i obtained from Pi by deleting some school

and all less preferred acceptable schools.20 The following lemma says that in the games

Γγ(P, k) and Γτ (P, k) submitting a truncation “as long as possible” is k-undominated.

Formally, student i’s strategy Qi ∈ Q(k) is k-dominated by another strategy Q′
i ∈ Q(k)

if ϕ(Q′
i, Q−i)Riϕ(Qi, Q−i) for all Q−i ∈ Q(k)I\i and ϕ(Q′

i, Q
′
−i)Piϕ(Qi, Q

′
−i) for some

Q′
−i ∈ Q(k)I\i. A strategy in Q(k) is k-undominated if it is not k-dominated by any other

strategy in Q(k).

Lemma 8.1 Let P be a school choice problem. Let 1 ≤ k ≤ m. Let i ∈ I be a stu-

dent. Denote the number of (acceptable) schools in Pi by |Pi|. Then, the strategy P k
i of

submitting the first min{k, |Pi|} schools of the true preference list Pi in the true order is

k-undominated in the games Γγ(P, k) and Γτ (P, k).

Although the strategy profile P k := (P k
i )i∈I is a profile of k-undominated strategies, it

is not necessarily a Nash equilibrium in the games Γγ(P, k) and Γτ (P, k). In case it is a

Nash equilibrium it may still induce an unstable matching as Example 8.2 shows.

Example 8.2 For both γ and τ : A Strong Nash Equilibrium in (Undominated)

Truncations that yields an Unstable Matching

Let I = {i1, i2, i3, i4} be the set of students, S = {s1, s2, s3} be the set of schools, and

q = (1, 1, 1) be the capacity vector. The students’ preferences P and the priority structure

f are given in the table below. Let k = 2 be the quota and Q ∈ Q(2)I as given below.

20Truncations have been studied by Roth and Vande Vate (1991), Roth and Rothblum (1999), and

Ehlers (2004) and have also appeared in practice (see for instance Mongell and Roth, 1991).
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Pi1 Pi2 Pi3 Pi4 fs1
fs2

fs3

s1 s2 s3 s1 i3 i1 i2

s2 s3 s1 s2 i1 i2 i4

s3 s1 s2 s3 i2 i3 i3

i4 i4 i1

Qi1 Qi2 Qi3 Qi4

s1 s2 s3 s1

s2 s3 s1 s2

One easily verifies that γ(Q) = {{i1, s1}, {i2, s2}, {i3, s3}, {i4}}. Since student i4 has

justified envy for school s3, γ(Q) 6∈ S(P ). It remains to show that Q ∈ Eγ(P, 2). Since

students i1, i2, and i3 are assigned a seat at their favorite school, it is sufficient to check

that student i4 has no profitable deviation. Notice that the only possibility for student i4

to change the outcome of the mechanism is by listing school s3. So, the only strategies that

we have to check are given by Q̄(2) = {Qa, Qb, Qc, Qd, Qe}, where Qa = s3, Qb = s1, s3,

Qc = s2, s3, Qd = s3, s1, and Qe = s3, s2. Routine computations show that none of these

strategies is a profitable deviation. So, Q ∈ Eγ(P, 2).21

Furthermore, since students i1, i2, and i3 are assigned a seat at their favorite school at

γ(Q) and Q ∈ Eγ(P, 2), it follows that Q is a strong Nash equilibrium (cf. Aumann, 1959)

in Γγ(P, 2).

As for the Top Trading Cycles mechanism, one easily verifies that also τ(Q) = {{i1, s1},

{i2, s2}, {i3, s3}, {i4}}. For the same reason as before, it is sufficient to check that student

i4 has no profitable deviation. This, however, is immediate since student i4 cannot “break”

the cycle (i1, s1, i3, s3, i2, s2) that forms in the first step of the TTC algorithm. Hence, Q

is also a strong Nash equilibrium in Γτ (P, 2). ⋄

The results of McVitie and Wilson (1970) and Roth (1984b) for college admissions imply

that for any school choice problem the set of unassigned students is the same for all stable

matchings.22 In other words, for µ, µ′ ∈ S(P ), µ(i) = i implies µ′(i) = i. Given the re-

strictiveness of the acyclicity conditions to guarantee stable Nash equilibrium outcomes,

one may wonder whether at least always the set of unassigned students at equilibrium

coincides with the set of unassigned students in stable matchings. In fact, a less ambitious

21Note that it is not necessary to set the quota equal to 2. Strategy profile Q is also a Nash equilibrium

in the unconstrained setting, i.e., when the quota is k = 3. Finally, one can straightforwardly extend

the example for m > 3 and/or n > 4 by making existing schools unacceptable for new students and new

schools unacceptable for existing students.
22A generalization of this result is known in the two-sided matching literature as the “Rural Hospital

Theorem” (Roth, 1986) and says that the degree of occupation and quality of interns at typically less

demanded rural hospitals in the US is not due to the choice of a specific stable matching.

25



idea would be to establish that at equilibrium the number of unassigned students equals

the number of unassigned students in stable matchings. The following two examples show

that in general this is not true. In other words, the number of unassigned students at equi-

librium is not inherited from that of the set of stable matchings. Given Proposition 6.2,

this in particular implies for the Student-Optimal Stable mechanism that the number of

unassigned students can vary from one equilibrium outcome to another.

Example 8.3 For both γ and τ : Less Assigned Students in an Equilibrium than

in Stable Matchings

Let I = {i1, i2, i3} be the set of students, S = {s1, s2, s3} be the set of schools, and

q = (1, 1, 1) be the capacity vector. The students’ preferences P and the priority structure

f are given in the table below. One easily verifies that strategy profile Q given below is

a Nash equilibrium in Γγ(P, 2) and Γτ (P, 2).

Pi1 Pi2 Pi3 fs1
fs2

fs3

s1 s3 s3 i3 i2 i1

s3 s1 s2 i1 i3 i2

s2 s1 i2 i1 i3

Qi1 Qi2 Qi3

s1 s1 s3

s3 s1

Since γ(Q) = τ(Q) = {{i1, s1}, {i3, s3}, {i2}, {s2}} and γ(P ) = {{i1, s1}, {i2, s3}, {i3, s2}},

there are less assigned students at γ(Q) = τ(Q) than in any stable matching. ⋄

Example 8.4 For both γ and τ : More Assigned Students in an Equilibrium

than in Stable Matchings

Let I = {i1, i2, i3} be the set of students, S = {s1, s2, s3} be the set of schools, and

q = (1, 1, 1) be the capacity vector. The students’ preferences P and the priority structure

f are given in the table below. One easily verifies that strategy profile Q given below is

a Nash equilibrium in Γγ(P, 2) and Γτ (P, 2).

Pi1 Pi2 Pi3 fs1
fs2

fs3

s2 s3 s3 i3 i2 i1

s2 s2 i1 i3 i2

s1 s1 i2 i1 i3

Qi1 Qi2 Qi3

s2 s3 s1

s3 s2 s2

Since γ(Q) = τ(Q) = {{i1, s2}, {i2, s3}, {i3, s1}} and γ(P ) = {{i2, s3}, {i3, s2}, {i1}, {s1}},

there are more assigned students at γ(Q) = τ(Q) than in any stable matching. ⋄
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We do obtain a positive result for γ if we restrict ourselves to equilibria in trunca-

tions. More precisely, the following proposition says that if a profile of truncations is a

Nash equilibrium in the game Γγ(P, k) then the set of assigned students at the equilib-

rium coincides with the set of assigned students at any stable matching. In fact, each

Nash equilibrium in truncations in the game Γγ(P, k) yields a matching that is either

the student-optimal stable matching γ(P ) or Pareto dominates γ(P ). For a matching µ,

denote M(µ) for the set of assigned students, i.e., M(µ) := {i ∈ I : µ(i) 6= i}.

Proposition 8.5 Let P be a school choice problem. Let 1 ≤ k ≤ m. If P k ∈ Eγ(P, k),

then M(γ(P k)) = M(γ(P )). In fact, γ(P k)Riγ(P ) for all i ∈ I.

For τ we cannot obtain a similar result as the following proposition shows.

Proposition 8.6 Let P be a school choice problem. Let 1 ≤ k ≤ m. If P k ∈ Eτ(P, k),

then possibly |M(τ(P k))| < |M(γ(P ))| or |M(τ(P k))| > |M(γ(P ))|.

9 Discussion

We studied in this paper the stability and efficiency of Nash equilibrium outcomes in a

school choice problem when either BOS, SOSM, or TTC is used. At first sight, the most

robust mechanism is BOS, for Nash equilibrium outcomes are always stable. In all other

cases we need to impose a condition on the priority structure to guarantee stability or

efficiency.23 The problem is that these conditions are very restrictive, and hence not likely

to be met in practice.24 Also, it is interesting to note that for SOSM, the implementability

of efficient matchings implies the implementability of stable matchings (see Figure 1). This

is not the case for TTC.

