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Abstract

I consider the problem of assigning agents to objects where each agent
must pay the price of the object he gets and prices must sum to a given
number. The objective is to select an assignment-price pair that is envy-
free with respect to the true preferences. I prove that the proposed mech-
anism will implement both in Nash and strong Nash the set of envy-free
allocations. The distinguishing feature of the mechanism is that it treats
the announced preferences as the true ones and selects an envy-free allo-
cation with respect to the announced preferences.
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1 Introduction

I study the problem of assigning a set of indivisible objects to a set of agents.
Each agent wants exactly one object, and his preferences are quasilinear in money.
Each agent must pay a price corresponding to the object he gets, and prices are
required to sum to a given number. A standard example is the housemate problem
where a group of tenants is sharing an apartment. The objective is to determine
who gets which room and how much he must pay subject to the constraint that the
sum of their contributions must equal the rent of the apartment. Alternatively,
besides the indivisible objects there is a divisible object - money - that must also
be shared among agents, for example, heirs sharing inheritance. In this case at
least some prices will be negative. Nor the valuations of objects are required
to be positive, that is, the objects need not necessarily be goods, but can also
be bads or burdens. For example, the central government with fixed budget is
assigning waste disposal sites and other duties/projects to municipalities.

When deciding on the assignment of agents to objects and the corresponding
prices, we may want to meet certain criteria. The usual requirements include
efficiency, since it maximizes the welfare of the society; envy-freeness (each agent
prefers the object he has been assigned to any other object), since it is a suf-
ficient condition for the stability of the assignment; and individual rationality
(agents never get an utility lower than the one they would obtain if they exercise
their outside options), since it assures that all agents would like to participate.
Besides normative criteria that we would like to meet there can be other restric-
tions imposed. For example, it is reasonable to require that in the room-sharing
problem prices are nonnegative. Usually all above-mentioned criteria cannot be
met simultaneously. For example, in the housemate problem if the rent is too
high, individual rationality will be violated, and additionally there usually exists
a trade-off between envy-freeness and nonnegativity of prices.

There exists wide literature that uses the above framework. Each contribution
usually provides an algorithm designed to select a particular allocation with some
desirable properties. For example, algorithms by Abdulkadiroǧlu et al. [1] and
Haake et al. [8] select envy-free allocations while Brams and Kilgour [5] and Chin
Sung and Vlach [6] impose nonnegative prices. This paper adopts envy-freeness
as a solution concept while ignoring individual rationality and signs of prices.
Individual rationality depends on the price constraint - that the prices must sum
to a given number - something that is given exogenously in the model. And
since the model does not impose restrictions on the signs of neither valuations
of objects nor the price constraint, so I do not impose restrictions on the signs
of prices. Additionally, envy-freeness implies efficiency therefore envy-freeness is
considered such an attractive solution concept.

All cited algorithms take valuations of objects as given and ignore strategic
incentives of agents to misreport their true preferences to achieve higher utility.
Thus the properties of allocations selected by different algorithms with respect
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to the true but unknown preferences can be quite different from the properties
with respect to the announced preferences. Therefore, if we insist on using an
algorithm to propose a particular allocation, two related questions arise: (1) are
all (strong) Nash equilibrium outcomes of the game induced by the algorithm
envy-free? and (2) are all envy-free allocations outcomes of some (strong) Nash
equilibrium of the game? That is, does the algorithm (strong) Nash implement
the set of envy-free allocations?

I propose the mechanism where agents announce their valuations, not neces-
sarily the true ones, and an allocation is selected that is envy-free with respect
to the announced preferences. I prove that, although truth-telling is not an equi-
librium strategy, in any (strong) Nash equilibrium the reported preferences will
be such that agents will be envy-free with respect to the true preferences. The
allocation that the mechanism selects, given the announced preferences, coincides
with the one that would be selected according to the algorithm of Abdulkadiroǧlu
et al. [1]. Therefore the paper provides the justification for the use of the algo-
rithm on strategic grounds. The advantage of this particular algorithm is that it
provides a formula for the selected price vector in terms of the announced prefer-
ences, making it easy to verify existence of profitable deviations. On other hand,
since the algorithm by Abdulkadiroǧlu et al. [1] does not specify which efficient
assignment to select with respect to the announced preferences, I have introduced
a tie-breaking rule to ensure that the assignment is efficient with respect to the
true preferences.

Papers related to the present work are by Tadenuma and Thomson [14] and
Beviá [4]. The former work considers allocating only one indivisible object to
one of several agents when monetary compensations are available while the later
extends it to several objects and agents. Both consider direct revelation games
that select envy-free allocations, given announced preferences, and ask for the
scope to manipulation. Both prove that the set of equilibrium outcomes coincides
with the set of envy-free allocations with respect to the true preferences.

The remaining of the paper is organized as follows. The following section
provides the formal model and some results necessary for the proof. Section 3
defines the implementation problem and states the theorem. Before proving the
theorem in Section 5, an example for two-agent two-object case is provided in
Section 4. Final remarks in Section 6 conclude the paper. Some of the proofs are
relegated to the Appendix.

