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Abstract

We consider a set of agents who have to choose one alternative among a finite

set of social alternatives. A final allocation is a pair given by the selected al-

ternative and the group of its users. Agents have crowding preferences over

allocations: between any pair of allocations with the same alternative, they

prefer the allocation with the largest number of users. We require that a de-

cision be e cient and stable (which guarantees free participation in the group

of users and free exit from it). We propose a two-stage sequential mechanism
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whose unique subgame perfect equilibrium outcome is an e cient and stable

allocation which also satisfies a maximal participation property. The social

choice function implemented by the proposed mechanism is also anonymous

and group stable.

Keywords: Public Goods, Crowding Preferences, Subgame Perfect Implemen-

tation.

JEL Classification Numbers: D62, D71, H41.

1 Introduction

In many collective choice problems, after the social alternative (or public good) has

been chosen, agents may decide whether or not to use it. If the size of the final

set of users a ects the welfare of each member, then the decision process has to

take into account how many agents will eventually become users. In this paper we

study the case when agents’ preferences are positively a ected by the size of the

set of users, and participation is not compulsory. There are many examples of such

problems. Members of a club choose the amount of some non-rival public good to

be provided to themselves and the cost of its provision is usually equally shared

among the set of its final users. This choice a ects the composition (and the size)

of the club, since some members may choose to leave the club if the level provided

and its corresponding cost are unacceptable to them. Similarly, a local community

which decides to provide a public facility (a swimming pool, a common garden, etc.)

cannot set aside considerations regarding howmany community members support this

decision if those who are not in favor of it have the right not to pay for the facility.

Many other problems do not directly involve money but can be similarly modeled.

For instance members of a political party or a union decide which political line to

follow and this decision a ects their choice regarding their membership. The size of

the organization matters for all of its members, since it determines how e ective the

organization is in pursing its objectives. A group of nations decides which common
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technological standard to adopt. Each country may prefer a di erent standard, but

once a standard is adopted, social and individual welfare are increasing in the number

of nations which agree to adopt it.

All these problems have two common features, other than the fact that agents care

about how many other agents use the public good. The final allocation to be selected

has to satisfy two properties: e ciency and stability. While the first requirement

is well-known and typical in most of the public decision process, the latter deserves

to be briefly mentioned. Stability requires that no agent can be forced to be a user

and that no agent who wants to be a user could be excluded. Stability may be a

necessary requirement due to institutional constraints (for instance, no nation can be

forced to adopt any technological standard, or, according to the law, agents cannot be

discriminated), but it is also a desirable property on the basis of normative principles

like freedom (free participation) and equal treatment of equals (no discriminatory

exclusion).1

The aim of this paper is to implement an e cient and stable social choice function

when agents’ crowding preferences are private information.

Our analysis starts by showing that, for any crowding preference profile, the set

of e cient and stable allocations is non-empty. However, we can easily establish a

negative result: no e cient and stable social choice function is Nash implementable

(and therefore neither strategy-proof) because it is not Maskin monotonic. This result

is related to previous results in Jackson and Nicolò (2004) who study similar social

choice problems in a context where agents have single-peaked preferences over an

infinite and linearly ordered set of alternatives. They show that, in general, strategy-

proof and e cient social choice functions must fix the group of users and not allow it

to vary with agents’ preferences. Namely, when crowding e ects are present strategy-

proofness and e ciency impose that the group of users coincide with the entire society.

Therefore, stability is incompatible with strategy-proofness and e ciency. But this

1See also Bogomolnaia and Nicolò (2004) for a brief discussion of the normative content of a

slightly di erent definition of stability in the context of multiple provision of public goods.
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result suggests that the trade o between informational constraints and normative

properties of social choice functions could be overcome if we separate the decision of

which alternative has to be chosen from the selection of the group of its users. We

therefore investigate if an e cient and stable social choice function is subgame perfect

Nash implementable. We first show that one of the su cient conditions of subgame

perfect Nash implementation in Moore and Repullo (1988) and Abreu and Sen (1990)

does not hold in our framework. In particular, any e cient and stable social choice

function does not satisfy the no veto power condition (that together with Condition

and that the number of agents is larger or equal than three guarantees that a social

choice function is subgame perfect Nash implementable). This is because stability

gives to any agent the power (by not being a final user) to veto an allocation which

is unanimously considered by all remaining agents as being the best one. We then

present the implementation result which also holds for the case of two agents. The

proposed two-stage game depends on an exogenously given order on the set of agents

and on a selection rule choosing an alternative from every subset of alternatives.

Roughly, it is as follows. In the first stage of the game agents sequentially (iteratively

and publicly), following the given order, propose a level of the public good and a

natural number between 1 and the number of agents (interpreted as the number of

users); among the proposed levels, one with the maximal number of users is chosen

in accordance with the selection rule. In the second stage agents sequentially (and

publicly), following the same given order, decide whether or not to use the level of

the public good chosen at the first stage.

The game is relatively simple: it is finite, bounded, and the needed out-of-

equilibrium penalties do not have to be large. Interestingly, the unique subgame

perfect Nash equilibrium outcome of the game does not depend on the order ac-

cording to which agents make their decisions; hence, the implemented social choice

function is anonymous. The mechanism selects among the set of e cient and sta-

ble allocations the alternative which maximizes the number of its users (if there are
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many, it selects the one chosen by a given selection rule). We justify this maximality

property on a purely normative ground, since it allows to minimize the number of

agents with the minimum level of welfare.

