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Abstract

We propose a new solution concept to address the problem of sharing a surplus among

the agents generating it. The problem is formulated in the preferences-endowments space.

The solution is defined recursively, incorporating notions of consistency and fairness and

relying on properties satisfied by the Shapley value for Transferable Utility (TU) games.

We show a solution exists, and call it the Ordinal Shapley value (OSV ). We characterize

the OSV using the notion of coalitional dividends, and furthermore show it is monotone

and anonymous. Finally, similarly to the weighted Shapely value for TU games, we

construct a weighted OSV as well.

JEL Classification numbers: C72, D50, D63.

Keywords: Non-Transferable utility games, Shapley value, Ordinal Shapley value,

consistency, fairness.



1 Introduction

A feature common to most economic environments is that the interaction among agents,

be it through exchange, production or both, generates benefits shared among the partici-

pating individuals. The question of what would be the resulting distribution of gains has

been central to economic theory. In this paper, we propose and analyze a new solution

concept (sharing method) that satisfies appealing properties in economic environments.

In economic environments characterized by transferable utility (TU ), where there

exists a “numeraire” commodity that all agents value the same in terms of utility, there are

several popular notions of the distribution of gains, the most well-known of which are the

Core and the Shapley value. These satisfy several desirable properties such as efficiency

and group stability in the case of the core, and efficiency, fairness and consistency for the

Shapley value.

Extending the notion of the Core to more general environments with non-transferable

utility (NTU ) is straightforward. However, the extension of the central concept of the

Shapley value turns out to be a much more demanding task. The three known exten-

sions describe the environment in the utility space, i.e., specifying feasible utility tuples,

abstracting from the physical environment generating the tuples. They associate with

each environment one or more TU games, and use their Shapley value to generate a

surplus sharing method. To define such a method, Shapley (1969) associates with each

environment a TU game, by means of a weights vector, giving the “worth” of each utility

tuple. This TU game has a well-defined Shapley value. If this value is feasible for the

original game, it is a utility profile associated with this environment. Harsanyi (1959)

suggests a different extension, by stressing the idea of equity. His solution contains the

notion of coalitional “dividends” and each agent must end up with a payoff corresponding

to the sum of his dividends. Finally, Maschler and Owen (1989) and (1992), using a TU

game associated with the grand coalition, provide an extension preserving the consistency

properties of the Shapley value.

A major shortcoming of the extensions of the Shapley value is that the solutions

are not invariant to order-preserving transformations of the agents’ utilities. The notion

of invariance has been addressed in the literature in two different ways. One approach
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considers bargaining problems, where the environment is given by the utility possibilities

frontier for the whole set of agents and the disagreement point. A solution is then said to

be ordinal, if it is invariant with respect to strictly increasing monotonic transformations

of these entities. Shapley (1969) shows that there does not exist an ordinal, efficient and

anonymous solution for the case of two agents, and constructs one for the three-agent case.

Safra and Samet (2004) provide a family of ordinal, efficient and anonymous solutions for

bargaining problems with any number of agents greater than two.

The second approach towards the ordinality issue considers the underlying physical

environment generating the utility possibilities frontier. This approach better captures

the basic structure of the environment since identical economic environments may lead to

drastically different bargaining problems, by appropriate choices of utility functions that

represent the same preferences. In this approach the solution is defined in terms of the

physical environment, i.e., in terms of allocations of commodity bundles.

To clarify the difference between the two approaches, take the example of a two-agent

exchange economy. Consider the representation of this economy as an NTU game. Fol-

lowing Shapley (1969) there is no ordinal, efficient and anonymous solution concept for

this game. However, there are several ordinal, efficient and anonymous solution concepts

for the exchange economy such as the competitive equilibrium, the core and others. There-

fore, an ordinal solution for the economic environment need not be an ordinal solution for

the NTU game. Similarly, an ordinal NTU solution need not be ordinal if analyzed as a

solution for the economic environment.

Pazner and Schmeidler (1978) provide a family of ordinal solutions given by Pareto-

Efficient Egalitarian-Equivalent (PEEE) allocations for exchange economies. They con-

sider the problem of allocating a bundle of goods among a set of agents. In their envi-

ronment, each of the agents has the same a priori rights. An allocation is PEEE if it is

Pareto efficient and fair, in the sense that there exists a fixed commodity bundle (the same

for each agent) such that each agent is indifferent between this bundle and what he gets in

the allocation. McLean and Postlewaite (1989) consider pure exchange economies as well,

and define an ordinal solution given by nucleolus allocations, extending the notion of the

nucleolus defined for TU games in Schmeidler (1969). Nicolò and Perea (2004) also start

from the physical environment, and provide ordinal solutions for the case of two agents
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that, under some conditions, also extend to environments with any number of agents.

Our work continues this line of research by proposing an ordinal solution based on the

physical environment. This new solution incorporates several of the principles underlying

the Shapley value in TU environments, and will be referred to as the Ordinal Shapley

Value (OSV ). It generalizes the fairness notion (of PEEE) by considering possibly dif-

ferent a priori rights (i.e., different initial endowments), and also the options agents have

in any possible subgroup, and not just their own initial endowments. It is consistent in

the sense that agents’ payoffs are based on what they would get according to this rule

when applied to sub-environments. In addition to these properties of equity and consis-

tency, the solution is efficient, monotonic, anonymous, and satisfies individual rationality.

Also, the OSV is characterized through the use of “coalitional dividends” similar to the

characterization of the Shapley value by the use of Harsanyi dividends (Harsanyi, 1959).

The OSV exists whenever preferences are continuous and monotonic. No convexity

restrictions common in the specification of NTU games are necessary. It provides a

reasonable outcome for a large class of environments even where competitive equilibria or

core allocations may fail to exist.

In the next Section we start by reviewing the Shapley value in TU environments.

In Section 3 we describe the pure exchange economy underlying the NTU environment

and introduce the OSV , building on the characterization of the Shapley value for TU

environments provided in the previous section. In Section 4 we analyze the OSV for

two-agent economies and compare it to exiting constructions. In Section 5, we prove that

the OSV exists and furthermore it is individually rational. In Section 6, we start by

proving the construction of the OSV satisfies a symmetry property. We then proceed

to characterize the OSV via coalitional dividends, and provide further properties of the

solution. In Section 7, we show how to generate a family of weighted OSV s, providing an

ordinal analogue to the weighted Shapley values for TU environments. In Section 8, we

conclude and discuss further directions of research.
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2 The Shapley Value in TU environments: A New

Characterization

Consider a Transferable Utility (TU ) game (N, v), where N = {1, ..., n} is the set of
players, and v : 2N → R is a characteristic function satisfying v(∅) = 0, where ∅ is the

empty set. For a coalition S ⊆ N, 1 v(S) represents the total payoff that the partners in

S can jointly obtain if this coalition is formed. We define a value as a mapping ξ which

associates with every game (N, v) a vector in Rn that satisfies
P

i∈N ξi(N, v) = v(N).2

The Shapley value (Shapley, 1953a) of every agent i ∈ N in the TU game (N, v) is

(denoting |S| the cardinality of the subset S):

φi(N, v) =
X

S⊆N\i

|S|!(n− |S|− 1)!
n!

[v(S ∪ {i})− v(S)].

