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Abstract: We present a model of cooperative production in which rational agents
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su¢ cient conditions for the existence of a Nash equilibrium without sabotage. It is

shown that the absence of sabotage in equilibrium depends on the interplay between

technology, relative productivity of agents and the degree of meritocracy. In particular

we show that, ceteris paribus, meritocratic systems give more incentives to sabotage

than egalitarian systems.
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1. Introduction

In this paper we consider a model where rational agents have the option to carry out

sabotage activities. Traditionally, sabotage has been associated with capitalism -at least

since the days of the Luddite revolt- and/or with envy (see Mui [1995]). In this paper we

show that sabotage can arise as a rational action under cooperative production, where

output is entirely distributed to workers. An example of how sabotage may arise in this

framework follows.

Two people are collecting grapes. Andy collects white grapes -whose quantity is

denoted by R1� and Beth collects red grapes, whose quantity is denoted by R2. These

grapes are transformed into wine -denoted by X� according to the production func-

tion X = (R1 + R2)
1=2. The quantity of wine allocated to each worker -C1 and C2

respectively- is given by the Proportional Sharing Rule, i.e.

Ci =
Ri

R1 +R2
(R1 +R2)

1=2; i = 1; 2:

For future reference we notice that this sharing rule is meritocratic, in the sense that it

allocates wine depending on relative inputs. Suppose that when an unexpected event

forces Beth to leave, R1 = R2 = 50: Thus, X = 10, C1 = C2 = 5. Choices for Andy are

to remain faithfully devoted to collecting grapes, in which case he would obtain,say, 21

extra units or to destroy the crop assembled by Beth and pretend that somebody stole

it.1 In the �rst case his consumption of wine is

C1 =
71

121
(121)1=2 ' 6; 45:

In the second case, Andy�s consumption of wine is

C1 =
50

50
(50)1=2 ' 7; 07:

1Andy can explain that his output is just 50 by saying that he spent the remaining time chasing the

thief.
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Therefore, if Andy is rational and only cares about his wine consumption, he will destroy

Beth�s crop. Suppose now that the sharing rule is Egalitarian, i.e.

Ci =
(R1 +R2)

1=2

2
; i = 1; 2:

We notice that this rule is not meritocratic at all, in the sense that it allocates wine

irrespective of relative inputs. In this case, faithful work yields to Andy C1 = 5:5 and

sabotage C1 = 3:5, i.e. sabotage is not a rational action.

What is going on in this example? When an agent decides to sabotage there are two

e¤ects. On the one hand, output falls re�ecting the decrease in the quantity of input

supplied by both the saboteur and the agent who has been sabotaged. This is bad from

the saboteur�s point of view because there is less to be distributed. We will call this

the Production E¤ect. Notice that the importance of this e¤ect depends on the returns

embodied in the production function. Since returns re�ect the degree of congestion

among inputs, the magnitude of the production e¤ect depends inversely on the degree

of congestion. On the other hand, the relative ranking of the saboteur rises and that is

good for him. We will call this the Distribution E¤ect. The importance of this e¤ect

depends on how meritocratic the sharing rule is; for instance in the egalitarian sharing

rule this e¤ect does not exist. When the rule is meritocratic and there is congestion,

the distribution e¤ect may dominate and sabotage is a rational action, as in the case of

the proportional sharing rule above.2

The model of cooperative production is presented in Section 2. In order to make

the model tractable we make a number of simpli�cations. First we assume that the

total quantity of labor supplied by each agent is �xed. Thus, labor can be spent on the
2A related example may help to further understand this relationship. Suppose that a group of

athletes are running in an event. Runners can devote their energies either to running or to stepping on

other people shoes, i.e. to sabotage. One would expect that the occurrence of sabotage depends on how

e¤orts translate into run/sabotage, how runners are rewarded -the more meritocratic the reward, the

more sabotage- and the degree of congestion i.e. if runners form a compact pack or they are scattered.
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production of an intermediate input (by exerting e¤ort) or on the destruction of the

inputs of other agents (sabotage). This assumption is made in order to focus attention

on the choice between productive and sabotage activities. It is appropriated when

length of working time is �xed exogenously by law, custom, etc. Second, we assume

that the production function and the sharing rule are symmetric in inputs. However

the model is not symmetric because agents have di¤erent productivities.3 This paper

studies the existence and properties of Pareto E¢ cient Nash equilibria, which, under

our assumptions, is the Nash equilibrium with no sabotage.

In Section 3 we present a necessary condition for sabotage not to arise in a Nash

equilibrium that says that for each pair of agents, either the relative capability of sab-

otage with respect to productive activities is small relative to the relative productivity,

or, the degree of meritocracy should be bounded. This bound depends on the degree of

congestion, the relative productivity of agents, the relative capability of agents between

sabotage and productive activities and the complementarity or substitutability among

inputs. This result is recorded as Proposition 1. We also show how this condition can

be simpli�ed because for a given agent, say i, the ful�llment of the necessary condition

with respect to another agent, say j, implies the ful�llment of the necessary condition

of i with respect to any agent less productive than j (Proposition 2). However, the ful-

�llment of the necessary condition for some i does not imply the ful�llment of necessary

conditions for any other agent, see Example 1. In our Example 2 we explore the role

of the di¤erent variables in the necessary condition in the case where the production

function is of the CES type and the sharing rule is a convex combination of the pro-

portional and the egalitarian sharing rules. An interesting implication of our analysis is

that, for more than two agents with di¤erent productivities, an increase in the degree

3Agents must be heterogeneous because with identical agents all sharing rules yield equal distribution

so the question of the distribution of the output, does not arise. Moreover, given that the egalitarian

sharing rule yields incentives not to sabotage, this sharing rule is preferrable to any other in this case.
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of complementarity among inputs decreases the level of meritocracy compatible with no

sabotage. In the limit (perfect complementarity), the unique sharing rule compatible

with no sabotage is the egalitarian sharing rule.

In Section 4 we study the existence of a Nash equilibrium with no sabotage. As it

happens with the necessary condition, we have two cases. When the capabilities of sab-

otage with respect to productive activities are small, no sabotage is a Nash equilibrium

(Proposition 3). Furthermore, when these relative capabilities are su¢ ciently small,

zero sabotage is the unique Nash equilibrium (Proposition 4). However, when these ca-

pabilities are not small we need an extra assumption that is stronger -but with the same

�avor- than the necessary condition in order to guarantee that no sabotage is a Nash

equilibrium (Proposition 5). Example 3 shows the necessity of this new assumption.4

Finally, Section 5 comments our assumptions and suggests further research.