2 Preliminaries

The set of agents is I = {1, ..., n} and the generic elements of I will be denoted
by i and k. The set of objects is J = {1, ..., n} with generic elements of J
denoted by j and l. Throughout it is assumed that the number of agents and
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objects is the same n.1 It is assumed that each agent wants one and only one
object. The assignment of agents to objects is given by a one-to-one mapping
µ : I → J . The price vector is p = (p1, ..., pn) ∈ Rn. The matrix of true
valuations is A = [aij]i∈I,j∈J where aij ∈ R is the valuation that agent i assigns
to object j. Utilities are quasi-linear in prices, namely, the utility of agent i from
being assigned to object µ(i) and paying its price pµ(i) is ui(pµ(i)) = aiµ(i) − pµ(i).
Let M denote the set of assignments. An allocation is an assignment-price pair
(µ, p) ∈ M ×Rn.

Definition 1 An assignment µ ∈ M is efficient if
∑
i∈I

aiµ(i) ≥
∑
i∈I

aiη(i) for all

assignments η ∈ M .

Definition 2 An allocation (µ, p) ∈ M × Rn is envy-free if ui(pµ(i)) ≥ ui(pj)
for all i ∈ I and j ∈ J .

Given an envy-free allocation (µ, p) ∈ M × Rn we will refer to p as an envy-
free price. Also denote by MA the set of efficient assignments relative to the
matrix of valuations A. Alkan et al. [2] prove that if the allocation (µ, p) is
envy-free then the assignment µ is efficient. One can also think of envy-freeness
as a sufficient requirement of stability since each individual prefers his object to
any other object given the vector of prices. Therefore envy-freeness is used as a
solution concept in most models dealing with indivisible objects, see for example
Alkan et al. [2], Aragonés [3], Haake et al. [8] and Klijn [9].

The assignment problem of indivisible objects was first addressed by Shapley
and Shubik [13] who proved that the problem can be translated into a linear pro-
gramming problem where the efficient assignments are obtained from the primal
problem but envy-free prices and the corresponding utilities come from the dual
problem as shadow prices. Given the matrix of valuations A, define with the coali-
tional function w(A, T, Q) the maximal worth that a coalition of agents T ⊆ I
can obtain when assigned to a set of objects Q ⊆ J . It can be expressed in terms
of the following linear programming problem2: given the matrix of valuations A
and subsets T and Q, choose (xij)i∈T,j∈Q to solve for

w(A, T, Q) ≡ max
∑

i∈T,j∈Q

aijxij (1)

1See the discussion in Section 6 when the number of agents and objects is different. Note,
however, that the results stated in this section do not require that |I| 6= |J |.

2The last condition is needed to ensure that agents will be assigned to objects even if their
valuations are negative.
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subject to

∑
i∈T

xij ≤ 1 for any j ∈ Q

∑
j∈Q

xij ≤ 1 for any i ∈ T

xij ≥ 0 for any i ∈ T, j ∈ Q∑
i∈T,j∈Q

xij = min(|T |, |S|).

This primal problem has a corresponding dual problem where the costs of inputs
— agents and objects — are minimized. Shadow prices are prices of objects and
utilities of agents. Given the matrix of valuations A and subsets T and Q, choose
(ui)i∈T and (pj)j∈Q to solve for

w(A, T, Q) ≡ min
∑
i∈T

ui +
∑
j∈Q

pj (2)

subject to

ui + pj ≥ aij for any i ∈ T, j ∈ Q. (3)

Then the solution of the primal has the property that xij takes values 0
or 1 for all i ∈ T and all j ∈ Q. Assume that T = I and Q = J . The primal
problem solves for an efficient assignment of objects as follows: given the solution
(xij)i∈I,j∈J , define the assignment µ by letting µ(i) = j if and only if xij = 1. The
dual problem gives the set of envy-free prices (this follows from constraint (3)
since ui ≥ aij − pj for all i ∈ I and all j ∈ J) and the corresponding utilities
(ui ≡ ui(pµ(i))). The set of envy-free prices forms a lattice that possess the
following property: if p′ and p′′ are two envy-free price vectors then so are the
price vectors p and p where p

i
= min(p′i, p

′′
i ) and pi = max(p′i, p

′′
i ). This property

is proven in Shapley and Shubik [13], see also Roth and Sotomayor [12] (chapter
8). The lattice has an agent-optimal price vector p∗ ≥ 0 such that p ≥ p∗ ≥ 0 for
all envy-free and non-negative prices p.

Given an efficient assignment µ, an agent-optimal price can be calculated3

(see Leonard [10] or Roth and Sotomayor [12]) using the coalitional function,
defined by equation (1), as

p∗µ(i) = w(A, I\{i}, J)− w(A, I\{i}, J\{µ(i)}), (4)

for each i ∈ I. From (4) it follows that p∗µ(i) does not depend on the object
valuations of agent i. Using this property Leonard [10] proves that the mech-
anism that selects the agent-optimal prices p∗ is strategy-proof. His result is a

3For an example how to calculate agent-optimal prices, see Section 4.
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consequence of the well-known Clark’s pivotal mechanism and is a special case
of the results proven by Roberts [11] for quasilinear utility functions.

Here I state some additional results that will be useful later in proving the
theorem.4

Proposition 1 Given a matrix of valuations A, the coalitional function w(A, T, Q)
is continuous and weakly increasing in aij.

