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Abstract

This paper provides empirical evidence that continuous time models
with one factor of volatility, in some conditions, are able to fit the main
characteristics of financial data. It also reports the importance of the
feedback factor in capturing the strong volatility clustering of data, caused
by a possible change in the pattern of volatility in the last part of the
sample. We use the Efficient Method of Moments (EMM) by Gallant
and Tauchen (1996) to estimate logarithmic models with one and two
stochastic volatility factors (with and without feedback) and to select
among them.
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1 Introduction

A volatility model should be able to model the main characteristics of financial
series of returns such as: volatility persistence, volatility clustering, leverage
effects, fat tails and small first order autocorrelation of squared returns. Along
these three last decades several models have been proposed with the aim of
capturing these empirical facts. Stochastic volatility models, for instance, were
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designed to fit mainly volatility persistence but recent empirical work has found
that these models fail in capturing the fat tails of the returns’ distribution®.

Gallant and Tauchen (2001) and Chernov et al. (2003) propose several
models in continuous time and evaluate the importance of several volatility
factors to the modelization of equity returns. Both papers provide empirical
evidence that continuous stochastic volatility models with only one volatility
factor are not able to capture simultaneously the extra kurtosis and the volatility
persistence. The introduction of a second factor of volatility allows that one
might be slow mean reverting while the other might accomodate the fat tails.

This paper differs from previous ones since it provides empirical evidence
that continuous time models with one factor of volatility, in some conditions,
are able to fit the main characteristics of financial data. It also reports the
importance of the feedback factor as a possible imperfect substitute of structural
change in volatility. The estimated models are direct extensions of the Gallant
and Tauchen’s (2001) by including the feedback feature?. The advantage of these
modelizations compared to an affine is that they allow that the volatility be
dependent on state, although there are not closed-form solutions®. Chernov et
al.(2003) consider this an advantage when compared to the risk-neutral measure
transformations used by the affine models.

The empirical results report that the one factor logarithmic volatility model
without feedback does not fit the Microsoft data which confirms prior findings in
the literature. A new result comes out when we introduce the feedback factor.
The model, now, does pass the specification test. This feature is of extreme
importance because it allows capturing the low variability of the volatility factor
when the factor is itself low (volatility clustering). The feedback factor also
allows capturing the increase in volatility persistence that occurs when there is
an apparent change in the pattern of volatility. The introduction of a second
factor of volatility with feedback does not seem relevant for the Microsoft data?.

This paper uses EMM (Efficient Method of Moments) by Gallant and
Tauchen (1996). It is based on two compulsory phases: Projection that con-
sists of projecting the observed data onto a transition density that is a good
approximation of the distribution implicit in the true data generating process.
The simulated density is denominated the auxiliary model and its score is called
”the score generator for EMM”. The advantage is that the score has an ana-
lytical expression. The second phase consists of estimating the parameters of
the model with the help of the score generator. This score enters the moment
conditions in which we replace the parameters of the auxiliary model by their
quasi-MLEs obtained in the projection step and the estimates of the model
proposed are obtained by minimizing the GMM criterion function. Since the
minimized criterion function scaled by the number of observations asymptoti-

1See for example Chernov and Glysels (2000).

2We estimate logarithmic models that differ from the ones proposed in Chernov et al.
(2001) by not allowing a stochastic instantaneous expected return.

3Pricing formulas may be computed by simulation.

4The advantage of two factors is that one can take care of persistent stochastic volatility
while the other tries to deal with the tail behavior.



cally follows a chi-square distribution, it allows to apply diagnostic tests that
help explaining the reasons for the failure of the fitted model. Finally, the last
step, called reprojection, is a post-estimation simulation analysis that allows to
filter volatility encompassed by the model to evaluate the proposed models, to
obtain the density and to forecast.

We can not apply Maximum Likelihood estimation methods in our paper
because there are some unobserved variables in the proposed models. So, for
this reason the likelihood for the entire state vector is frequently not feasible®.

Ait-Sahalia (1996a, 1996b) also developed an alternative estimation strat-
egy for estimation stochastic differential equations. The method of estimation
proposed by this author differs from the EMM because the moment functions
are computed directly from the data rather than simulated. Note that full
observation of the state is necessary in order to estimate all the parameters.

Recently, new methods of simulation have been developed, Brandt and
Santa-Clara (1999) is one example. These authors apply the simulated like-
lihood estimation procedures to multivariate diffusion processes. Nevertheless,
these procedures have difficulties to deal with latent variables and moreover, the
simulations have to be performed for every conditioning variable and for every
parameter value.

The paper is organized as follows. Section two presents and characterizes
the models we study. Section three covers the projection, estimation and repro-
jection steps and reports the empirical results for the Microsoft data. Section
four concludes the paper.

2 Continuous Time Stochastic Volatility Loga-
rithmic Models

Recently researchers tend to model volatility as stochastic. The literature is
vast referring to the estimation of models with or without stochastic volatility
or with or without jumps, see Bates (2000), Chernov et al. (2003), Gallant and
Tauchen (2001), Ghysels et al. (1995), etc..

This paper includes a feedback factor in the model® proposed in Gallant and
Tauchen (2001), such as:

dP,

?t = a10dt + exp(Byo + 12Uzt + B13Us:)dWiy (1)
t

dUs = (0420 + QQQUQt)dt + (ﬁZO + 622U2t)dW2t (2)

5However, the simulation of the evolution of the state vector is quite possible. The EMM
is based on this.

6The specification differs from the one proposed in Chernov et al. (2001) because theirs
include a stochastic drift in equation 1 and account for leverage effects.



dUsy = (Ozg() + 0433U3t)dt + (ﬂgo + ﬁggUgt)dW;gt (3)

where P, is the daily price of a share of Microsoft and W; with ¢ = 1,2, 3 are
wiener processes.