Let us now comment on other papers dealing with sabotage. As far as we know

Nalebu¤ and Stiglitz (1983) were the �rst to acknowledge that �In the competitive

system.... there are... rewards from engaging in destructive activity� (id. p. 40).5

If saboteurs are identical, we have the following contributions. In the case of a pro�t

maximizing �rm, Lazear (1989) showed that, if sabotage is possible, large di¤erences in

salaries become dysfunctional. In his model, agents are paid according to the position

achieved in a contest.6 Auriol, Friebel and Pechlivanos, (1999) considered a Principal-

4Our results contrast with Holmstrom (1982) where e¢ ciency can not be achieved. There are several

di¤erences between our model and Holmstrom�s, the most important being that in our model agents

produce an intermediate input that is contractible. As has been shown by Nandeibam (2002) in a model

where sabotage is not possible, e¢ ciency might arise in equilibrium if there are contractible intermediate

inputs. Thus, our results and Nandeibam�s show the importance of contractible intermediate inputs.
5 Itoh (1991) and Macho-Stadler and Pérez-Castrillo (1993) analyze the polar case where cooperation

among agents is possible.
6When some aspects of performance are rewarded but others are not, other types of dysfunctional

behavior are possible, see Holmstrom and Milgrom (1991). This literature is surveyed in Gibbons (1998)

and Prendergast (1999).
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Agent model where the former can not commit so she has to o¤er collectively oriented

incentive schemes in order to avoid sabotage. Konrad (2000) considered a model of

Rent-Seeking where the e¤ort of an agent reduces rival´s performance by sabotaging

her activities. He shows that, in equilibrium, sabotage disappears if the number of

agents is su¢ ciently large. Heterogeneous agents have been considered by three di¤erent

strands of literature: Experimental (Harbring, Irlenbusch, Krakël, and Selten [2004] and

Harbring and Irlenbusch [2005]), Management (Chen [2003] and Yumoto [2003]) and

Political economy (Skaperdas and Grofman [1995]). All these papers identify conditions

under which some of the agents are more likely to engage and/or to receive sabotage.7

However, none of these papers deals with the main focus of our paper which is to identify

conditions on the sharing rule such that sabotage does not arise in equilibrium.

In all the models referenced above agents compete directly so the existence of sab-

otage is quite natural. In a model of cooperative production where agents at the same

time compete (the distribution e¤ect) and cooperate (the production e¤ect) things are

more involved. In our model the possibility of sabotage depends on: (1) The degree

of meritocracy (as in pro�t-maximizing �rms), (2) the relative productivity of agents

(under identical agents the relative productivity of an agent is just one divided by the

number of agents, hence the role of the later in rent-seeking models), (3) the relative

capability of agents between sabotage and productive activities, (4) the relationship

among inputs (complementarity or substitutability) and (5) the degree of congestion.

Thus, our analysis of the necessary and su¢ cient conditions for absence of sabotage pro-

duces a picture where all the causes of sabotage considered before have a role and new

causes emerge, i.e. points (4) and (5) above which are associated with the technology

of the �rm.
7For instance Skaperdas and Grofman (1995) considered a model in which candidates may focus the

campaign on positive or negative aspects, the role of the latter being similar to sabotage. They showed

that in equilibrium the leading candidate is less likely to engage in negative campaigning.
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2. The Model

The setting is one of cooperative production, see, e.g., Sen (1966), Fabella (1988) and

Roemer and Silvestre (1993) for examples and applications. There are n agents. The

input provided by agent i is denoted by Ri 2 R+: LetX be total output. The production

function is written f(R1; ::; Rn) = F (
Pn
k=1  (Rk)):We will assume that f is C1, concave,

strictly increasing in all its arguments and  is homogeneous of degree � 2 R with

� � 1:This form generalizes the well known CES form. Total output is shared among

agents by means of a sharing rule, i.e. a list of functions si : Rn+ ! [0; 1]; i = 1; ::::; n such

that
Pn
i=1 si(R1; ::; Rn) = 1 for all (R1; ::; Rn) 2 Rn+. We assume that for all i 2 f1; ::; ng;

si(R1; ::; Rn) = s(Ri;
P
k 6=iRk); where s() is a C1 function, non decreasing on Ri; non

increasing in
P
k 6=iRk; homogeneous of degree cero, and such that s(Ri;

P
k 6=iRk) > 0 if

Ri > 0. The homogeneity assumption ensures that shares do not depend on how inputs

are measured. An example of a class of sharing rules ful�lling these conditions is:

si(R1; ::; Rn) =
�RiPn
k=1Rk

+
1� �
n

; � 2 [0; 1]; i = 1; :::; n: (2.1)

This family of sharing rules is parametrized by �: If � = 0 we get the egalitarian

sharing rule and if � = 1; we have the proportional sharing rule. The parameter � is

a measure of how relative e¤ort is valued and thus measures the degree of meritocracy.

The interested reader can �nd in Moulin (1987) and P�ngsten (1991) other examples of

sharing rules ful�lling our conditions.

Agents care only about their own consumption. As we remarked in the Introduction,

the quantity of labor time is �xed. An agent, say i, can divide her working time,

denoted by T; between productive labor, denoted by lPi and sabotage activities. Let

lij be the quantity of labor allocated by i to sabotage the input of agent j. The time

constraint reads T = lPi +
P
j 6=i lij : The input provided by agent i depends on her

own productive e¤ort, lPi ; the amount of time devoted by the remaining agents to
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sabotaging the input of i and a parameter, �i > 0, re�ecting the productivity of i:

Formally, Ri = �iR(l
P
i ; l1i; :::l(i�1)i; l(i+1)i; :::lni) where R( ) is a C1 function such that

@R

@lPi
> 0 and

@R

@lji
< 0:

Without loss of generality we will assume that �1 � ::: � �n. Given these elements, we

describe the sabotage game as follows: for each agent i, a strategy is the time devoted

to sabotage activities, i.e. the vector li = (li1; li2; li(i�1); li(i+1); lin): Time devoted to

productive activities is determined by the constraint lPi = T �
P
j 6=i lij : By l�i we

denote the vector (l1; :::; li�1; li+1; ::; ln): For each agent i; given a vector of strategies

(li; l�i); the payo¤ function is given by

�i(li; l�i) � si(R1(li; l�i); :::; Rn(li; l�i))f(R1(li; l�i); :::; Rn(li; l�i)) where

Rj(li; l�i) � �jR(T �
X
j 6=i

lji; l1j ; :::l(j�1)j ; l(j+1)j ; :::lnj); j = 1; :::; n:

A Nash equilibrium of the sabotage game, denoted by NE, is a vector of strategies

(l1; ::; ln) such that for all agent i; �i(li; l�i) � �i(l
0
i; l�i) for all l

0
i:

We postpone until Section 4 the problem of the existence of a NE. In Section 3

below we concentrate on the implications of the necessary condition guaranteeing that

no agent has incentives to engage in sabotage.