Finally, our paper is also related to Bag and Winter (1999), in which the authors

propose a sequential iterated mechanism to uniquely implement a core allocation

for an economy with an excludable public good. In their model a level of a public

good is produced using a technology and the contributions of a private good made

by the final set of users. However, our setting is di erent from theirs at least with

respect to the following features. First, in our setting exclusion is voluntary (our

stability notion reflects that). Second, their setting is cardinal (preferences are quasi-

linear in the private good) while our ordinal setting not only admits a larger class

of preferences but also admits problems in which the choice of a social alternative

does not generate costs. Third, in their setting e ciency implies no exclusion, and

thus, in the equilibrium outcome of their game all agents consume the public good;

in contrast, in our setting e ciency may require that only a subset of agents is the

final set of users of the public good.

The paper proceeds as follows. In section 2, we give preliminary notation and

definitions, describe the preference domain, establish the existence of e cient and

stable allocations, and provide a negative result for Nash implementation. In section

3, we describe the extensive-form game and state our main result. In section 4, we o er

some examples that illustrate the role of some features of the extensive-game form,

discuss on the non-neutrality of our mechanism, and give the relationship between

the set of e cient and stable allocations and the set of group stable allocations. An

Appendix at the end of the paper contains the proofs omitted in the text.

2 Preliminaries

Let = {1 } be the set of agents and be the finite set of levels of a public

good (or social alternatives). We assume that # 2. Subsets of are denoted
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by and , elements of by and , and elements of by and . An allocation is

a pair ( ) × 2 , where is the level of the public good and 2

is the subset of its users. Agents have preferences over the set of allocations. The

preference relation of agent over the set of allocations , denoted by , is a

complete, reflexive and transitive binary relation. As usual, let and denote the

strict and indi erence preference relations induced by , respectively. We assume

that preference relations satisfy the following properties:

(An) Anonymity: For all and 2 such that and# = # ,

( ) ( )

(Crow) Crowding: For all and 2 such that and

# # , ( ) ( )

(Apa) Apathy: For all and 2 such that , ( ) ( )

(Strict) Strictness: For all and 2 such that if (1) 6=
or (2) = and # 6= # hold, then either ( ) ( ) or ( ) ( ).

Anonymity requires that agent only cares about the number of users but not

on their identities. Crowding implies that agent strictly prefers to use the public

good with larger groups. Apathy says that agent does not care about the level of

the public good if he does not use it.2 Finally, Strictness requires that agent is

never indi erent between two di erent allocations with the properties that is a user

of at least one of them and the two allocations di er either on the level of the public

good and/or on the size of its users.

A preference relation satisfying these four properties is called a crowding prefer-

ence relation andR denotes the set of all such preference relations for agent . Notice

2Note that when the public good to be chosen has some type of externality, even those members

who are not direct users may have strict preferences over which alternative has to be selected.

In these cases (Apa) turns to be a too restrictive assumption. Nevertheless in many interesting

contexts, like the provision of club goods, it seems a natural assumption.
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that all four conditions are agent specific and therefore R 6= R for di erent agents

and . Observe that the set of crowding preferences for agent admits preferences

with very di erent trade-o s between the selected level of the public good and the size

of its users; for instance, a crowding preference might well order ( { }) ( ).

A profile = ( 1 ) is a -tuple of crowding preference relations. Let

R = R1× ×R be the set of profiles. To emphasize the role of agent ’s preference

relation a profile is represented by ( ).

We say that an allocation ( ) Pareto dominates the allocation ( ), denoted

by ( ) ( ), if ( ) ( ) for all and ( ) ( ) for at least one

.

Definition 1 An allocation ( ) is e cient under if it is not Pareto dominated

by any other allocation.

Definition 2 An allocation ( ) is stable under if for all :

(Internal Stability) implies ( ) ( \{ }).
(External Stability) implies ( ) ( { }).

Observe that (Apa) implies that if ( ) is internally stable then, implies

( ) ( { }). Given a profile R, let ( ) denote the set of e cient and stable

allocations under . Proposition 1 below establishes the fact that for all R the

set of e cient and stable allocations under is non-empty. But first, we show two

preliminary results concerning e cient and stable allocations. Lemma 1 says that for

each level of the public good we can find a (maximal) set of users for which the

allocation ( ) is stable.

Lemma 1 Let R be given. For each there exists a unique 2 such

that ( ) is stable under and for any 2 such that ( ) is stable

under , # #

Proof Let R and be given. For 0 define the set ( ) =© | there exists 2 such that ( ) ( ) and # =
ª
Observe first that
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# 0( ) = 0 and, by (Crow), 0( ) 1( ) ( ) Take the maximal

such that # ( ) = and set ( ). By construction, ( ) is stable

under and if ( ) is stable under then # # . ¥

We call the stable allocation ( ) identified in Lemma 1 the stable and e cient

allocation relative to , and refer to as themaximal stable set of users of . In fact

such allocation can be Pareto dominated only by another (stable) allocation ( )

with 6=

Lemma 2 Let R be given. If ( ) is stable but not e cient under ,

then there exists another ( ) stable under such that ( ) Pareto dominates

( ).

Proof Let R be given. Assume that ( ) is stable but not e cient

under . Then, there exists ( 0) such that ( 0) ( ) for all and

( 0) ( ) for some Since ( ) is stable under , by (Apa), ( ) ( )

for all Since ( 0) ( ) then 0 and, by (Apa), ( 0) ( ) for

all . Suppose that there exists 0 such that ( ) ( 0) then but

then ( ) ( 0) which is a contradiction. Finally, let 2 be such that there

does not exist any for whom ( { }) ( ) By (Crow), ( ) ( 0)

for all and ( ) is stable under . By transitivity of , ( ) ( ) for all

and ( ) ( ) for some . Hence, ( ) ( ). ¥

Lemmata 1 and 2 have two important consequences. First, to know whether or

not a stable allocation is e cient it is enough to check that is not Pareto dominated

by any other stable allocation. Second, given that the set of stable allocations is not

empty, the set of stable and e cient allocations is non-empty. We state this second

consequence as Proposition 1 below.

