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Abstract: In this note we study uncertainty sequencing situations, i.e., 1-machine sequencing
situations in which no initial order is specified. We associate cooperative games with these
sequencing situations, study their core, and provide links with the classic sequencing games
introduced by Curiel et al. (1989). Moreover, we propose and characterize two simple cost
allocation rules for uncertainty sequencing situations with equal processing times.
JEL classification: C71, C78.
Keywords: Sequencing, Cooperative games.

1 Introduction

In operations research, sequencing situations are characterized by a finite number of jobs lined
up in front of one or more machines that have to be processed on the machines. A single decision
maker wants to determine a processing order of the jobs that minimizes total costs. This single
decision maker problem can be transformed into a multiple decision makers problem by taking
into account agents that own (at least) one job. In such a model, a group of agents (coalition)
can save costs by cooperation.

Cooperative game theory has turned out to be a useful tool for the study of cooperation in
sequencing situations (cf. Curiel et al., 2002). Curiel et al. (1989) started this line of research.
The sequencing situations they dealt with consist of a set of agents who each have one job to
be processed on a single machine. Moreover, they assumed the existence of an initial order, i.e.,
an order that is established before the processing takes place. Next, they associated with each
sequencing situation a sequencing game, a cooperative transferable utility (TU) game in which
the worth of a coalition equals the maximal cost savings the coalition can obtain by reordering
their positions according to admissible rearrangements. Apart from studying the properties of
the games, Curiel et al. (1989) introduced the equal gain splitting rule, an allocation rule that
assigns to each sequencing game a particular core allocation.

In many sequencing situations, however, there is no (clear) initial order because the arrival
pattern can be stochastic or in batches instead of deterministic and individual. An illustrating
example is the short period of time in the morning in which cars arrive at a service station
for reparation. The order in which the cars are delivered does not impose any direct condition
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His work is also partially supported by Research Grant BEC2002-02130 from the Spanish Ministerio de Ciencia
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on the work scheme for the day, nor can any customer claim a particular time slot. Another
example is the arrival of travellers at a passport control of an airport. Even if passengers arrive
sequentially, the rules of the airport could require to change the order based on the first-come-
first-serve principle, using other criteria such as nationality, departure time, final destination,
etc.

In this note, we study sequencing situations as in Curiel et al. (1989), but with the difference
that now no initial order is specified. In Section 2, we recall some well-known concepts on
cooperative games. In Section 3, we present uncertainty sequencing situations and associate
with them two natural classes of TU games. In Section 4, we show that both games are balanced
and provide relations to the classic sequencing games. Finally, in Section 5, we introduce and
characterize two intuitive cost allocation rules for uncertainty sequencing situations with equal
processing times.

2 Preliminaries on cooperative game theory

A cooperative TU cost game (or shortly, cost game) is a pair (N, c) where N = {1, ..., n} is a
finite set of agents and c : 2N → IR is a map assigning to each coalition S ∈ 2N , a real number
c(S) that represents the minimum costs that the agents of S can guarantee by themselves
independently of the agents of N\S, where c(∅) = 0.

Let (N, c) be a cost game. The game (N, c) is concave if for all i ∈ N and all S ⊂ T ⊆ N\i,
c(T ∪ i)− c(T ) ≤ c(S∪ i)− c(S).1 The core of (N, c) consists of all vectors in IRN that distribute
the costs c(N) among the players in N in such a way that no subset of players can be better
off by seceding from the rest of the players and act on their own behalf. Formally, the core is
defined by C(N, c) = {x ∈ IRN : x(N) = c(N) and x(S) ≤ c(S) for all S ⊂ N}.2 Games with
a non-empty core are called balanced games. Each concave game is balanced, but not every
balanced game is concave.

For S ⊆ N, we denote by Π(S) the set of orders of S, i.e., bijective functions from S to
{1, ..., s}, where s = |S| is the cardinality of S. A generic order of S is denoted by σS ∈ Π(S).
For i ∈ S and σS ∈ Π(S), let P (σS , i) = {j ∈ S : σS(j) < σS(i)} and F (σS , i) = {j ∈ S :
σS(j) > σS(i)} be the set of predecessors and followers of i with respect to σS , respectively.
Finally, for σ ∈ Π(N), σ = (σ−1(1), . . . , σ−1(n)), the reversed order σ−1 is given by σ−1 =
(σ−1(n), . . . , σ−1(1)).