3. A Necessary Condition for No Sabotage

If all working time is devoted to productive activities, (li; l�i) = (0; 0): De�ne R0j �

�jR(0; 0) for agent j; and let R0 denote the vector of inputs evaluated at the point of

zero sabotage, that is, R0 = (R01; :::; R
0
n): If no agent has incentive to sabotage when all

other agents do not sabotage, it must be that 8i; j; @�i(0;0)@lij
� 0; where

@�i(0; 0)

@lij
= f(R0)(

@si(R
0)

@Rj

@Rj(0; 0)

@lij
� @si(R

0)

@Ri

@Ri(0; 0)

@lPi
)

+si(R
0)(

@f(R0)

@Rj

@Rj(0; 0)

@lij
� @f(R0)

@Ri

@Ri(0; 0)

@lPi
)
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If this requirement is not ful�lled, all NE imply sabotage. Let

Mij � �
@Rj(0;0)
@lij

@Ri(0;0)

@lPi

= �
�j
@R(0;0)
@lij

�i
@R(0;0)

@lPi

:

Mij is a measure of the relative impact of change in inputs induced by an in�nitesimal

reallocation of i�s labor from productive to sabotage activities towards agent j evaluated

at the point of zero sabotage. Thus, Mij is a measure of the power of destruction versus

production capabilities. From our assumptions it follows that Mij > 0: Let

M � �
@R(0;0)
@lij

@R(0;0)

@lPi

;

which is independent of i and j: Thus, we can write

Mij =
�j
�i
M:

By our assumptions on the production function,

@f(R0)

@Rj
=
@F (y0)

@y
 0(R0j ); where y �

nX
k=1

 (Rk):

Since  is homogeneous of degree �;  0(R0j ) = ���1j  0(R(0; 0)): Thus,

@f(R0)

@Rj
=

�
�j
�i

���1 @f(R0)
@Ri

:

Using the de�nition of Mij and dividing by f(R0); the necessary condition reads

�@si(R
0)

@Rj
Mij �

@si(R
0)

@Ri
+ si(R

0)
@f(R0)

@Ri

1

f(R0)
(�
�
�j
�i

���1
Mij � 1) � 0:

Or,

�@si(R
0)

@Rj

�
�j
�i

�
M � @si(R

0)

@Ri
+ si(R

0)
@f(R0)

@Ri

1

f(R0)
(�
�
�j
�i

��
M � 1) � 0:

Let z �
P
k 6=iRk: Because our assumptions on the sharing rules,

@si(R
0)

@Rj
=
@s(R0i ; z)

@z
;
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and since the sharing rule is homogenous of degree cero,

@s(R0i ; z)

@Ri
R0i +

@s(R0i ; z)

@z
z = 0:

Thus,

�@si(R
0)

@Rj
=
@si(R

0)

@Ri

R0iP
k 6=iR

0
k

=
@si(R

0)

@Ri

�iP
k 6=i �k

:

Using this relation, the �rst order condition can be written as

(
�jP
k 6=i �k

M � 1)@si(R
0)

@Ri

1

si(R0)
� @f(R0)

@Ri

1

f(R0)
(

�
�j
�i

��
M + 1):

Multiplying by R0i ; the above inequality implies that

(
�jP
k 6=i �k

M � 1)@si(R
0)

@Ri

R0i
si(R0)

� @f(R0)

@Ri

R0i
f(R0)

(

�
�j
�i

��
M + 1): (3.1)

Now we have two cases. If M �
P
k 6=i �k
�j

, the inequality (3.1) always holds. However, if

M >
P
k 6=i �k
�j

;

@si(R
0)

@Ri

R0i
si(R0)

� @f(R0)

@Ri

R0i
f(R0)

��
�j
�i

��
M + 1

�0B@
P
k 6=i

�k

�jM �
P
k 6=i

�k

1CA : (3.2)

Next Proposition summarizes our previous arguments:

Proposition 1. If zero sabotage is a Nash equilibrium of the sabotage game, then

either

1. The possibilities of destruction are small compared with the relative productivity of

all other agents, i.e., M �
�P

k 6=i �k
�
=�j ; or

2. if M >
�P

k 6=i �k
�
=�j ; in the point of zero sabotage, the elasticity of the share

with respect to the input of agent i is bounded by the elasticity of the production

function with respect to the input of agent i; multiplied by a factor that depends on the

possibilities of destruction and the relative productivity of agents (see (3.2) above).
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The elasticity of the share with respect to the input of agent i can be interpreted as

the degree of meritocracy because it measures how one�s share responds to one�s e¤orts.

The elasticity of the production function with respect to the input of agent i; can be

interpreted as the inverse degree of congestion because it measures how output responds

inputs. Thus Proposition 1 says that when the possibilities of destruction are not small

the degree of meritocracy is bounded above by a factor that depends on the degree of

congestion, the possibilities of destruction and the relative productivity of agents.

One might think that under reasonable circumstances, it will be possible to simplify

the necessary conditions, as it is done in Principal-Agent problems. We may hope that

the ful�llment of the necessary condition for some i implies the ful�llment of necessary

conditions for all agents. Or, we may hope that for a given agent, say i, the ful�llment

of the necessary condition with respect to another agent, say j, implies the ful�llment

of the necessary condition of i with respect to any agent less productive than j. Next

example shows that the �rst hope is not warranted.

Example 1. Let n = 2; �1 = 1; �2 = 2; si(R1; R2) =
�Ri
Ri+Rj

+ 1��
2 and choose R(:)

such that M = 2: The production function has constant elasticity of substitution, X =

(
P
(Ri)

�)
r
� ; with � � 1 and r � 1. The necessary condition for no sabotage reads:

4�

3(3� �) �
r

2� + 1�
(2�+1 + 1) for agent 1 and

4�

3(�+ 3)
� r2�

2� + 1�

�
1�

2�
2 + 1

�
=
r(2 + 2�)

2� + 1
for agent 2:

For � = 1; (inputs are perfect substitutes) these conditions read:

� � 15r

4 + 5r
and � � 3r

1� r :

The �rst (resp. second) inequality holds trivially when r > 0:4 (resp. r > 0:25). We

see that 15r=(4 + 5r) � 3r=(1 � r) if and only if 0:1 � r: Thus for r 2 (0:1; 0:25) the

ful�llment of the �rst inequality implies the ful�llment of the second but for r 2 (0; 0:1)

is the other way around.
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The interpretation of this example is that if production is not very responsive to

inputs, i.e. r is small, sabotage comes from the most productive agent using her superior

capabilities to sabotage the other agent, given the scarce impact of her e¤orts on output.