Proposition 1 For all R, ( ) 6= .

Proof Let R be given. Consider any stable allocation ( ) under , whose

existence is established by Lemma 1. If ( ) is e cient under , Proposition 1
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follows; otherwise, by Lemma 2, there exists a stable allocation ( ) under which

Pareto dominates ( ). Since is finite and the Pareto dominance relation is

transitive, there must exist a stable and e cient allocation ( ) under . ¥

Among the set of e cient and stable allocations we will be specially interested on

those that have the largest set of users. Given R, define

( ) = {( ) ( ) | # # for all ( ) ( )}

Observe that since ( ) is non-empty and finite, ( ) 6= for all R. We will
refer to the set ( ) as the maximal participation set. In our setting the minimum

level of welfare that any agent can get is the level that obtains in any allocation

( ) where In fact, stability guarantees that each agent can always refuse to

use the public good and, by (Apa), all allocations where agent is not a user are

indi erent for him. Maximality hence guarantees that the final allocation minimizes

the number of agents with the minimum level of welfare. Therefore, it is a normative

property inspired by a rawlsian maxmin principle.

A social choice function is a mapping : R × 2 selecting an allocation

for each preference profile. A social choice function is e cient and stable if, for each

R, the allocation ( ) is e cient and stable under .

Information about individual preferences is often not available to the decision-

maker. In addition, the institution under which the social decision has to be taken

may give to each agent the right to claim as one’s own any crowding preference (even

if it is known that this is not the case). Therefore, if we want the choice of the

allocation to be dependent on the preference profile (in the appropriate way to insure

e ciency and stability), we have to design a mechanism to implement an e cient and

stable social choice function. But it is easy to prove that no e cient and stable social

choice function is Nash implementable in the set of profiles of crowding preference

relations. Before stating this result we need some additional notation and definitions.

A mechanism (or game form) is a pair ( ) where = 1 × × is

a Cartesian product of message spaces (one for each agent) and : is
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an outcome function. Thus, each player submits a message and, given

( 1 ) , the allocation ( 1 ) is selected. A social choice function

: R is Nash implementable if there exists a mechanism ( ) such that for

all R, ( ) = ( 1 ) for all Nash equilibria ( 1 ) of the

induced normal form game ( ( ) ) A social choice function : R is

Maskin monotonic if for any R 0 R and = ( ) such that 6= ( 0)

there exist and such that and 0 . Maskin monotonicity is a

necessary condition for a social choice function to be Nash implementable.3

Proposition 2 No e cient and stable social choice function : R × 2 is

Nash implementable.

Proof Let : R × 2 be an e cient and stable social choice function. Take

arbitrary and select any profile R of crowding preference relations with

the following properties: (1) for all and 2 such that 6= , ( ) ( 0 )

for all 0 ; (2) ( ) 1( ) for all 6= ; and (3) for all 6= 1, ( ) ( )

for all 6= . By e ciency and stability, ( ) = (ˆ ) for some ˆ . Without

loss of generality, assume that ˆ 6= Consider now the crowding preference relation

0
1 R1 with the following properties: (1) for all 0 2 such that 1 0,

( ) 0
1(

0 0) if and only if ( ) 1(
0 0) and (2) ( ) 0

1( ) 0
1( ) for all

6= . By stability, if ( 0
1 1) = ( ) with 6= then 1 Therefore, by

e ciency, ( 0
1 1) = ( ). Hence, ( ) = (ˆ ), ( 0) = ( ) 6= (ˆ ), and

for all 6= 1, = 0 . Thus, Maskin monotonicity is violated since ( ) is the best

alternative for agent 1 according to 1 and 0
1. Thus, the e cient and stable social

choice function is not Nash implementable. ¥

Remark 1 Jackson and Nicolò (2004) showed that, in the continuous version of our

model, there are no strategy-proof, e cient, internally stable, and outsider indepen-

dent social choice functions on the domain of crowding and single-peaked preference
3See, for instance, Maskin (1999)’s original paper or Jackson (2001)’s survey on implementation

theory.
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relations.4 Since negative implementation results on smaller domains are stronger,

observe that the preference profile R and the preference relation 0
1 R1 used

in the proof of Proposition 2 might be single-peaked. Hence, the proof of Proposition

2 shows that any e cient and stable social choice function defined on the domain of

crowding and single-peaked preference relations is not fully Nash implementable.

3 The Implementation

Given the impossibility to implement any e cient and stable social choice function

as Nash equilibria of a game in normal form, we now address the natural question

whether it is possible to implement some of them as Subgame Perfect Nash Equilibria

(SPNE) of a game in extensive form. However, we will not be able to apply directly

general results of the implementation theory because e cient and stable social choice

functions do not satisfy one of the su cient conditions for SPNE implementation in

both Moore and Repullo (1988) and Abreu and Sen (1990). In our setting a social

choice function : R × 2 satisfies the no veto power condition if, whenever

some allocation ( ) × 2 is top-ranked for at least 1 agents at profile

R then ( ) = ( ) Example 1 below shows that the no veto power condition

is incompatible with internal stability. Free participation, in fact, must be guaranteed

even if all the other agents have a common preferred allocation, which might require

that the set of users be the full set of agents.

Example 1 Let = { }. Consider any = {1 } and let R be any

4A social choice function : R × 2 is outsider independent if for all R and
0 R , if 0 where ( ) = ( ) and ( 0 0) = ( 0 ), then ( ) = ( 0 ).

Assume is endowed with a linear order . A preference relation R is single-peaked if

there exists ( ) such that for all

( ) or ( ) implies ( ) ( ) ,

for all 2 such that .
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crowding preference profile such that for all 6= 1, ( ) ( ) for all ( ) 6=
( ) and ( ) 1( ) Let : R × 2 be a stable social choice function.