The Shapley (1953) value of a game (N, c) is defined as the average of all marginal vectors,
i.e.,

Sh(N, c) =
1
n!

∑
σ∈Π(N)

mσ(c),

where the i-th coordinate of the marginal vector mσ(c) is given by mσ
i (c) = c(P (σ, i) ∪ i) −

c(P (σ, i)). We will denote by ext(C(N, c)) the set of extreme points of C(N, c). If (N, c) is a
concave game, then the marginal vectors mσ(c) are the extreme points of C(N, c). Hence, for a
concave game (N, c), C(N, c) = conv{mσ(c) : σ ∈ Π(N)} and the Shapley value is the center of
gravity of the extreme points of the core taking into account multiplicities.3

1S ⊆ N (S ⊂ N) denotes that S is a subset (proper subset) of N . Also, we abbreviate {i} by i.
2For any x = (xi)i∈N ∈ IRN and S ⊆ N we denote x(S) =

∑
i∈S xi.

3Given a set A ⊆ IRN , we denote by conv(A) its convex hull.
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3 Sequencing situations and games

A sequencing situation consists of a triple (N, p, α) and possibly some (information on the)
initial order. The triple (N, p, α) describes a finite set N = {1, ..., n} of agents, each one of
them owning one job that has to be processed on a machine. With a slight abuse of notation
we denote agent i’s job by i. The processing times of the jobs are given by p = (pi)i∈N with
pi > 0 for all i ∈ N . Each agent i ∈ N has a cost function ci : [0,∞) → IR given by ci(t) = αit,
t ∈ [0,∞), where αi > 0. The expression ci(t) is interpreted as the cost incurred by agent i if
his job is completed at time t.

Concerning the information on the initial order, we distinguish between the following two
classes of sequencing situations:

(i.s.s.) An initial order sequencing situation (cf. Curiel et al., 1989) is given by a quadruple
(N, p, α, σN ) where σN ∈ Π(N) is the initial order of the jobs. For i ∈ N, agent i’s job is
initially at position σN (i).

(u.s.s.) An uncertainty sequencing situation is given by the triple (N, p, α).

In an initial order sequencing situation there is an initial order before the processing of the
machine starts. In an uncertainty sequencing situation there is no information whatsoever on
the initial order. In both frameworks, we obtain the optimal order of the jobs by ordering them
in non-decreasing order of their urgency indices, defined for i ∈ N as ui = αi

pi
(Smith, 1956).

A subsequent problem is how to allocate the minimal total costs among the agents. This
problem can be tackled by cooperative game theory. In the classic framework of an i.s.s., a
(cooperative) sequencing game is defined by assigning to each coalition the minimal costs the
coalition can guarantee by reordering their positions according to admissible rearrangements.4

Given an initial order σN ∈ Π(N), we call σ ∈ Π(N) an admissible order or rearrangement
for S if the players of S do not ‘jump’ over players outside S. Formally, P (σ, i) = P (σN , i)
for all i ∈ N\S. The set of all admissible rearrangements for a coalition S is denoted by
ΣS(σN ) ⊆ Π(N). For σ ∈ ΣS(σN ), let c(S, σ) be the aggregate costs of coalition S in the order
σ, i.e., c(S, σ) =

∑
i∈S αi(pi +

∑
j∈P (σ,i) pj). Hence, formally,

• The classic sequencing cost game (N, cσN ) (cf. Curiel et al., 1989):

For an i.s.s. (N, p, α, σN ), the cost game (N, cσN ) is defined by

cσN (S) = min
σ∈ΣS(σN )

c(S, σ) for all S ⊆ N.

An order σ̂ ∈ ΣS(σN ) ⊆ Π(N) with c(S, σ̂) = cσN (S) is called an optimal order or rearrangement
for coalition S. An optimal order for N is simply called an optimal order. Curiel et al. (1989)
proved that classic sequencing games are concave, and hence have a non-empty core.