Presumably then, constraining students’ choices is a very costly policy. It de facto

forces them to strategize, which in turns may slash the designer or the policy maker’s in-

terest for using either SOSM or TTC. The results we obtained should be contrasted with

experimental real-life data, however. From the experimental side, Calsamiglia, Haeringer,

and Klijn (2008) show that constraining choices, although having a clear impact on the

23Other recent papers on implementation in various settings of two-sided matching include Pais (2008),

Shinotsuka and Takamiya (2003), Sotomayor (2003), and Suh (2003).
24Another negative feature of SOSM and TTC is that there are equilibria that match (unmatch) stu-

dents that are unassigned (assigned) at the stable matchings. In particular, the number of matched stu-

dents may vary within the set of equilibrium outcomes — see the examples in Haeringer and Klijn (2008).
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performance of the mechanisms, does not alter too much the relative hierarchy of SOSM,

TTC, and BOS (in this order) when one is concerned with diverse issues such as stability,

efficiency, truthtelling, or even social mobility. In 2003 the New York City Department

of Eduction (NYCDOE) adopted a centralized mechanism based on SOSM (Abdulka-

diroğlu, Pathak, and Roth, 2005). Although choice in this mechanism is constrained,

Abdulkadiroğlu, Pathak, and Roth (2008) provide evidence that over the years partici-

pants learned how to make sound choices. Also, the school district of Boston removed the

constraint on the length of submittable preference lists for the school year 2007–2008 (see

see Abdulkadiroğlu, Pathak, Roth and Sönmez (2006)). This suggests that a (reasonable)

constraint would be desirable when the authorities change their mechanisms and adopt

either SOSM or TTC, and then after a few years the constraint could be dropped.

From a theoretical perspective, one possible extension of our model is the incorpora-

tion of incomplete information. Ehlers and Massó (2008) study a many-to-one matching

market with incomplete information. They show that at least for stable mechanisms (i.e.,

in particular SOSM) there is a strong link between the ordinal Bayesian Nash equilib-

ria under incomplete information and the Nash equilibria under complete information.25

More precisely, Ehlers and Massó’s results show that a characterization of the equilib-

ria under complete information immediately leads to a characterization of the equilibria

under incomplete information.

A Appendix: Proofs for SOSM

Let Q ∈ QI . We denote DA(Q) for the application of the DA algorithm (with students

proposing) to Q. We will make use of the following two results to prove Theorem 5.3.

Lemma A.1 (Roth, 1982b, Lemma 1; cf. Roth and Sotomayor 1990, Lemma 4.8)

Let Q ∈ QI and i ∈ I. Let Q′
i ∈ Q be a preference list whose first choice is γ(Q)(i) if

γ(Q)(i) 6= i, and the empty list otherwise. Then, γ(Q′
i, Q−i)(i) = γ(Q)(i).

Lemma A.2 For any school choice problem P and quota k, Oγ(P, k) ⊆ IR(P )∩NW (P ).

Proof Let Q ∈ Eγ(P, k). It is immediate that γ(Q) ∈ IR(P ). Suppose γ(Q) 6∈

NW (P ). Then, there are i ∈ I and s ∈ S with sPiγ(Q)(i) and |γ(Q)(s)| < qs. Let Q̄i be

25A strategy profile is an ordinal Bayesian Nash equilibrium is if it is a a Bayesian Nash equilibrium

for every von Neumann-Morgenstern utility representation of individuals’ true preferences.
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the empty list. Let Q̄ := (Q̄i, Q−i). By a result of Gale and Sotomayor (1985b, Theorem

2) extended to the college admissions model (Roth and Sotomayor, 1990, Theorem 5.34),

for each j ∈ I\i, either γ(Q̄)(j) = γ(Q)(j) or γ(Q̄)(j)Qjγ(Q)(j). Hence, the set of

schools to which each j ∈ I\i proposes in DA(Q̄) is a subset of the schools to which

he proposes in DA(Q). Since moreover Q̄i is the empty list, each school receives in

DA(Q̄) only a subset of the proposals of DA(Q). For school s this immediately implies

that |γ(Q̄)(s)| ≤ |γ(Q)(s)| < qs. So, if we take Q′
i = s then γ(Q′

i, Q−i)(i) = s. Since

sPiγ(Q)(i), Q′
i is a profitable deviation for i at Q in Γγ(P, k). So, Q 6∈ Eγ(P, k), a

contradiction. Hence, γ(Q) ∈ NW (P ). �

Proof of Theorem 5.3 It suffices to prove the theorem for k′ = k+1. Let Q ∈ Eγ(P, k)

and suppose that Q /∈ Eγ(P, k+1). Then, there is a student i and a strategy Q′
i ∈ Q(k+1)

with γ(Q′
i, Q−i)Piγ(Qi, Q−i). By Lemma A.2, γ(Q) ∈ IR(P ). Hence, γ(Q′

i, Q−i)(i) ∈ S.

Note also that Q′
i must be a list containing exactly k + 1 schools, for otherwise it would

also be a profitable deviation in Γγ(P, k), contradicting Q ∈ Eγ(P, k).

Let s be the last school listed in Q′
i. We claim that γ(Q′

i, Q−i)(i) = s. Suppose

γ(Q′
i, Q−i)(i) 6= s. Consider the truncation of Q′

i after γ(Q′
i, Q−i)(i) and denote this list

by Q′′
i . In other words, Q′′

i is the list obtained from Q′
i by making all schools listed after

γ(Q′
i, Q−i)(i) unacceptable. By assumption, Q′′

i ∈ Q(k). It follows from the DA algorithm

that γ(Q′′
i , Q−i) = γ(Q′

i, Q−i). Hence, Q′′
i is a profitable deviation for i at Q in Γγ(P, k),

a contradiction. So, γ(Q′
i, Q−i)(i) = s.

Let Q̂i := s. Note Q̂i ∈ Q(k). By Lemma A.1, γ(Q̂i, Q−i)(i) = s. Hence, Q̂i is a

profitable deviation for i at Q in Γγ(P, k), a contradiction. Hence, Q ∈ Eγ(P, k + 1). �

We need the following three lemmas to prove Theorem 6.5.

Lemma A.3 Let f be an Ergin-cyclic priority structure. Let 2 ≤ k ≤ m. Then, there

is a school choice problem P with an unstable equilibrium outcome in the game Γγ(P, k),

i.e., for some Q ∈ Eγ(P, k), γ(Q) 6∈ S(P ).

Proof Since f is Ergin-cyclic, we may assume, without loss of generality, that

(a) fs1
(i1) < fs1

(i2) < fs1
(i3) and fs2

(i3) < fs2
(i1),

(b) fs1
(ij) < fs1

(i2) for each j ∈ I1 := {4, . . . , qs1
+ 2}, and

(c) fs2
(ij) < fs2

(i1) for each j ∈ I2 := {qs1
+ 3, . . . , qs1

+ qs2
+ 1}.

Consider students’ preferences P defined by Pi1 := s2, s1, Pi2 := s1, Pi3 := s1, s2,

Pij := s1 for j ∈ I1, Pij := s2 for j ∈ I2, and Pij := ∅ for all j ∈ {qs1
+ qs2

+ 2, . . . , n}.
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We distinguish among three cases for the priority ordering fs2
of school s2 with respect

to students i1, i2, and i3: (i) fs2
(i2) < fs2

(i3) < fs2
(i1), (ii) fs2

(i3) < fs2
(i2) < fs2

(i1),

and (iii) fs2
(i3) < fs2

(i1) < fs2
(i2). One easily verifies that in each of the cases (i), (ii),

and (iii), the unique stable matching for P is µ∗ = γ(P ) with µ∗(i1) = s1, µ∗(i3) = s2,

and µ∗(i2) = i2.

Consider Q ∈ Q(k)I defined by Qi2 := ∅ and Qi := Pi for all i ∈ I\i2. One easily

verifies that in each of the cases (i), (ii), and (iii), γ(Q)(i1) = s2 and γ(Q)(i3) = s1. So,

γ(Q) 6= µ∗, and hence γ(Q) 6∈ S(P ). Finally, one easily verifies that Q ∈ Eγ(P, k). �

A mechanism is non bossy if no student can maintain his allotment and cause a change

in the other students’ allotments by reporting different preferences.

Definition A.4 Non Bossy Mechanism (Satterthwaite and Sonnenschein, 1981)

A mechanism ϕ is non bossy if for all i ∈ I, Qi, Q
′
i ∈ Q, and Q−i ∈ QI\i, ϕ(Q′

i, Q−i)(i) =

ϕ(Qi, Q−i)(i) implies ϕ(Q′
i, Q−i) = ϕ(Qi, Q−i). △

Lemma A.5 Let f be an Ergin-acyclic priority structure. Then, γ is non bossy.

