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Abstract

We analyze the classical Bertrand model when consumers exhibit some strate-
gic behavior in deciding from which seller they will buy. We use two related but
different tools. Both consider a probabilistic learning (or evolutionary) mechanism,
and in the two of them consumers’ behavior influences the competition between
the sellers. The results obtained show that, in general, developing some sort of
loyalty is a good strategy for the buyers as it works in their best interest.

First, we consider a learning procedure described by a deterministic dynamic
system and, using strong simplifying assumptions, we can produce a description
of the process behavior. Second, we use finite automata to represent the strategies
played by the agents and an adaptive process based on genetic algorithms to simu-
late the stochastic process of learning. By doing so we can relax some of the strong
assumptions used in the first approach and still obtain the same basic results.

It is suggested that the limitations of the first approach (analytical) provide
a good motivation for the second approach (Agent-Based). Indeed, although both
approaches address the same problem, the use of Agent-Based computational tech-
niques allows us to relax hypothesis and overcome the limitations of the analytical
approach.
Key words: Agent-Based Computational Economics – Evolutionary Game Theory
– Imperfect Competition.

1 Introduction

As Hehenkamp (2002) points out, the Bertrand model of duopoly relies upon two
important assumptions regarding consumer’s behavior: (i) consumers search for the
cheapest firm at price zero and, (ii) switching firms has to be free. Nevertheless, not
many papers explicitly take into account consumer behavior when analyzing the com-
petitions among firms. Harrington and Chang (2005), and Ferdinandova (2003) ana-
lyze to what extend consumer’s behavior can influence market dominance and, thus,
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can contribute to “shape” the competition among firms. More related to our work,
Hehenkamp (2002) shows that the “sluggishness” (or not) of consumers when search-
ing for the best price can critically influence the outcome of the classical Bertrand
model, that is, depending on how consumers behave firms could, in equilibrium, set
prices equal to marginal cost or higher. These three papers use different evolutionary
techniques for their analysis. Alchian (1950) already suggested that evolutionary mod-
els could suit well the dynamics underlying competition among firms.

Here we also present an evolutionary analysis of firm competition when consumers are
allowed to exhibit some strategic behavior when deciding from which one of the two
sellers they will buy. Moreover, as discussed below, we will use to different approaches
to the problem: an analytical one and another using Agent-Based Computational tech-
niques. We will take into account not only the behavior of consumers when searching
for the best price but also the role that a positive cost of switching firms might have.
Finally, as opposed to the model by Hehenkamp, we will assume that the competition
among firms is modelled as a repeated game which, to out understanding, fits better to
the social evolutionary dynamics.

The model will consist of two sellers, offering the same homogeneous product, that
compete against each other in a market with a given number m of potential buyers. At
each period t (t = 1, 2, . . . , T ) the market opens (and closes) a fixed number of times R

that we will refer to as rounds. It is important to note the difference between periods and
rounds. Each period (for instance, a week) contains R rounds (for instance, 7 days). The
two sellers decide at the beginning of each period a strategy that specifies the course
of action to take at each of its rounds contingent on what happened in previous rounds
of the same period. Thus, at the beginning of each round, each of the two sellers sets
a price for his product according to their strategies for that period. Then, the market
opens and the two prices become known to everybody. The m buyers walk in and each
of them decides from which of the two sellers will buy based on the observation of
this two prices. Trade takes place and a new round begins. After R rounds (end of the
period) both sellers update their per period strategies according to some procedure that
will be specified.

The idea behind this sequence of events is that each seller uses the R rounds to learn
about the behavior of its competitor. Thus, each period represents a step in a learning
procedure. The model can also be thought as a evolutionary model where each period
represents the end of an old generation of sellers and buyers and the birth of a new
generation that inherits the characteristics of its parent generation with, hopefully, some
improvements. We will refer to the two intuitions indistinctly.

As said above, we will approach the resolution of the situation sketched above using
two related but different tools. The two of them consider a probabilistic learning (or
evolutionary) mechanism and in the two of them we will discuss how the consumers’
behavior can affect the competition between the sellers.

First, we consider the case in which the learning procedure can be described by a
deterministic dynamic system that uses expected values based on the work of Nowak
et al. (2004). Using strong simplifying assumptions we are able to solve this case and to
produce a complete description of how the learning process behaves. We also discuss
the problems that one might face when trying to relax some of the assumptions made.