It is shown in the proof of the Proposition 1 that when i ∈ T and j ∈ Q equation
(1) can be written as

w(A, T,Q) = max(const1 + aij · 0, const2 + aij · 1) (5)

where const2 = w(A, T\{i}, Q\{j}) and const1 is a coalitional worth that is
obtained by solving the original assignment problem subject to the additional
constraint that agent i is not assigned to object j. Since neither const1 nor const2
is affected by the change in aij they can be considered constants. Function (5) is
obviously continuous and weakly increasing in aij.

Proposition 2 Given a matrix of valuations A, the set of envy-free prices is the
same for all efficient assignments of objects.

Proposition 2 allows us to establish immediately the following result.

Corollary 1 Fix an envy-free price vector p. Under all efficient assignments of
objects each agent gets the same utility:

aiµ1(i) − pµ1(i) = aiµ2(i) − pµ2(i)

for all i ∈ I and where µ1 and µ2 are any two efficient assignments of objects.

3 Implementation Problem

In the implementation problem that I consider I restrict the set of feasible price
vectors and require the prices to sum to a given number C:

∑
j∈J pj = C. One

can think in terms of an economy that consists of the set J of indivisible objects
and the divisible object - money - of quantity C that must be assigned among n
agents.

Let 4C denote the set of price vectors that sum to C. Since all feasible price
vectors are required to belong to this set p ∈ 4C , from now on it is understood
that an allocation is an assignment-price pair (µ, p) ∈ M × 4C . And with an
envy-free price vector p I will only refer to price vectors that meet the price
constraint: p ∈ 4C .

4The proofs are provided in the Appendix.
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Given C and the matrix of valuations A, denote the set of envy-free alloca-
tions in M × 4C with G(A). If a social planner were to choose an allocation
(µ, p), arguably, he would prefer to select one from the set of envy-free alloca-
tions (µ, p) ∈ G(A) since these allocations meet the desirable normative criteria of
envy-freeness and hence efficiency. The algorithms proposed by Abdulkadiroǧlu
et al. [1], Aragonés [3], Brams and Kilgour [5], Haake et al. [8], and Klijn [9]
were designed to select allocations from the set G(A). However, all of them rely
on the knowledge of matrix A. If the social planner does not know the true pref-
erences of agents, he will need to solicit them. A question arises whether agents
have strategic incentives to reveal their true valuations. That is, an agent can
find it profitable to announce valuations of objects different from his true ones.5

Given this misrepresentation of preferences there is no guarantee anymore that
the selected allocation by any of the algorithms will satisfy envy-freeness with
respect to the true preferences. However, it will be demonstrated that, with the
help of an appropriate tie-breaking rule, selecting an allocation that is envy-free
with respect to the announced preferences, not necessarily the true ones, achieves
envy-freeness with respect to the true valuations in the equilibrium.

Formally, a strategy of agent i is a vector of real-valued valuations of objects
bi = (bi1, ..., bin) ∈ Rn that he announces. Given the matrix of reported valuations
B = [bij]i∈I,j∈J , denote the set of envy-free allocations implied by the matrix B by
G(B). A mechanism g is a mapping from the space of valuations into the space
of allocations g : Rn×n → M ×4C . I restrict attention to mechanisms that, for
each matrix of valuations B, will select an allocation (µ, p) from the envy-free set
G(B). The justification why to consider such mechanisms was provided before
- there already exist algorithms that select allocations that are envy-free with
respect to a given matrix of valuations.

In general, the set of envy-free prices is not a singleton. From all envy-free
prices the price vector that I select corresponds to the one that would be selected
according to the algorithm of Abdulkadiroǧlu et al. [1] when applied to the matrix
B. The advantage of this price vector is its explicit linear relationship with the
agent-optimal prices, given by the equation:

pj = p∗j +

C − ∑
m∈J

p∗m

n
for all j ∈ J. (6)

where p∗ is the vector of agent-optimal prices implied by B. According to this
formula each agent i ∈ I pays the agent-optimal price corresponding to the object
he gets p∗µ(i) plus the equal share of the difference between the price constraint
and the sum of all agent-optimal prices.

5Truth-telling is a dominant strategy when the assignment µ is efficient and agent i pays the
agent-optimal price p∗µ(i) of the object he gets. However, in general the agent-optimal prices
will not meet the price constraint, p∗ /∈ 4C , and therefore, (µ, p∗) /∈ G(A).
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The utility of agent i having object µ(i) and paying price pµ(i), by applying
equation (6), is

ui(pµ(i)) = aiµ(i) − pµ(i) = aiµ(i) − C

n
− n− 1

n
p∗µ(i) +

1

n

∑

l 6=i

p∗µ(l). (7)

It follows that the utility of agent i is decreasing in its own agent-optimal price
but increasing in each of other agent-optimal prices keeping the assignment µ
fixed. We know from equation (4) that p∗µ(i) does not depend on the valuations
of objects reported by agent i, that is, he cannot affect his own agent-optimal
price. However, he can affect the agent-optimal prices of other objects.