The next theorem provides a new characterization of the Shapley value.3

Theorem 1 A value ξ is the Shapley value if and only if it satisfies:X
i∈N\j

(ξi(N, v)− ξi(N\j, v)) =
X
i∈N\j

(ξj(N, v)− ξj(N\i, v)) (1)

for all (N, v) with |N | ≥ 2 and for all j ∈ N.

Proof. To prove that the Shapley value satisfies the equality note that (1) is equivalent

(rearranging terms and using
P

i∈N ξi(N, v) = v(N)) to:

ξj(N, v) =
1

n
[v(N)− v(N\j)] + 1

n

X
i∈N\j

ξj(N\i, v). (2)

It is easy to check that the Shapley value satisfies (2). (This equality has been previously

used by Maschler and Owen (1989) and Hart and Mas-Colell (1989).)

Furthermore suppose that equality (1), equivalently (2), is satisfied by the value ξ, for

all j ∈ N and for all (N, v). Since (2) provides a unique recursive way of calculating ξ

1Throughout the paper, we use ⊆ to denote the weak inclusion and ⊂ to denote the strict inclusion.
2Thus we require efficiciency as part of the definition of a value.
3When using the symbol (M,v) where v is a priori defined on N ⊇M , v is taken to be the restriction

of the original v to 2M .
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starting with ξi({i}, v) = v({i}), it characterizes the Shapley value, which completes the
proof.

The expression φi(N, v)−φi(N\j, v) is usually referred to as the contribution of player
j to the Shapley value of player i. It corresponds to the amount that makes player i

indifferent between receiving the value suggested to him in the game (N, v), or receiving

this payment and reapplying the value concept to the game without player j. Theorem

1 states that a value is the Shapley value if and only if, for any player j, the sum of the

contributions of player j to the other players is equal to the sum of the contributions of

the other players to player j.

We refer to the difference φi(N, v)−φi(N\j, v) as a concession, what player j concedes
to player i, and denote it by cji .

4

Corollary 1 A value ξ is the Shapley value if and only if for each game (N, v) with

|N | ≥ 2 there exists a matrix of concessions c(N, v) ≡ (cij(N, v))i,j∈N,i6=j, with cij(N, v) in

R for all i, j ∈ N, i 6= j, such that:

(1) ξi(N, v) = ξi(N\j, v) + cji (N, v) for all i, j ∈ N, i 6= j, and

(2)
P

i∈N\j
cji (N, v) =

P
i∈N\j

cij(N, v) for all j ∈ N.

We can view part (1) in Corollary 1 as a consistency property of the Shapley value.

When the n − 1 players other than j consider the value offered to them by the solution

concept, they contemplate what might happen if they decide to go on their own. However,

the resources at their disposal should incorporate rents they could conceivably achieve by

cooperating with j. We call these rents the concessions of j to the other players. Part

(2) can be interpreted as a fairness requirement: the concessions balance out, the sum of

concessions one player makes to the others equals the sum of concessions the others make

to him.

We now briefly describe some characteristics of the concessions.

For aTU game (N, v), for any coalition S ⊆ N, let the gamewS be the unanimity game

(i.e., wS(T ) = 1 if T ⊇ S,wS(T ) = 0 otherwise). It is well known that the characteristic

function v can be written as linear combination of unanimity games: v =
P

S⊆N αSwS.

4See also Pérez-Castrillo and Wettstein (2001), where concessions are interpreted as bids.
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Denoting λS = αS
|S| for all S ⊆ N, the Shapley value can be written (see Harsanyi, 1959)

as:

φi(N, v) =
X
S3i
S⊆N

λS for all i ∈ N. (3)

It follows that:

cji (N, v) =
X
S3i,j
S⊆N

λS for all i, j ∈ N, i 6= j.

An immediate implication of the previous equality is that, in TU games, the concessions

are symmetric in the sense that what player j concedes to i is the same as what player i

concedes to j. The symmetry of the concessions corresponds to the balanced contributions

property (see Myerson (1980)).

Another interesting property of the concessions is that, although they can in general

be positive of negative, they are always non-negative if the game is convex. The game

(N, v) is convex if, for all S, T ⊆ N with S ⊂ T and i /∈ T we have:

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ).

Next proposition states the result.

Proposition 1 If the TU game (N, v) is convex, all the concessions cji (N, v) are non-

negative.

Proof. The concession cji (N, v) = φi(N, v)− φi(N\j, v) is the difference between the
Shapley value of agent i in the game with all the agents and agent i’s Shapley value in

the game without agent j. Sprumont (1990) showed that for convex games the Shapley

value is a population monotonic allocation scheme. Each agent’s Shapley value increases

as the coalition to which he belongs expands. Thus, φi(N, v)− φi(N\j, v) ≥ 0 and hence
the concessions are non-negative.

To complete the section, we point out that a value can be expressed in terms of the

“Harsanyi dividends” (they are also called coalitional dividends), given in equation (3) if

and only if it is the Shapley value. We return to this characterization when analyzing the

properties of our proposal.
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Proposition 2 A value ξ is the Shapley value if and only if, for any game (N, v) there

exists λS ∈ R for all S ⊆ N such that,

ξi(T, v) =
X
S3i
S⊆T

λS for all i ∈ T, for all T ⊆ N . (4)

Proof. The fact that the Shapley value satisfies this property was shown by Harsanyi

(1959) and it is stated in (3). To show the sufficiency we note that (4) implies that ξ is

an egalitarian solution and hence must be the Shapley value (see Mas-Colell, Whinston

and Green (1995, pp. 680-681) for the definition of an egalitarian solution and the fact it

coincides with the Shapley value).

3 The Environment and the Solution

We consider a pure exchange economy with a set N = {1, 2, ..., n} of agents and k ≥
2 commodities. Agent i ∈ N is described by {ºi, wi}, where wi ∈ Rk is the vector

of initial endowments and ºi is the preference relation defined over Rk. An economy

(usually denoted by E) is thus given by E = {ºi, wi}ni=1. We denote by Âi and ∼i the

strict preference and indifference relationships associated with ºi. For each i ∈ N , the

preference relation ºi is assumed to be continuous and monotonic on Rk (i.e., if yl > xl

for all l = 1, ..., k, then y Âi x). To simplify the notation in several definitions and proofs

it would be convenient to refer to a utility function representing the preferences of agent

i, denoted by ui. For concreteness we map each commodity bundle x to the (unique)

number ui(x) that satisfies x ∼i ui(x) · e, where e ≡ (1, ..., 1) ∈ Rk. Such a number

exists since preferences are monotonic and continuous. As we define an ordinal solution

concept, the solution itself will, of course, not depend upon this particular choice of a

utility function.

We let w ≡
P
i∈N

wi. The set of feasible utility profiles in Rn for an economy E is denoted

by A(E) and defined by:

A(E) =

(
u ∈ Rn|∃

¡
xi
¢
i=1,...,n

∈ Rkn, such that ui(xi) = ui, i = 1, ..., n and
X
i∈N

xi ≤ w

)
.

Agents can conceivably be better off by reallocating their initial endowments. However, it

should not be possible for the utility of one agent to grow arbitrarily large if the utilities
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of the other agents are bounded from below. To capture this idea, we assume that, for any

u ∈ A(E) and i ∈ N, the set Ai(u) ≡ {u ∈ A|u−i = u−i} is bounded from above.5 We note
that this property is ordinal, if it is satisfied for the ui we have constructed it also holds

for any strictly monotone transformation of it. In this paper, any pure exchange economy

that satisfies the previous requirements is referred to as an economic environment.

