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Summary: Ma (1996) studied the random order mechanism, a matching mechanism suggested
by Roth and Vande Vate (1990) for marriage markets. By means of an example he showed that
the random order mechanism does not always reach all stable matchings. Although Ma’s (1996)
result is true, we show that the probability distribution he presented – and therefore the proof
of his Claim 2 – is not correct. The mistake in the calculations by Ma (1996) is due to the
fact that even though the example looks very symmetric, some of the calculations are not as
“symmetric.” JEL classification: C78

For a description of the marriage model we refer to Roth and Vande Vate (1990). A marriage
market is denoted by (M, W,P ) where M = {m1, . . . ,ma} is a set of “men,” W = {w1, . . . , wa}
is a set of “women,” and P is a preference profile. The set of stable matchings for (M, W,P ) is
denoted by S(P ). We now recall the random order mechanism.

Random Order (RO) Mechanism

Input: A marriage market (M,W,P ).
Set R0 := ∅, µ0 such that for all i ∈ N , µ0(i) = i, and t := 1.
Step t : Choose an agent it from N\Rt−1 at random. Set Rt := Rt−1 ∪ {it}.
Suppose it = w ∈ W . (Otherwise replace w by m in Step t.)
Stable Room Procedure

Case (i) There exists no blocking pair (m,w) for µt−1 with m ∈ Rt:
Stop if t = n and define RO(P ) := µt−1. Otherwise set µt = µt−1 and go to Step t := t + 1.
Case (ii) There exists a blocking pair (m,w) for µt−1 with m ∈ Rt:
Choose the blocking pair (m∗, w) for µt−1 with m∗ ∈ Rt that w prefers most.
If µt−1(m∗) = m∗, then define µt such that µt(w) := m∗, µt(m∗) := w, and for all i ∈ N\{w, m∗},
µt(i) := µt−1(i). Stop if t = n and define RO(P ) := µt. Otherwise go to Step t := t + 1.
If µt−1(m∗) = w′ ∈ W , then redefine µt−1(w) := m∗, µt−1(m∗) := w, µt−1(w′) := w′, and for all
i ∈ N\{w, m∗, w′}, µt−1(i) := µt−1(i). Set w := w′, and repeat the Stable Room Procedure.
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The algorithm ends in exactly n := 2a steps and its outcome is a random stable matching
RO(P ), generated by a sequence of agents (i1, . . . , in). The set of possible sequences of agents
equals the set of permutations of all agents denoted by Q. Hence, |Q| = n!. Moreover, for any
µ ∈ S(P ), let Qµ ⊆ Q be the (possibly empty) set of sequences that lead to µ. Denote qµ = |Qµ|.
The random order mechanism induces in a natural way a probability distribution P over the set
of stable matchings: for any µ ∈ S(P ), the probability that RO(P ) = µ equals pµ = qµ

n! .
By using the following example, Ma (1996) showed that the random order mechanism may

not reach all stable matchings. Although Ma’s (1996) theorem is true, we show that the proba-
bility distribution he presented – and therefore the proof of his Claim 2 – is not correct.

Knuth’s (1976) Example. Let (M, W,P ) with a = 4 and P given below.

Preferences Stable Matchings
P (m1) = w1 w2 w3 w4 m1 µ1 = m1 m2 m3 m4

P (m2) = w2 w1 w4 w3 m2 µ2 = m2 m1 m3 m4

P (m3) = w3 w4 w1 w2 m3 µ3 = m1 m2 m4 m3

P (m4) = w4 w3 w2 w1 m4 µ4 = m2 m1 m4 m3

P (w1) = m4 m3 m2 m1 w1 µ5 = m3 m1 m4 m2

P (w2) = m3 m4 m1 m2 w2 µ6 = m2 m4 m1 m3

P (w3) = m2 m1 m4 m3 w3 µ7 = m3 m4 m1 m2

P (w4) = m1 m2 m3 m4 w4 µ8 = m4 m3 m1 m2

µ9 = m3 m4 m2 m1

µ10 = m4 m3 m2 m1

Ma (1996) claimed that (pµ1 , pµ2 , pµ3 , pµ4 , pµ5 , pµ6 , pµ7 , pµ8 , pµ9 , pµ10) = (1
4 , 1

8 , 1
8 , 0, 0, 0, 0, 1

8 , 1
8 , 1

4).
Below we show that this is not true by calculating the correct probability distribution:
( 9600
40320 , 5280