The no veto power condition requires that ( ) = ( ). But, since the allocation

( ) is not stable under , the stability of implies that ( ) 6= ( ).

The structure of the problem (the social choice has two components: the level of

the public good and the set of its users) as well as previous results in similar frame-

works (see Bogomolnaia and Nicolò (2004) and Jackson and Nicolò (2004)) suggest

that in order to achieve e ciency and stability the selection of the alternative to be

chosen and the group of its users must be separated. Therefore a two-stage mech-

anism seems to be a natural way to implement an e cient and stable social choice

function. But before proceeding any further, there is another aspect that deserves to

be briefly mentioned. Mechanisms constructed to prove general SPNE implementa-

tion results are unbounded and infinite. They contain, for instance, integer subgames

(without Nash equilibria) or large out-of-equilibrium penalties. In contrast, our pro-

posed mechanism has the following simple features: each player has a finite set of

choices and strategies, out-of-equilibrium penalties may be (infinitely) small, and all

subgames have Nash equilibria.

Since the maximal participation set ( ) might have several allocations, to

define our two-stage game that implements in SPNE a social choice function selecting,

for each preference profile R, an allocation in the set ( ), we need a selection

rule on the subsets of . Let : 2 be any selection rule (i.e., (X ) X
for all X 2 \{ } and ( ) ) with the following independence of irrelevant

alternatives property: If X ( Y and (X ) 6= then (Y) 6= . For instance, if

the set of alternatives has a linear order, the selection rule could choose from each

set X its smallest alternative. Now, given , define the social choice function

: R × 2 as follows: for each R, let ( ) = ( ), where ( )

( ) and = ({ |there exists 2 such that ( ) ( )}).
Let : {1 } be a one-to-one mapping representing an exogenously given
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order of agents; namely, ( ) = means that agent is in the position according to

the ordering . Let be the set of all ! possible orderings and denote by ( )

the set of predecessors of agent according to Namely,

( ) =
© | 1 ( ) 1 ( )

ª

To iterate a given order : {1 } , extend to ˆ : N as follows:

given N, the number of agents, each integer N can uniquely be written as

= + for some N {0} and 1 . Define this number as [mod ].

Then, set ˆ( ) = ( [mod ]).

3.1 The Extensive-Game Form

Let : {1 } and : 2 be given.

• Stage 1:

— Step 1: agent = (1) proposes either = ( ) × {1 }
or does not propose anything (identified as the proposal = ( 0)).

Assume that proposals ˆ(1) ˆ( ) have already been made. Define

= { ˆ( ) | ˆ( ) = ( ˆ( ) ˆ( )) for some 1 } and let ¯ be

the maximum among { ˆ(1) ˆ( )} (set ¯ = 0 if = ).

— Step +1: agent = ˆ( + 1) proposes either = ( ) \ such

that ¯ or does not propose anything ( = ( 0)).

If after the first steps all agents proposed ( 0) then the game ends

with the outcome ( ( ) ). Otherwise, let 1 be the first step such

that ˆ( ) = ( ˆ( ) ˆ( )) and ˆ( +1) = = ˆ( + ) = ( 0).

Given ˆ(1) ˆ( ) define

ˆ = ({ | 1 s.t. ˆ( ) = ( ) and = ˆ( )})
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Set ˆ = ˆ( ) and ˆ = ˆ( ) where is such that ˆ( ) = (ˆ ˆ) Then, the

outcome of Stage 1 is (ˆ ˆ )̂ × ; namely, a proposal (ˆ ˆ) and the

agent ˆwho made it.

Each proposer has to burden an -cost if none of her proposals is the

selected one at Stage 1, (ˆ ˆ) 5

• Stage 2: Each agent , knowing the outcome (ˆ ˆ )̂ × of Stage 1 and

the decision of ’s predecessors, announces sequentially (following the order )

whether he wants to use (denoted by ) or not to use (denoted by ) the public

good at level ˆ.

The final set of users of ˆ is the set of agents who have announced to be willing

to be a user, only if this set contains at least ˆ agents; otherwise, no agent

uses ˆ. Agent ˆ who made the proposal (ˆ ˆ) in Stage 1, has to burden an

additional -cost if he is not a user of ˆ; i.e., either (ˆ ) is selected, and/or

announced .

3.2 Strategies

A consumption strategy of agent in Stage 1 is a choice of a feasible proposal at

each of ’s information sets. We assume that agents only use stationary consumption

strategies in the sense that, among the set of pairs previously proposed (if any), their

decisions only depend upon those proposals with a maximum number of users.6 Thus,

5We do not put any restrictions on these -costs. In particular, and to be consistent with our

ordinal setting, they can be non-transferable. But, if we embed the ordinal setting into a cardinal

one, these -costs can be interpreted as monetary fines (potentially, infinitely small). These -costs

are only used in the proof of our main result to take away from agents the incentives (which exist

due to indi erences) of making a proposal that has no e ect to themselves (because, independently

of whether or not this proposal is made, the proposer will not use the finally chosen alternative),

yet the proposal has influence on the outcome of Stage 1.
6The other proposals with an smaller number of users have already been excluded as possible

outcomes of Stage 1, regardless of the given selection rule. Observe that we could restrict a bit further
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the sets of choices of agent in Stage 1, denoted by (·), are the following. At the
information set ( 0) where no predecessor has made a proposal yet, ( 0) =

{( 0)}. To denote the information sets in which at least one predecessor has
already made a proposal, define C = {( 0 ) | 0 }; then at the information
set C ,

( ) =
©
( 0 0) \ | 0 ª {( 0)}

A consumption strategy for agent in Stage 1 is a rule (·) that selects, for each ’s

information set, a feasible proposal: ( 0) ( 0) and for all 1 and

all C , ( ) ( ). Let be the set of consumption strategies of agent

in Stage 1 and let be a generic element of this set.