If there are several efficient assignments of agents to objects with respect to
the reported valuations B then the mechanism g will break ties according to the
following rule. Order all objects and all agents, and without loss of generality
assume that the order corresponds to the natural one: σ(i) = i for all i ∈ I
and σ(j) = j for all j ∈ J , and keep these orders fixed. Start with object 1 and
proceed iteratively. If all efficient assignments allocate object 1 to the same agent
i, then let agent i get it. Otherwise choose among all efficient assignments the
one that assigns object 1 to the agent that has announced the smallest valuation
for object 1: µ(i) = 1 if bi1 < bk1 for any k such that there exists an efficient
assignment ν ∈ MB under which ν(k) = 1. If bi1 = bk1 for two or more agents
then select the agent from this set who has been assigned the lowest number:
µ(i) = 1 if i < k when bi1 = bk1. In general, assume that objects 1 to l − 1
are already assigned. If all remaining efficient assignments allocate object l to
the same agent i, then let agent i get it. Otherwise choose among all efficient
assignments the one that assigns object l to the agent that has announced the
smallest valuation of object l: µ(i) = l if bil < bkl for any k such that there
exists an efficient assignment ν ∈ MB such that ν(k) = l and ν−1(j) = µ−1(j)
for already assigned objects j ∈ {1, ..., l − 1}. If bil = bkl for two or more agents
select the agent from this set who has been assigned the lowest number: µ(i) = l
if i < k when bil = bkl. Thus the tie-breaking rule selects a unique assignment
among all efficient assignments with respect to B. Thus, the mechanism g defines
a game form, and given A, the pair (A, g) is a game in normal form.

Assume that the strategy profile B has been announced. When a set of agents
T deviates and announces a different vector of valuations b′T ∈ R|T |×n, that leads
to another profile B′ = (b′T , b−T ). When there is only one deviator, T = {i},
the strategy profile after the deviation is denoted by B′ = (b′i, b−i). Denote the
allocation induced by the deviation by g(B′) = (µ′, p′). The solution concept
that I use is strong Nash equilibrium.

Definition 3 A strategy profile B ∈ Rn×n is a strong Nash equilibrium
relative to (A, g) if there is no coalition T and strategy profile b′T such that
ui(p

′
µ′(i)) ≥ ui(pµ(i)) for all i ∈ T and ui(p

′
µ′(i)) > ui(pµ(i)) for at least one i ∈ T .
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Denote the set of strong Nash equilibrium outcomes relative to (A, g) by OSNE
(A,g) ,

that is OSNE
(A,g) = {(µ, p) ∈ M ×4C |g(B) = (µ, p) for some pure strategy strong

Nash equilibrium B relative to (A, g)}. Similarly, we can define Nash equilibrium
if we restrict the set of deviators T to a single agent i and denote the set of Nash
equilibrium outcomes relative to (A, g) by ONE

(A,g).
Now we are ready to state the main result of the paper:

Theorem The mechanism g implements the social choice correspondence G in
strong Nash equilibrium: OSNE

(A,g) = G(A) for all A ∈ Rn×n.

4 Example

Before providing the proof of the theorem, consider the following numeric two
agent-two object example with the price constraint C = 20 and the matrix of
valuations

A =

(
15 18
6 22

)
.

The efficient assignment is µ(1) = 1 and µ(2) = 2 since 15+22 > 6+18. The set
of all envy-free prices is delimited by the equations p2 = 3 + p1 and p2 = 16 + p1

and shown in Figure 1 by the shaded area. To obtain the agent-optimal price of
object 1, we find that w(A, I\{1}, J) = 22 and w(A, I\{1}, J\{µ(1)}) = 22, and
by applying equation (4), p∗1 = 22 − 22 = 0. In the same way we can find that
p∗2 = 18− 15 = 3. Thus the agent-optimal prices are p∗ = (0, 3).

−5 0 5 10 15 20 25
0

5

10

15

20

25

p
1

p 2

Figure 1: The set of envy-free prices
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The prices that sum up to C are represented with the line connecting the
points (20,0) and (0,20). The intersection of this line with the shaded region
gives the set of envy-free prices that meet the price constraint. In general, there
are an infinity of prices that are envy-free and meet the price constraint. The
mechanism g that I consider selects, given the announced valuations, envy-free
prices obtained from the agent-optimal prices by increasing all of them by the
same amount so that the price constraint is met. If the announced valuations are
A, then the vector of prices selected by the mechanism is p = (8.5, 11.5) (found
by adding 8.5 to the agent-optimal prices p∗).

The algorithm by Abdulkadiroǧlu et al. [1] would also select the prices p =
(8.5, 11.5). Their algorithm finds the first envy-free price when we move from the
initial price vector p0 = C

n
along the rent constraint. Thus, the price p obtained

by the algorithm is the most ‘equal’ price among all envy-free prices. In the
example we start from p0 = (10, 10) and reach p = (8.5, 11.5). The proposed
mechanism does not ensure neither nonnegative prices nor individual rationality
since it depends on the magnitude of C.6 In the example, if C < 3 all envy-free
price vectors have at least one price negative and if C > 37 then there is no
envy-free price that would be individually rational.