When r becomes larger the comparative advantage of the most productive agent is to

devote all her time to production activities and he becomes the target of sabotage.

Fortunately, our second conjecture is valid.

Proposition 2. Given an agent i; if the inequality (3:2) holds for l, it holds for all j

such that �j < �l:

Proof. To prove this, it is enough to show that if �j < �l then

��
�l
�i

��
M + 1

�0B@
P
k 6=i

�k

�lM �
P
k 6=i

�k

1CA <

��
�j
�i

��
M + 1

�0B@
P
k 6=i

�k

�jM �
P
k 6=i

�k

1CA ; (3.3)

which is equivalent to show that

(�l � �j) >
��

�j
�i

��
�
�
�l
�i

���X
k 6=i

�k �
�
�l

�
�j
�i

��
� �j

�
�l
�i

���
M: (3.4)

Since �j < �l;
�
�l
�j

��
is increasing in �; and since � � 1; it follows that �l

�j
�
�
�l
�j

��
,

thus,

�l

�
�j
�i

��
� �j

�
�l
�i

��
� 0: (3.5)

And since M >
�P

k 6=i �k
�
=�j ;�

�l

�
�j
�i

��
� �j

�
�l
�i

���
M >

��
�j
�i

��
�
�
�l
�i

���X
k 6=i

�k; (3.6)

which implies that the right hand side of inequality (3.4) is negative while the left hand

side is positive. Thus, inequality (3.4) holds.

To conclude this section, the following example, which is a generalization of Example

1, highlights the role of the di¤erent variables in the condition (3.2):
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Example 2. Let us assume that: (i) The sharing rule has the form

�RiPn
k=1Rk

+
1� �
n

; with 0 � � � 1: (3.7)

(i) The production function is of CES type,

X =

 
nX
i=1

(Ri)
�

! r
�

with � � 1 and r � 1: (3.8)

Under i) and ii) we have the following:

@si(R
0)

@Ri

R0i
si(R0)

=
��i

P
k 6=i �k

(
Pn
k=1 �k)

2( ��iPn
k=1 �k

+ 1��
n )

; (3.9)

@f(R0)

@Ri

R0i
f(R0)

=
r��iPn
k=1 �

�
k

: (3.10)

By Proposition 2 we can restrict our attention to the necessary condition for agent i

not to sabotage agent n: Thus, inequality (3.2) can be written as

� �iPn
k=1 �k

��iPn
k=1 �k

+ 1��
n

� r(��nM + ��i )Pn
k=1 �

�
k

0B@ Pn
k=1 �k

�nM �
P
k 6=i

�k

1CA : (3.11)

We now study the e¤ect of the variables in the two sides of (3.11): We see that the

e¤ects of M , and r are what we expect from intuition, i.e. an increase in M -the

relative power of destruction with respect to production- makes harder the ful�llment

of (3.11) and an increase of r -the responsiveness of output with respect to inputs- makes

easier the ful�llment of (3.11). But the e¤ects of � and ��s are complex, even though

some interpretation of what is going on is possible.

E¤ect of �: To analyze the e¤ect of � assume �rst that n > 2; and there are at least

an agent k such that �k < �n�1: Let us restrict our attention to inequality (3.11) for

i = n� 1 and j = n: Notice that � only a¤ects the expression

r(��nM + ��n�1)Pn
k=1 �

�
k

: (3.12)
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This expression re�ects the e¤ect of sabotage from n � 1 to n on output. It re�ects

the opportunity cost of sabotage. It can be shown that (3.12) is increasing in �, and

it goes to zero when � goes to minus in�nity (perfect complementarity) (see Lemma

2 in the Appendix for details). Thus, in the limit, the unique level of meritocracy

compatible with no sabotage is � = 0 (even if we have constant returns to scale, r = 1):

The interpretation of this result is that when inputs approach perfect complementarity,

output depends only on the input provided by the least productive agent, so there are

incentives to sabotage any other agent because output will be una¤ected.

When n = 2 the situation is di¤erent, because a reduction in the input provided by

agent 1 -coming either from a sabotage of 2 into 1 or from the distraction of resources

implied by sabotage of agent 1- reduces production. As a consequence, sharing rules can

be more meritocratic when there are two agents only. Formally, the expression (3.12)

goes to r when �! �1. So in the limit inequality (3.11) can be written as:

� � r(�1 + �2)
2

2�1�2(M � 1) + r(�22 � �21)
: (3.13)

It can be shown that the right hand side depends on the relative productivity of agents,

and is U-shaped with a unique minimum at �1=�2 = (M � r � 1) = (M + r � 1). This

form re�ects the trade-o¤ of sabotage for agent 1: When agent 2 is very productive,

sabotage has no noticeable impact on the relative ranking so it is a waste of time. And

when both agents are almost identical, sabotage a¤ects output which is bad from the

saboteur interests. Thus meritocracy takes the highest possible value in one of the

extremes of �1=�2.

E¤ect of ��s. It is di¢ cult to say something in general about the e¤ect of productivities

on (3.11). Let us simplify this inequality by assuming perfect substitution, i.e. � = 1.

Then, (3.11) reads
� �iPn

k=1 �k
��iPn
k=1 �k

+ 1��
n

� r(�jM + �i)

�jM �
P
k 6=i

�k
: (3.14)
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- E¤ect of �i : From the previous equation, we see that when �i !1 the LHS of (3.14)

tends to one but the RHS tends to in�nite, thus the inequality holds. In this case,

the large productivity of i yields incentives to concentrate her activities in production

matters. Also when �i ! 0 the LHS of (3.14) tends to zero but the RHS tends to

a positive number and thus (3.14) also holds. This is more intriguing but it can be

explained by noting that when �i is close to 0, the distribution e¤ect, i.e. the change in

i�share measured here by the LHS of (3.14), is negligible so sabotage does not pays o¤.

Finally, it is clear that the necessary condition may not hold for intermediate values of

�i where the interplay between the production and the distribution e¤ect can produce

complicated patterns.

- E¤ect of �j : When �j ! 1 the LHS of (3.14) tends to zero but the RHS tends to

r, thus (3.14) holds. Again this can be explained by saying that in this case the large

productivity of j makes the distribution e¤ect to be nil. When �j !
�P

k 6=i;j �k
�
=(M�

1) (which is the lower bound in the case we are analyzing) the LHS of (3.14) tends to

a �nite number but the RHS tends to in�nite and thus (3.14) also holds. In this case

what happens is that we get close to the case where M �
�P

k 6=i �k
�
=�j in which

the necessary condition always holds. Again, the necessary condition may not hold for

intermediate values of �j for reasons identical to those explained before.