40320 , 5280
40320 , 0, 0, 0, 0, 5280

40320 , 5280
40320 , 9600

40320). The mistake in the calculations is due to the
fact that even though the example looks very symmetric, some of the calculations are not as
“symmetric,” in other words Ma’s (1996) statement on page 380 that “the proofs for the re-
maining cases are similar.” is not correct. In spite of the mistake, our computation is still based
on Ma’s (1996) idea of analyzing sequences of agents backwards, i.e., considering the last agent
that enters, subsequently the last but one agent that enters, etc.. The difference is that we
provide more detailed discussions and justify the (restricted) use of “symmetry.” ¦
Proof: We show that (pµ1 , pµ2 , pµ3 , pµ4 , pµ5 , pµ6 , pµ7 , pµ8 , pµ9 , pµ10) = ( 9600

40320 , 5280
40320 , 5280

40320 ,
0, 0, 0, 0, 5280

40320 , 5280
40320 , 9600

40320) by checking which stable matchings the random order mechanism
induces for various sequences (i1, . . . , i8). Whenever we refer to a unique stable matching ob-
tained for a marriage market not containing all agents, we calculated the man-optimal and the
woman-optimal matching for the “submarket” using the deferred acceptance algorithm and de-
tected that they coincide (this calculation is not included in the proof). Furthermore, whenever
we “satisfy” a blocking pair, the (unique) proposing agent does not propose to agents that are
better than his/her previous match (all these proposals would be rejected).

Case a: m1 enters last; i.e., the sequence of agents is (i1, . . . , m1). There are only two stable
matchings µ′ and µ′′ when the set of agents consists of all women W and the remaining three
men {m2,m3,m4}:

w1 w2 w3 w4

µ′ : | | | |
w1 m2 m3 m4

w1 w2 w3 w4

µ′′ : | | | |
w1 m2 m4 m3
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When m1 enters last, he proposes to the single woman w1, who accepts. So, matching µ′ implies
matching µ1 and matching µ′′ implies µ3.

Case a.1: m2 enters before m1; i.e., the sequence is (i1, . . . , m2,m1).
Case a.1.1: m3 enters before m2 and m1; i.e., the sequence is (i1, . . . ,m3,m2,m1). The
unique stable matching before m3, m2, and m1 enter matches m4 to w4 and everybody else to
themselves. Next, when m3 enters he proposes to w3, who accepts. Similarly, when m2 enters
he proposes to w2, who accepts. Thus, w1 is single and the resulting matching is µ′. Hence, all
5! sequences induce µ1.
Case a.1.2: m4 enters before m2 and m1; i.e., the sequence is (i1, . . . ,m4,m2,m1). Similarly
as in Case a.1.1, all 5! sequences induce µ1.
Case a.1.3: w1 enters before m2 and m1; i.e., the sequence is (i1, . . . , w1,m2,m1). There are
only two stable matchings µ̃′ and µ̃′′ before w1, m2, and m1 enter:

w2 w3 w4

µ̃′ : | | |
w2 m3 m4

w2 w3 w4

µ̃′′ : | | |
w2 m4 m3

It is easy to check that half of the partial sequences (i1, . . . , i5) with {i1, . . . , i5}∩{w1,m2,m1} =
∅ result in µ̃′, the other half in µ̃′′: if [i5 ∈ {m3,m4}] then (i1, . . . , i5) results in µ̃′, if [i5 ∈
{w3, w4}] then (i1, . . . , i5) results in µ̃′′, if [i4 ∈ {m3,m4} and i5 = w2] then (i1, . . . , i5) results
in µ̃′, and if [i4 ∈ {w3, w4} and i5 = w2] then (i1, . . . , i5) results in µ̃′′. After agents w1, m2,
and m1 enter, µ̃′ induces µ′. Similarly, µ̃′′ induces µ′′. Hence, 5!

2 sequences induce µ1 and 5!
2

sequences induce µ3.
Case a.1.4: w2 enters before m2 and m1; i.e., the sequence is (i1, . . . , w2,m2,m1). Similarly as
in Case a.1.3, 5!

2 sequences induce µ3 and 5!
2 sequences induce µ1.

Case a.1.5: w3 enters before m2 and m1; i.e., the sequence is (i1, . . . , w3,m2,m1). The unique
matching before agents w3, m2, and m1 enter matches m3 to w4, m4 to w2, and w1 to herself.
When w3 enters she proposes to m4, who accepts. Now w2 is single. Next, when m2 enters he
proposes to w2, who accepts. Thus, w1 is single and the resulting matching is µ′′. Hence, all 5!
sequences induce µ3.
Case a.1.6: w4 enters before m2 and m1; i.e., the sequence is (i1, . . . , w4,m2,m1). Similarly as
in Case a.1.5, all 5! sequences induce µ3.
Summary Case a.1: 360 sequences (i1, . . . ,m2,m1) induce µ1 and 360 sequences
(i1, . . . , m2,m1) induce µ3.