4In Curiel et al. (1989) the game is defined in terms of ‘cost savings.’ Note, however, that the notion of cost
savings in sequencing implies the existence of an initial order. Since we want to study sequencing situations
without initial order we first have to translate the classic framework of ‘cost savings’ into one of ‘costs.’
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For a sequencing situation without initial order, there are (at least) two natural ways to
proceed. We illustrate this by means of an example.

Example 3.1 Let (N, p, α) be an u.s.s. given by N = {1, 2, 3}, p = (1, 1, 1), and α = (7, 3, 1).
A first approach to construct a game follows from assuming that no coalition minds being

processed first. Hence, a ‘bad’ case scenario would be to be processed last, i.e., the coalition
assumes it forms the tail of some ‘artificial’ initial order. For instance, for coalition {1, 3} this
means that the artificial order is (2, 1, 3) or (2, 3, 1). In both cases, since players 1 and 3 can
cooperate we obtain a further reduction to the order (2, 1, 3) with minimal costs ctail({1, 3}) = 17.

A second approach considers the worst case (pessimistic) scenario, i.e., the order with high
‘initial’ costs and few cooperation possibilities so that final minimal costs are maximal. For
instance, for coalition {1, 3} this is the order (3, 2, 1). Since in this order players 1 and 3 cannot
cooperate (they cannot jump over player 2), the minimal costs are cpes({1, 3}) = 22. �

We formalize the tail and pessimistic approach in the following definitions.

• The tail game ctail and the pessimistic game cpes. Given an u.s.s. (N, p, α), we define

ctail(S) = min
σS∈Π(S)

[
∑
k∈S

αk(
∑

l∈(N\S)∪P (σS ,k)∪k pl)] for all S ⊆ N , and

cpes(S) = max
σN∈Π(N)

[cσN (S)] for all S ⊆ N.

An order σ̂S ∈ Π(S) with
∑

k∈S αk(
∑

l∈(N\S)∪P (σ̂S ,k)∪k pl) = ctail(S) is called optimal for S.
Note that the order of the members of N\S is irrelevant for the value of coalition S in ctail.

Remark 3.2 Although the definition of ctail is more involved than that of cpes, the computation
of the game ctail is almost direct, while for the computation of the game cpes we need to find
the worst order for each coalition, which in general is a cumbersome task.

Throughout our analysis the triple (N, p, α) is fixed. The next proposition provides some
first elementary relations between the games introduced above. We omit its proof.

Proposition 3.3 (i) For all S ⊆ N, ctail(S) ≤ cpes(S), with equality for S = N .
(ii) For all i ∈ N , ctail(i) = cpes(i) = αi(

∑
k∈N

pk).

4 The core

In this section we study the core of the games introduced in the previous section. We first
provide an expression for the marginal vectors of ctail.

Lemma 4.1 For σ ∈ Π(N) and i ∈ N, mσ
i (ctail) = αi

(
pi+

∑
l∈F (σ,i)

pl

)
+

∑
k∈P (σ,i):uk>ui

(pkαi−piαk).

Proof. We first prove that for all S ⊆ N and all i ∈ S,

ctail(S)− ctail(S\i) = αi

(
pi +

∑
l∈N\S

pl

)
+

∑
k∈S:uk>ui

(pkαi − piαk). (1)
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The lemma then follows by taking S = P (σN , i) ∪ i.
To see (1) it is sufficient to note that there are optimal orders σ̂S\i ∈ Π(S\i) and σ̂S ∈ Π(S)

of S\i and S, respectively, with

P (σ̂S , k) =
{
P (σ̂S\i, k) ∪ i if uk ≤ ui;
P (σ̂S\i, k) if uk > ui.

for all k ∈ S\i. �

Curiel et al. (1989) showed that the classic sequencing games are concave. In the following
proposition we show that tail games are concave as well.

Proposition 4.2 The game (N, ctail) is concave.

Proof. Let S ⊂ T ⊆ N\i. From (1) in the proof of Lemma 4.1 it follows that for U = S, T ,

ctail(U)− ctail(U\i) = αi

(
pi +

∑
l∈N\U

pl

)
+

∑
k∈U :uk>ui

(pkαi − piαk).