In general, agents do not have incentives to announce the true valuations.
Agent 1 by announcing the vector b = (2, 18) still gets object 1 according to the
tie-breaking rule but pays 2 instead of 8.5. Since in order to find an efficient
assignment what matters is the relative magnitudes of valuations we can define
βi ≡ bi2 − bi1. Then agent i gets object 2 and agent k gets object 1 if βi > βk

or if βi = βk and bi1 > bk1. One can check that when agent i gets object 2 and
agent k gets object 1 the agent-optimal prices are given by p∗1 = max(−βi, 0) and
p∗2 = max(βk, 0). It is easy to check that any strategy profile B where 3 ≤ β1 =
β2 ≤ 16 and b11 ≤ b21 is a Nash equilibrium. When β1 = β2 both assignments are
efficient with respect to the announced preferences, but by announcing b11 ≤ b21

tie-breaking rule ensures that the mechanism will select the assignment that is
also efficient with respect to the true preferences.

In the proof of the theorem I consider two types of deviations when an agent
feels envy. The first occurs when the agent after the deviation still gets the same
object but the other agent now must pay a higher price and thus, according
to the price constraint, the deviating agent pays a lower price. For example, if
β2 > β1, β2 > 0 and β1 < 3 and matrix A represents the true preferences. Given
the announced preferences, µ(1) = 1 and µ(2) = 2 and the agent-optimal prices
are p∗1 = max(−β2, 0) = 0 and p∗2 = max(β1, 0). Therefore p1 = p∗1 + (20 −
p∗1 − p∗2)/2 = (20−max(β1, 0))/2 > 8.5 and p2 = 20− p1 < 11.5. Agent 1 feels
envy since 15 − p1 < 18 − p2. Agent 1 can deviate and announce β′1 = β2 and
b′11 < b21. Then agent still gets object 1 but pays only p′1 = (20 − β2)/2 < p1

since p′∗1 = max(−β2, 0) = 0 and p′∗2 = max(β′1, 0) = β2. Thus he had a profitable

6An allocation (µ, p) ∈ M ×4C is individually rational if uiµ(i)(pµ(i)) ≥ 0 for all i ∈ I.
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deviation.
The second type of deviation occurs when an agent gets the object he envies

at the price that the agent who was originally assigned to it paid. For example,
if 0 ≥ β2 > β1 and matrix A represents the true preferences then µ(1) = 1
and µ(2) = 2, p∗1 = max(−β2, 0) = −β2 and p∗2 = max(β1, 0) = 0. Agent
1 must pay p1 = (20 − β2)/2 > 8.5 and like in the previous case, feels envy.
Agent 1 can profitably deviate by announcing β′1 = β2 and b′11 > b21. After
the deviation the efficient assignment is µ′(1) = 2 and µ′(2) = 1 with agent-
optimal prices p′∗1 = max(−β′1, 0) = −β2 and p′∗2 = max(β2, 0) = 0. Agent 1 pays
p′2 = p2 = (20 + β2)/2 < 11.5. A similar profitable deviation exists when β2 = β1

and b11 = b21. Then agent 1 is assigned to object 1 and will feel envy if β1 < 3.
Agent 1 is strictly better off by announcing b′11 > b21 while keeping β′1 = β2. If
β1 = 3 then agent 1 is indifferent between getting object 1 and 2. Observe that
examples discussed cover all the cases when agent 1 could feel envy when he is
originally assigned to object 1.

When there are more than two agents, it gets a little bit more complicated
to demonstrate the existence of a profitable deviation when an agent feels envy.
It may not be anymore possible either to increase the price paid by the agent
who is assigned to the object that is envied or to obtain that object at the price
that the agent who was originally assigned to it paid. For example, consider the
following matrix of announced preferences

B =




5 10 15
5 10 0
0 10 20


 .

and C = 30 then agent optimal prices are p∗ = (0, 5, 10) and prices selected
that sum to 30 are p = (5, 10, 15). There are two efficient assignments µ1(1) =
1, µ1(2) = 2, µ1(3) = 3 and µ2(1) = 2, µ2(2) = 1, µ2(3) = 3. The tie-breaking rule
selects the first assignment. Suppose that agent 3 envies object 2 at the given
prices: a32 − 10 > a33 − 15. Agent 3 can not increase the prices of objects 1
and/or 2 and thus decrease the price of object 3 and still get it. And neither he
can obtain object 2 at price p2 = 10. By announcing the vector of valuations
b′3 = (0, 15+ε, 20) where ε > 0 ensures that µ′(3) = 2 and the agent optimal prices
will be p′∗ = (0, 5, 10 − ε) and selected prices p = (5 + ε/3, 10 + ε/3, 15 − 2ε/3).
For ε sufficiently small the agent 3 will find it advantageous to deviate since
a32 − 10− ε/3 > a33 − 15.

5 Proof of Theorem

Throughout the proof fix a matrix of true valuations A, and assume without loss
of generality that the orders of agents and objects needed to define g are both
1, 2, ..., n.
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To establish the statement of the theorem, one needs to demonstrate, first,
that for every envy-free allocation one can construct a strategy profile B that is
a strong Nash equilibrium of the proposed game (A, g) (Lemma 1); second, that
a strategy profile B where an agent feels envy at allocation g(B) = (µ, p) can not
be a strong Nash equilibrium of the game (A, g) (Lemma 2).

Lemma 1 Let (µ, p) be an envy-free allocation. Then there is a strong Nash
equilibrium B of (A, g) such that g(B) = (µ, p).