Proof Follows from Ergin’s (2002) Theorem 1, (iv) ⇒ (iii) and proof of (iii) ⇒ (ii). �

Lemma A.6 Let f be an Ergin-acyclic priority structure. Let 2 ≤ k ≤ m. Then, for any

school choice problem P all equilibrium outcomes in the game Γγ(P, k) are stable, i.e., for

all Q ∈ Eγ(P, k), γ(Q) ∈ S(P ).

Proof Suppose to the contrary that Q ∈ Eγ(P, k) but γ(Q) 6∈ S(P ). So, by Lemma A.2,

there are i, j ∈ I, i 6= j and s ∈ S with γ(Q)(j) = s, sPiγ(Q)(i), and fs(i) < fs(j).

Since γ is strategy-proof in the unconstrained setting (i.e., when the quota equals m,

the number of schools), γ(Pi, Q−i)Riγ(Qi, Q−i). Let Q′
i := γ(Pi, Q−i)(i). Clearly, Q′

i ∈

Q(k). By Lemma A.1, γ(Q′
i, Q−i)(i) = γ(Pi, Q−i)(i). Hence, γ(Q′

i, Q−i)Riγ(Qi, Q−i).

If γ(Q′
i, Q−i)Piγ(Qi, Q−i), then Q 6∈ Eγ(P, k), a contradiction. Hence, γ(Q′

i, Q−i)(i) =

γ(Qi, Q−i)(i).

By Lemma A.5, γ is non bossy. Hence, γ(Pi, Q−i) = γ(Q′
i, Q−i) = γ(Q). In particular,

γ(Pi, Q−i)(j) = γ(Q)(j) = s. Since sPiγ(Q)(i) = γ(Pi, Q−i)(i), student i has justified

envy at γ(Pi, Q−i), contradicting γ(Pi, Q−i) ∈ S(Pi, Q−i). Hence, γ(Q) ∈ S(P ). �

Proof of Theorem 6.5 Proposition 6.1 implies that the game Γγ(P, 1) = Γβ(P, 1)

implements S(P ) in Nash equilibria, i.e., S(P ) = Oγ(P, 1). Theorem 5.3 implies that

S(P ) = Oγ(P, 1) ⊆ Oγ(P, k). Now Lemmas A.3 and A.6 complete the proof. �
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We need the following 2 lemmas for the proof of Theorem 7.5.

Lemma A.7 Let ϕ be a mechanism such that for some 1 ≤ k ≤ m, Oϕ(P, k) ⊆ NW (P )∩

IR(P ). Suppose Q ∈ Eϕ(P, k) with ϕ(Q) /∈ PE(P ). Then, there exist p ≥ 2, a set of

students CI = {i1, . . . , ip} and a set of schools CS = {s1, . . . , sp} such that for each school

s ∈ CS, |ϕ(Q)(s)| = qs and for each ir ∈ CI, srPirsr+1 = ϕ(Q)(ir), where sp+1 = s1.

Proof Similar to a part of Step 1 of (iv) ⇒ (i) in Ergin (2002, proof of Theorem 1). �

Lemma A.8 Let P be a school choice problem. Let µ ∈ S(P ). Define Qi := µ(i) for all

i ∈ I. Then, γ(Q) = µ and Q ∈ Eγ(P, 1) ⊆ Eγ(P, k) for all 2 ≤ k ≤ m.

Proof Follows immediately from Theorem 5.3 and Proposition 6.2. �

Proof of Theorem 7.5 We show that (i) ⇒ (ii) ⇒ (i) ⇒ (iii) ⇒ (i) ⇒ (iv) ⇒ (i).

(i) ⇒ (ii): Suppose P is a school choice problem with |S(P )| ≥ 2. Hence, there is a

stable matching µ different from the student-optimal stable matching µI . By optimality

of µI , for each student i ∈ I, µIRiµ, and for at least one student i ∈ I, µIPiµ. So,

µ /∈ PE(P ). By Lemma A.8, there exists a profile Q ∈ QI(1) such that (a) for each

student i ∈ I, Qi = µ(i); (b) γ(Q) = µ; and (c) Q ∈ Eγ(P, 1). By Lemmas A.2 and A.7

there exist a set of students CI = {i1, . . . , ip} and a set of schools CS = {s1, . . . , sp} such

that for each s ∈ CS, |γ(Q)(s)| = qs, and for each il ∈ CI , slPilsl+1 = γ(Q)(il). Note

that since a student is assigned to at most one school, for any two schools s, s′ ∈ CS,

γ(Q)(s) ∩ γ(Q)(s′) = ∅. For any two subsets I ′, I ′′ ⊆ I with I ′ ∩ I ′′ = ∅ and any school s

we will write fs(I
′) < fs(I

′′) to say that for all students i′ ∈ I ′ and i′′ ∈ I ′′, fs(i
′) < fs(i

′′).

Step 1 For each student il ∈ CI, il ∈ γ(Q)(sl+1) and fsl
(γ(Q)(sl)) < fsl

(il).

By construction, il ∈ γ(Q)(sl+1). Let Q′ = (sl, Q−il). Since Q ∈ Eγ(P, 1), γ(Q′)(il) = il.

In particular, fsl
(γ(Q′)(sl)) < fsl

(il). By (a), γ(Q′)(sl) = γ(Q)(sl), and Step 1 follows.

Step 2 The priority structure f admits a weak X-cycle.

From Step 1 it follows that the priority structure has the following form

fs1
fs2

. . . fsp−1
fsp

...
...

...
...

γ(Q)(s1) γ(Q)(s2) γ(Q)(sp−1) γ(Q)(sp)
...

...
...

...

i1 i2 ip−1 ip
...

...
...

...
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Suppose fs1
(i2) < fs1

(i1). Since i1 ∈ γ(Q)(s2), setting i = i2, i′ = i1, s = s1, s′ = s2,

Is = γ(Q)(s1)\ip, and Is′ = γ(Q)(s2)\i1 yields a weak X-cycle.

Suppose now fs1
(i1) < fs1

(i2). If fs1
(i3) < fs1

(i2), then we obtain again a weak X-

cycle by setting i = i3, i′ = i2, s = s1, s′ = s3, Is = γ(Q)(s1)\ip, and Is′ = γ(Q)(s3)\i2.

So, suppose fs1
(i2) < fs1

(i3). By repeating this reasoning with students i4, i5, . . . , ip−1 we

either obtain a weak X-cycle or establish that the priority ordering of school s1 has the

following form:

fs1
: · · ·γ(Q)(s1) · · · i1 · · · i2 · · · ip−2 · · · ip−1 · · ·

To deal with the latter case, recall that by construction, ip ∈ γ(Q)(s1) and ip−1 ∈ γ(Q)(sp).

So, we obtain a weak X-cycle by setting i = ip, i′ = ip−1, s = s1, s′ = sp, Is = γ(Q)(s1)\ip,

and Is′ = γ(Q)(sp)\ip−1.

(ii) ⇒ (i): Without loss of generality, let students i1 = i and i2 = i′ and schools s1 = s

and s2 = s′ be the agents involved in a weak X-cycle. Without loss of generality we may

assume that Is1
= {i3, . . . , iqs1

+1} and Is2
= {iqs1

+2, . . . , iqs1
+qs2

}. Consider the students’

preferences P given below. (Unacceptable schools are not depicted.)

Pi1 Pi2 Pi3 · · · Piqs1
+1

Piqs1
+2

· · · Piqs1
+qs2

Piqs1
+qs2

+1
· · · Pin

s1 s2 s1 s1 s1 s2 s2 s2

s2 s1

Note that for j = qs1
+ qs2

+1, . . . , n, student ij finds all schools unacceptable. One easily

verifies that the distinct matchings

µI =

(
i1 i2 i3 · · · iqs1

+1 iqs1
+2 · · · iqs1

+qs2
iqs1

+qs2
+1 · · · in

s1 s2 s1 · · · s1 s2 · · · s2 iqs1
+qs2

+1 · · · in

)

and

µS =

(
i1 i2 i3 · · · iqs1

+1 iqs1
+2 · · · iqs1

+qs2
iqs1

+qs2
+1 · · · in

s2 s1 s1 · · · s1 s2 · · · s2 iqs1
+qs2

+1 · · · in

)

are stable. So, |S(P )| ≥ 2.

(i) ⇒ (iii): Let P be a school choice problem with Q ∈ Eγ(P, k) such that γ(Q) /∈ PE(P ).

Suppose first that |S(P )| ≥ 2. Then, by (i) ⇒ (ii), f admits a weak X-cycle. So, suppose

|S(P )| = 1. By Lemma A.8, there exists Q̄ ∈ Eγ(P, 1) with γ(Q̄) = γ(P ) =: µI . If

µI /∈ PE(P ) then by Theorem 1 of Ergin (2002) f admits an Ergin-cycle, which by
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Remark 7.4 implies that f admits a weak X-cycle. So, suppose µI ∈ PE(P ). Since

γ(Q) /∈ PE(P ), γ(Q) 6= µI . Since |S(P )| = 1, γ(Q) /∈ S(P ). By Theorem 6.5, f admits

an Ergin-cycle, which by Remark 7.4 implies again that f admits a weak X-cycle.