We propose a solution concept, called the Ordinal Shapley Value (OSV ), for pure

exchange economies, the construction of which relies on the notion of concessions. How-

ever, since these economies constitute NTU environments, which are described in terms

of the underlying physical structure, concessions cannot be in the form of utility transfers.

Concessions are expressed in terms of commodities. We measure them in terms of a “ref-

erence bundle” which we take to be e. The main characteristic of the concept proposed is

that it is ordinal. That is, the solution associates with each economy a set of allocations

that does not depend on the numerical representation of the underlying preferences of the

agents. Moreover, the solution proposed is efficient and satisfies consistency and fairness

requirements.

What is a “fair” and “consistent” sharing? Let us first discuss the rationale of our

proposal in the case of two agents. According to our proposal, a sharing is fair if the gains

from cooperation are equally distributed among the two agents. A crucial question is

how to measure these gains. In our proposal, the benefits from cooperation are measured

in terms of e. The gain of each agent is the amount of e units that when added to his

initial endowment, yields a bundle indifferent to the bundle received by the sharing. This

amount of e assumes the role of the difference in values (in the TU case).

A sharing is consistent if each agent is indifferent between the sharing outcome and

what he could get if he were to walk away and keep what remains of the aggregate

endowment, after compensating the other agent according to the solution concept. We

measure the surplus he can keep by the maximal amount of e units for which, when he

receives a bundle indifferent to his initial endowment augmented by that amount of e

units, the other agent is left with a bundle equivalent to the bundle he received in the

sharing. To state these properties more succinctly we use the notion of a concession just

as in the TU case. An efficient sharing is fair and consistent if there exists a pair of

5For a vector x ∈ Rn and i ∈ N , x−i ≡ (x1,...,xi−1,xi+1,...,xn}.
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concessions such that the concession made by agent i to agent j equals the concession

made by agent j to agent i, and each agent is indifferent between keeping this allocation

or taking the concession proposed by the other (to add to his initial endowment).

Extending this notion to the n-person case, a solution is an efficient allocation for which

there exists a matrix of concessions, one from each agent to any other agent, satisfying

consistency and fairness. The consistency property now requires that any set of (n − 1)
agents should be indifferent between keeping their allocation or taking the concessions

made by the remaining agent and reapplying the solution concept to the (n − 1)-agent
economy. The recursive nature of the definition implies that this consistency property

extends to coalitions of any size. Moreover, to ensure that the allocation reached is

“fair”, we require the concessions to balance out, in the sense that the sum of concessions

one player makes to the others equals the sum of concessions the others make to him. In

other words, the surplus generated for any set of n− 1 agents is the same as the surplus
they are willing to concede to the remaining agent.

The formal definition of this solution concept, the OSV , is as follows:

Definition 1 The Ordinal Shapley Value is defined recursively.

(n = 1) In the case of an economy with one agent with preferences º1 and initial
endowments a1 ∈ Rk, the OSV is given by the initial endowment: OSV (º1, a1) = {a1} .
For n ≥ 2, suppose that the solution has been defined for any economy with (n− 1) or

less agents.

(n) In the case of an economy (ºi, ai)i∈N with a set N of n agents, the OSV ((ºi, ai)i∈N)

is the set of efficient allocations (xi)i∈N for which there exists an n−tuple of concession
vectors (ci)i∈N , ci ∈ Rn−1 for all i ∈ N that satisfy:

n.1) for all j ∈ N, there exists y(j) ∈ OSV
¡
(ºi, ai + cjie)i∈N\j

¢
such that xi ∼i y(j)i

for all i ∈ N\j, and
n.2)

P
i∈N\j

cji =
P

i∈N\j
cij for all j ∈ N.

It should be noted that the choice of the bundle e to measure the surplus that accrues

to each agent is arbitrary. The OSV could be constructed by using any other positive

vector.6 The following analysis is valid regardless of the particular reference bundle chosen.

6Given this fact, it may be more appropriate to use the notation OSVe instead of OSV . We use
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Note also that this solution concept reduces to the Shapley value in economic envi-

ronments that can be described as a TU environment. In such environments there is

a common unit of account which can be thought of as money, and agents’ preferences

are (normalized) quasi linear of the form m + vi(x) where m is “money”, vi is a utility

function, and x is a commodity vector. If we measure concessions in terms of money (m),

our solution yields the Shapley value.

4 The solution in a two-agent economy

For a two-agent economy (E), an OSV is an efficient allocation for which there exists an

identical concession for each agent, such that any agent is indifferent between the bundle

offered to him in the allocation or taking the concession and staying on his own.

In order to characterize a solution (xi)i=1,2 in the two-agent economy, notice first

that, by efficiency, the bundle of player 1, x1, must be the best for him among all the

allocations that leave agent 2 indifferent or better off than the bundle x2.Moreover, agent

2 is indifferent between x2 and w2 + c1e, and similarly, agent 1 is indifferent between x1

and w1+ c2e. Given that the concessions are the same, c ≡ c1 = c2, they must satisfy the

following equality:

u1(w1 + ce) = max(z1,z2) u
1(z1)

s.t. u2(z2) ≥ u2(w2 + ce)

z1 + z2 ≤ w1 + w2.

The solution to this equation is given by the maximal real number c (which is non-

negative) that satisfies:

(u1(w1 + ce), u2(w2 + ce)) ∈ A(E)

Since preferences are strictly increasing and the sets Ai(u) are bounded, the previous

c exists and is unique. Note that the concession in the OSV depends on the initial

endowments. The OSV for the two-agent economy consists of the efficient allocations

(x1, x2) such that u1(x1) = u1(w1 + ce) and u2(x2) = u2(w2 + ce). When preferences are

strictly quasiconcave, the OSV allocation is unique.

OSV for notational simplicity.
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For the two-agent economy the OSV has a very natural graphical representation.

Figure 1 depicts the OSV when n = 2 and there are two commodities.

[Insert Figure 1]

For two-agent economies, our proposal bears many similarities to two previous solu-

tion concepts. First, it is similar to the Pareto-Efficient Egalitarian-Equivalent (PEEE)

allocation proposed by Pazner and Schmeidler (1978), when addressing the issue of al-

locating a bundle of goods among a set of agents. The OSV allocation when the two

agents have the same initial endowments is a PEEE allocation as well. Note that by

choosing different commodity bundles to concede with, we can generate a family of OSV

allocations, all of which are PEEE.

Nicolò and Perea (2004) also propose an ordinal solution concept for two-person bar-

gaining situations. Their construction yields the OSV for the class of exchange economies

where aggregate endowments of all the commodities are equal and are shared equally

among the two agents. Furthermore, while we require indifference with respect to adding

to the two agents initial endowments, multiples of e, they require indifference with re-

spect to adding to each agent’s initial endowment a multiple of the other agent’s initial

endowment.

5 Existence of the OSV

It is not obvious there exists an efficient allocation for which one can find concessions

satisfying the requirements imposed by the definition of the OSV . To show such alloca-

tions exist, we invoke in Theorem 2 a fixed point argument. Furthermore we show that

allocations in the OSV satisfy the desirable property of individual rationality, that is, if

x ∈ OSV ((ºi, wi)i∈N) , then xi ºi wi, for all i ∈ N.