Proof: Take an envy-free allocation (µ, p) ∈ G(A). Consider the following strat-
egy profile B: each agent i ∈ I announces bi = p + ci and scalars ci have the
following relationship for any two agents i and k: ci < ck if and only if µ(i) < µ(k).
I claim that the given strategy profile constitutes a strong Nash equilibrium.

Observe that any possible assignment of objects is efficient with respect to B.
The only envy-free price vector is p. The way how the scalars ci for i = {1, ..., n}
were chosen ensures according to the tie-breaking rule that the unique assignment
selected will be µ: an agent i who announced the smallest bi1 among all agents
will be assigned to object 1 and by construction it was agent µ−1(1). Among the
remaining n − 1 agents, agent µ−1(2) announced the smallest bi2 therefore he is
assigned to object 2 and so forth.

Assume on the contrary that there exists a profitable deviation by a group
of agents T . Given the strategy profile after deviation B′ = (b

′
T , b−T ), the mech-

anism g selects an allocation (ν, p′). Since before deviation all agents i ∈ T
preferred their object to any other object and for a deviation to be profitable it
must be that

aiν(i) − p′ν(i) ≥ aiµ(i) − pµ(i) ≥ aiν(i) − pν(i) (8)

with the first inequality strict for at least one agent i ∈ T . It follows that for all
i ∈ T

p′ν(i) ≤ pν(i) (9)

with at least one inequality strict. Thus there exits an object j whose price has
strictly decreased: p′j < pj. Observe that if T = I it follows immediately that
the new price vector does not sum to C, a contradiction.

If T  I choose the object j whose price has decreased the most. Since after
the deviation the selected allocation g(B′) = (ν, p′) is envy-free with respect to
the matrix B′ then for each non-deviating agent i ∈ I\T we have an inequality

biν(i) − p′ν(i) ≥ bij − p′j. (10)

Using the fact that before the deviation biν(i) − pν(i) = bij − pj since bi = p + ci

we obtain for each agent i ∈ I\T that

0 > p′j − pj ≥ p′ν(i) − pν(i) (11)
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for the assignment ν. Thus it follows that p′ν(i) < pν(i) for all i ∈ I\T . Combining

it with (9) and summing up over all the agents gives

n∑
j=1

p′j <

n∑
j=1

pj,

a contradiction since both price vectors must sum to C.

Lemma 1 says that an envy-free allocation can be supported as a strong Nash
equilibrium of (A, g). Therefore, if (µ, p) ∈ G(A) then (µ, p) ∈ OSNE

(A,g) . Note also
that the proof does not depend on any particular way the prices are determined
as long as they are envy-free with respect to the announced matrix B.

Lemma 2 Let B be a strategy profile such that g(B) = (µ, p) /∈ G(A). Then B
is not a strong Nash equilibrium of (A, g).

Proof: Let g(B) = (µ, p) be given and assume that agent i envies object j:

ui(pj) > ui(pµ(i)). (12)

I will construct a profitable deviation in two steps. In the first step consider a
possible deviation b′i where agent i announces

b′ij = w(B, I, J)− w(B, I\{i}, J\{j}) ≥ bij

and b′ik = bik for all k 6= j. According to (5) we can distinguish between two
cases before the deviation. First, there was an efficient assignment ν ∈ MB such
that ν(i) = j. Then we have const1 ≤ w(B, I\{i}, J\{j}) + bij = w(B, I, J).
Then by the construction of the deviation b′ij = bij and w(B′, I, J) = w(B, I, J).
Second, there was no efficient assignment ν ∈ MB such that ν(i) = j. It implies
that w(B, I\{i}, J\{j}) + bij < const1 = w(B, I, J). By substituting this result
for const1 in equation (5) but applied to calculate w(B′, I, J), it again follows
that w(B′, I, J) = w(B, I, J). Since after the deviation every assignment that
achieves the coalitional worth equal to w(B′, I, J) is efficient, it follows that all
assignments that were efficient before the deviation remain efficient after. That
is, the deviation b′i was constructed in such a way that no assignment that was
efficient is destroyed by the deviation and if the deviation adds an additional
efficient assignment, it must assign agent i to object j: if ν ∈ MB then ν ∈ MB′ ,
and if ν ∈ MB′ but ν /∈ MB then ν(i) = j. It follows that µ ∈ MB′ . Therefore
we can take the assignment µ to find the agent-optimal price of any object l ∈ J
after the deviation according to (4):

p′∗l = w(B′, I\{µ−1(l)}, J)− w(B′, I\{µ−1(l)}, J\{l}). (13)

12



Since w(B′, I, J) = w(B, I, J) and b′µ−1(l)l = bµ−1(l)l for all l ∈ J because the only

valuation to change was bij but µ(i) 6= j, therefore the second term of (13) does
not change:

w(B′, I\{µ−1(l)}, J\{l}) = w(B′, I, J)− b′µ−1(l)l = w(B, I, J)− bµ−1(l)l.

By Proposition 1 the first term is weakly increasing in bij:

w(B′, I\{µ−1(l)}, J) ≥ w(B, I\{µ−1(l)}, J).

Therefore none of the agent-optimal prices can decrease as a result of the devia-
tion.

In the continuation I analyze the following two cases:

Case 1 The agent-optimal price of object j strictly increases: p′∗j > p∗j.