The second approach is an instance of Agent-Based Computational Economics tech-
niques based on the analysis of the repeated Prisoner’s Dilemma using Genetic Algo-
rithms by Miller (1996). We use finite automata (encoded as binary strings) to represent

2



the strategies played by the sellers (and also by the buyers) and a decentralized adaptive
process based on the models of genetic algorithms to simulate the stochastic process
of learning or evolution. With this technique we can relax some of the strong assump-
tions used in the first approach and still obtain the same basic results. Additionally, as
a methodological agent representation issue, we modify the standard operators used
in genetic algorithm techniques to make them more suitable to social (or economic)
simulations.

Finally, we like to think that, to some extent, the limitations of the first approach (ana-
lytical) provide a good motivation for the second approach (Agent-Based simulations).
Indeed, although both approaches address the same problem, we show that the use of
Agent-Based computational techniques allows us to relax hypothesis and overcome the
limitations of the analytical approach while produces results that can be easily put in
contrast with those of the first approach.

2 The deterministic system

In order to simplify the analysis and avoid the interference that different demand func-
tions could produce in our model, we assume that, at each period t, the sellers can only
choose between two possible prices, say a high price p and a low one p. This is, indeed,
a very strong simplification. The Agent-Based approach in section 3 could easily over-
come this limitation, but then we would loose the reference of the analytical approach.
We further assume that at the beginning of each period, the set of strategies for the
period available to the sellers consists only of the following:

• Always cooperate (C), which means that the seller using this strategy will always
set a high price p —and thus will “cooperate” with its competitor— regardless
what happened in previous rounds of the current period.

• Always defect (D), which means that the seller using this strategy will always set
a low price p —and thus will “ defect”— regardless what happened in previous
rounds of the current period.

• Tit for Tat (T ) , which means that the seller using this strategy will start each
period with a high price p and then, at each successive round in that period, will
mimic what its competitor did in the previous round.

Again, the assumption that only three possible strategies are available to the the sellers
is a very restrictive hypothesis. Nevertheless, by adopting it we can build on the analysis
by Nowak et al. (2004) and apply it to our case. We will later discuss on the essential
difficulties of dropping this assumption.

Without loss of generality, we can normalize the number of buyers so that m = 2. To
begin with we assign to the high and low prices the values p = 3 and p = 2. We will
first assume that the consumers’ behavior is fixed so that they will always buy from the
cheapest seller and, in the case that the two of them set the same price, they will split
equally. Matrix A summarizes the per period payoff for each seller in this situation. The
first row of the matrix specifies the payoff that a C-strategist receives if its opponent
is a C-strategist, D-strategist, or T -strategist respectively. Similarly, the second and
third row correspond to the payoffs for a D-strategist and a T -strategist respectively.
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So, if a D-strategist meets another D-strategist each one receives a payoff of 2R after
R rounds (one period) whereas if a D-strategist meets a T -strategist, the D-strategist
gets 4 in the first round (all the buyers go to the D-strategist) and 2 for the rest of the
period.

A =





3R 0 3R

4R 2R 4 + 2(R − 1)
3R 2(R − 1) 3R





Each seller, at the beginning of period t, chooses the strategy s (s ∈ {C, D, T}) with
probability pt(s). From a evolutionary point of view, pt(s) represents the proportion of
s-strategists in the total population.

Let pt be the vector of probabilities of choosing each strategy and let pT
t denote its

transposed.

pt =





pt(C)
pt(D)
pt(T )





The following equation drives the dynamics of the learning/evolutionary process:

pt+1(s) = pt(s)
As · pt

pT
t · A · pt

where As denotes the row of A corresponding to the strategy s.

Using the learning intuition, the probability of choosing a particular strategy s is up-
dated according to its relative performance. Indeed, As · pt represents the expected
payoff of the strategy s whereas pT

t · A · pt represents the expected average payoff.

From an evolutionary point of view, the dynamic equation corresponds to the dynamic
system known as replicator dynamics according to which each strategy is replicated as
a function of its relative performance with respect to the rest.

In order to explore the behavior of this system, we study the corresponding vector field,
which is shown in Figure 1. Each point represents a probability vector pt that specifies
with what probability each of the three strategies will be chosen. At each point the
arrow indicates the instantaneous direction in which these probabilities evolve.