We first prove the following lemma which plays a crucial role in the proof of Theorem

2 and is used in several propositions and comments throughout the paper.

Lemma 1 For any economy E = (ºi, βi)i∈N and any u ∈ A(E), there exists a unique

vector a ∈ Rn that varies continuously with u, such that an OSV allocation for the

n−agent economy (ºi, βi + aie)i∈N yields the utility tuple u.
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Proof. Lemma 1 is true for n = 1 by monotonicity and continuity of the preferences.

For n ≥ 1, we assume it holds for n − 1 and show it also holds for n. For each j ∈ N,

let (baji )i∈N\j be the unique vector such that the economy with (n− 1) agents with initial
endowments (βi + bajie)i∈N\j has an OSV yielding the (n − 1)−utility tuple u−j with

(baji )i∈N\j being continuous functions of u−j.
To prove the existence of such a vector a ∈ Rn, we propose concessions

¡
cji
¢
i,j∈N,i6=j

and prove that they support an OSV allocation yielding the utility vector u. The proposal

involves the unknowns ai, for i ∈ N, as follows:

cji = −ai + baji for i, j ∈ N, i 6= j.

The proposed concessions must satisfy the “fairness” condition n.2) :X
i∈N\j

cji =
X
i∈N\j

cij for j ∈ N,

yielding, after arrangement, a system of linear equations given by:

(n− 1)aj −
X
i∈N\j

ai =
X
i∈N\j

baij − X
i∈N\j

baji ≡ θj for j ∈ N.

Notice that
P
j∈N

θj = 0. It is then easy to check that the solutions for this system are

all given by the following expressions, where an ∈ R:

ai =
1

n

¡
θi − θn

¢
+ an for i ∈ N.

Denote by ba the only real number such that u is efficient for an economy where

the initial endowments are
¡
βi + 1

n

¡
θi − θn

¢
e+ bae¢

i∈N and bx ∈ Rnk a Pareto efficient

allocation in that economy.

We now prove that the allocation bx, is inOSV ((ºi, βi+aie)i∈N), with ai = 1
n

¡
θi − θn

¢
+ba, and the concessions cji = −ai + baji for i, j ∈ N, i 6= j supporting it (note that since the

θj’s and ba are continuous functions of the u0is, so are the cj0i s.).
First, take any set of (n − 1) agents, say N\j. An economy where these agents have

initial endowments
¡
βi + aie

¢
i∈N\j and receive concessions

¡
cji
¢
i∈N\j is identical, by con-

struction, to an economy where agents’ initial endowments are
¡
βi + bajie¢i∈N\j. Hence,

there is an OSV allocation for this (n−1)−agent economy where agent i’s utility is ui, for
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all i ∈ N\j. This corresponds to the n.1) requirement in the definition of an OSV alloca-

tion for the n−agent economy. Furthermore, by construction, requirement n.2) is satisfied
for the concessions

¡
cji
¢
i,j∈N,i6=j . Finally, note that bx is efficient for the n−agent economy

with initial endowments
¡
βi + aie

¢
i∈N,i6=j and that it generates utility levels given by u.

To complete the proof of Lemma 1, we show that if an OSV allocation for the econ-

omy (ºi, βi + aie)i∈N yields the utility tuple u, then a = a. Denote by (cji )i,j∈N,i6=j the

concessions associated with this OSV allocation. For any j ∈ N, define now the vectorbaj ∈ Rn−1 by baji ≡ ai + cji , for i ∈ N\j. The economy where agents’ initial endowments
are (βi + bajie)i∈N\j is identical, by construction, to the economy with initial endowments
(βi + aie)i∈N\j when the concessions are (c

j
i )i∈N\j. Therefore, an OSV allocation for the

(n− 1)−agent economy (βi + bajie)i∈N\j yields the utility tuple u−j. The induction argu-
ment then implies that baji = baji for all i ∈ N\j. Moreover, this argument applies to all
j ∈ N. Therefore,

ai + cji = ai + cji for all i, j ∈ N, i 6= j.

By summing, we obtain:X
j∈N\i

(ai + cji )−
X
j∈N\i

(aj + cij) =
X
j∈N\i

(ai + cji )−
X
j∈N\i

(aj + cij) for all i ∈ N.

By the fairness condition of both matrixes c and c, and rearranging, we obtain

n(ai − ai) =
X
j∈N

aj −
X
j∈N

aj for all i ∈ N.

Therefore, the sign of the difference ai − ai is independent of i. Assume, without loss of

generality, that ai > ai for all i ∈ N . In this case, the n agents have more resources in

the economy (βi+ aie)i∈N than in the economy (βi+ aie)i∈N , in contradiction to u being

efficient for both economies.

In the following theorem we use Lemma 1 to construct a mapping, the fixed points of

which, constitute the set of utilities achieved in OSV allocations.

Theorem 2 The Ordinal Shapley Value is non empty and satisfies individual rationality

in economic environments.

13



Proof. The proof proceeds by induction. The results hold for n = 1. We assume the

results hold for any economy with up to (n− 1) agents and prove that they hold for any
economy with n agents, for n ≥ 2.
We consider the economy (ºi, wi)i∈N . We proceed to construct a continuous mapping

from a suitably set of bounded utility profiles for this economy into itself. Let ui =

ui(wi − e). The set of utility profiles that constitute the domain (as well as range) of the

mapping is denoted by H, and defined by:

H ≡ {u ∈ Rn | ∃ a Pareto efficient allocation (xi)i∈N ∈ Rnk

with ui(xi) = ui and ui ≥ ui for i = 1, ..., n}.

We prove that the set H is homeomorphic to the unit simplex. To show it, we take

the following utility representation: bui(x) = ui(x)− ui(wi − e) and let:

bH ≡ {u ∈ Rn | ∃ a Pareto efficient allocation (xi)i∈N ∈ Rnk

with bui(xi) = ui and bui ≥ 0 for i = 1, ..., n}.
H and bH are clearly homeomorphic and we show that bH is homeomorphic to the

(n− 1)−unit simplex.
In economic environments, bH is a compact set (it is bounded by assumption and

it is closed since u is continuous, due to the continuity of preferences). Let S be the

(n− 1)−unit simplex in Rn. For each s ∈ S define the two following sets: Ks = {α ∈ R |
αs ≤ h for some h ∈ bH} andKs = {α ∈ R | αs ≥ h for some h ∈ bH}. By the definition of
the ui’s, Ks is not empty. Since bH is bounded Ks is also not empty. Both sets are closed

given that bH is compact. Finally, since the union of Ks and Ks is R, their intersection

is non-empty, and by the definition of bH it must be a singleton which we denote by αs.

Hence, we have shown that for each s ∈ S there exists a unique αs such that αss ∈ bH.
We now consider the function f : S → bH defined by: f(s) = αss with αs ∈ R satisfying

αss ∈ bH. By reversing the arguments used above, the inverse of f exists as well. In fact,
f−1(u) = u

n
i=1 ui

for all u ∈ bH. We now show that f is continuous. Let sn → s, with

sn ∈ S for all n = 1, 2, ..., and assume by way of contradiction that f(sn) 9 f(s). SincebH is compact there must in this case be a sequence ni for which f(sni) → β 6= f(s).

14



Moreover, f(sni) = αnisni hence β = (limi→∞ αni) s 6= αss. However since both αss and

(limi→∞ αni) s belong to bH (because bH is closed) it must be that (limi→∞ αni) s = αss (by

the definition of bH) leading to a contradiction. Hence, f(sn)→ f(s) and f is continuous.