(iii) ⇒ (i): Suppose that f admits a weak X-cycle. By (ii) ⇒ (i) there exists P with

|S(P )| ≥ 2. So, there exists µ ∈ S(P )\PE(P ). By Lemma A.8, there exists Q ∈ Eγ(P, k)

with γ(Q) = µ.

(i) ⇒ (iv): Let P be a school choice problem with Q ∈ Eβ(P, k) such that β(Q) /∈ PE(P ).

By Theorem 6.1, β(Q) ∈ S(P ). Hence, by Lemma A.8, there exists Q̄ ∈ Eγ(P, 1) with

γ(Q̄) = β(Q). Hence, from (i) ⇒ (iii) it follows that f admits a weak X-cycle.

(iv) ⇒ (i): Suppose that f admits a weak X-cycle. From (iii) ⇒ (i) it follows that

there is a school choice problem P with Q ∈ Eγ(P, 1) such that γ(Q) /∈ PE(P ). Since

Γβ(P, 1) = Γγ(P, 1), the result follows. �

B Appendix: Proofs for TTC

We first introduce some graph-theoretic notation to provide concise proofs of our results.

Let Q ∈ QI . Suppose the TTC algorithm is applied to Q, which we will denote by

TTC(Q), and suppose it terminates in no less than l steps. We denote by G(Q, l) the

(directed) graph that corresponds to step l. In this graph, the set of vertices V (Q, l) is

the set of agents present in step l. For any v ∈ V (Q, l) there is a (unique) directed edge

in G(Q, l) from v to some v′ ∈ V (Q, l) (possibly v′ = v if v ∈ I) if agent v points to agent

v′, which will also be denoted by e(Q, l, v) = v′.

A path (from v1 to vp) in G(Q, l) is an ordered list of agents (v1, v2, . . . , vp) such that

vr ∈ V (Q, l) for all r = 1, . . . , p and each vr points to vr+1 for all r = 1, . . . , p − 1. A

self-cycle (i) of a student i is a degenerate path, i.e., i points to himself in G(Q, l). An

agent v′ ∈ V (Q, l) is a follower of an agent v ∈ V (Q, l) if there is a path from v to v′

in G(Q, l). The set of followers of v is denoted by F (Q, l, v). An agent v′ ∈ V (Q, l) is a

predecessor of an agent v ∈ V (Q, l) if there is a path from v′ to v in G(Q, l). The set of

predecessors of v is denoted by P (Q, l, v). A cycle in G(Q, l) is a path (v1, v2, . . . , vp) such

that also vp points to v1. Note that a self-cycle is a special case of a cycle. With a slight

abuse of notation we sometimes refer to a cycle as the corresponding non ordered set of

involved agents. Finally, for v ∈ I ∪ S, let σ(Q, v) denote the step of the TTC algorithm

at which agent v is removed.
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Observation B.1 In the TTC algorithm, once a student points to a school it will keep

on pointing to the school in subsequent steps until he is assigned to a seat at the school

or until the school has no longer available seats. In other words, if i ∈ V (Q, l) ∩ I for

some step l of TTC(Q) and e(Q, l, i) = s ∈ S, then e(Q, r, i) = s for all steps r with

l ≤ r ≤ min{σ(Q, i), σ(Q, s)}. Similarly, once a school points to a student it will keep on

pointing to the student in subsequent steps until the student is assigned to a seat at this

or some other school. In other words, if s ∈ V (Q, l) ∩ S for some step l of TTC(Q) and

e(Q, l, s) = i ∈ I, then e(Q, r, s) = i for all steps r with l ≤ r ≤ σ(Q, i).

We now proceed to establish some preliminary results and slightly technical lemmas

to be able to prove Theorems 5.4 and 7.2. The proof of the next lemma is omitted.

Lemma B.2 For any school choice problem P and any quota k, Oτ (P, k) ⊆ IR(P ) .

In order to avoid possible confusion we will sometimes use an additional superindex

Q and write qQ,r
s instead of qr

s .

Lemma B.3 Let Q ∈ QI . Let i ∈ I and Q′
i ∈ Q. Define Q′ := (Q′

i, Q−i). Suppose

τ(Q)(i) 6= τ(Q′)(i). Let p := σ(Q, i), p′ := σ(Q′, i), and r := min{p, p′}. Then,

(a) at steps 1, . . . , r − 1, the same cycles form in TTC(Q) and TTC(Q′);

(b) i ∈ V (Q, r) = V (Q′, r) and for each school s ∈ V (Q, r) ∩ S, qQ,r
s = qQ′,r

s ;

(c) e(Q, r, v) = e(Q′, r, v) for each agent v ∈ V (Q, r)\i;

(d) there is a cycle C with i ∈ C in either G(Q, r) or G(Q′, r) (but not both).26

Proof Item (a) follows from the proof of a result in Abdulkadiroğlu and Sönmez (1999,

Lemma 1) or, alternatively, Abdulkadiroğlu and Sönmez (2003, Lemma). As for Item (b),

from the definition of r, i ∈ V (Q, r)∩V (Q′, r). The remainder of Item (b) follows directly

from Item (a). Item (c) follows from Item (b) and the fact that Q′
j = Qj for all j ∈ I\i.

As for Item (d), by definition of r, there is a cycle C with i ∈ C in G(Q, r) or G(Q′, r).

From Item (c) and τ(Q)(i) 6= τ(Q′)(i), e(Q, r, i) 6= e(Q′, r, i). In particular, C is not a

cycle in both G(Q, r) and G(Q′, r). This proves Item (d). �

Lemma B.4 Let ϕ be a mechanism such that for any Q ∈ QI , any i ∈ I, Q′
i = ϕ(Q)(i) ∈

Q(1) implies ϕ(Q′
i, Q−i) = ϕ(Q). Then, for any school choice problem P and quotas

k < k′, Eϕ(P, k) ⊆ Eϕ(P, k′).

26Note that it is still possible that there is another cycle C̄ (i.e., C̄ 6= C) with i ∈ C̄ present in the

other graph.
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Proof Let Q ∈ Eϕ(P, k). Suppose Q /∈ Eϕ(P, k′). Then, there is a student i with a

strategy Q̄i ∈ Q(k′) such that ϕ(Q̄i, Q−i)Piϕ(Q). Let Q̄′
i := ϕ(Q̄i, Q−i)(i). Clearly, Q̄′

i ∈

Q(k). By assumption, ϕ(Q̄′
i, Q−i) = ϕ(Q̄i, Q−i). So, ϕ(Q̄′

i, Q−i)Piϕ(Q), contradicting

Q ∈ Eϕ(P, k). Hence, Q ∈ Eϕ(P, k′). �

Proposition B.5 For any Q ∈ QI , any i ∈ I, Q′
i = τ(Q)(i) ∈ Q(1) implies τ(Q′

i, Q−i) =

τ(Q). In particular, for any school choice problem P and quotas k < k′, Eτ(P, k) ⊆

Eτ (P, k′).

Proof Let Q ∈ QI . Let i ∈ I and define Q′
i := τ(Q)(i) ∈ Q(1). Define Q′ := (Q′

i, Q−i).

We have to show that τ(Q′) = τ(Q). By non bossiness of τ ,27 it is sufficient to show

that τ(Q′)(i) = τ(Q)(i). If τ(Q)(i) = i, then from the definition of the TTC algorithm,

τ(Q′)(i) = i = τ(Q)(i).

So, suppose τ(Q)(i) =: s ∈ S. Suppose to the contrary that τ(Q′)(i) 6= τ(Q)(i). Then,

since Q′
i = τ(Q)(i) = s, student i remains unassigned under Q′, i.e., τ(Q′)(i) = i. Let

p := σ(Q, i), p′ := σ(Q′, i), and r := min{p, p′}. By Lemma B.3(d), there is a cycle C

with i ∈ C in either G(Q, r) or G(Q′, r) (but not both).

Suppose cycle C is in G(Q, r) but not in G(Q′, r). Since student i is assigned through

cycle C and τ(Q)(i) = s, e(Q, r, i) = s. Since e(Q′, r, i) 6= e(Q, r, i) and Q′
i = τ(Q)(i) = s,

e(Q′, r, i) = i. Hence, at the beginning of step r of TTC(Q′), school s has no avail-

able seats, i.e., qQ′,r
s = 0. By Lemma B.3(b), qQ,r

s = qQ′,r
s = 0. So, e(Q, r, i) 6= s, a

contradiction.