- E¤ect of
P
k 6=i;j �k : When

P
k 6=i;j �k ! 0 (3.14) reads

� �i
�i+�j

� �i
�i+�j

+ 1��
n

� r(�jM + �i)

�j(M � 1) ;

which may or may not hold. In this case we are back to the case of two agents where

the necessary condition may or may not hold, depending on the interplay between �i

and �j : Finally, when
P
k 6=i;j �k ! (M � 1)�j the LHS of the above inequality tends

to a positive number but the RHS tends to in�nite and thus the inequality is satis�ed.

The explanation is identical to the case where �j !
�P

k 6=i;j �k
�
=(M � 1). Again,
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the necessary condition may not hold for intermediate values of
P
k 6=i;j �k for reasons

identical to those explained before.

E¤ect of �. An increase in � makes the LHS of (3.11) larger. For given values of all

other variables, this makes harder the ful�llment of this condition.

The necessary condition yields an upper bound on the degree of meritocracy compatible

with no sabotage. This is very clear when all agents are identical, because the left hand

side of (3.11) simpli�es to � and the condition gives us the bound directly. Let us work

out the non symmetrical case. De�ne

qij �
r(��jM + ��i )Pn

k=1 �
�
k

0B@ Pn
k=1 �k

�jM �
P
k 6=i

�k

1CA : (3.15)

Now, condition (3.11) can be written as

�(
�iPn
k=1 �k

+ qij(
1

n
� �iPn

k=1 �k
)) � qij

n
: (3.16)

Notice that for some agents, �iPn
k=1 �k

< qij(
�iPn
k=1 �k

� 1
n) and so (3.16) holds for any

�. However, at least, for all agents whose productivity is less than the average -i.e.

1
n �

�iPn
k=1 �k

- the left hand side of (3.16) is positive and thus it can be written as

� �
qij
n

�iPn
k=1 �k

+ qij(
1
n �

�iPn
k=1 �k

)
: (3.17)

Let S be the set of agents for whom �iPn
k=1 �k

> qij(
�iPn
k=1 �k

� 1
n) . For any i 2 S de�ne

�ij �
qij
n

�iPn
k=1 �k

+ qij(
1
n �

�iPn
k=1 �k

)
; (3.18)

and let �i � minj 6=i �ij : Then, the maximum degree of meritocracy compatible with

no sabotage is min(1;mini2S �i): By Proposition 2 for each agent i the most restrictive

bound if the one towards the most productive agent, that is, ai = �in for all i =

1; :::; n� 1; and �n = �n(n�1): Furthermore, notice that for each agent i, �ij < 1 if and
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only if qij < 1: Otherwise, any degree of meritocracy is compatible with no sabotage.

In our discussion on the e¤ect of � we have proved that q(n�1)n is increasing in �; by

(3.18) as � decreases the maximum degree of meritocracy compatible with no sabotage

decreases. The most favorable case for meritocracy is the case of perfect substitutes

inputs (� = 1). In this case,

qij �
r(�jM + �i)

�jM �
P
k 6=i

�k
;

which is less than one if and only if

r <

�jM �
P
k 6=i

�k

�jM + �i
:

In the Cobb-Douglas case, it is easily calculated that

lim
�!0

qij =
1

n
r (M + 1)

0B@ Pn
k=1 �k

�jM �
P
k 6=i

�k

1CA ;

which is less than one if and only if

r <

n(�jM �
P
k 6=i

�k)

(M + 1)
Pn
k=1 �k

:

4. A Su¢ cient Condition for No Sabotage.

In this section we study under what conditions a Nash equilibrium with no sabotage

exists. To make the problem tractable, we assume that the individual�s input is given

by

R(li; l�i) = max(T �
X
j 6=i

lij �K
X
j 6=i

lji; 0); (4.1)

Ri(li; l�i) = �iR(li; l�i); i 2 f1; ::; ng
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Where the parameter K is a positive constant. Notice that in this case, if agent i uses

one unit of labor time to sabotage the input of agent j; he reduces his input in one unit

and the input of agent j in K units. Thus,

�
@R(li;l�i)
@lij

@R(li;l�i)
@lPi

= K for all (li; l�i) such that T �
X
j 6=i

lij �K
X
j 6=i

lji � 0:

Next lemma simpli�es the search for an equilibrium without sabotage because it

characterize the best response of i when the rest of agents is not sabotaging anyone.

Lemma 1. Let li = (li1; :::; lii�1; lii+1; ::; lin) be a best response for agent i to l�i = 0;

then if �j � �k; and lij > 0; Rk(li; l�i) � Rj(li; l�i) and consequently lik � lij :

Proof. Notice �rst that if li is a best response to l�i = 0; then T � Klij � 0 for

all j: Suppose not, that is, suppose that there is an agent j such that T � Klij < 0:

Then agent i can decrease the time dedicated to sabotaging agent j up to a point

such that T �Kl0ij = 0: Thus agent i will increase her input without a¤ecting the in-

put of the other agents, which implies that she will be better o¤ and will contradict

that li is a best response against l�i = 0: Suppose that Rk(li; l�i) > Rj(li; l�i); let

l̂i be such that l̂il = lil for all l 6= j; k; l̂ij = lij � "j ; l̂ik = lik + "k where "k > 0;

"j > 0, �k"k = �j"j and l̂ij � 0: Thus, Rk(li; l�i) + Rj(li; l�i) = Rk(l̂i; l�i) + Rj(l̂i; l�i)

and Ri(l̂i; l�i) > Ri(li; l�i);which implies that si(l̂i; l�i) � si(li; l�i); so the share of

this agent does not decrease. Finally, let us see that the production increases. Re-

call that f(R1; ::; Rn) = F (
Pn
j=1  (Rj)) with  homogeneous of degree � � 1. We

distinguish two cases. First, suppose that � > 0: In this case  is increasing and con-

cave, thus  (Ri(l̂i; l�i)) >  (Ri(li; l�i));  (Rk(li; l�i))� (Rk(l̂i; l�i)) �  (Rj(l̂i; l�i)�

 (Rj(li; l�i); and since f is strictly increasing in all its arguments, F is strictly increasing

in
Pn
j=1  (Rj); therefore f(R1(l̂i; l�i); ::; Rn(l̂i; l�i)) > f(R1(li; l�i); ::; Rn(li; l�i)): Sec-

ondly, suppose that � < 0: In this case  is decreasing and convex, thus  (Ri(l̂i; l�i)) <
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 (Ri(li; l�i));  (Rk(li; l�i))� (Rk(l̂i; l�i)) �  (Rj(l̂i; l�i)� (Rj(li; l�i); and since f is

strictly increasing in all its arguments, F is strictly decreasing in
Pn
j=1  (Rj); therefore

f(R1(l̂i; l�i); ::; Rn(l̂i; l�i)) > f(R1(li; l�i); ::; Rn(li; l�i)): In both cases the production

increases which implies that �i(l̂i; l�i) > �i(li; l�i):

Lemma 1 implies that if an agent is not sabotaging the most productive agent, he

is not sabotaging anyone.