Similarly f−1 is continuous as well and we have shown that bH is homeomorphic to the

(n− 1)−unit simplex. (See Proposition 4.6.1 in Mas-Colell, 1985, for a similar result).
We now return to the construction of the mapping from H into H. We denote by Hb

the “border” of H, the set of all the utility vectors for which the ith component equals ui

for some i. Formally,

Hb ≡ {u ∈ H/ ui = ui for some i ∈ N} .
For any vector u ∈ H, we look at u−j ∈ Rn−1 for all j ∈ N. Lemma 1 provides for

each u−j a unique vector aj ∈ Rn−1 such that an OSV allocation for the (n− 1)−agent
economy (ºi, wi + ajie)i∈N/j yields the utility tuple u−j. We let c

j
i (u) ≡ aji . These are the

concessions that agent j “needs” to make in order for the other n − 1 agents to achieve
the utility level u−j.

Using the concessions
¡
cji (u)

¢
j,i∈N,j 6=i we construct n “net concessions” corresponding

to u by:

Ci(u) ≡
X
j∈N\i

cij(u)−
X
j∈N\i

cji (u), for all i ∈ N.

Notice that
P
i∈N

Ci(u) = 0.

We now define a mapping from H into H. Each utility profile u in H is mapped to a

utility profile u ∈ H by increasing (decreasing) the components associated with positive

(negative) Ci(u)s, making necessary adjustments to preserve feasibility and efficiency.

More precisely, we let

D(u) ≡ min
i∈N, Ci(u)<0

{ui − ui} if C(u) 6= 0 ∈ Rn.

D(u) ≡ 0 otherwise.
Note that, if u is not in Hb (that is, if u is at the “interior” of H) then D(u) > 0 if

C(u) 6= 0.
Consider the following vector:

eu(u) ≡ u+
D(u)

max
i∈N

{|Ci(u)|}+ 1C(u) =

⎛⎜⎜⎝
u1

...

un

⎞⎟⎟⎠+ D(u)

max
i∈N

{|Ci(u)|}+ 1

⎛⎜⎜⎝
C1(u)
...

Cn(u)

⎞⎟⎟⎠ .

15



Denote by C(u)+ ∈ Rn the vector defined as follows: Ci(u)+ = Ci(u) if Ci(u) > 0, and

Ci(u)+ = 0 if Ci(u) ≤ 0. Similarly, denote by C(u)− ∈ Rn the vector that is defined by

Ci(u)− = Ci(u) if Ci(u) < 0, and Ci(u)− = 0 if Ci(u) ≥ 0.
If eu(u) is feasible and efficient, take u(u) = eu(u).
If eu(u) is feasible but not efficient, take

u(u) = u+
D(u)

max
i∈N

{|Ci(u)|}+ 1(C(u)− δC(u)−),

where δ ∈ (0, 1) is the unique real number such that u(u) previously defined is feasible
and efficient. (The efficiency requirement implies δ > 0, whereas feasibility implies δ < 1.)

If eu(u) is not feasible, take
u(u) = u+

D(u)

max
i∈N

{|Ci(u)|}+ 1(C(u)− δC(u)+),

where δ ∈ (0, 1) is the unique real number such that u(u) previously defined is feasible
and efficient. (Here, feasibility implies δ > 0, whereas efficiency implies δ < 1.)

To prove that u(u) ∈ H, we only need to show that ui(u) ≥ ui for all i. If D(u) = 0,

this property is trivially satisfied. If D(u) > 0 then C(u) 6= 0. By the definition of D(u)
and eu(u), it is easy to check that for i’s for which Ci(u) < 0 the decrease in coordinate i

is small enough so that eu(u)i ≥ ui. Second, if eu(u)i ≥ ui, then the construction of u(u)

makes sure that also u(u)i ≥ ui.

Claim a: The mapping u(u) has a interior fixed point.

To prove the claim, notice first that the mapping u(u) is continuous. Indeed, the

function D(u) is clearly continuous. Also, C(u) is continuous as soon as the “concessions”

cij(u) are a continuous function of u. By Lemma 1, the c
i
j(u)s are a continuous function of

u. Since H is homeomorphic to an n−unit simplex, the mapping u(u) must have a fixed
point. It now remains to show that the fixed point cannot occur on the boundary. We

prove it by the way of contradiction.

Suppose that the fixed point u is on the boundary, that is, u(u)i = ui = ui for some

i ∈ N. Assume, without loss of generality that u1 = u1. We claim that C1(u) > 0. First,

we prove that
P

i∈N\1 c
1
i (u) > 0. Indeed, if

P
i∈N\1 c

1
i (u) ≤ 0, then after the concessions

are made, player 1 obtains at least the utility u1(w1) > u1 since the aggregate endowment
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at the disposal of the others is lower or equal to
P

i∈N\1w
i and the final allocation is

efficient.

Second, for u1 to equal u1 it is necessarily the case that ci1(u) < 0 for all i = 2, ..., n.

Otherwise, the initial endowment of player 1 when i concedes is at least w1 and hence,

because the OSV is individually rational for any environment with (n − 1) agents, his
final utility can not be u1. Therefore, C1(u) > 0 if u1 = u1.

Third, since the previous reasoning holds for every i with ui = ui, we also know that

D(u) > 0 since ui − ui > 0 as soon as Ci(u) < 0 and Ci(u) < 0 for at least one i ∈ N

given that C1(u) > 0.

Therefore, by the construction of our mapping, the utility tuple u is mapped to a point

with a strictly larger utility level for agent 1 and cannot constitute a fixed point. This

proves Claim a.

Claim b: A utility tuple u is a fixed point of the function u if and only if there exists

an allocation x ∈ OSV ((ºi, wi)i∈N) such that u(x) = u.

To prove the claim, let u be a fixed point of the previous mapping, x the feasible

allocation that yields the utility level u, and c the matrix constructed using Lemma 1

(for simplicity, we write c, C, and D instead of c(u), C(u), and D(u)). We claim that

c is the matrix of concessions that support x as an OSV allocation. Given the way we

constructed c, each agent is indifferent with respect to the identity of the conceding agent.

Requirement n.1) of the definition of the OSV is then immediately seen to hold. Also

requirement n.2) holds since, by interiority of the fixed point, D > 0 if Cj < 0 for some

j ∈ N. In an interior fixed point, Cj = 0 for all j ∈ N. Therefore, the concessions satisfyP
i∈N\j c

j
i =

P
i∈N\j c

i
j for all j ∈ N .

Notice also that the utility corresponding to any OSV allocation is a fixed point of our

mapping by construction. Therefore, the set of utilities generated by the OSV allocations

coincides with the set of fixed points of the mapping u(u).

To complete the proof of the theorem we show that every OSV allocation is individ-

ually rational for the economy (ºi, wi)i∈N . Assume by way of contradiction that agent

i receives a bundle strictly worse than wi in an element of OSV ((ºi, wi)i∈N). It must

then be that
P

i∈N\j c
i
j > 0, hence

P
i∈N\j c

j
i > 0 as well. This however means that there

exists a j 6= i for which cji > 0. Hence if agent j concedes, agent i is in an environment
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with n − 1 agents and initial endowment wi + cjie which is strictly larger than wi. By

the induction assumption, any OSV allocation for this environment would be preferred

to wi + cjie, hence strictly preferred to w
i. This is in contradiction to the original OSV

allocation yielding an outcome worse than wi for agent i.