The strategy D is locally stable in the sense that if pt is pushed slightly away from D by
a small perturbation, it will eventually go back to D. In other words, D is evolutionary
stable (Maynard Smith (1982)). That is not the case for T . If pt is pushed away from
T it will then converge to some point near T in the line TC but not necessarily to T

again. Any point in the line TC is a rest point (altough not stable) of the system since
in the absence of D-strategists, C and T do equally well.

Next we assume a different behavior for the consumers and consider the case in which
they are “loyal”, that is, they always buy from the cheapest seller as in the previous case.
The difference now is that in the case the two prices are set equal, they will go back
to the seller they bought from in the previous round. By doing so, the payoff matrix A

changes since, obviously, now the first round becomes much more important as it will
determine the market share of each seller. Figure 2 shows the vector field corresponding
to this case. Now, any path starting in the interior of the simplex converges to D, which
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D

T C

Figure 1: Vector Field with non-loyal consumers

turns out to be the only stable equilibrium. The points in the line TC are stationary but
not stable.

The change with respect to the first case is not surprising as now the competition for
market share in the first round becomes critical. One might argue that in this case we
should not consider the Tit for Tat strategy (begin with a high price and then imitate
your competitor) since it is not a good strategy in the competition for market share. If
a seller starts out by setting a high price, chances are that he will not have any one to
sell in the next round. If we consider the opposite strategy Tat for Tit (Ta) instead, that
is, start with a low price and keep it low if the competitor does so, we obtain the results
depicted in Figure 3. Basically the result is the same as in the previous case in that the
firms end up setting a low price. The difference is that in this case all the points in the
line DTa are stationary but none of them (not even D) are stable.

Next we consider different values for the high and low prices. Figures 4, 5, and 6 are
the equivalent to Figures 1, 2, and 3 respectively with the difference that now the high
and low prices are p̄ = 5 and p = 2. The size of the gap between the two prices is
important since now it might not be optimal for the sellers to retaliate in order to gain
market share if it requires to lower the price by more than a half. That would not make
sense, for instance, if all that you expect to gain is to double your market share. The
direction of the arrows in Figures 4, 5, and 6 seem to corroborate this intuition. In the
first one, corresponding to the case in which consumers are not “loyal”, it seems that
unless there is a high probability of ruining into a D-strategist as a competitor, the
mechanism is going to push the probabilities to some point in the line TC.

If consumers are loyal (Figure 5) the result is similar. It seems that we need the proba-
bility of meeting a D-strategist to be more than one half in order to converge to the low
price equilibrium. In both cases, though, D continues being the only stable strategy.
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T C

Figure 2: Vector Field with loyal consumers

If we consider Tat for Tit instead of Tit for Tat (Figure 6) we obtain very similar results
to the ones in Figure 3. This is important since now it seems that being a T -strategist
is not so bad after all (according to Figure 5) due to the bigger price differential and,
therefore, maybe we should not substitute T by Ta in this case.

In the light of these results one might say that it makes sense for the consumers to be
loyal (at least in the very weak sense used in this model) for that makes the sellers
behave in such a way that competition works in the best interest of the consumers, that
is, they get low prices.

Even though this intuition can be thought as a nice complement to the static model of
Bertrand competition, we think that the model proposed has two important limitations
that makes us consider a different approach. These two limitations are:

1. In the model we only consider three strategies at a time. One might argue in favor
of this that C, D, and T are the strategies that seem more likely to emerge from
some learning or evolutionary process and, therefore, there is no need to consider
more strategies for they will not be played as we approach to a limit solution.
This reasoning, though, does not always work. We have an example of that in
Figures 2 and 5. According to Figure 2, Tit for Tat is not a good strategy, but it
turns out to be good when we consider a different set of prices. Thus, a strategy
can turn out to perform relatively well or not depending on the particular set up
that we have. Since we do not know before hand (if we knew we would not need
to solve the problem), we do not have any reason a priori to include a particular
strategy and discard another.

2. Another limitation is that the interpretation that consumers will be “loyal” be-
cause if they do then competition will “evolve” in their best interest involves a
strong rationality assumption. Indeed, we are not only assuming that consumers

6



D

Ta C

Figure 3: Vector Field with loyal consumers (and Tat for Tit)

are rational maximizers perfectly informed but also that they are able to under-
stand how evolution works so that they can predict and even control the path of
evolution. This is hard to believe. We should, somehow, incorporate consumers’
behavior in the system so that all the agents (both sellers and buyers) learn or
evolve at the same time.