Assume that the outcome of Stage 1 is (ˆ ˆ )̂ × .7 In Stage 2, and after

knowing (ˆ ˆ )̂, agents decide sequentially whether or not they would like to use the

public good at level ˆ with at least ˆ users. Given , the set of participation

strategies of agent at the subgame starting at (ˆ ˆ )̂ × , (ˆ ˆ )̂, is the

set of functions

(ˆ ˆ )̂ =
n
[ˆ ˆ )̂] : 2 ( ) { }

o

where [ˆ ˆ ]̂ ( ) specifies whether or not agent is willing to use the public good

at level ˆ, given that the set of agents in 2 ( ) have already announced that

they are willing to do so, ˆmade the proposal (ˆ ˆ), and ˆ users are necessary. Let

=
S
(ˆ ˆ )̂ × (ˆ ˆ )̂ denote the set of participation strategies of agent in

Stage 2 and let be a generic element of this set. Given , let = ×
denote the set of strategies of agent . A strategy profile = ( ) ×
is an -tuple of strategies, where = 1 × × and = 1 × × . Let

= 1 × × be the set of strategy profiles.

the stationarity of the strategies by applying the selection rule to the set of proposed alternatives

with a maximum number of users, but then they would depend on the specific selection rule.
7Note that if after the first steps all agents proposed ( 0) the game does not move to Stage

2 and ends with the outcome ( ( ) ).
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3.3 Outcome Functions

Given an order and a consumption strategy profile , let ˆ( )( ) be the

proposal made by agent ˆ( ) according to at Step of Stage 1. Denote the path

generated by by ( ) = { ˆ(1)( ) ˆ( )( )}, where is the last step of

Stage 1. Given a selection rule : 2 , the outcome of Stage 1 generated by

is

1 ( ) =

( ( ) ) if ( ) = {( 0) ( 0)| {z }}

(ˆ ˆ )̂ otherwise,

where (ˆ ˆ )̂ is defined in the obvious (but tedious) way. Given a consumption

strategy profile , we define the indicator function of agent , 1 ( ) ,

where 1 means that agent has made some proposal and none of them has been

selected. Namely,

1 ( ) =
1 if 1 s.t. ˆ( ) = , ˆ( )( ) 6= ( 0), and 6= ˆ
0 otherwise.

Given an order , an outcome of Stage 1 in which at least a proposal has been

made (ˆ ˆ )̂ × , and a participation strategy profile define recursively

(in the obvious and tedious way) the indicator function of the decision of agent

along the play of the subgame starting at (ˆ ˆ )̂ generated by the profile as

( [ˆ ˆ ]̂) =
1 if agent announced

0 if agent announced .

Let ( [ˆ ˆ ]̂) { | ( [ˆ ˆ ]̂) = 1} be the set of agents that announced
their willingness to be a user along the play generated by the participation strategy

profile [ˆ ˆ ]̂. Then, the outcome of Stage 2 starting at (ˆ ˆ )̂ generated by

[ˆ ˆ ]̂ is

2( [ˆ ˆ ]̂) =
(ˆ ( [ˆ ˆ ]̂)) if # ( [ˆ ˆ ]̂) ˆ

(ˆ ) otherwise;
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that is, the set of final users is the set of agents who announced , ( [ˆ ˆ ]̂), as

long as its cardinality is larger or equal than ˆ; otherwise, no agent becomes a user.

Moreover, let 2( [ˆ ˆ ]̂) indicate whether or not agent ˆ (who proposed (ˆ ˆ)) is a

final user of the public good; namely,

2( [ˆ ˆ ]̂) =
1 if either 2( [ˆ ˆ ]̂) = (ˆ ) or ˆ( [ˆ ˆ ]̂) = 0

0 otherwise.

Finally, define the outcome function : of the overall extensive-game

form as follows. For each ( ) = (( 1 1) ( )) ,

( ) =
2( [ 1 ( )]) if 1 ( ) 6= ( ( ) )

( ( ) ) otherwise.

Additionally, to keep track of who has to burden the -cost, given an strategy profile

( ) , define: for each ,

( ) =
2( [ 1 ( )]) if = ,̂ where ˆ is s.t. 1 ( ) = (ˆ ˆ )̂

1 ( ) otherwise.

3.4 The Implementation Result

Given a preference profile R we define, for each ordering and selection

rule : 2 , the game in extensive form

( ) =
¡ ¢

.

The main result of the paper states that the extensive-game form = ( )

implements in SPNE the social choice function : R . Formally,

Theorem 1 Let R , and : 2 be given. The allocation ( ) is

the unique SPNE outcome of ( ).

Proof See the Appendix at the end of the paper.

Observe that Theorem 1 implies that the unique SPNE outcome of ( ) does

not depend on . Moreover, Lemma 3 below states that no agent has to burden an

-cost in equilibrium.
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Lemma 3 Let R, , and be given. Assume ( ) is a SPNE of ( )

Then, for all , ( ) = 0

Proof See the Appendix at the end of the paper.

4 Final Remarks

4.1 Extensive-Game Form

Our mechanism is less simple than we would like. First, in Stage 1 the order in which

agents make proposals has to be iterated until all agents do not make new proposals

(if reacts to ’s proposal, should still be able to counteract). Second, proposers

have to be burdened with a cost (which may be very “small”) in the case that none of

their proposals has been selected at Stage 1, or the proposer ˆ of the chosen proposal

at Stage 1 is either not a final user and/or the number of those who declared their

willingness to be users in Stage 2 is smaller than the integer ˆ proposed by ˆ in Stage

1.8 In the following examples we show that these features are indispensable. In each

example we consider the extensive-game form described in Section 3, except that we

remove from the original extensive-game form one of the above features.