This concludes the proof that the OSV exists and is individually rational.

The proof of Theorem 2 uses a fixed point argument, it does not provide an algorithm

to calculate theOSV in a particular economy, and yields no information regarding the pos-

sible uniqueness of the solution in particular environments. There is, however, much more

information regarding the concessions associated with OSV allocations. First, Lemma

1 implies that the matrix associated with any OSV allocation is unique. Indeed, let

x ∈ OSV ((ºi, wi)i∈N) and ui ≡ ui(xi) for all i ∈ N. For every j ∈ N, Lemma 1 says that

there exists a unique vector cj ∈ Rn−1 such that an allocation inOSV
¡
(ºi, wi + cjie)i∈N\j

¢
yields the utility tuple u−j. That is, there exists a unique matrix of concessions supporting

x. Second, if we identify an allocation in the OSV, then the proof of Lemma 1 indicates

how to construct the unique matrix of concessions associated with this allocation.

Finally we consider the following example which has also been analyzed in Hart (1985,

example 5.7). The economic environment consists of three agents (1, 2, 3) and three com-

modities (x1, x2, x3) where preferences for non-negative consumptions and initial endow-

ments are given by:7

u1(x11, x
1
2, x

1
3) = x11 + x12 w1 = (2, 2, 0)

u2(x21, x
2
2, x

2
3) = 0.5x

2
1 + x23 w2 = (2, 0, 2)

u3(x31, x
3
2, x

3
3) = x32 + x33 w3 = (0, 2, 2)

TheOSV outcome for this environment (it also happens to be unique) is the allocation:

x1 = (4, 0.3791, 0);x2 = (0, 0, 3.2745);x3 = (0, 1.6209, 2.725)

7The utility functions, as given in Hart (1985) are defined just over the non-negative orthant. Note

that in our set up the utility functions need to be defined over all of Rk. This can be accomplished in

several ways without affecting the OSV outcome. One option is to let the utility function equal −∞
for all points outside the non-negative orthant. Alternately (to preserve continuity) the ui’s could be

redefined by:

u1(x11,x
1
2,x

1
3) = min{x11,2x11}+min{x12,2x12}+min{0,2x13}

and similarly for the other two agents.
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and the concessions supporting the outcome are:

c12 = c21 = 0.129 09; c
1
3 = c31 = 0.119 28; c

2
3 = c32 = 0.112 74.

The associated utility profile is (u1, u2, u3) = (4.3791, 3.2745, 4.3464). Note the Shapley

value yields the utility profile (4.5, 3.5, 4) whereas the Harsanyi value yields the utility

profile (13/3, 10/3, 13/3).

6 Characteristics of the OSV

By definition, the OSV allocations satisfy some fairness and consistency properties. Also,

Theorem 2 shows that they are individually rational. The OSV allocations however sat-

isfy several additional appealing properties. The main result of this section provides a

characterization of the OSV in terms of coalitional dividends similar to the characteriza-

tion obtained for the Shapley value. The first step towards this result is to show that the

fact that concessions in the previous example are symmetric is not a coincidence. The

concessions supporting OSV allocations are always symmetric as stated in Proposition 3.

Proposition 3 If the concession matrix c supports an OSV allocation, then cij = cji for

all i, j ∈ N, i 6= j.

Proof. The proof proceeds by induction. It is true for any economy with n = 2 agents

by the fairness condition. We assume the property is satisfied for every economy with n−1,
with n ≥ 3, agents and show it also holds for (ºi, wi)i∈N . Let x ∈ OSV ((ºi, wi)i∈N),

and let (cij)i,j∈N,i6=j and u ∈ Rn be the concessions supporting x and the utility tuple

associated with it. For any agent i ∈ N , there must exist some OSV allocation (denoted

by y(i)) for the (n − 1)−agent economy (ºj, wj + cije)j∈N\i yielding the utility profile

u−i. Similarly, for any agent k ∈ N\i there must exist an OSV allocation (denoted by

y(ki)) for the (n − 2)−agent economy (ºj, wj + (cij + ckij )e)j∈N\{i,k} yielding the utility

profile u−{i,k}, where (ckij )k,j∈N\i,k 6=j ∈ R(n−1)(n−2) supports y(i). By Lemma 1 there exists

a unique vector a ∈ Rn−2 such that an OSV allocation for the (n−2)−agent economy (ºj

, wj+aje)j∈N\{i,k} yields the utility tuple u−{i,k}. Hence we have wj+aje = wj+(cij+c
ki
j )e
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for any three distinct agents i, j, k ∈ N. By permuting the roles of i and k we obtain:

cij + ckij = ckj + cikj for any three distinct agents i, j, k ∈ N. (5)

Hence, c12 + c312 = c32 + c132 , c
3
1 + c231 = c21 + c321 , and c23 + c123 = c13 + c213 . Moreover, by the

induction assumption, concessions are symmetric for any economy with (n − 1) agents,
hence c312 = c213 , c

13
2 = c231 , and c321 = c123 . Using this property and summing the three

previous equations, we obtain:

(c31 − c13) + (c
1
2 − c21) + (c

2
3 − c32) = 0.

We can repeat the same argument with agent 3 replaced by agents 4, ..., n. Summing up

all the equalities, we get:

{(c31 − c13) + ...+ (cn1 − c1n)}+ (n− 2)(c12 − c21) + {(c23 − c32) + ...+ (c2n − cn2)} = 0.

Using the fairness requirement n.2) we get:

(c12 − c21) + (n− 2)(c12 − c21) + (c
1
2 − c21) = 0.

Hence, c12 = c21.

Similarly it can be shown that cij = cji for any i, j ∈ N, i 6= j.

The following theorem provides a characterization of the OSV analogous to the char-

acterization of the Shapley value in terms of coalitional dividends.

Theorem 3 Let Φ be a correspondence that associates a set of efficient allocations to

every economic environment (ºi, wi)i∈N . Suppose that it satisfies property (Q):

(Q) For all x ∈ Φ((ºi, wi)i∈N) and ui ≡ ui(xi) for all i ∈ N, there exists a vector

(λS)S⊆N ∈ R2
n
such that

ui

⎛⎜⎝wi + di(T )e+
X
S3i
S⊆T

λSe

⎞⎟⎠ = ui for all T ⊆ N , for all i ∈ T, (6)

where d(T ) ∈ R|T | is a vector such that an element of the set Φ((ºj, wj + dje)j∈T ) yields

the utility tuple uT .

Then, Φ is a sub-correspondence of the OSV correspondence.

Moreover, the OSV correspondence satisfies property (Q).
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Proof. The proof of both claims proceeds by induction. First we show that Φ is a

sub-correspondence of the OSV correspondence. When n = 1, the result holds trivially.

We assume now that the result holds for up to n−1 agents and show it holds for n agents,
n ≥ 2.
Take x ∈ Φ((ºi, wi)i∈N) and let (λS)S⊆N ∈ R2

n
be the vector associated with x.