It means that

w(B′, I\{µ−1(j)}, J) > w(B, I\{µ−1(j)}, J).

It can only happen if b′ij > bij, which means that there was no efficient assignment
ν ∈ MB that would allocate agent i to object j. Applying (5) we obtain that7

w(B′, I\{µ−1(j)}, J) = const2 + b′ij > (14)

w(B, I\{µ−1(j)}, J) = max(const1, const2 + bij).

Now consider a deviation where agent i announces, given a sufficiently small
ε > 0,

b′′ij = b′ij − ε > bij

and b′′ik = bik for all k 6= j. In what follows I compare the strategy profile after
the deviation B′′ = (b′′i , b−i) with the initial strategy profile B = (bi, b−i). First,
after the deviation the set of efficient assignments does not change MB = MB′′ ,
and so does the selected assignment: µ ∈ MB. Second, using the same argument
as when discussing the deviation B′ = (b′i, b−i), none of agent-optimal prices can
decrease as a result of the deviation. Third, from (14) it follows that

w(B′, I\{µ−1(j)}, J) > w(B′′, I\{µ−1(j)}, J) > w(B, I\{µ−1(j)}, J),

and as a result p′′∗j = p′∗j − ε > p∗j. Fourth, the agent-optimal price of object µ(i)
does not change pµ(i) = p′′µ(i) since by (4) it does not depend on the valuations of

agent i. Then, according to (7), agent i is strictly better off after the deviation
b′′i , thus strategy profile B was not an equilibrium.

7Observe that the values of constants const1 and const2 change depending on the sets T ⊆ I
and Q ⊆ J but not on the value of bij while keeping the rest bkl, for k 6= i and l 6= j, fixed.
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Case 2 The agent-optimal price of object j remains the same: p′∗j = p∗j.

First I argue that this case implies that none of the agent-optimal prices will
change due to the deviation b′i, namely, p′∗k = p∗k for all k ∈ J . From Proposition
2, in order to check whether a price vector is envy-free, it is sufficient to consider
any efficient assignment. Choose µ ∈ MB since by the construction of B′ the
assignment µ ∈ MB′ . Clearly, the only agent who could feel envy under the price
vector p∗, given the matrix of valuations B′, is agent i and only with respect to
object j, that is, biµ(i)−p∗µ(i) < b′ij−p∗j. However, the deviation was constructed

to ensure that there exists an assignment ν ∈ MB′ such that ν(i) = j. Corollary
1 says that biµ(i) − p′∗µ(i) = b′ij − p∗j but agent i cannot affect the agent-optimal
price of the object he is assigned to under some efficient assignment rule therefore
p′∗µ(i) = p∗µ(i). Thus nobody feels envy relative to B′ under price vector p∗. And
it was argued before that as a result of the deviation b′i, the agent-optimal prices
cannot decrease, therefore p∗ must be vector of agent-optimal prices after the
deviation.

Now consider a deviation b′′i where agent i announces, for sufficiently small ε,

b′′ij = b′ij + ε

and b′′ik = bik for all k 6= j. After the deviation all efficient assignments will
allocate object j to agent i: ν(i) = j for all ν ∈ MB′′ and B′′ = (b′′i , b−i). In
what follows I compare the situation when the strategy profile B′ = (b′i, b−i) was
used with the strategy profile B′′ = (b′′i , b−i). Take any efficient assignment after
the deviation b′′i : ν ∈ MB′′ . This assignment was efficient before the deviation:
ν ∈ MB′ . Again, agent i cannot affect his own agent-optimal price, here, the
price of object j. According to (4), before the deviation the price of any object
l 6= j is equal to

p∗l = w(B′, I\{ν−1(l)}, J)− w(B′, I\{ν−1(l)}, J\{l}) (15)

where

w(B′, I\{ν−1(l)}, J\{l}) = w(B′, I\{ν−1(l), i}, J\{l, j}) + b′ij

since ν(i) = j. After the deviation b′′ij the second term of (15) has increased by
ε, that is,

w(B′′, I\{ν−1(l)}, J\{l}) = w(B′, I\{ν−1(l)}, J\{l}) + ε

for all l 6= j. The first term of (15) before the deviation is

w(B′, I\{ν−1(l)}, J) = max(const1, const2 + b′ij).

Therefore, after the deviation b′′ij, it belongs to the interval:

w(B′, I\{ν−1(l)}, J) + ε ≥ w(B′′, I\{ν−1(l)}, J) ≥ w(B′, I\{ν−1(l)}, J).
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It follows that the agent-optimal prices of objects other than j cannot increase
and each of them can decrease at most by ε: p∗l − ε ≤ p′′∗l ≤ p∗l for all l 6= j.
Since, according to (7), the utility of agent i is increasing in the agent-optimal
prices paid by other agents, consider the worst case: p′′∗l = p∗l − ε for all l 6= j.
Then the utility of the agent i after the deviation is ui(p

′′
j ) = ui(pj) − n−1

n
ε. By

(12), for sufficiently small ε,

ui(p
′′
j ) = ui(pj)− n− 1

n
ε > ui(pµ(i)).

Thus, for sufficiently small ε, announcing

b′′ij = w(B, I, J)− w(B, I\{i}, J\{j}) + ε

is a profitable deviation for agent i and the matrix B could not form a profile of
Nash equilibrium strategies.