Example 2 (The order of proposals in Stage 1 is not iterated) Let = { },
= {1 2}, and consider the following selection rule: ({ }) = ({ }) =
({ }) = and ({ }) = Take any R such that

( {1}) 1 ( {1}) 1 ( { }) 1 ( {1 2})

and

( {2}) 2 ( { }) 2 ( { }) 2 ( {1 2}) 2 ( {1 2})

Observe that ( ) = {( {1}) ( {2})} Fix (1) = 1 and (2) = 2. It is easy to

check that the unique SPNE outcome of the game without iterating in Stage 1 is
8The idea of using either small penalties or awards in implementation theory is not new (see Abreu

and Mastushima (1994) for penalties and Benoit and Ok (2004) and Sanver (2004) for awards).
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the ine cient allocation ( {1}) Fix now 0(1) = 2 and 0(2) = 1. Then, the unique

SPNE outcome of the game is the allocation ( {1}) Hence, without the iteration of
the order in which proposals are made in Stage 1 the SPNE outcome might depend

on the exogenously given order, and more importantly, it might be ine cient.

Example 3 (To make a proposal is never costly) Consider the same , , , and

of Example 2. Now, the ine cient allocation ( {1}) is a SPNE outcome of the
game since there exists a SPNE in which agent 2 first announces ( 1) and then agent

1 announces ( 1).

Example 4 (The proposer that is not a final user does not have to burden a cost) Let

= { } and = {1 2 3} Consider the preference profile = ( 1 2 3) R
where agents 1 and 2 have the same preference relations as in Example 2 and let 3

be such that

( { }) 3 ( { }) 3 ( { }) 3 ( { })

Consider the selection rule of Example 2. Suppose that (1) = 3 There is a SPNE

in which agent 3 proposes ( 1) in Stage 1, no other agent proposes anything else

(since (X ) = if X ). Therefore, the final SPNE outcome is the ine cient

allocation ( {1}).

Example 5 (Proposer ˆ does not have to burden a cost when the number of agents

willing to use ˆ is smaller than ˆ) Consider the same , , , and of Example

4. There is a SPNE in which agent 3 proposes ( 3) and the final SPNE outcome is

the ine cient and non-externally stable allocation ( { }).

4.2 Neutrality

The social choice function : R implemented in SPNE by our mechanism is

anonymous but not neutral. The equilibrium outcome of the game depends on the

selection rule used to select a single alternative for each possible set of alternatives.

It is natural to ask whether it is possible to implement the social choice correspondence
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: R³ , where for each R, ( ) = ( ) The answer is positive and easy

for the case 3 Let H be the set of all possible selection rules. Add a preliminary

stage in the extensive-game form in which all agents simultaneously announce some

H Given R, if at least 1 agents announce the same then they play

the game ( ) otherwise the game
0
( ) is played with a prespecified selection

rule 0 It is straightforward to check that, for all R, the set of SPNE outcomes
of this enlarged game coincides with the maximal participation set ( ).

4.3 Group Stability

Our notion of stability refers to individual decisions. According to our definition a

stable allocation is, in fact, a Nash equilibrium outcome of the game played once the

public alternative is already selected (see Berga, Bergantiños, Massó, and Neme (2003)

for more on this interpretation). We now want to establish the relationship between

the set of e cient and stable allocations and the set of group stable allocations. We

first state the definition of group stability.

Definition 3 An allocation ( ) is group stable under if:

(Internal Group Stability) there does not exist such that, for all ,

( \ ) ( );

(External Group Stability) there does not exists any \ such that, for

all , ( ) ( )

Lemma 4 Let R be given. An allocation ( ) is group stable under if and

only if it is individually stable under and e cient relative to

Proof Let ( ) be an allocation with the largest stable group. Assume that

there exists such that \ such that, for all , ( ) ( ) Let

0 be the group of agents with maximal cardinality such that, for all 0,

( 0) ( ) ( ) By (Crow), this contradicts that was the largest
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stable group since, for all , ( 0) ( ) ( ). Group internal stability

follows by (Crow) and because, by internal stability, ( ) ( ) for all .

Let ( ) be a group stable allocation under and let ( ) be the stable

allocation under and e cient relative to Suppose that # # and define

= \ Observe that, for all , ( ) ( ), contradicting external group

stability. ¥
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5 Appendix

5.1 Proof of Theorem 1

We proceed by backwards induction. First, we prove that for any outcome (ˆ ˆ )̂ of

Stage 1, the subgame (ˆ ˆ )̂ has a unique SPNE outcome (Proposition 3). Then,

we show that the outcome of any SPNE of the game ( ) satisfies the desirable

properties (Proposition 4). Finally, we demonstrate that the SPNE outcome of the

game ( ) is unique and coincides with ( ) (Proposition 5).

Proposition 3 Let R and be given. For each outcome of Stage 1

(ˆ ˆ )̂ × the subgame (ˆ ˆ )̂ has a unique SPNE outcome. Moreover

for every SPNE strategy [ˆ ˆ ]̂ of (ˆ ˆ )̂,

2( [ˆ ˆ ]̂) =
(ˆ ˆ) if # ˆ

ˆ

(ˆ ) otherwise,

where ˆ is the maximal stable set of users of ˆ.

Proof Consider agent ( ) and let 2Pre( ( ) ) be an arbitrary information set

of agent ( ). By (Strict) agent ( ) orders strictly the two allocations (ˆ ) and

(ˆ { ( )}) We distinguish between two cases.