On the other hand, it is easy to recognize the difficulties involved in relaxing any of
these assumptions. Imagine that we want to expand our set of three strategies. The ques-
tion now is what additional strategies do we want to consider and why, since choosing
an additional strategy can be as arbitrary as not choosing it. One might use some cri-
teria to guide this decision. For instance, a good criterion would be: “consider only
strategies according to which the action taken by one of the players depends only on
his past move and on the past move of his rival”. The problem now is that there are 26
different such strategies. It is clear that now we cannot use the same technique since
it would imply having to work with vector fields in a 25-dimensional simplex. In fact,
working with more than 3 strategies is already a challenge.

Next we propose a model of adaptive learning or evolution based on genetic algorithm
techniques to try to overcome these limitations.

3 The adaptive system

In our adaptive system, strategies for the repeated game will be represented by finite
automata as in Miller (1996). A finite automaton is a system that reacts to discrete
inputs producing discrete outputs. Formally, a finite automaton –or Moore machine– is
described by a five-tuple < Ω, Q, q∗, λ, δ > where:
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Figure 4: Vector Field with non-loyal consumers

1. Ω is the alphabet (actions) the automata understands (Ω = {p̄, p} in our case)

2. Q = {q1, . . . , qn} is a finite set of internal states.

3. q∗ ∈ Q is the initial state

4. λ : Q → Ω is the output function that assigns an action to each internal state

5. δ : Q × Ω → Q is the transition function which maps the current internal state
and the input ω that the automaton gets from the environment to a new internal
state.

Thus, this automaton consists of a set of internal states. Each internal state has associ-
ated an action and a transition function depending on the input that the automaton gets.
That transition function points to another internal state that will be the active state for
next round. For instance, the automata in Figure 7 represents the Tit for Tat strategy

In our model, the strategies for the sellers will be represented by automata of size 2
(two internal states, labeled 0 and 1). With this we restrict ourselves to consider only
26 different strategies. These automata can be represented by a binary string of 7 bits
according to the following scheme:

• First bit : Initial state (0 or 1)

• Second bit : Action when at state 0. 0 means that the low price p is chosen and
1 corresponds to the high price p.

• Third bit : Transition state if the rival sets a low price p. (0 or 1)

• Fourth bit : Transition state if the rival sets a high price p. (0 or 1)
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Figure 5: Vector Field with loyal consumers

• Fifth, sixth and seventh bits : Equivalent to second, third and fourth bits but
corresponding to state 1.

Thus, the automaton 0001101 represents a Tit for Tat strategy as in Figure 7.

One of the novelties of this adaptive model with respect to the deterministic model
discussed in section 1 is that now the buyers will also be represented by finite automata
(of size four) that will evolve jointly with the global evolution of the system. This is
a much realistic assumption rather than taking their behavior as given. In this sense,
a buyer’s strategy is represented by a binary string of 30 bits corresponding to the
following structure:

1. The first two bits form a number in base 2 that specifies the initial state (0, 1, 2,
or 3)

2. The rest of the bits are structured in 4 groups of 7 bits each, corresponding each
of this groups to an internal state. In each of these internal states:

(a) the first bit corresponds to the action to take at that state. 0 means that the
buyer using this strategy will buy from the same seller than in the previous
round (loyalty) and 1 corresponds to the buyer switching to the other seller.

(b) The six remaining bits correspond to the transitions states (expressed in
base 2) depending on the price paid by the buyer in the market being higher,
equal or lower (respectively) than the price set by the other seller.

The evolutionary nature of the system will be driven by an adaptive mechanism based
on a modified genetic algorithm that can be outlined as follows:
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Figure 6: Vector Field with loyal consumers (and Tat for Tit)

Figure 7: The Tit for Tat automaton

1. Two initial populations, one of 32 strategies for the sellers, and another of 1000
strategies for the buyers are randomly formed.

2. Randomly match each strategy of the first population (sellers) to another strategy
in the same population.

3. Bring each of these pairs to a simulated market in which each strategy will re-
ceive some payoff si(t) according to a market mechanism that we will describe
later on.

4. Form a new population of strategies for the sellers as follows:

(a) Include the top 16 strategies from the previous population.

(b) Create 16 new strategies:

i. Randomly select two “parents” from the previous population. The prob-
ability of strategy j being selected as a “parent” is:

prob(j) =
sj(t)

∑32

i=1
si(t)
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ii. Form two new strategies applying the crossover operator1 to the two
parents.

iii. Apply the mutation operator to the newly created strategies.
iv. Repeat a, b, and c 7 times so that 14 more strategies are created.