As
∑

l∈N\S pl ≥
∑

l∈N\T pl and {k ∈ T : uk > ui} ⊇ {k ∈ S : uk > ui} we find ctail(S) −
ctail(S\i) ≥ ctail(T )− ctail(T\i). Hence, the game (N, ctail) is concave. �

Now, the balancedness of both the tail as well as the pessimistic games follows readily.

Proposition 4.3 The games (N, ctail) and (N, cpes) are balanced. In fact, ∅ 6= C(N, ctail) ⊆
C(N, cpes).

Proof. By Proposition 4.2 the game (N, ctail) is concave, and hence balanced, i.e., C(N, ctail) 6=
∅. By Proposition 3.3 (i), C(N, ctail) ⊆ C(N, cpes), and hence the game (N, cpes) is balanced. �

Given that the tail game is not ‘hard’ to calculate, we can provide some further results for this
game. We first exhibit a relation between the core of the tail game and a marginal vector of all
corresponding classic sequencing games. Next, we provide a simple expression of the Shapley
value of the tail game in terms of any pair of ‘reversed’ marginal vectors.

Proposition 4.4 (i) C(N, ctail) = conv{mσ−1
(N, cσ) : σ ∈ Π(N)}.

(ii) For any σ ∈ Π(N), Sh(N, ctail) = 1
2 [mσ(ctail) +mσ−1

(ctail)].

Proof. (i) Let x ∈ ext(C(N, ctail)). Since (N, ctail) is a concave game, there is an order
τ ∈ Π(N), τ = (τ−1(1), ..., τ−1(n)), such that x = mτ (ctail). We will show that x = mτ (cσ),
where σ = (τ−1(n), ..., τ−1(1)). Let i ∈ N and let p ∈ {1, . . . , n} be such that i = τ−1(p). Then,

xi = mτ
i (ctail)

= ctail({τ−1(1), ..., τ−1(p)})− ctail({τ−1(1), ..., τ−1(p− 1)})
= cσ({τ−1(1), ..., τ−1(p)})− cσ({τ−1(1), ..., τ−1(p− 1)})
= mτ

i (cσ).

Since the game (N, ctail) is concave, the result follows.
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(ii) Applying Lemma 4.1 to σ ∈ Π(N) and i ∈ N gives

mσ
i (ctail) +mσ−1

i (ctail) = αi

(∑
l∈N

pl + pi

)
+

∑
k∈N :uk>ui

(pkαi − piαk).

Since the right hand side of the expression above does not depend on σ,

Sh(N, ctail) =
1
n!

∑
σ∈Π(N)

mσ(N, ctail) =
1
2
[mσ(ctail) +mσ−1

(ctail)].

�

Finally, we show how the core of the tail game and the pessimistic game are related to the
core of the classic sequencing game.

Proposition 4.5 C(N, ctail) ⊆ conv

{ ⋃
σ∈Π(N)

C(N, cσ)

}
⊆ C(N, cpes).

Proof. The first inclusion is a a direct consequence of Proposition 4.4 (i). We prove the second
inclusion. By definition of cpes, cσ(S) ≤ cpes(S) for all σ ∈ Π(N) and all coalitions S ⊆ N (with
equality for S = N). Hence, C(N, cσ) ⊆ C(N, cpes) for all σ ∈ Π(N). The result now follows
from the convexity of C(N, cpes). �

5 Cost allocation rules

Having described the relations between the cores of the games, we now turn to the problem of
finding (intuitive) cost allocation rules for the class of uncertainty sequencing situations. Let C
be the class of all uncertainty sequencing situations with equal processing times. Without loss
of generality we may assume that for any problem in C all jobs have processing time 1. A (cost
allocation) rule on C is a map ϕ that assigns to each (N,α) ∈ C a vector ϕ(N,α) ∈ IRN . Next,
we introduce two natural rules on C. For (N,α) ∈ C let Ω(N,α) denote the set of optimal orders,
i.e., Ω(N,α) = {σ ∈ Π(N) : ασ−1(1) ≥ ... ≥ ασ−1(n)}.