Case 1: #( { ( )}) ˆ

If (ˆ ) ( ) (ˆ { ( )}) then, for any SPNE participation strategy [ˆ ˆ ]̂ we

have ( )[ˆ
ˆ ]̂( ) = and the SPNE outcome of the subgame starting at is

(ˆ ) if # ˆ or (ˆ ) if # ˆ.

If (ˆ { ( )}) ( ) (ˆ ) then, for any SPNE participation strategy [ˆ ˆ ]̂ we

have ( )[ˆ
ˆ ]̂( ) = and the SPNE outcome of the subgame starting at is

(ˆ { ( )})
Case 2: # { { ( )}} ˆ

Then any SPNE outcome of the subgame starting at is (ˆ ). However, consider

the participation strategy ˜ ( )[ˆ
ˆ ]̂ of agent ( ) that coincides with ( )[ˆ

ˆ ]̂
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but at all information sets 0 where # 0 + 1 ˆ it is defined by

˜
( )[ˆ

ˆ ]̂( 0) =
if ( ) ˆ

otherwise.

Thus, by the backwards induction principle, we can replace the information set of

( ) by the unique outcome previously identified, generated also by the participation

strategy profile ˜ [ˆ ˆ ]̂ = (˜ ( )[ˆ
ˆ ]̂ ( )[ˆ

ˆ ]̂). Following the induction argu-

ment we obtain the uniqueness of the outcome and a SPNE strategy ˜ (ˆ ˆ )̂. More-

over, it is straightforward to check that for all , (˜ [ˆ ˆ ]̂) = ( [ˆ ˆ ]̂) = 1

if and only if ˆ. Therefore 2( [ˆ ˆ ]̂) has the desired property. ¥

Corollary 1 Let R and 0 be given. Let (ˆ ˆ )̂ × be the outcome

of Stage 1. Assume [ˆ ˆ ]̂ is a SPNE of the subgame (ˆ ˆ )̂ and
0
[ˆ ˆ ]̂ is a

SPNE of the subgame
0
(ˆ ˆ )̂ Then, 2( [ˆ ˆ ]̂) =

0
2 (

0
[ˆ ˆ ]̂)

Proposition 4 Let R, , and : 2 be given. Assume ( ) is a

SPNE of ( ) Then,

(1) ( ) is stable under .

(2) ( ) is e cient under .

(3) ( ) belongs to the maximal participation set ( ).

Proof Since ( ) is a finite extensive form game with perfect information it

has at least a SPNE in pure strategies. Let ( ) be a SPNE of ( ) and let

( ) = ( ) be its outcome. We first establish the following two claims.

Claim 1 If then ( ) = 0.

Proof of Claim 1 Assume and ( ) 6= 0 holds. This means that agent
made a proposal in at Stage 1. Consider the strategy ( ˜ ˜ ) where ˜(·) = ( 0)

and for all (ˆ ˆ )̂, ˜ [ˆ ˆ ]̂( ) = for all 2 ( ). Using this strategy does

not consume the public good neither he has to burden any cost. Hence, ( ) is not

one of his best replies to ( ).
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Claim 2 Let (ˆ ˆ )̂ be an outcome of Stage 1 and assume there exists such

that ( [ˆ ˆ ]̂) = 0 Consider the strategy ˜ that coincides with except that

(˜ [ˆ ˆ ]̂ [ˆ ˆ ]̂) = 1; then, for all such that ( [ˆ ˆ ]̂) = 1 we have

(˜ [ˆ ˆ ]̂ [ˆ ˆ ]̂) = 1

Proof of Claim 2 It follows immediately from the following observation: since

[ˆ ˆ ]̂ is a SPNE of the subgame starting at (ˆ ˆ )̂ by (Crow), for all

[ˆ ˆ ]̂ ( ) = implies [ˆ ˆ ]̂ ( 0) = for all 0 2Pr ( ) with# 0 # +1.

(1) ( ) is stable under .

If and ( ) ( ) then is not best-replying since the strategy ˜ that

coincides with except that (˜ [ˆ ˆ ]̂ [ˆ ˆ ]̂) = 0 has the property that

( ( ˜ )) = ( ) with Hence ( ) is internally stable. To show

that ( ) is externally stable, assume and

( { }) ( ) (1)

We distinguish between two di erent cases:

Case 1.1: = .

(1.1.1) 1 ( ) = ( ( ) ). Consider ˜( 0) = ( 1). If 1 ( ˜) = ( 1 )

that is, nobody else made a proposal after ( 1), then by (1) and Proposition 3,

( ) = ( ˜ ) ( ) = ( ), contradicting that is a SPNE of

( ). If 1 ( ˜) = ( ) 6= ( 1 ), with 1 that is, agent made

the definitive proposal of Stage 1 triggered by 0 deviation. Observe that by Claim

2 ( ( )) = 1 Let be the step at which agent proposed ( ) after 0

deviation; namely, = ˆ( ) ˆ( )( ˜) = ( ) and, ˆ( +1)( ˜) = =

ˆ( + )( ˜) = ( 0) Consider ’s deviation such that ˜ ( 0) = ( ) and for

all 0 ˜ ( 0) = ( 0) for all 0 C 0. Let ˜ be the step at which agent proposed

( ) in the original equilibrium path; namely, = ˆ( ˜ ) and ˆ( ˜ )( ˜ ) = ( ).