As we have mentioned above, a market mechanism is simulated to test the performance
of both the strategies of the sellers and of the buyers as well. This market works as
follows:

1. Two sellers constitute a market that to opens 5 times (5 rounds).

2. At the beginning of each round, 1000 consumers walk in the market and observe
the prices announced by each seller.

3. Based on these prices, each consumer decides from which one will buy

4. Trade takes place and each seller and buyer receive their payoffs for period t

according to the following scheme:

(a) For the sellers: Let di,r(t) denote the number of consumers that buy from
seller i at round r and let pi,r(t) the price set but seller i at round r. Then,
seller’s i payoff is given by

si(t) =
5

∑

r=1

pi,r(t)di,r(t)

(b) For the buyers: Let bj(t) denote the payoff obtained by strategy j belonging
to generation t. Let kj(t) be the number of times that strategy j pays a low
price p. Then,

bj(t) = 160(p− p)kj(t)

In the same way as we do with the strategies for the sellers, the payoffs obtained for
the strategies for the buyers are used to create a new population of strategies following
a procedure parallel to the depicted for the sellers.

We perform several simulations of the procedure outlined above varying some of the
parameters of the model. More specifically, we consider 9 scenarios corresponding to
the following (c represents a switching cost for the consumers):

• Case 3A: p = 3 p = 2 c = 0

• Case 3B: p = 3 p = 2 c = 1

• Case 3C: p = 3 p = 2 c = 1.5

• Case 4A: p = 4 p = 2 c = 0

1This and the mutation operator will be explained later
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• Case 4B: p = 4 p = 2 c = 2

• Case 4C: p = 4 p = 2 c = 3

• Case 5A: p = 5 p = 2 c = 0

• Case 5B: p = 5 p = 2 c = 3

• Case 5C: p = 5 p = 2 c = 4.5

The values for the rest of the parameters were:

• Size of populations = 32 strategies for sellers and 1000 strategies for buyers

• Number of generations (iterations) = 500

• Rounds played by each generation = 5

• Level of relative performance α = 0

• Probability of mutation = 0.001

• Crossover operator = Partial imitation

In Vilà (1997) we discuss the problems generated by the classical mutation and single-
cut crossover operators used in canonical genetic algorithms and propose alternatives
to them. First, we use a modified mutation operator in which mutations do not take
place on a locus-wise basis of the binarily encoded automata but on a state-wise basis
of the underlying automata. The reason for this is that locus-wise mutations induce a
non uniform distribution over the set of automata that can be the result of the mutation
of a given automata. As a consequence of this, when an automaton mutates, some au-
tomata are more likely to be the resulting “mutant” than others, which could produce an
unwanted erratic behavior of the genetic algorithm dynamics. Second, we modify the
standard single-point crossover operator to furnish it with a social interaction meaning.
In this sense, we introduce the partial imitation crossover operator according to which
two parent strings (i.e. two parent automata) can only exchange information that makes
sense to exchange. This is important due to the special characteristics of the binary
representation of finite automata. Indeed, it can be easily showed that the single-point
crossover operator could produce, from two identical “parents”, two automata whose
behavior is exactly the opposite from the behavior of their “parents”. This is not only
awkward but could also induced an strange behavior in the underlying dynamics. More
specifically, the single-point crossover operator works as follows:

1. Randomly generate a fictitious history of moves by a virtual opponent of a given
length. For instance: 0010.

2. Determine the move that each of the two parents would make given the sequence
of inputs described by the history generated.
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3. Form two new automata that reproduce the two parents but “switching” the move
reported in step 2. Hence, the first new automaton will use the move reported by
the second automaton if the sequence of inputs it gets is the one described by the
history considered and vice versa.

Finally, in order to avoid the problems generated by negative payoffs and, more impor-
tant, to make the payoff structure immune to affine transformations we work with the
payoffs normalized according to the formula:

ŝi(t) =
si(t) − µ

σ
+ α

where:

ŝi(t) = Normalized score
si(t) = Payoff
µ = sample mean
σ = sample standard deviation
α=parameter that determines the importance of relative performance.