The proportional rule PRO. For any uncertainty sequencing situation (N,α) ∈ C we define

PRO(N,α) =
(

αi∑
k∈N αk

c(N, σ̂)
)

i∈N

,

where σ̂ ∈ Ω(N,α).

The cost splitting rule according to optimal orders ψ. For any uncertainty sequencing
situation (N,α) ∈ C we define

ψ(N,α) =

 1
|Ω(N,α)|

∑
σ̂∈Ω(N,α)

αiσ̂(i)


i∈N

.
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Remark 5.1 In the special case of αi = δ for all i ∈ N for some constant δ > 0, PROi(N,α) =
ψi(N,α) = Shi(N, ctail) = δ

2(n+ 1) for all i ∈ N .

As the following two propositions show, both rules introduced above are ‘fair’ in the sense
that they always yield a cost allocation that is in the core of the corresponding tail game.

Proposition 5.2 Let (N, ctail) be the tail game associated with (N,α) ∈ C. Then, PRO(N,α) ∈
C(N, ctail).

Proof. Denote x = PRO(N,α). Let S ⊆ N, S = {i1, ..., is} with αi1 ≥ ... ≥ αis . Then,

x(S) =
∑
i∈S

αi∑
k∈N

αk
(α1 + 2α2 + ...+ nαn)

=
αi1∑

k∈N

αk
(α1 + 2α2 + ...+ nαn) +

αi2∑
k∈N

αk
(α1 + 2α2 + ...+ nαn) + (2)

...
αis∑

k∈N

αk
(α1 + 2α2 + ...+ nαn)

Let XS = (xkl) be the s× n-matrix defined by

xkl :=
αik∑

k∈N

αk
lαl for all k = 1, ..., s and l = 1, ..., n.

Note that x(S) =
s∑

k=1

n∑
l=1

xkl.

The proof proceeds now as follows. We construct an s × n-matrix matrix CS = (ckl) such

that
s∑

k=1

n∑
l=1

ckl = ctail(S), and show that
s∑

k=1

n∑
l=1

xkl ≤
s∑

k=1

n∑
l=1

ckl, which will complete the proof.

First we define the sets U and V of matrix coordinates as follows:

U : = {(l,m) ∈ {1, ..., s} × {1, ..., n} : m > (n− s) + l},
V : = {(x, y) ∈ {1, ..., s} × {1, ..., n} : y ≤ x+ (n− s− 1)}.

Note that U ∩ V = ∅. Let f : U → V be the map defined by f(l,m) := (m − (n − s), l) for all
(l,m) ∈ U. It can be easily shown that f is injective.

Then, the matrix CS is defined as follows

ckl :=



αik∑
k∈N

αk
lαl −

αik
αl∑

k∈N
αk

(s− k − (n− l)) if (k, l) ∈ U ;
αik∑

k∈N
αk
lαl +

αik
αl∑

k∈N
αk

(k − l + (n− s)) if (k, l) ∈ V ;
αik∑

k∈N
αk
lαl otherwise.

(3)
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It can be easily shown that ckl =
αik∑

k∈N
αk
αl(n − s + k) for all pairs (k, l) ∈ {1, ..., s} × {1, ..., n}.

(For (k, l) /∈ U ∪ V, take into account that n − s + k = l.) This implies that
s∑

k=1

n∑
l=1

ckl =

s∑
k=1

n∑
l=1

αik∑
k∈N

αk
αl(n− s+ k) =

s∑
k=1

αik(n− s+ k) = ctail(S), as desired.

It remains to prove that
s∑

k=1

n∑
l=1

xkl ≤
s∑

k=1

n∑
l=1

ckl. Taking into account (2), (3), and the fact

that f is injective, one deduces that we only need to prove that

αikαl∑
k∈N

αk
(s− k − (n− l)) ≤

αil−(n−s)
αk∑

k∈N

αk
(l − k) for all (k, l) ∈ U .

This inequality follows readily since for all (k, l) ∈ U ,
(i) (s− k − (n− l)) ≤ l − k since s ≤ n;
(ii) αik ≤ αk for all k = 1, ..., s;
(iii) αl ≤ αil−(n−s)

since il−(n−s) ≤ l as there are s− (l− (n− s)) = n− l players in S after player
il−(n−s). �

Proposition 5.3 Let (N, ctail) be the tail game associated with (N,α) ∈ C. Then, ψ(N,α) ∈
C(N, ctail).