So, cycle C is in G(Q′, r) but not in G(Q, r). If e(Q′, r, i) = s, then τ(Q′)(i) = s,

a contradiction with τ(Q′)(i) 6= τ(Q)(i). So by Q′
i = τ(Q)(i) = s, e(Q′, r, i) = i, i.e.,

C = (i) is a self-cycle. Since i ∈ V (Q, r) and τ(Q)(i) = s, qQ,r
s > 0. By Lemma B.3(b),

qQ′,r
s = qQ,r

s > 0. So, s ∈ V (Q′, r). But then from Q′
i = s, e(Q′, r, i) = s, a contradiction.

We conclude that τ(Q′)(i) = τ(Q)(i). �

Lemma B.6 Let Q̄ ∈ QI . Let v, v′ ∈ I ∪ S, v 6= v′. Suppose v′ ∈ P (Q̄, l, v) at some

step l of TTC(Q̄). Then, σ(Q̄, v) ≤ σ(Q̄, v′) and [σ(Q̄, v) = σ(Q̄, v′) only if v and v′ are

removed in the same cycle].

Proof By Observation B.1, each agent in the path from v′ to v will keep on pointing to

its (direct) follower at least until the step in which agent v is removed, i.e., step σ(Q̄, v).

27Pápai’s (2000) main result implies that τ is group strategy-proof. Group strategy-proofness implies

non bossiness.
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Hence, σ(Q̄, v) ≤ σ(Q̄, v′). Suppose σ(Q̄, v) = σ(Q̄, v′). Then, all agents in the path from

v′ to v form part of a cycle at this step. Since an agent can be part of at most one cycle

at a given step, all agents in the path from v′ to v are in the same cycle. �

Lemma B.7 Let Q ∈ QI . Let i ∈ I and Q′
i ∈ Q. Define Q′ := (Q′

i, Q−i). Suppose

τ(Q)(i) 6= τ(Q′)(i) and σ(Q, i) ≤ σ(Q′, i). Then, for each step l with σ(Q, i) ≤ l ≤

σ(Q′, i), if v ∈ V (Q′, l)\(P (Q′, l, i) ∪ i) then v ∈ V (Q, l) and F (Q, l, v) = F (Q′, l, v).28

Proof Let p := σ(Q, i) and p′ := σ(Q′, i). From Lemma B.3(b),

V (Q, p) = V (Q′, p) and qQ,p
s = qQ′,p

s for each school s ∈ V (Q, p) ∩ S. (1)

With a slight abuse of notation, for each l, p ≤ l ≤ p′, denote Pl = P (Q′, l, i) ∪ i. From

Observation B.1,

Pp ⊆ Pp+1 ⊆ · · · ⊆ Pp′−1 ⊆ Pp′. (2)

Also note

V (Q′, p′) ⊆ V (Q′, p′ − 1) ⊆ · · · ⊆ V (Q′, p + 1) ⊆ V (Q′, p). (3)

We are done if we prove the following Claim(l) for each l, p ≤ l ≤ p′.

Claim(l): If v ∈ V (Q′, l)\Pl, then v ∈ V (Q, l) and e(Q, l, v) = e(Q′, l, v).

Indeed, Claim(l) immediately implies the following Consequence(l):

Consequence(l): If v ∈ V (Q′, l)\Pl, then v ∈ V (Q, l) and F (Q, l, v) = F (Q′, l, v).

We now prove by induction that Claim(l) is true for each l, p ≤ l ≤ p′. By Lemma B.3(b,c),

V (Q, p) = V (Q′, p) and e(Q, p, v) = e(Q′, p, v) for each agent v ∈ V (Q, p)\i. Hence,

Claim(p) is true.

If p′ = p we are done. So, suppose p′ 6= p. Let l be a step such that p < l ≤ p′.

Assume Claim(g) is true for all g, p ≤ g < l ≤ p′. We prove that Claim(l) is true. Let

v ∈ V (Q′, l)\Pl. From (2) and (3), v ∈ V (Q′, g)\Pg for each step g, p ≤ g < l. From

Consequence(g) (p ≤ g < l), v ∈ V (Q, g) and

F (Q, g, v) = F (Q′, g, v) for each step g, p ≤ g < l. (4)

Since v ∈ V (Q′, l), v is not removed at the end of step l − 1 in TTC(Q′). Then by (1)

and (4), v is also not removed at the end of step l − 1 in TTC(Q). Hence, v ∈ V (Q, l).

28It follows immediately from the proof that the directed paths associated with F (Q, l, v) and F (Q′, l, v)

in V (Q, l) and V (Q′, l), respectively, also coincide.
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Assume Claim(l) is not true, i.e., x := e(Q, l, v) 6= e(Q′, l, v) =: x′. Since v 6∈ Pl, x′ 6∈

Pl. By (2), x′ 6∈ Pl−1. By (3) and x′ ∈ V (Q′, l), x′ ∈ V (Q′, l− 1). By Consequence(l − 1),

x′ ∈ V (Q, l − 1). We distinguish between two cases.

Case 1: Agent x′ is removed at the end of step l − 1 in TTC(Q).

From (2) and (3), x′ ∈ V (Q′, g)\Pg for each step g, p ≤ g < l. From Consequence(g)

(p ≤ g < l), x′ ∈ V (Q, g) and

F (Q, g, x′) = F (Q′, g, x′) for each step g, p ≤ g < l. (5)

By (1), (5), and the fact that x′ is removed at the end of step l − 1 in TTC(Q), x′ is also

removed at the end of step l − 1 in TTC(Q′). Hence, x′ 6∈ V (Q′, l), a contradiction with

e(Q′, l, v) = x′.

Case 2: Agent x′ is not removed at the end of step l − 1 in TTC(Q).

Then, x′ ∈ V (Q, l). Since e(Q, l, v) = x 6= x′, we have xQvx
′ (if v is a student) or

fv(x) < fv(x
′) (if v is a school). Hence, since e(Q′, l, v) = x′, x 6∈ V (Q′, l). So, agent x

was removed at some step g∗, 1 ≤ g∗ ≤ l− 1, in TTC(Q′). In fact, by (1), p ≤ g∗ ≤ l− 1.

Note that no agent in Pp′ is removed before the end of step p′ in TTC(Q′). So, x 6∈ Pp′.

By (2), x 6∈ Pg∗ . Hence, x ∈ V (Q′, g∗)\Pg∗ . By an argument similar to that of Case 1,

x is also removed at the end of step g∗ in TTC(Q). Hence, x 6∈ V (Q, l), a contradiction

with e(Q, l, v) = x. �

Lemma B.8 Let Q ∈ QI . Let i ∈ I and Q′
i ∈ Q. Define Q′ := (Q′

i, Q−i). Suppose there

is a student j ∈ I\i with τ(Q)(j) 6= τ(Q′)(j). Then,

(a) σ(Q, i) ≤ σ(Q, j) and [σ(Q, i) = σ(Q, j) only if i and j are assigned in the same

cycle in TTC(Q)], and

(b) σ(Q′, i) ≤ σ(Q′, j) and [σ(Q′, i) = σ(Q′, j) only if i and j are assigned in the same

cycle in TTC(Q′)].

Proof By non bossiness of τ , τ(Q)(i) 6= τ(Q′)(i). Let p := σ(Q, i) and p′ := σ(Q′, i).

Assume, without loss of generality, p ≤ p′. Then, by definition of p and Lemma B.3(d),

there is a cycle C in G(Q, p) with i ∈ C but not present in G(Q′, p).

We first prove (a). By Lemma B.3(a,b), for each student h ∈ I\i with σ(Q, h) < p or

σ(Q′, h) < p, τ(Q)(h) = τ(Q′)(h). Let r := σ(Q, j) and r′ := σ(Q′, j). Since τ(Q)(j) 6=

τ(Q′)(j), we have r, r′ ≥ p. So, σ(Q, i) = p ≤ r = σ(Q, j). Suppose σ(Q, i) = σ(Q, j).

We have to show that j ∈ C. Suppose j 6∈ C. Then, j ∈ C∗ for some cycle C∗,

C∗ 6= C, in G(Q, p). Note i 6∈ C∗. By Lemma B.3(b), V (Q, p) = V (Q′, p). Hence, since
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e(Q, p, v) = e(Q′, p, v) for each agent v ∈ V (Q, p)\i, C∗ is also a cycle in G(Q′, p). In

particular, τ(Q)(j) = τ(Q′)(j), a contradiction. This completes the proof of (a).

We now prove (b). We distinguish between two cases.

Case 1: j ∈ P (Q′, p, i).

Then, (b) follows directly from Lemma B.6 with Q̄ = Q′, v′ = j, and v = i.

Case 2: j 6∈ P (Q′, p, i).

Assume that (b) is not true. In other words, assume that σ(Q′, i) > σ(Q′, j) or [σ(Q′, i) =

σ(Q′, j) and i and j are assigned in different cycles in TTC(Q′)]. Then, σ(Q, i) = p ≤

r′ = σ(Q′, j) ≤ σ(Q′, i).