Summary Cases a.2-a.7: In a similar way as in Case a.1 we can calculate the number of
sequences that induce µ1 and µ3, respectively, in case the last but one position is occupied by
an agent different from m2. We summarize the results in the table below.

Summary Case a: By summing up the boldface numbers in the table below we see that 2400
sequences (i1, . . . , m1) induce µ1 and 2640 sequences (i1, . . . , m1) induce µ3.
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Case Sequences Inducing µ1 Inducing µ3

a.1 (i1, . . . ,m2,m1) 360 360
a.2 (i1, . . . ,m3,m1) 720 –
a.3 (i1, . . . ,m4,m1) 720 –
a.4.1 (i1, . . . , m2, w1,m1) 60 60
a.4.2 (i1, . . . , m3, w1,m1) 120 –
a.4.3 (i1, . . . , m4, w1,m1) 120 –
a.4.4 (i1, . . . , w2, w1,m1) – 120
a.4.5 (i1, . . . , w3, w1,m1) – 120
a.4.6 (i1, . . . , w4, w1,m1) – 120
a.4 (i1, . . . ,w1,m1) 300 420
a.5.1 (i1, . . . , m2, w2,m1) 60 60
a.5.2 (i1, . . . , m3, w2,m1) 120 –
a.5.3 (i1, . . . , m4, w2,m1) 120 –
a.5.4 (i1, . . . , w1, w2,m1) – 120
a.5.5 (i1, . . . , w3, w2,m1) – 120
a.5.6 (i1, . . . , w4, w2,m1) – 120
a.5 (i1, . . . ,w2,m1) 300 420
a.6 (i1, . . . ,w3,m1) – 720
a.7 (i1, . . . ,w4,m1) – 720

Case b: m2 enters last; i.e., the sequence is (i1, . . . ,m2).
Because of the symmetry of the preferences, by changing the roles of agents [m1 and m2],

[w1 and w2], [m3 and m4], and [w3 and w4] in the proof of Case a we can show that in Case b
2400 sequences (i1, . . . , m2) induce µ1 and 2640 sequences (i1, . . . ,m2) induce µ3.

Case c: m3 enters last; i.e., the sequence is (i1, . . . , m3).
There are only two stable matchings µ̂′ and µ̂′′ when the set of agents consists of all women

W and the remaining three men {m1,m2,m4}:
w1 w2 w3 w4

µ̂′ : | | | |
m1 m2 w3 m4

w1 w2 w3 w4

µ̂′′ : | | | |
m2 m1 w3 m4

When m3 enters last, he proposes to the single woman w3, who accepts. So, matching µ̂′ implies
matching µ1 and matching µ̂′′ implies µ2.

In order to determine which sequences induce matchings µ1 and µ2, we change the roles of
agents [m1 and m3], [w1 and w3], [m2 and m4], and [w2 and w4] in the proof of Case a. Note
that after this change, matching µ̂′ corresponds to µ′ in the proof of Case a and matching µ̂′′

corresponds to µ′′ in the proof of Case a. Similarly, matching µ1 corresponds to µ1 in the proof
of Case a and µ2 corresponds to µ3 in the proof of Case a.

Thus, changing the roles of the agents as specified above in the proof of Case a implies that
in Case c 2400 sequences (i1, . . . , m3) induce µ1 and 2640 sequences (i1, . . . , m3) induce µ2.

Case d: m4 enters last; i.e., the sequence is (i1, . . . ,m4).
Because of the symmetry of the preferences, by changing the roles of agents [m3 and m4],

[w3 and w4], [m1 and m2], and [w1 and w2] in the proof of Case c we can show that in Case d
2400 sequences (i1, . . . , m4) induce µ1 and 2640 sequences (i1, . . . ,m4) induce µ2.
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Summary Cases a to d: Let m ∈ M . Then, 9600 sequences (i1, . . . , m) induce µ1, 5280
sequences (i1, . . . , m) induce µ2, and 5280 sequences (i1, . . . , m) induce µ3.

Let w ∈ W . Similarly to Cases a to d, 9600 sequences (i1, . . . , w) induce µ10, 5280 sequences
(i1, . . . , w) induce µ9, and 5280 sequences (i1, . . . , w) induce µ8.

Finally, the probability distribution induced by the random order mechanism equals
(pµ1 , pµ2 , pµ3 , pµ4 , pµ5 , pµ6 , pµ7 , pµ8 , pµ9 , pµ10) = ( 9600

40320 , 5280
40320 , 5280

40320 , 0, 0, 0, 0, 5280
40320 , 5280

40320 , 9600
40320) 6=

(1
4 , 1

8 , 1
8 , 0, 0, 0, 0, 1

8 , 1
8 , 1

4).1 2
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1For a version of the proof discussing all cases in detail please contact any of the authors.
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