Automata with negative normalized payoff are assigned a zero payoff and, hence, a
zero probability of contributing to the formation of the new generation. Therefore,
a choice of α=2 implies that the automata whose normalized score is less than two
standard deviations from the mean are “killed”. The new generation of each population
is created in the following way: The first half are the automata of the old population
with the highest scores. The other half is created by “reproduction”. Two parents are
selected randomly being ŝj

P

i ŝi
the probability that automaton j is selected. Then, the

partial imitation crossover operator is applied.

This reproduction process is repeated as needed to fill in the second half of the new
population. Then, the mutation operator is applied to this new population as follows: at
each one of the internal states, each transition state is “mutated” to another transition
state with small probability ε and also each move is mutated to its complementary with
this small probability. After the mutation operator has acted we have finally completed
our two new populations. Then the whole process starts all over again until the terminal
generation is reached.

4 Results

The results obtained by the final generation seem to corroborate those outlined in the
section 2 (see the evolution of the average payoffs at the end of the paper). The impor-
tant difference is that what was an assumption before is now a result, namely that in
the case that the two sellers set the same price, the consumers will remain loyal to their
previous seller. We have also introduced the possibility for the consumer of having an
ex-ante switching cost.

A brief summary of the results obtained follows:
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1. Cases *A When there are no switching costs (c = 0), the buyers will buy
from the cheapest seller and will stay with their current ones if prices are equal
(loyalty strategy). The sellers will set a low price regardless the price set by the
opponent in the previous round (always defect strategy, D). The only difference
is when the low price is too low compared to the high price (p = 5, p = 2) that
the sellers are better off by charging always the high price. (Case 5A).

2. Cases *B When the switching cost equals the price difference (c = p̄− p) the
buyers will buy from the cheapest seller and will stay with their current ones if
prices are equal (loyalty strategy). The sellers will set a low price regardless the
price set by the opponent in the previous round (always defect strategy, D). In
this case, the fact that consumers bear a switching cost equal to the difference
between the two prices does not make them “more loyal” in the sense of making
them willing to stick to a seller (even when he sets a high price) given that there
is no possible gain by switching to another. They do not want to do so because
then the sellers would have some sort of monopolistic power as the next case
indicates.

3. Cases *C When the switching cost exceeds the price difference (c > p̄−p) the
buyers will never switch, not even in the case that someone else offers a better
price. Then, sellers take advantage of this monopolistic power and always set a
high price (always cooperate strategy, C).

As we look at the charts describing the evolution of the average payoffs, we observe
that the convergence reached is very robust and is obtained very rapidly. Indeed, in all
cases, once the average payoff reaches a steady state it remains there except for very
minor fluctuations. This is consistent when the simulations are repeated several times
with the same parameter values.

5 Conclusions

We have analyzed the classical Bertrand model of (repeated) imperfect competition
using two different but related approaches. The two of them share a common learning
(or evolutive) spirit and consider the strategic behavior of the sellers and also of the
buyers. One builds on the analysis of Nowak et al. (2004) and uses standard analytical
tools to approach the model. It is shown, by using strong simplifying assumptions, that
the consumers are better off by developing a “loyal” strategy for that makes the learning
procedure of the buyers to result in lower prices. The second approach consists of an
adaptive model based on Miller (1996) that uses genetic algorithms to simulate the joint
evolution of the behavior of both sellers and buyers. Although his approach allows for
a much higher flexibility with regard to the number of parameters to consider and also
to the plausibility of the assumptions made, we find that the results obtained coincide
almost completely with the predictions of the analytical model.

We believe that putting this two different approaches side-by-side serves to illustrate
how the use of this kind of Agent-Based computational models can help in the analysis
of problems that otherwise would require strong unrealistic assumptions, or that would
be difficult to solve using other techniques. Additionally, the computational model has
the appealing of the evolutionary reasoning in the sense there is no need for making
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strong assumptions about rational players that know and fully understand the game that
takes place in the market.

The adaptive model used, nevertheless, also has its limitations. The fact that only two
prices are possible is a very unrealistic assumption. Also, the number of buyers is fixed,
so that it does not matter what the prices are, the number of buyers never goes up or
down. Ideally, we would like to have different types of buyers with different reservation
values that would allow for a wider range of prices. Finally, another important feature
of market dynamics, namely entry and exit of firms, is missing in our analysis. All these
limitations, though, could easily be avoided in more ambitious computational settings
and thus approach the analysis of complex imperfect competition models that would
be hard to analyze using analytical techniques.
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Figure 8: Cases 3*17
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Figure 9: Cases 4*18
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