From Lemma 2 it follows that if B is a Nash equilibrium of (A, g) it must
be envy-free, that is, if g(B) ∈ ONE

(A,g) then g(B) ∈ G(A). Since OSNE
(A,g) ⊆ ONE

(A,g)

then the set of strong Nash equilibria belongs to the set of envy-free allocations
OSNE

(A,g) ⊆ G(A). Lemma 1 already established the converse inclusion G(A) ⊆
OSNE

(A,g) . Therefore G(A) = OSNE
(A,g) .

Since Lemma 1 implies that G(A) ⊆ OSNE
(A,g) and Lemma 2 implies that OSNE

(A,g) ⊆
ONE

(A,g) ⊆ G(A) we have an additional results.

Corollary 2 The sets of Nash equilibria and strong Nash equilibria of (A, g)
coincide: ONE

(A,g) = OSNE
(A,g).

Corollary 3 The mechanism g implements the social choice correspondence G
in Nash equilibrium: ONE

(A,g) = G(A) for all A ∈ Rn×n.

6 Concluding Remarks

The model explicitly assumes that the number of agents and objects is the same.
If the number of agents exceeded the number of objects one could introduce
fictitious objects and the previous analysis would still apply. However, when the
number of objects exceeds the number of agents, the introduction of fictitious
agents does not work since it implies that fictitious agent will need to pay a price
or receive a transfer of the object he is assigned to. As a result the actually paid
prices would not meet the price constraint.

The feature of the mechanism is that an equilibrium strategy profile B will
usually imply multiple efficient assignments with respect to announced valua-
tions. Therefore the mechanism always needs to rely on the tie-breaking rule to
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select the right assignment. I view this dependence on the tie-breaking rule as
a drawback since the initial objective to select an envy-free allocation given the
announced preferences has been coupled with a non-intuitive tie-breaking rule.
One could substitute the present tie-breaking rule with another one where agents
additionally to their valuations announce the object they prefer. However, my
objective was to restrict the strategy space of agents to the announcements about
their own valuations.

Observe that the mechanism does not ensure individual rationality. Thus it
implicitly assumes that agents are forced to participate in the game although
they may prefer to stay away. The set-up of the model imposes an exogenous
price constraint. If C is big enough then there will be no individually rational
and envy-free allocations. However, if C were not fixed, one could simply apply
the results of Leonard [10] and Demange et al. [7] to implement in dominant
strategies.

Appendix: The Proofs of Propositions

Proposition 1 Given a matrix of valuations A, the coalitional function w(A, T, Q) is contin-
uous and weakly increasing in aij.

Proof: If either i /∈ T or j /∈ Q then w(A, T, Q) does not depend on aij and can be treated as
constant - obviously continuous and weakly increasing in aij . Assume that i ∈ T and j ∈ Q.
Given a solution (xij)(i,j)∈T×Q to the primal problem, we can write equation (1) in the following
form:

w(A, T,Q) =
∑

(k,l)∈T×Q\{(i,j)}
aklxkl + aijxij . (16)

First, I claim that if as a result of the change from aij to a′ij , keeping the rest of valuations
fixed, there is no change in xij = x′ij , then there is no change in the solution xkl = x′kl for all
(k, l) ∈ T × Q. Assume, on the contrary, that xkl 6= x′kl for some (k, l) ∈ T × Q\{(i, j)}, and
that x′kl for all (k, l) ∈ T × Q was not another solution of the original problem. Then we can
write the system of equations:

∑

(k,l)∈T×Q\{(i,j)}
aklx

′
kl + aijxij <

∑

(k,l)∈T×Q\{(i,j)}
aklxkl + aijxij

∑

(k,l)∈T×Q\{(i,j)}
aklx

′
kl + a′ijxij ≥

∑

(k,l)∈T×Q\{(i,j)}
aklxkl + a′ijxij ,

where the first inequality holds under original valuations and the second holds after the change
in aij . Thus we obtain a contradiction. Given this result, we can write equation (1) as

w(A, T,Q) = max(const1 + aij · 0, const2 + aij · 1). (17)

The function in (17) is obviously continuous and weakly increasing in aij . Note that const2 =
w(A, T\{i}, Q\{j}) since agent i has been assigned to object j and each agent can be assigned
to at most one object and vice versa.

Proposition 2 Given a matrix of valuations A, the set of envy-free prices is the same for
all efficient assignments of objects.
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Proof: Take any two efficient assignments µ1 and µ2. Assume, on the contrary, that the
price vector p is envy-free for the assignment µ1 but it is not envy-free for the assignment µ2.
Envy-freeness of µ1 implies that

aiµ1(i) − pµ1(i) ≥ aiµ2(i) − pµ2(i) (18)

for all i ∈ I. Assume without loss of generality that agent 1 envies object j under assignment
µ2:

a1µ1(1) − pµ1(1) ≥ aij − pj > a1µ2(1) − pµ2(1). (19)

Summing up equation (18) across all agents and using equation (19) we obtain
∑

i∈I

aiµ1(i) −
∑

i∈I

pµ1(i) >
∑

i∈I

aiµ2(i) −
∑

i∈I

pµ2(i),

contradicting the assumption that µ2 was an efficient assignment.
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