Note that by definition of r′, j ∈ V (Q′, r′). Suppose j ∈ (P (Q′, r′, i) ∪ i). Since j 6= i,

j ∈ P (Q′, r′, i). By Lemma B.6, σ(Q′, i) ≤ σ(Q′, j) and [σ(Q′, i) = σ(Q′, j) only if i and

j are removed in the same cycle in TTC(Q′)]. This contradicts the assumption that (b)

is not true. So, j /∈ (P (Q′, r′, i) ∪ i). In other words, j ∈ V (Q′, r′)\(P (Q′, r′, i) ∪ i).

Hence, by Lemma B.7, j ∈ V (Q, r′) and F (Q, r′, j) = F (Q′, r′, j). Since σ(Q′, j) = r′,

student j forms part of a cycle, say C ′, in G(Q′, r′). Hence, C ′ = F (Q′, r′, j). So, also

C ′ = F (Q, r′, j). Hence, student j is assigned to the same school (or himself) in TTC(Q)

and TTC(Q′), contradicting τ(Q)(j) 6= τ(Q′)(j). This completes the proof of (b). �

Proposition B.9 Let P be a school choice problem. Let 2 ≤ k ≤ m. Let Q ∈ Eτ(P, k).

Define Q̄i := τ(Q)(i) for all i ∈ I. Then, Q̄ ∈ Eτ (P, 1) and τ(Q̄) = τ(Q). In particular,

Oτ (P, k) ⊆ Oτ (P, 1).

Proof It is sufficient to prove the following claim.

Claim: Let P be a school choice problem. Let 2 ≤ k ≤ m, Q ∈ Eτ (P, k), and j ∈ I. Let

Q̃j := τ(Q)(j). Then, Q̃ := (Q̃j , Q−j) ∈ Eτ (P, k).

Indeed, if the Claim is true then we can pick students one after another and each time

apply both the Claim and Proposition B.5 to eventually obtain a profile Q̄ ∈ Eτ(P, k)

with τ(Q̄) = τ(Q) and where for all j ∈ I, Q̄j = τ(Q)(j). By construction, Q̄ ∈ Q(1)I .

So, Q̄ ∈ Eτ(P, 1).

To prove the Claim, suppose Q̃ /∈ Eτ (P, k). Then, there is a student i with a profitable

deviation at Q̃ in Γτ (P, k). In fact, by Proposition B.5 there is a strategy Q′
i ∈ Q(1) with

τ(Q′
i, Q̃−i)Piτ(Qi, Q̃−i). (6)

We claim i 6= j. Suppose i = j. Then, Q̃−i = Q̃−j = Q−j . So, (6) becomes τ(Q′
j , Q−j)Pj

τ(Qj , Q−j), contradicting Q ∈ Eτ(P, k). So, i 6= j.
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Recall Q̃ = (Qi, Q̃j, Q−ij). Define Q̃′ := (Q′
i, Q̃j, Q−ij) and Q′ := (Q′

i, Qj , Q−ij) . We

can rewrite (6) as

τ(Q̃′) = τ(Q′
i, Q̃j, Q−ij)Piτ(Qi, Q̃j , Q−ij) = τ(Q̃). (7)

From Q ∈ Eτ (P, k), Lemma B.2 (Oτ (P, k) ⊆ IR(P )), and Proposition B.5, τ(Q̃) =

τ(Q) ∈ IR(P ). By (7), τ(Q̃′)(i) =: s ∈ S. Since Q̃′
i = Q′

i ∈ Q(1), Q′
i = s.

Suppose τ(Q′)(j) = τ(Q)(j). Recall Q̃j = τ(Q)(j). So, Q̃j = τ(Q′)(j). Hence, Propo-

sition B.5 implies τ(Q′
i, Q̃j, Q−ij) = τ(Q′

i, Qj, Q−ij) and τ(Qi, Q̃j , Q−ij) = τ(Qi, Qj , Q−ij) .

Then (7) can be rewritten as τ(Q′
i, Qj, Q−ij)Piτ(Qi, Qj, Q−ij) . So, Q /∈ Eτ (P, k), a con-

tradiction. Hence, τ(Q′)(j) 6= τ(Q)(j).

Next, we prove that τ(Q′)(i) 6= τ(Q̃′)(i). Suppose τ(Q′)(i) = τ(Q̃′)(i). Since τ(Q̃) =

τ(Q), (7) boils down to τ(Q′)Piτ(Q), which implies that Q /∈ Eτ(P, k), a contradiction.

So, τ(Q′)(i) 6= τ(Q̃′)(i).

Note that for any student h 6= i, Q′
h = Qh. So, by Lemma B.8, σ(Q′, i) ≤ σ(Q′, j).

Note also that for any student h 6= j, Q̃′
h = Q′

h. So, by Lemma B.8, σ(Q′, j) ≤ σ(Q′, i).

So, σ(Q′, i) = σ(Q′, j). From Lemma B.8 it follows that i and j are in the same cycle

in TTC(Q′). So, i is not in a self-cycle. Hence, i is assigned to a school in TTC(Q′).

Since Q′
i = s, τ(Q′)(i) = s. By definition, s = τ(Q̃′)(i). So, τ(Q′)(i) = τ(Q̃′)(i), a

contradiction. Hence, Q̃ ∈ Eτ (P, k), which completes the proof of the Claim. �

Proof of Theorem 5.4 Follows from Propositions B.5 and B.9. �

In order to prove Theorem 6.8 we need the following two lemmas.

Lemma B.10 Let f be a Kesten-cyclic priority structure. Let 1 ≤ k ≤ m. Then, there

is a school choice problem P with an unstable equilibrium outcome in the game Γτ (P, k),

i.e., for some Q ∈ Eτ (P, k), τ(Q) 6∈ S(P ).

Proof By Theorem 1 of Kesten (2006), there is a school choice problem P such that

τ(P ) is unstable. Since τ is strategy-proof, P ∈ Eτ (P, m). Hence, by Theorem 5.4,

τ(P ) ∈ Oτ (P, m) = Oτ (P, k). So, there is a profile Q ∈ Q(k)I such that Q ∈ Eτ(P, k)

and τ(Q) = τ(P ) 6∈ S(P ). �

Lemma B.11 Let f be a Kesten-acyclic priority structure. Let 1 ≤ k ≤ m. Then, for

any school choice problem P all equilibrium outcomes in the game Γτ (P, k) are stable, i.e.,

for all Q ∈ Eτ (P, k), τ(Q) ∈ S(P ). In fact, S(P ) = Oτ (P, k).
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Proof By Theorem 1 of Kesten (2006), τ = γ. Hence, Oτ (P, k) = Oγ(P, k). By

Lemma 1 of Kesten (2006), f is Ergin-acyclic. So, from Theorem 6.5, S(P ) = Oγ(P, k) =

Oτ (P, k). �

Proof of Theorem 6.8 Follows from Lemmas B.10 and B.11. �

Lemma B.12 Let the priority structure f admit an X-cycle. Let 1 ≤ k ≤ m. Then,

there is a school choice problem P with a Pareto inefficient equilibrium outcome in the

game Γτ (P, k), i.e., for some Q ∈ Eτ (P, k), τ(Q) 6∈ PE(P ).

Proof Since f admits an X-cycle, we may assume, without loss of generality, that

(a) fs1
(ij) < fs1

(i1) < fs1
(i2) for each j ∈ I1 := {3, . . . , qs1

+ 1} and

(b) fs2
(ij) < fs2

(i2) < fs2
(i1) for each j ∈ I2 := {qs1

+ 2, . . . , qs1
+ qs2

}.

Consider students’ preferences P defined by Pi1 := s2, s1, Pi2 := s1, s2, Pij := s1 for

j ∈ I1, Pij := s2 for j ∈ I2, and Pij := ∅ for all j ∈ {qs1
+ qs2

+ 1, . . . , n}.

Consider Q ∈ Q(k)I defined by Qi1 := s1, Qi2 := s2, and Qi := Pi for all i ∈ I\{i1, i2}.

One easily verifies that at τ(Q) all students in {i3, i4, . . . , iqs1
+qs2

} are assigned to their

favorite school. Also, τ(Q)(i1) = s1 and τ(Q)(i2) = s2. It is obvious that at τ(Q)

students i1 and i2 would like to swap their seats, i.e., τ(Q) 6∈ PE(P ). Nevertheless, there

is no unilateral deviation for either of the two students to obtain the other seat. Hence,

Q ∈ Eτ (P, k). �

Proposition B.13 Let 1 ≤ k ≤ m. If for some school choice problem P there exists

Q ∈ Eτ (P, k) such that τ(Q) /∈ PE(P ) then f admits an X-cycle.

Proof Let Q ∈ Eτ (P, k) be such that τ(Q) /∈ PE(P ). In view of Proposition B.9 we may

assume without loss of generality that k = 1 and for each student i ∈ I, Qi = τ(Q)(i).