In the last section we proved that if M �
�P

k 6=i �k
�
=�j for all i; j, the necessary

condition for no sabotage holds: Notice that, given our assumption on the individual�s

input, M = K: The next Proposition shows that if K �
�P

k 6=i �k
�
=�j for all i; j, zero

sabotage is a Nash equilibrium. The intuition is that since the damage that agents can

in�ict on each other is small, sabotage does not pay o¤.

Proposition 3. Assume K �
�P

k 6=i �k
�
=�j for all i; j: Then lij = 0 for all i; j 2

f1; ::; ng is a Nash equilibrium.

Proof. Let us see that for each agent i the best response to l�i = 0 is li = 0:

Suppose on the contrary that the best response to l�i = 0 involves positive sabotage by

agent i. Let li = (li1; :::; lii�1; lii+1; ::; lin) be such that lij > 0 for some j: By Lemma 1,

lin > 0:De�ne Rlj � �jR(li; 0) for all agent j; and let Rl the vector of inputs evaluated

at the point (li; 0); that is, Rl = (Rl1; :::; R
l
n):

As we have shown in the proof of Lemma 1, T �Klij � 0 for all j: Let us see �rst that

there is at least one agent j such that T �Klij > 0: Suppose not, then T �
P
j 6=i lij =

T � T (n � 1)=K: Since K �
�P

k 6=i �k
�
=�j for all i; j; K � n � 1; which implies that

T � T (n � 1)=K � 0: Thus Rli = 0: But this can not be the best response of agent i

to l�i = 0: Since nothing is produced, the payo¤ of this agent is zero. By reducing the

sabotage activities he will get a positive payo¤. Therefore
P
j 6=iR

l
j > 0: Finally, let

us see that for all li such that
P
j 6=iR

l
j > 0; @�i(li;0)@lin

< 0; and thus lin = 0, which by
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Lemma 1 implies that lij = 0 for all j: By the de�nition of �i,

@�i(li; 0)

@lin
=
@si(R

l)

@lin
f(Rl) + si(R

l)
@f(Rl)

@lin
:

From (4.1) we have that @Rn(li;0)
@lin

= �K�n; and @Ri(li;0)
@lin

= ��i: Since the production

function is strictly increasing in all its arguments, it follows that

@f(Rl)

@lin
= �@f(R

l)

@Rn
K�n �

@f(Rl)

@Ri
�i < 0:

Thus, in order to see that @�i(li;0)@lin
< 0; it is enough to show that

@si(R
l)

@lin
= �@si(R

l)

@Rn
K�n �

@si(R
l)

@Ri
�i � 0. (4.2)

If the sharing rule is constant, the above inequality always holds. It also holds if li is

such that Rli = 0; because since sharing rules are homogeneous of degree cero,

@si(R
l)

@Ri
Rli +

@si(R
l)

@Rn

X
j 6=i

Rlj = 0;

and since
P
j 6=iR

l
j > 0; @si(R

l)
@Rn

= 0: For all other li such that Rli > 0; proving that

inequality (4.2) holds, is equivalent to prove that

�
@si(R

l)
@Ri

@si(Rl)
@Rn

� K�n
�i

:

Since the sharing rule is homogeneous of degree cero,

�
@si(R

l)
@Ri

@si(Rl)
@Rn

=

P
j 6=iRj(li; 0)

Ri(li; 0)
=
T
P
j 6=i �j �K

P
j 6=i �jlij

�i(T �
P
j 6=i lij)

:

Notice that, since K �
�P

k 6=i �k
�
=�j for all i; j;

P
j 6=i �j � K�n; and by the order of

the agents, �j � �n: Thus,

T
P
j 6=i �j �K

P
j 6=i �jlij

�i(T �
P
j 6=i lij)

�
�nK(T �

P
j 6=i lij)

�i(T �
P
j 6=i lij)

=
�nK

�i
;
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as we wanted to prove.

The previous equilibrium is not always unique. If
�P

k 6=i �k
�
=�j � K � �i=�j for

all i; j (in particular K � 1), there are, at least, two kinds of Nash equilibria additional

to that with no sabotage:

I) In the �rst kind, no positive output is produced. This equilibrium can be sustained

with the following strategies: For each i, lii+1 = T ( modulo n) and lij = 0 otherwise.

Clearly Ri(li; l�i) = 0 for all i: It is also clear that no agent can deviate pro�tably.

II) In the second kind (only possible if n > 2), only one agent produces a positive input.

This equilibrium can be sustained with the following strategies: For each i 6= n, let

lii+1 = T (modulo n� 1) and lij = 0 otherwise, lni = 0 for all i. Clearly Ri(li; l�i) = 0

for all i 6= n; and Rn(li; l�i) > 0: It is also clear that no agent can deviate pro�tably.

However when K < �i=�j for all i; j, we can guarantee uniqueness of equilibrium.

Proposition 4. Assume K < �i=�j for all i; j: Then lij = 0 for all i; j 2 f1; ::; ng is

the unique Nash equilibrium.

Proof. The proof is left to the Appendix.

Let us now consider the case when the possibilities of destruction are large, i.e.

K >
�P

k 6=i �k
�
=�j : In contrast with the previous case, the necessary condition is no

longer su¢ cient.

Example 3. If in Example 2 we set n = 4; T = 10; M = 5; � = 0:5; r = 1=3; � = 1;

�1 = �2 = �3 = �4; the necessary condition holds, but in this case no sabotage is not

an equilibrium: the payo¤ of agent i in the point of zero sabotage is �i(0; 0) = 0:854

but, for li = (2; 2; 2); �i(li; 0) = 0:992: So an increase in sabotage activities pays o¤.

The problem in this case is that the share of an agent can increase with sabotage,

contrary to what happened when K �
�P

k 6=i �k
�
=�j ; (see 4.2). To guarantee that
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zero is a Nash equilibrium this e¤ect can not compensate the fall in output caused by

sabotage. The following assumption just formalizes this.