Let = ˆ( ˜ + 1) = ˆ( + 1) (i.e., ( 1( ) + 1) = ). Consider the information

sets of agent at the step + 1 in ( ˜) = {( )} where is

a (potentially empty) subset of and at the step ˜ + 1 in ( ˜ ) ˜ =
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{( )} Observe that although ( ˜ ) ( ) = ( ˜ )\ ( ) and thus,

by IIA, if ˆ( +1)( ˜) = ( 0) then ˆ( ˜ +1)( ˜ ) = ( 0) Iterating this

argument, we deduce that ˆ( ˜ +1)( ˜ ) = = ˆ( ˜+ )( ˜ ) = ( 0) Hence,

1 ( ˜ ) = ( ) and ( ˜ ) ( ) contradicting that is a

SPNE of ( )

(1.1.2) 2( ( )) = ( ) because the outcome of Stage 1, ( ) has the prop-

erty that ( ( )) Then, by Claim 1, is not a SPNE of ( ).

Case 1.2: 6= .

Let ( ) = 1 ( ) Then, # But then, by Proposition 3, = Thus,

( ) is stable.

(2) ( ) = ( ) is e cient under .

Assume ( ) is stable but not e cient under . By Lemma 2, there exists a stable

allocation ( ) such that ( ) ( ). First, note that . By (Apa),

is not empty. We distinguish between two di erent cases:

Case 2.1: = .

(2.1.1) 1 ( ) = ( ( ) ) = ( ). There exists with the deviation ˜ =

( ˜ ) equal to = ( ) except that ˜( 0) = ( # ). If ( # ) is the

outcome of Stage 1 then, by Proposition 3, ( ˜ ) = ( ), contradicting that

is a SPNE of ( ). If 1 ( ˜) = ( ) 6= ( # ), with # then

applying a similar argument than we use in case (1.1.1) to prove external stability

(and noting that ( ) ( ) ( )), we conclude that ( ) was a profitable

deviation for agent in the original path

(2.1.2) 2( ( )) = ( ) because the outcome of Stage 1, ( ) has the prop-

erty that 0 0 ( ( )) Then, by Claim 1, is not a SPNE of ( ).

Case 2.2: 6= .

Let 1 ( ) = ( ) Observe that, by Proposition 3, # and, by Claim 1,

. Hence, there exists an information set 0 such that ( 0) = ( ) Consider

the deviation ˜ equal to except that ˜( 0) = ( # ) If 1 ( ˜) = ( # )
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then was not best replying since, by Proposition 3, ( ˜ ) = ( ). Assume

1 ( ˜) = ( ). By Claim 2, ( ( )) = 1, and therefore, by Proposition

3, 2( ( )) = ( ) Then, applying a similar argument than we use in case

(1.1.1) to prove external stability, we conclude that ( ) was a profitable deviation

for agent in the original path

(3) ( ) ( ).

Let ( ) be stable and e cient under and assume there exists ( ) maximal,

stable and e cient under such that # # . Consider \ and a de-

viation ˜ such that in the information set at the equilibrium path, ˜ ( ) =

( # ) Either the outcome of Stage 1 is ( # ), in which case was not SPNE, or

1 ( ˜) = ( ) with # . By Proposition 3 and Claim 2, 2( ( )) =

( ) and there exists \ who could have proposed ( ) in the equilibrium

path of ¥

Proposition 5 Let R, and : 2 be given. Assume ( ) is a

SPNE of ( ). Then, ( ) = ( ).

Proof Let ( ( )) = Assume = . Then the outcome of the game

( ) is unique and equal to ( ( ) ) In fact, by Proposition 3, no agent in

equilibrium will announce in any subgame (ˆ ˆ )̂ since any proposer of a pair

in will have to burden a cost; hence, in equilibrium no proposal in is made in Stage

1. Observe that ( ) = ( ) Assume 6= and let ( ) be an equilibrium

outcome of ( ) such that ( ) 6= ( ). By Proposition 4, ( ) and

# = # If = then, by Lemma 1, = Hence, 6= . Since ( ) is

e cient under there exists such that ( ) ( ). Let = ( ) be a SPNE

strategy that generates ( ) and consider the deviation ˜ consisting of proposing

( # ) just after has been proposed (together with some integer smaller or equal

than # ) Then, by IIA of , ( # ) is the outcome of Stage 1. Hence, ( ) is

the outcome of ( ˜ ), contradicting that was a SPNE of ( ) Since ( )
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is a finite extensive form game with perfect information it has at least a SPNE in

pure strategies. Therefore ( ) = ( ( ( )) ( ( ))) = ( ) ¥

5.2 Proof of Lemma 3

Assume ( ) 0 for some . Then, by Claim 1 in the proof of Proposition 4,

there are at least two agents who made a proposal at Stage 1. Let 1 ( ) = (ˆ ˆ )̂.

Claim 3 For all , ( ˆ) = ( 0) for any ˆ Cˆ such that (ˆ ˆ) ˆ.

Proof of Claim 3 Suppose otherwise, and let ( ˆ) = ( 0). Since 1 ( ) =

(ˆ ˆ )̂ 0 = Consider the consumption strategy ˜ that coincides with in

all information sets except those ˆ Cˆ such that (ˆ ˆ) ˆ, in which case,

˜ ( ˆ) = ( 0) Then, either 1 ( ˜ ) = (ˆ ˆ )̂, in which case is not a best

reply, or else 1 ( ˜ ) = (ˆ ˆ )̂ But then, 2( [ 1 ( ˜ )]) ˆ 2( [ 1 ( )])

which means that agent ˆhas a profitable deviation from . This proves the Claim.

By Claim 3 there exists such that ( 0) = ( ˜) 6= (ˆ ˆ) Moreover,
by Claim 2 in the proof of Proposition 4, ( [ˆ ˆ ]̂) = 1. Consider another con-

sumption strategy ˜ that coincides with in all information sets except in ( 0)

where ˜ ( 0) = (ˆ ˆ). By IIA and Claim 3, 1 ( ˜ ) = (ˆ ˆ ) and agent

does not have to burden a cost since his proposal has been selected. ¥
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