Proof. Let σ̂ ∈ Ω(N,α). It follows from a result by Curiel et al. (1989) that (αiσ̂(i))i∈N =
(cσ̂(i))i∈N ∈ C(N, cσ̂). Moreover, it is easy to check that C(N, cσ̂) ⊆ C(N, ctail). So,
(αiσ̂(i))i∈N ∈ C(N, ctail). Because the core is a convex set, we obtain that also ψ(N,α) =
( 1
|Ω(N,α)|

∑
σ̂∈Ω(N,α)

αiσ̂(i))i∈N ∈ C(N, ctail). �

Corollary 5.4 Let (N, cpes) be the pessimistic game associated with (N,α) ∈ C. Then,
PRO(N,α), ψ(N,α) ∈ C(N, cpes).

Apart from providing core allocations, the two cost allocation rules are characterized by the
following properties. A rule on C satisfies

EFF (efficiency) if for all (N,α) ∈ C,
∑
i∈N

ϕi(N,α) = c(N, σ̂), where σ̂ ∈ Ω(N,α).

ETE (equal treatment of equals) if for all (N,α) ∈ C and i, j ∈ N with αi = αj , ϕi(N,α) =
ϕj(N,α).
URG (urgency) if for all (N,α) ∈ C and all i, j ∈ N, i 6= j with αi > αj , ϕi(N\{j}, α|N\{j}) =
ϕi(N,α).
PROP (proportionality) if for all (N,α) ∈ C and all i, j ∈ N , ϕi(N,α)

ϕj(N,α) = αi
αj

.

Proposition 5.5 (i) PRO is the unique rule on C that satisfies EFF and PROP.
(ii) ψ is the unique rule on C that satisfies EFF, ETE, and URG.
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Proof. (i) Straightforward.
(ii) It can be easily checked that ψ satisfies EFF, ETE, and URG. We prove the uniqueness.
Let ϕ be a rule satisfying EFF, ETE, and URG. Let (N,α) ∈ C. Without loss of generality, we
assume that α1 ≥ . . . ≥ αn.

Let S1 = {j ∈ N : αj = α1} and s1 = |S1|. From EFF, ETE, and URG it follows that for
all j ∈ S1,

ϕj(N,α) = ϕj(S1, α|S1
) =

α1

2
(s1 + 1) = ψj(S1, α|S1

) = ψj(N,α).

If S1 = N , we are done. If S1 6= N , then let j2 ∈ N be such that αj2 = max
j∈N\S1

αj . Let

S2 = {j ∈ N\S1 : αj = αj2} and s2 = |S2|. Then by URG, for all j ∈ S2,

ϕj(N,α) = ϕj(S1 ∪ S2, α|S1∪S2
).

Hence, by EFF, ∑
j∈S2

ϕj(N,α) =
∑
j∈S2

ϕj(S1 ∪ S2, α|S1∪S2
)

= αj2(s1 +
s2 + 1

2
)s2

and by ETE, for all j ∈ S2,

ϕj(N,α) = αj2(s1 +
s2 + 1

2
) = ψj(S1 ∪ S2, α|S1∪S2

) = ψj(N,α).

If S1∪S2 = N , we are done. If S1∪S2 6= N we can repeat the same arguments for N\(S1∪S2)
to obtain ϕ = ψ. �

Remark 5.6 The properties in each of the characterizations in Proposition 5.5 are logically
independent. As for the first characterization, PRO satisfies EFF and ETE but not URG. (To
see this, consider (N,α) ∈ C with N = {1, 2} and α = (1, 2). Then PRO2(N,α) = 8

3 6= 2 =
PRO2(N\{1}, α|{2}).) The rule ξ defined by ξ(N,α) = (αiσ̂(i))i∈N where σ̂ is an arbitrary
optimal order, satisfies EFF and URG but not ETE. The rule 2ψ satisfies ETE and URG but
not EFF. As for the second characterization, note that 2PRO satisfies PROP but not EFF, and
that ψ satisfies EFF but not PROP.
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