A1: For each agent i; let l = (li; l�i) with l�i = 0; 0 � lij � T
K ; for all j 6= i: Let

Rli = �i

�
T �

P
k 6=i lik

�
; Rlk = �k (T �Klik) ; and Rl = (Rl1; :::; Rln): Then,

�@si(R
l)

@Rn

Rli
si(Rl)

<
@f(Rl)

@Ri

Rli
f(Rl)

��
�n
�i

��
K + 1

�
�i
K�n

: (4.3)

A1 is similar to the necessary condition but stronger on two counts. On the one

hand it is evaluated not only in the point of zero sabotage but in all points described

above. On the other hand it is a little bit more restrictive since in the point of cero

sabotage and by the homogeneity of the sharing rule,

�@si(R
0)

@Rn
=
@si(R

0)

@Ri

�iP
k 6=i �k

:

Thus, this su¢ cient condition in the point of cero sabotage reads:

@si(R
0)

@Ri

R0i
si(R0)

<
@f(R0)

@Ri

R0i
f(R0)

��
�n
�i

��
K + 1

� P
k 6=i �k

K�n
;

and since P
k 6=i �k

K�n
�

P
k 6=i �k

K�n �
P
k 6=i �k

;

this condition is stronger than the necessary condition (3.2).

We are now prepared to state and prove our next result.

Proposition 5. Assume A1; and K >
�P

k 6=i �k
�
=�j , for all j: Then lij = 0 for all

i; j 2 f1; ::; ng is a Nash equilibrium.

Proof. Let us see that for each agent i the best response to l�i = 0 is li = 0:

Suppose on the contrary that the best response to l�i = 0 involves positive sabotage by

agent i. Let li = (li1; :::; lii�1; lii+1; ::; lin) be such that lij > 0 for some j: By Lemma 1,

lin > 0, lin � lij and T �Klij � 0 for all j:

22



De�ne Rlj � �jR(li; 0) for all agent j; and let Rl the vector of inputs evaluated at the

point (li; 0); that is, Rl = (Rl1; :::; R
l
n): Let us see that

@�i(li;0)
@lin

< 0; for all (li; 0); then

lin = 0; which, by Lemma 1 implies that lij = 0 for all j: By the de�nition of �i

@�i(li; 0)

@lin
= �i

�
f(Rl)(�@si(R

l)

@Rn
K
�n
�i
� @si(R

l)

@Ri
) + si(R

l)(�@f(R
l)

@Rn
K
�n
�i
� @f(Rl)

@Ri
)

�
:

(4.4)

The assumed form of the production function implies that

@f(Rl)

@Rn
=
@F (yl)

@y
 0(Rln); where y =

nX
k=1

 (Rk): (4.5)

Since  is homogeneous of degree � � 1;  0 is homogeneous of degree � � 1, hence

 0(Rln) =  0(�n(T �Klin)) = ���1n  0(T �Klin): Notice that since K >
�P

k 6=i �k
�
=�j

for all i; j; K > n � 1; Thus, T �
P
k 6=i lik � T � (n � 1)lin > T �Klin: Given that f

is strictly increasing in all its arguments, if � � 0;  0 is decreasing and @F (yl)
@y � 0; if

� < 0;  0 is increasing and @F (yl)
@y � 0: In any of these cases,

@F (yl)

@y
���1n  0(T �Klin) �

@F (yl)

@y
���1n  0(T �

X
k 6=i

lik); (4.6)

thus multiplying and dividing the right hand side of 4.6 we have that,

@f(Rl)

@Rn
�
�
�n
�i

���1 @f(Rl)
@Ri

; (4.7)

which implies that

�@f(R
l)

@Rn
K
�n
�i
� @f(Rl)

@Ri
� @f(Rl)

@Ri
(�K

�
�n
�i

��
� 1): (4.8)

Since @si(R
l)

@Ri
� 0;

�@si(R
l)

@Rn
K
�n
�i
� @si(R

l)

@Ri
� �@si(R

l)

@Rn
K
�n
�i
: (4.9)

By A1, (4.8), (4.9), and (4.4), @�i(li;0)@lin
< 0; as we wanted to prove.
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5. Conclusions

In this paper we have presented a model of cooperative production where agents can

sabotage other agent�s inputs. We have derived necessary and su¢ cient conditions

to avoid sabotage in a Nash equilibrium. These conditions point out to factors like

the technology of the �rm, the relative productivity of agents, the relative capability of

agents between sabotage and productive activities and the degree of meritocracy. These

�ndings can be used on several counts: To help our understanding of how and why an

organization populated by rational agents might be self-destructive (see Genicot and

Skaperdas [2002] for a similar point in a model of con�ict). To explain why cooperatives

tend to o¤er egalitarian incentive schemes (Kremer [1997] and Priks [2005] and the

references there). Or to the design of sharing rules that do not encourage sabotage but

are meritocratic.

Our results have been obtained under a number of simplifying assumptions. Thus,

it is a fair question to ask what would happen if some of these assumptions are removed.

Let us comment on this focussing our attention on two issues: the form of the sharing

rules and the assumption that the quantity of leisure is not a choice variable.8

1. More General Sharing Rules: We may consider sharing rules of the form

si(R1; ::; Rn) = s(Ri;
Pn
k=1 g(Rk)) where g is a non decreasing and concave function.

This would allow for sharing rules like si(R1; ::; Rn) =
(Ri)

�Pn
k=1(Rk)

� ; � 2 [0; 1]: Unfortu-

nately, the su¢ cient conditions considered in this paper for preventing the existence of

an equilibrium with sabotage do not work in this case, even if all agents are identical.

For instance, when K < �i=�j ; there might be equilibria with and without sabotage (see

Beviá and Corchón (2003), Example 1) and, in some cases, even if K <
�P

k 6=i �k
�
=�j ;

only equilibria with sabotage exists (see Beviá and Corchón (2003), Example 2).

8Other possible extensions are repeated interaction or the consideration of actions like stealing,

defending against sabotage or giving information that could damage other people�s inputs.
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2. Variable Working Time: In this paper we assume that the length of the

working time is exogenously given. How di¤erent is the case where agents can decide

the length of working time from the case analyzed in this paper? Clearly, the necessary

condition for no sabotage still holds, because any working time has to be distributed

optimally between productive and sabotage activities. But in this new framework no

sabotage is not necessarily a socially optimal choice: Sharing rules that do not encourage

sabotage may also not encourage a high level of e¤ort (e. g. the egalitarian rule). Thus,

in some cases, social optimality may require choosing a sharing rule which encourages

both e¤ort and sabotage. In consequence, a model with a variable working time requires

a considerable departure from the methods developed in this paper that are based in

that no sabotage is always socially optimal. This extension should be subject of further

research.
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6. Appendix.

Lemma 2. Let n > 2; �k � �n�2 < �n�1 � �n with k = 1; ::; n � 3; and let h(�) =

(r(��nM + ��n�1))=
Pn
k=1 �

�
k: The function h is increasing in � and goes to cero when �

goes to minus in�nity.