For any school s ∈ S and any profile Q̂ ∈ QI , let As(Q̂) be the set of students to which

school s points whenever school s is part of a cycle, i.e.,

As(Q̂) := {i ∈ I : there is a step l of TTC(Q̂) with i = e(Q̂, l, s) and s ∈ F (Q̂, l, i)} .

Step 1 There exist p ≥ 2, a set of students CI = {i1, . . . , ip}, and a set of schools

CS = {s1, . . . , sp} such that

(a) for each student ir ∈ CI, srPirsr+1 = τ(Q)(ir) (where ip+1 = i0),

(b) for each school s ∈ CS, |As(Q)| = |τ(Q)(s)| = qs, and

(c) for any two distinct schools s, s′ ∈ CS, As(Q) ∩ As′(Q) = ∅.
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One easily shows that that Oτ (P, 1) ⊆ NW (P ) ∩ IR(P ). Hence, by Lemma A.7 there

exist a set of students CI = {i1, . . . , ip} and a set of schools CS = {s1, . . . , sp} such that

for each ir ∈ CI , srPirsr+1 = τ(Q)(ir). This proves (a). Obviously,

|As(Q̂)| = |τ(Q̂)(s)| for any Q̂ ∈ QI . (8)

Hence, by Lemma A.7, for each school s ∈ CS, |As(Q)| = |τ(Q)(s)| = qs. Hence, (b)

follows. Since a student is part of exactly 1 cycle, (c) follows. �

For any student ir ∈ CI define Qr := (sr, Q−ir). By Step 1, τ(Q)(ir) = Qir = sr+1

(modulo p). Since Qr
ir

= srPirsr+1 and Q ∈ Eτ(P, 1), τ(Qr)(ir) = ir.

Step 2 Let r ∈ {1, . . . , p}. For each s ∈ S\sr+1, |As(Q
r)| = |As(Q)|, and |Asr+1

(Qr)| =

|Asr+1
(Q)| − 1.

In view of (8) and ir ∈ τ(Q)(Sr+1), we are done if we prove that for each s ∈ S\sr+1,

τ(Qr)(s) = τ(Q)(s), and τ(Qr)(sr+1) = τ(Q)(sr+1)\ir.

For each school s 6= sr, sr+1, only the qs (see Step 1(b)) students in τ(Q)(s) list school

s in Qr. Note also that only the qsr+1
− 1 (see Step 1(b)) students in τ(Q)(sr+1)\ir list

school sr+1 in Qr. Since Qr ∈ QI(1) and τ(Qr) ∈ NW (Qr), τ(Qr)(s) = τ(Q)(s) for each

school s 6= sr. Finally, note that only the qsr
+ 1 students in τ(Q)(sr) ∪ ir list school sr

in Qr. Since Qr
ir

= sr, τ(Qr)(ir) = ir, and τ(Qr) ∈ NW (Qr), τ(Qr)(sr) = τ(Q)(sr). �

Step 3 For any r ∈ {1, . . . , p}, Asr
(Qr) = Asr

(Q).

We are done if we show the following claim.

Claim: For each integer l, we have

[ sr ∈ V (Q, l) if and only if sr ∈ V (Qr, l) ],

[ if sr is in a cycle C of G(Q, l) then C is also a cycle of G(Qr, l)], and

[ if sr is in a cycle C of G(Qr, l) then C is also a cycle of G(Q, l)].





(9)

Proof of Claim: We distinguish among six cases.

Case 1: l < min{σ(Q, ir), σ(Qr, ir)}. Then, (9) follows from Lemma B.3(a).

Case 2: σ(Q, ir) ≤ l < σ(Qr, ir). Since Qr
ir

= sr and τ(Qr)(ir) = ir, sr 6∈ P (Qr, l, ir).

Since σ(Qr, sr) = σ(Qr, ir) − 1, sr ∈ V (Qr, l). By Lemma B.7, sr ∈ V (Q, l) and

F (Q, l, sr) = F (Qr, l, sr) (as directed paths). So, (9) holds.

Case 3: σ(Q, ir) < l = σ(Qr, ir). Since σ(Qr, ir) = σ(Qr, sr) + 1, F (Qr, l − 1, sr) is the

last cycle of sr under TTC(Qr). By Case 2, this is a cycle of sr under TTC(Q). In fact,
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by Cases 1 and 2 and Step 2, this is also the last cycle of sr under TTC(Q). Hence,

sr 6∈ V (Q, l) and sr 6∈ V (Qr, l), and (9) holds trivially.

Case 4: σ(Q, ir) < σ(Qr, ir) < l. From the proof of Case 3, sr 6∈ V (Q, l) and sr 6∈

V (Qr, l). Hence, (9) holds trivially.

Case 5: σ(Qr, ir) = l ≤ σ(Q, ir). Since σ(Qr, ir) = σ(Qr, sr) + 1, F (Qr, l − 1, sr) is the

last cycle of sr under TTC(Qr). By Case 1, this is a cycle of sr under TTC(Q). In fact,

by Case 1 and Step 2, this is also the last cycle of sr under TTC(Q). Hence, sr 6∈ V (Q, l)

and sr 6∈ V (Qr, l), and (9) holds trivially.

Case 6: σ(Qr, ir) ≤ σ(Q, ir) and l > σ(Qr, ir). From the proof of Case 5, sr 6∈ V (Q, l)

and sr 6∈ V (Qr, l). Hence, (9) holds trivially. ��

For each school sh ∈ CS, let jh be the student to which school sh points in the last

cycle in which sh appears under TTC(Q), i.e., jh := argmaxj∈Ash
(Q)fsh

(j).

Step 4 For any r ∈ {1, . . . , p}, fsr
(jr) < fsr

(jr+1).

Suppose fsr
(jr) > fsr

(jr+1). From Step 3, jr ∈ Asr
(Q) = Asr

(Qr) and in particular,

jr = argmaxj∈Asr (Qr)fsr
(j). So,

σ(Qr, jr+1) < σ(Qr, jr) = σ(Qr, sr) = σ(Qr, ir) − 1. (10)

We will now prove the following claim to complete the proof of this step.

Claim: σ(Qr, ir) ≤ σ(Qr, jr+1).

The claim yields a contradiction to (10). Hence, the assumption fsr
(jr) > fsr

(jr+1) is

false. Note jr 6= jr+1. So, fsr
(jr) < fsr

(jr+1). �

Proof of Claim:

Let j∗r+1 be the student to which school sr+1 points in ir’s cycle under TTC(Q), i.e.,

e(Q, σ(Q, ir), sr+1) = j∗r+1. We make the following two observations (O1 and O2).

O1. σ(Qr, j∗r+1) ≥ σ(Qr, ir).

[Proof: Suppose σ(Qr, j∗r+1) < σ(Qr, ir).

Assume σ(Qr, ir) ≤ σ(Q, ir). Denote yr = σ(Qr, ir). From Lemma B.3(a), V (Q, yr) =

V (Qr, yr). By definition of j∗r+1, j∗r+1 ∈ V (Q, yr). However, by assumption, σ(Qr, j∗r+1)

< yr, and hence, j∗r+1 6∈ V (Qr, yr) = V (Q, yr), a contradiction.

So, σ(Q, ir) < σ(Qr, ir). Also note that y := σ(Q, ir) ≤ σ(Qr, j∗r+1) (otherwise, by

Lemma B.3(a), j∗r+1 6∈ V (Q, y), contradicting the definition of j∗r+1). By Lemma
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B.3(b,c), j∗r+1 ∈ P (Qr, y, ir). Hence, σ(Qr, j∗r+1) ≥ y = σ(Qr, ir). Again a contra-

diction. So, σ(Qr, j∗r+1) ≥ σ(Qr, ir).]

O2. For all i ∈ Asr+1
(Qr) with fsr+1

(j∗r+1) ≤ fsr+1
(i), σ(Qr, i) ≥ σ(Qr, j∗r+1).

Suppose jr+1 ∈ Asr+1
(Qr). Note fsr+1

(j∗r+1) ≤ fsr+1
(jr+1). From O2 (with i = jr+1) and

O1, σ(Qr, jr+1) ≥ σ(Qr, j∗r+1) ≥ σ(Qr, ir).

Suppose now jr+1 6∈ Asr+1
(Qr). Assume σ(Qr, jr+1) < σ(Qr, ir). Then,

jr+1 6= ir. (11)

We consider two cases.

Case 1: σ(Qr, ir) ≤ σ(Q, ir).

Then, σ(Qr, jr+1) < min{σ(Qr, ir), σ(Q, ir)}. From Lemma B.3(a) it follows that σ(Q, jr+1)

= σ(Qr, jr+1). So,

σ(Q, jr+1) < σ(Q, ir). (12)

However, under TTC(Q), ir is in a cycle with sr+1 and jr+1 is in the last cycle of sr+1.

So, σ(Q, jr+1) ≥ σ(Q, ir), a contradiction to (12).

Case 2: σ(Q, ir) < σ(Qr, ir).