Consider the matrix c ∈ RnxRn−1 defined by cji =
P

S3i,j
S⊆N

λS. We claim that the matrix c

supports x as an OSV allocation. First, given that cji = cij for all i, j ∈ N, i 6= j, condition

n.2) of Definition 1 is satisfied. Second, to prove condition n.1), take any j ∈ N and

consider the economy (ºi, wi + cjie)i∈N\j. Notice that since

ui

⎛⎜⎝wi +
X
S3i
S⊆N

λSe

⎞⎟⎠ = ui = ui

⎛⎜⎜⎝wi + bi(N\j)e+
X
S3i

S⊆N\j

λSe

⎞⎟⎟⎠ for all i ∈ N\j,

it happens that

bi(N\j) =
X
S3i,j
S⊆N

µλS = cji for all i ∈ N\j.

Therefore, the utility tuple u−j is attainable (and efficient) in the economy (ºi, wi +

cjie)i∈N\j since it is attainable (and efficient) in (ºi, wi + bi(N\j)e)i∈N\j . Denote by y(j)
the efficient allocation that yields u−j. Since for all T ⊆ N\j,

¡
bi(T )− cji

¢
i∈T is a vector

such that an element of the set Φ((ºj, wj + cjie+[bj(T )− cji ]e)j∈T ) yields the utility tuple

u−j, the induction hypothesis ensures that y(j) ∈ OSV ((ºi, wi + cjie)i∈N\j). This proves

condition n.1) and concludes the proof that x is an OSV allocation.

We now show that the OSV allocation satisfies property Q. If N = {i}, then λ{i}

exists and is unique: λ{i} = 0. Suppose the result holds for any economy with at most

n− 1 agents, for n ≥ 2. Let x ∈ OSV ((ºi, wi)i∈N) and ui ≡ ui(xi) for all i ∈ N. Denote

by
¡
cij
¢
i,j∈N,i6=j the concessions supporting x as an OSV allocation and, for all j ∈ N, let

y(j) be such that y(j) ∈ OSV ((ºi, wi + cjie)i∈N\j) and y(j)i ∼i xi for all i ∈ N\j.
Applying the induction argument, for all j ∈ N, there exists a unique (λS(j))S⊆N\j ∈

R2
n−1

such that:

ui

⎛⎜⎝wi + cjie+ di(T ; j)e+
X
S3i
S⊆T

λS(j)e

⎞⎟⎠ = ui for all T ⊆ N\j, for all i ∈ T,
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where d(T ; j) ∈ R|T | is the unique vector such that an element of the set OSV ((ºj

, wj + cjie + di(T ; j)e)j∈T ) yields the utility tuple uT . We first claim that λS(j) = λS(k)

for all S ⊆ N\{j, k}. Indeed, consider the economy (ºi, wi)i∈S and the unique vector

d(S) ∈ R|S| such that an element of OSV ((ºi, wi + di(S)e)i∈S) yields the utility tuple

uS. By the induction argument, there is a unique vector (λB)B⊆S ∈ R2
|S|
such that

ui

⎛⎜⎝wi + di(T )e+
X
B3i
B⊆T

λBe

⎞⎟⎠ = ui for all T ⊆ S, for all i ∈ T.

Since the vector d(T ) is unique, it is immediate that di(T ) = cji + di(T ; j) = cki + di(T ; k)

for all T ⊆ S, i ∈ T. And since the vector (λB)B⊆S is unique, it is also immediate that

λS = λS(j) = λS(k).

According to the previous claim, we can propose λS (= λS(j) for any j /∈ S) for any

S ⊂ N. With the vector (λS)S⊂N , the equality ui
µ
wi + di(T )e+

P
S3i
S⊆T

λSe

¶
= ui holds

for all T ⊂ N and for all i ∈ T. Moreover, the vector for which the equality happens is

unique. The unique value still to be found is λN .

For any i ∈ N, consider the value λN(i) implicitly (and uniquely) defined by:

ui

⎛⎜⎝wi +
X
S3i
S⊂N

λSe+ λN(i)e

⎞⎟⎠ = ui.

We complete the proof if we show that λN(i) = λN(j) for any i, j ∈ N. By induction, for

any i, j ∈ N :

ui

⎛⎜⎜⎝wi + cjie+
X
S3i

S⊆N\j

λSe

⎞⎟⎟⎠ = ui = ui

⎛⎜⎝wi +
X
S3i
S⊂N

λSe+ λN(i)e

⎞⎟⎠ ,

hence,

λN(i) = cji +
X
S3i

S⊆N\j

λS −
X
S3i
S⊂N

λS = cji −
X

S⊇{i,j}
S⊂N

λS.

Given the symmetry of the concessions, cji = cij, λN(i) = λN(j) for all i, j ∈ N, which

completes the proof.
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Therefore, the OSV correspondence is characterized as the union of the correspon-

dences (or as the largest correspondence) that satisfy property (Q). Borrowing the ter-

minology used in TU environments, we refer to the vector (λS)S⊆N as the coalitional

dividends. Although the coalitional dividends are somewhat more complex to define in

our economic environment than they are in TU environments, they reflect the same idea:

if i ∈ S, then λS is the dividend agent i obtains because he belongs to coalition S. Indeed,

given that d(N) = 0, the final utility agent i obtains in the OSV allocation character-

ized by the dividends (λS)S⊆N is u
i = ui

µ
wi +

P
S3i
S⊆N

λSe

¶
. The added difficulty in our

framework is how to measure the value of a coalition, since the additional utility (in terms

of e) that agents in a certain coalition S obtain depends upon the level of their initial

endowment. Theorem 3 shows that the proper reference to measure the increase in utility

is given by the level of utility at the OSV allocation. In TU environments, the reference

point is not important since the value of the coalition does not depend on the initial

endowment.

It is interesting to point out that the relationship between the coalitional dividends that

exists for every OSV allocation and the concessions matrix that supports this allocation,

is the same as the one that exists for the Shapley value in TU environments (that was

proved in Section 2). It is easy to see that d(N\j) = (cji )i∈N\j for any j ∈ N. Therefore,

applying (6) to the sets N and N\j, we obtain:

ui

⎛⎜⎝wi +
X
S3i
S⊆N

λSe

⎞⎟⎠ = ui = ui

⎛⎜⎜⎝wi + cjie+
X
S3i

S⊆N\j

λSe

⎞⎟⎟⎠ for any i ∈ N\j,

hence,

cji =
X
S3i,j
S⊆N

λS for all i, j ∈ N, i 6= j.

We conclude this section with two further properties of theOSV . The next proposition

shows that the OSV is monotonic in initial endowments.

Proposition 4 Consider an economic environment (ºi, wi)i∈N where ºj≡ºk and wj ≥
(>)wk for some j 6= k. Then, xj ºj (Âj)xk for any x ∈ OSV ((ºi, wi)i∈N).

23



Proof. The proof proceeds by induction. Consider first the case of two agents (n = 2)

and assume º1≡º2 .Let u represent the preferences of both agents. The unique level of
utility that they achieve in the OSV allocations is:

Max
c∈R+

¡
u(w1 + ce), u(w2 + ce)

¢ ¯̄¡
u(w1 + ce), u(w2 + ce)

¢
∈ A

ª
.

It is then immediate that w1 ≥ w2 implies x1 º1 x2, for x = OSV ((ºi, wi)i=1,2).Moreover,

x1 is strictly preferred to x2 if w1 is strictly greater than w2.

We assume now that the property holds for economies with up to n − 1 agents, for
n ≥ 3. We prove, by contradiction, that it also holds for economies with n agents.