Proof. First of all notice that the function h can be written as a function of the

relative productivities of all agents with respect to the productivity of agent n� 1;

h(�) =
r(( �n

�n�1
)�M + 1)Pn

k=1(
�k
�n�1

)�
:

Since �n�2 < �n�1; (�n�2=�n�1)� ! 1 as � ! �1: Thus h(�) ! 0 as � ! �1:

Finally, let us see that h0(�) > 0:

h0(�) = r

Pn
k=1(

�k
�n�1

)�M( �n
�n�1

)� ln( �n
�n�1

)� (( �n
�n�1

)�M + 1)
Pn
k=1(

�k
�n�1

)� ln( �k
�n�1

)�Pn
k=1(

�k
�n�1

)�
�2 :

The numerator can be written as:

(
�n
�n�1

)� ln(
�n
�n�1

)

 
nX
k=1

(
�k
�n�1

)�M � ( �n
�n�1

)�M � 1
!
�

�
(
�n
�n�1

)�M + 1

� n�1X
k=1

(
�k
�n�1

)� ln(
�k
�n�1

):

First notice that �
(
�n
�n�1

)�M + 1

� n�1X
k=1

(
�k
�n�1

)� ln(
�k
�n�1

) < 0

because for all k = 1; :::; n � 1; ln( �k
�n�1

) � 0 and since �n�2 < �n�1; ln(
�n�2
�n�1

) < 0.

Secondly,

nX
k=1

(
�k
�n�1

)�M � ( �n
�n�1

)�M � 1 =
n�2X
k=1

(
�k
�n�1

)�M +M � 1 > 0

because M >
P
k 6=n�1 �k
�n

> 1: Therefore h0(�) > 0:
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Proof of Proposition 2.

Suppose we have an equilibrium with positive sabotage, (l1; :::; ln); and let

RS = (R1(li; l�i); :::; Rn(li; l�i)): Then,

Step 1. There is at least one agent i such that
Pn
j=1;j 6=i lji � T:

Suppose that for all agent i;
Pn
j=1;j 6=i lji > T: Then, if we sum for all agents,P

i

Pn
j=1;j 6=i lji > nT; but this is impossible since, because of the time constraint, for

all j;
Pn
i=1;i6=j lji � T:

Step 2. There is at least one agent i such that Ri(li; l�i) > 0:

Suppose that, for all agent j , Rj(li; l�i) = 0: Then �j(li; l�i) = 0 for all j: By Step

1 we know that there is an agent i such that
Pn
j=1;j 6=i lji � T . Since K < �i=�j ;

and Ri(li; l�i) = 0; the amount of time devoted to sabotage activities by this agent i is

strictly positive. But this can not be an equilibrium. If this agent reduces her sabotage

activities, the total output will be positive and her input positive. Consequently, she

will get a positive amount. Therefore, she will be better o¤.

Step 3. There are at least two agents, i and j; such that Ri(li; l�i) 6= Rj(li; l�i).

Suppose on the contrary that for all i; and j; Ri(li; l�i) = Rj(li; l�i). By the as-

sumptions on the sharing rule, �i(li; l�i) = 1
nf(R1(li; l�i); ::; Rn(li; l�i)): Suppose agent

i reduces her sabotage activity toward agent j zero, let l̂i denote the new strategy

for agent i: In this case, the input of agent i will increase by �ilij and the input

of agent j will increase by K�jlij : Since K < �i=�j ; and the rest of agents are not

a¤ected, Ri(l̂i; l�i) > Rj(l̂i; l�i) > Rk(l̂i; l�i) for all k =2 fi; jg: Thus, �i(l̂i; l�i) �
1
nf(R1(l̂i; l�i); ::; Rn(l̂i; l�i)) >

1
nf(R1(li; l�i); ::; Rn(li; l�i)); which implies that agent i

is better o¤.

Step 4. If Rj(li; l�i) � Ri(li; l�i) � Rk(li; l�i); and T �K
P
j 6=i lji > 0; then lik = 0

and lij = 0:

Suppose �rst that lik > 0: Since total output is decreasing in lik; let us see that this can
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not be an equilibrium because the share of this agent is non increasing in lik: That is,

�@si(R
S)

@Rk
K�k �

@si(R
S)

@Ri
�i � 0.

If the sharing rule is constant (the egalitarian sharing rule), the above inequality always

holds. If it is not, to prove the above inequality is equivalent to prove that

�
@si(R

S)
@Ri

@si(RS)
@Rk

� K�k
�i

:

Since the sharing rule is homogeneous of degree cero and K < �i=�k,

�
@si(R

S)
@Ri

@si(RS)
@Rj

=

P
j 6=iRj(li; l�i)

Ri(li; l�i)
� Rk(li; l�i)

Ri(li; l�i)
� 1 > K�k

�i
:

Thus, lik = 0:

Suppose secondly that lij > 0: Notice �rst that if T �
P
k 6=j ljk�K

P
k 6=j lkj < 0; lij > 0

can not be an equilibrium, because agent i can decrease the time dedicated to sabotaging

agent j without a¤ecting the input of agent j but increasing her input and total output,

which implies that she will be better o¤. Thus T �
P
j 6=k lkj �K

P
j 6=k ljk � 0. Since

total output is decreasing in lij ; let us see that this can not be an equilibrium because

the share of this agent is non increasing in lij : That is,

�@si(R
S)

@Rj
K�j �

@si(R
S)

@Ri
�i � 0.

If the sharing rule is constant (the egalitarian sharing rule), the above inequality always

holds. If it is not, to prove the above inequality is equivalent to prove that

�
@si(R

S)
@Ri

@si(RS)
@Rj

� K�j
�i

:

Since the sharing rule is homogeneous of degree cero and K < �i=�j ,

�
@si(R

S)
@Ri

@si(RS)
@Rj

=

P
j 6=iRj(li; l�i)

Ri(li; l�i)
� Rk(li; l�i)

Ri(li; l�i)
� 1 > K�j

�i
:
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Thus, lij = 0:

Step 5. For all agent i, T �K
P
j 6=i lji > 0:

Suppose on the contrary that there are k agents such that T �K
P
j 6=i lji � 0: Suppose

that these agents are the �rst k agents. By Step 4, these agents do not su¤er sabotage

from agents k + 1 to n: Thus T �K
Pk
j=1;j 6=i lji � 0 for all i = 1; :::; k: Adding these

inequalities for i = 1; ::; k; we get: kT � K
Pk
i=1

Pk
j=1;j 6=i lji � 0: But, by the time

constraint,
Pk
i=1;i6=j lji � T; and since K < 1; kT �K

Pk
i=1

Pk
j=1;j 6=i lji > 0:

Step 6. There is not an equilibrium with positive sabotage. By the previous steps, we

know that for all agent i except the one with the biggest input, and for all j; lij = 0:

Thus, if there is an equilibrium with positive sabotage, only the agent with the biggest

input is using part of her time in sabotage activities. But, by Proposition 3 the best

response to cero sabotage by others is cero sabotage.
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