If σ(Qr, jr+1) < σ(Q, ir), then σ(Qr, jr+1) < min{σ(Qr, ir), σ(Q, ir)} which yields the

same contradiction as in Case 1. Therefore, σ(Q, ir) ≤ σ(Qr, jr+1).

From Observation B.1 and the assumption that σ(Qr, jr+1) < σ(Qr, ir) it follows that

for each l ≤ σ(Qr, jr+1), jr+1 /∈ P (Qr, l, ir). From (11) and Lemma B.7 it follows that for

each l with σ(Q, ir) ≤ l ≤ σ(Qr, jr+1), F (Q, l, jr+1) = F (Qr, l, jr+1) (as directed paths).

So, by taking l = σ(Qr, jr+1), we obtain that jr+1’s cycle under TTC(Q) is the same as

under TTC(Qr). In particular, jr+1 ∈ Asr+1
(Qr), a contradiction.

Since both cases give a contradiction we conclude that σ(Qr, jr+1) ≥ σ(Qr, ir). �

Step 5 There is an X-cycle.

We can assume, without loss of generality, that among the students in {j1, . . . , jp} student

j1 is (one of) the last one(s) to be assigned to a school under TTC(Q), i.e.,

σ(Q, j1) ≥ σ(Q, jr) for any r ∈ {1, . . . , p}. (13)

Suppose fs2
(j1) < fs2

(j2). By definition of j2, school s2 points to student j2 in the

last, qs2
-th, cycle of s2 under TTC(Q), which occurs at step σ(Q, s2). Hence, j1 6∈
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V (Q, σ(Q, s2)). Hence, σ(Q, j1) < σ(Q, s2) = σ(Q, j2), contradicting (13). Since j1 6= j2,

fs2
(j2) < fs2

(j1).

Let s = s1, s′ = s2, i = j1, and i′ = j2. We have just shown that fs′(i
′) < fs′(i). By

Step 4, fs(i) < fs(i
′). Define Is := As(Q)\i and Is′ := As′(Q)\i′. By Step 1(b,c), Is and

I ′
s are disjoint sets such that |Is| = qs − 1 and |Is′| = qs′ − 1. Moreover, by definition of

As(Q) and i, Is ⊆ Uf
s (i). Similarly, Is′ ⊆ Uf

s′(i
′). Hence, schools s and s′ together with

students i and i′ constitute an X-cycle. ��

Proof of Theorem 7.2 Follows from Lemma B.12 and Proposition B.13. �

C Appendix: Proofs of Results in Section 8

Proof of Lemma 8.1 Let ϕ := γ, τ . We will prove that ϕ(P k
i , Q−i)(i) = ϕ(Q)(i) for

all Q−i ∈ Q(k)I\i or ϕ(P k
i , Q′

−i)Piϕ(Qi, Q
′
−i) for some Q′

−i ∈ Q(k)I\i. (This obviously

completes the proof as it implies that no strategy k-dominates P k
i .)

Suppose ϕ(P k
i , Q−i)(i) 6= ϕ(Q)(i) for some Q−i ∈ Q(k)I\i. We have to show that

for some Q′
−i ∈ Q(k)I\i, ϕ(P k

i , Q′
−i)Piϕ(Qi, Q

′
−i). Suppose that for some Q̃−i ∈ QI\i,

ϕ(Qi, Q̃−i)Piϕ(P k
i , Q̃−i). Since ϕ(P k

i , Q̃−i)(i)Rii, we have s̃ := ϕ(Qi, Q̃−i)(i) ∈ S. From

Lemma A.1 (for γ) and Lemma B.5 (for τ), ϕ(s̃, Q̃−i)(i) = ϕ(Qi, Q̃−i)(i).

Suppose s̃ is also listed in P k
i . Then,

ϕ(P k
i , Q̃−i)(i)Riϕ(P ′k

i , Q̃−i)(i) = ϕ(s̃, Q̃−i)(i) = s̃, (14)

where P ′k
i is the preference relation obtained from P k

i by putting s̃ in the first position.

The first relation follows from Lemma 4.2. The second relation follows from the fact that

the assignment by the DA/TTC algorithm does not change if a student makes more schools

acceptable and puts them below the school he is assigned to. Clearly, (14) contradicts

ϕ(Qi, Q̃−i)Piϕ(P k
i , Q̃−i). Hence, s̃ is not listed in P k

i .

Let S̃ := {s ∈ S\s̃ : sQis̃ }. The fact that s̃ is not listed in P k
i together with the

definition of P k
i implies that there is a school s 6∈ S̃ listed in P k

i with sPis̃. Let s∗ be the

Pi-best school among the schools s 6∈ S̃ listed in P k
i with sPis̃.

Suppose ϕ = γ. Since ϕ(Qi, Q̃−i) ∈ NW (Qi, Q̃−i), |ϕ(Qi, Q̃−i)(s)| = qs for all s ∈ S̃.

Clearly, for all s ∈ S̃, i 6∈ ϕ(Qi, Q̃−i)(s). Also, for all s, t ∈ S̃ with s 6= t, ϕ(Qi, Q̃−i)(s) ∩

ϕ(Qi, Q̃−i)(t) = ∅. So we can define for j ∈ I\i,

Q′
j :=

{
s if j ∈ ϕ(Qi, Q̃−i)(s) for some s ∈ S̃,

∅ otherwise.
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By the assumption that ϕ = γ, ϕ(Qi, Q̃−i) ∈ S(Qi, Q̃−i). Hence, fs(j) < fs(i) for all

s ∈ S̃ and all j ∈ ϕ(Qi, Q̃−i)(s). From ϕ(Qi, Q
′
−i) ∈ S(Qi, Q

′
−i) and the definition of Q′

−i,

ϕ(Qi, Q
′
−i)(i) = s̃. Similarly, ϕ(P k

i , Q′
−i)(i) = s∗. By definition of s∗, ϕ(P k

i , Q′
−i)(i) =

s∗Pis̃ = ϕ(Qi, Q
′
−i)(i), which completes the proof for the case ϕ = γ.

Suppose ϕ = τ . For any s ∈ S̃ define Is as the set of students j that are assigned a

seat through a cycle (in the TTC algorithm) of which school s is part and such that s

points to j. Formally,

Is :=
{

j ∈ I : e
(
(Qi, Q̃−i), σ[(Qi, Q̃−i), j], s

)
= j ∈ P

(
(Qi, Q̃−i), σ[(Qi, Q̃−i), j], s

)}
.

From Observation B.1 and sQis̃ = ϕ(Qi, Q̃−i)(i) for all s ∈ S̃ it follows that for all s ∈ S̃,

i 6∈ Is and |Is| = qs. Also, for all s, t ∈ S̃ with s 6= t, Is ∩ It = ∅. So we can define for

j ∈ I\i,

Q′
j :=

{
s if j ∈ Is for some s ∈ S̃,

∅ otherwise.

Since sQis̃ = ϕ(Qi, Q̃−i)(i) for all s ∈ S̃ it follows that fs(j) < fs(i) for all s ∈ S̃ and all

j ∈ Is. From the definition of Q′
−i and the TTC algorithm, ϕ(Qi, Q

′
−i)(i) = s̃. Similarly,

ϕ(P k
i , Q′

−i)(i) = s∗, which completes the case ϕ = τ and hence the proof. �

Proof of Proposition 8.5 By definition of the DA algorithm, |M(γ(P k))| ≤ |M(γ(P ))|.

We complete the proof by showing that if i ∈ M(γ(P )), then γ(P k)Riγ(P ). (Since

γ(P ) ∈ IR(P ), γ(P k)(i) ∈ S. Hence, i ∈ M(γ(P k)). But then M(γ(P k)) = M(γ(P )).)

Let i ∈ M(γ(P )). Denote s := γ(P )(i) ∈ S. Suppose to the contrary that sPiγ(P k)(i).

Let Q′
i := s. By Lemma A.1, γ(Q′

i, P−i)(i) = s. By a result of Gale and Sotomayor

(1985b, Theorem 2) extended to the college admissions model (Roth and Sotomayor, 1990,

Theorem 5.34), Q′
i ranks γ(Q′

i, P
k
−i)(i) weakly higher than γ(Q′

i, P−i)(i). So, γ(Q′
i, P

k
−i)(i) =

s, contradicting the assumption that P k ∈ E(P, k). So, γ(P k)(i)Ris = γ(P )(i). �

Proof of Proposition 8.6 In Example 8.3, γ(P ) = {{i1, s1}, {i2, s3}, {i3, s2}} and

τ(P ) = {{i1, s1}, {i3, s3}, {i2}, {s2}}. So, |M(τ(P ))| = 2 < 3 = |M(γ(P ))|.

In Example 8.4, γ(P ) = {{i2, s3}, {i3, s2}, {i1}, {s1}} and τ(P ) = {{i1, s2}, {i2, s3},

{i3, s1}}. So, |M(τ(P ))| = 3 > 2 = |M(γ(P ))|. �
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