Without loss of generality, suppose º1≡º2, w1 ≥ w2, and x1 ≺1 x2 for some x ∈
OSV ((ºi, wi)i∈N). (For notational convenience, we do the proof for the case w1 ≥ w2;

the proof is similar when w1 > w2.) Using property n.1) in the definition of an OSV

allocation, let y(1) ∈ OSV ((ºi, wi + c1i e)i∈N\1) be such that u
i(y(1)i) = ui(xi) for all

i ∈ N\1, and y(2) ∈ OSV ((ºi, wi + c2i e)i∈N\2) be such that u
i(y(2)i) = ui(xi) for all

i ∈ N\2.
Given that ui(y(1)i) = ui(y(2)i) for all i ∈ N\{1, 2}, u1(y(2)1) < u2(y(1)2), º1≡º2,

and the efficiency of the allocations y(1) and y(2), it must be the case that the total

initial resources in the economy (ºi, wi + c1i e)i∈N\1 are larger than in the economy (ºi

, wi + c2i e)i∈N\2. That is, X
i∈N\1

c1i >
X
i∈N\2

c2i .

By symmetry, c12 = c21, c
1
i = ci1 and c2i = ci2 for all i ∈ N\{1, 2}. Therefore,X

i∈N\{1,2}

ci1 >
X

i∈N\{1,2}

ci2.

Let k ∈ N\{1, 2} be such that ck1 > ck2, and y(k) ∈ OSV ((ºi, wi+ cki e)i∈N\k) be such that

ui(y(k)i) = ui(xi) for all i ∈ N\k. In the (n− 1)−agent economy ((ºi, wi + cki e)i∈N\k), it

happens that º1≡º2 and w1 + ck1e > w2 + ck2e. By the induction hypothesis, u
1(y(k)1) ≥

u2(y(k)2), that is, u1(x1) ≥ u2(x2). This is in contradiction to our original hypothesis.

The next property, anonymity of the OSV is an immediate corollary of the previous

proposition.
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Corollary 2 Consider an economic environment (ºi, wi)i∈N where ºj≡ºk and wj =

wk for some j 6= k. Then, xj vj xk for any x ∈ OSV ((ºi, wi)i∈N). Moreover, if the

preferences of agents j and k are strictly quasiconcave, then xj = xk for any x ∈ OSV ((ºi

, wi)i∈N).

7 The weighted OSV

Shapley (1953b) extends the Shapley TU value by considering nonsymmetric divisions

of the surplus. He defines the (now called) weighted Shapley value by stipulating an

exogenously given system of weights q ∈ Rn
++, assigning each agent i the share qi/

P
j∈N qj

of the unit in each unanimity game, and defining the value as the linear extension of this

operator to the set of TU games. There exist several characterizations of the weighted

Shapley value. The next proposition states, without a proof, a new characterization,

similar to the one provided in Corollary 1.8

Proposition 5 A value ξ is the q−weighted Shapley value if and only if for each game
(N, v) there exists a matrix of concessions c(N, v) ≡ (cij(N, v))i,j∈N,i6=j, with cij(N, v) in

R for all i, j ∈ N, i 6= j, such that:

(1) ξi(N, v) = ξi(N\j, v) + cji (N, v) for all i, j ∈ N, i 6= j, and

(2)
P

i∈N\j
qjcji (N, v) =

P
i∈N\j

qicij(N, v) for all j ∈ N.

Following the same route we took in defining the OSV , we can define a weighted value

for economic environments where the weights of the agents are taken into account. We

now describe an extension of the OSV which yields the q− weighted OSV (q − wOSV )

solution, which reduces to the q− weighted Shapley value in economic environments that
can be described as a TU environment. The only difference with respect to the definition

of the OSV lies in the “fairness” condition n.2) :

Definition 2 We define the q− weighted Ordinal Shapley Value recursively.
(n = 1) In the case of an economy with one agent with preferences º1 and initial

endowments a1 ∈ Rk, the q − wOSV is given by the initial endowment: q − wOSV (º1

, a1) = {a1} .
8For interpretation, see also Section 4 in Pérez-Castrillo and Wettstein (2001).
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Suppose that the solution has been defined for any economy with (n−1) or less agents.
(n) In the case of an economy (ºi, ai)i∈N with a set N of n agents, the q−wOSV ((ºi, ai)i∈N)

is the set of efficient allocations (xi)i∈N for which there exists an n−tuple of concession
vectors (ci)i∈N that satisfy

n.1) for all j ∈ N, there exists y(j) ∈ q − wOSV
¡
(ºi, ai + cjie)i∈N\j

¢
such that xi ∼i

y(j)i for all i ∈ N\j, and
n.2)

P
i∈N\j

qjcji =
P

i∈N\j
qicij for all j ∈ N.

It is worthwhile to notice that the “weighted fairness” condition n.2), together with the

“consistency” requirement n.1) also imply in this case that the concessions that support

the q−wOSV are “weighted” symmetric, in that we have qjcji = qicij for all i, j ∈ N, i 6= j.

Moreover, very small changes in the proof of Theorem 2 are needed, to establish existence

and individual rationality of this value, for any economic environment, which we state as:

Theorem 4 The q−weighted Ordinal Shapley Value is non empty and satisfies individual
rationality in economic environments, for any q ∈ Rn

++.

8 Conclusion

This paper addressed the problem of sharing a joint surplus among the agents creating it.

We looked for a solution associating with each economic environment (agents described

by preferences and endowments) a set of outcomes (allocations of the aggregate endow-

ment across the agents). We showed there exists such an (ordinal) solution that satisfies

efficiency and suitably defined notions of consistency and fairness. This solution being a

natural extension of the Shapley value to general environments (NTU games).was called

an Ordinal Shapley value.

The OSV provided not just an allocation but also a matrix of concessions “measuring”

the gains each agent foregoes in favor of the other agents. Further analysis showed these

concessions were symmetric, what agent i concedes to agent j coincides with the concession

of agent j to agent i. This symmetry property reduces to the balanced contributions

property of the Shapley Value for TU games. The next stage of the analysis characterized

the OSV in terms of coalitional dividends. We further showed that the OSV satisfies
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monotonicity in initial endowments and anonymity. Finally, we constructed a family of

q−weighted OSV ’s, which are the ordinal counterparts (in our setting) to the family of

q−weighted Shapley values for TU games.
The main advantage of this extension compared to previous attempts to extend the

value is the fact it is ordinal. It is also defined in the commodity space rather in the

“utility” space, whereas several previous ordinal values were defined solely on the utility

space (Safra and Samet, 2004).

Since it exists for a large class of environments it can be used to address a variety of

distributional issues dispensing of the need to assume quasi-linear preferences or convexity

of preferences. Problems of allocating joint costs can be handled as well without restricting

the environment through the quasi-linearity in “money” assumption or convexity of the

cost function.

The OSV approach allowing for different reference bundles generates a family of out-

comes. A similar phenomenon is given by the family of PEEE allocations in Pazner

and Schmeidler (1978) where conceivably different allocations are obtained by choosing

different rays along which the search for an allocation proceeds.

Further research should clarify the connections between theOSV and other well-known

ordinal solution concepts like the core and competitive equilibria outcomes. More research

is also needed to determine what happens to the set of OSV allocations as the economy

grows and\or more restrictions are imposed on the preferences. The implementability of
the OSV remains the topic of further work as well.
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Figure 1: The solution in the two-agent economy.
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