In this system the instantaneous standard deviation of the rate of return is
an exponential function of the factors Uy, and Us,”. This specification nests two
groups of models: the first includes the logarithmic model with one volatility
factor (L1), with 813 = 0 and B4 = 0, and the logarithmic model with two
volatility factors (L2), with 815 # 0, 899 = 0 and (335 = 0 and the second group
contains the one factor logarithmic volatility model with feedback (L1F'), where
B13 = 0 and B4y # 0, and the logarithmic model with two factors of volatility
and feedback (L2F), where (8135 # 0, 895 # 0 and (453 # 0. One advantage of the
feedback feature is to allow for volatility clustering. The empirical results, later
on, reveal that this feature is quite relevant especially when there seems to exist
a change in the pattern of volatility. We can observe that structural change and
feedback feature are imperfect substitutes, in the sense that the introduction
of this feature allows one to capture the structural change®. Moreover, the
volatility factors of equation 1 present drifts and volatilities that are linear
functions of themselves, respectively and the drifts in equations 2 and 3 allow
for mean reversion when «;; # 0 for ¢ = 2,3. A small value of ay; for i = 2,3
means that a shock to the volatility of the return takes time to dissipate. This
is referred in the financial econometrics literature as persistence or long memory
and a large percentage of the financial series seem to show this feature, Zaffaroni
(2000). Finally, 5, is also an important parameter since it takes care of the
long-run mean of the volatility of the price equation 1.

2.0.1 Identification restrictions

To achieve identification it is necessary to impose some restrictions®. In this

concrete case for the logarithmic specification we set

ago = 0,a30 = 0,8y = 1,83 = 1.

Therefore the previous specification becomes, for the first group:

7As Chernov, Gallant, Ghysels and Tauchen (2003) refer, the logarithmic models with
feedback violate the standard regularity conditions. Hence, the solutions of the system of
SDEs associated with these models and the stochastic integrals are not defined. In order to
solve this problem they propose a method that consists on splicing the exp(.) function that
models the volatility behavior of equationl with, as they say, ”...the linear growth condition
at the level of volatility so high that is unlike to be observed in the U.S. equity index returns.”
For more details please see the appendix A of their paper.

8We do not introduce jumps in the specifications because the change in the pattern of
volatility occurs in the last part of the sample, which makes unfeasible the empirical applica-
tion of such models.

9These restrictions are the minimum necessary to achieve identification.



dP;

= a10dt + exp(Byg + B12U2e + B13Usi )Wy (4)
t

AUz = apaUsaidt + dWoy (5)

dUs3; = az3Usidt + dWsy (6)

with 8,3 =0 or 8,5 # 0 if we refer to L1 or L2, respectively.
For the second group:

dP,
?t = aodt + exp(Big + B12U2 + B13Us)dW1y (7)
f
dUsy = aigoUgidt + (1 + ﬁQQUQt)dWQt (8)
dUss = as3Usidt + (1 + B33Us:)dWs, 9)

with ;5 = 0 or §;5 # 0 if we refer to L1F or L2F, respectively. The first
group of SDE was already estimated by Gallant and Tauchen (2001) for a small
sample of Microsoft data.

We use these restrictions first because they are common in previous similar
SDE and second because they provide flexibility and numerical stability in the
estimation phase.

3 Efficient Method of Moments

The models above are estimated using the Efficient Method of Moments (EMM).
Let {y:}2_ o, yr € RM | be a multiple, discrete stationary time series and
¢ = (Yt—L, -, y¢) astretch from the previous process with density p(y—r, ..., yo|p)

defined over R!,1 = M(L+1). pis a vector of unknown parameters and {y, }7._;
the real data from which it is to be estimated. The main problem that makes
traditional methods of estimation inviable is that this density is in general not
available. However, expectations of the forms

B, (g) = / / (Lo Y0)P (Y s oo o)Ay ol



can be approximated quite well by averaging over a long simulation

N
Ey(9) = 5 D 0Wi—p Y1 Y)-

Let {y,}~._; denote the simulation from p(y/ z,p), where z = z_; =
(Y=r - Y-1), y = yo and p(y/ x,p) = p(y-r, -, Y0lp)/P(Y-L, - y-1/p) . Tthe
length of simulation should be large enough for the Monte Carlo error to be
negligible.

Gallant and Tauchen (1996) proposed an estimator for the vector of param-
eters p in the situation above. This method relies on a minimum chi-square
estimator for the vector of parameters, which permits the optimized chi-square
criterion to be used to test the specification adopted. The moment condi-
tions entering the minimum chi-square criterion come from the score vector
% log f(yt/xi—1,0) of an auxiliary model f(y;/x:—1,60) that closely approxi-
mates the true density. If this is true, the EMM estimator will be nearly as
efficient as the ML estimator. One commonly used auxiliary model in applica-
tions is the SNP density fx(y/z,0) that was proposed by Gallant and Nychka
(1987). It has been showed that the efficiency of the EMM estimator can be as
close as the efficiency of the ML estimator by making K large enough, Gallant
and Long (1997).

3.0.2 Projection step

The first step is to obtain the auxiliary model. Therefore, we use the SNP
density that is obtained by expanding in a Hermite expansion the square root
of h(z), an innovation density,

Vh(z) = Zﬁizi\/(b(z).

Here ¢(z) is the standard normal density function'?. The reshaped density
is given by

_ Paee)
J PE(u)p(u)du’

10This expansion exists because Hermite functions are dense in Lz and /h(z) is an Lg
function.

hK(Z)




where
K .
Py (z) = Zﬁizl,
i=0

and hg(z) integrates to one since it is normalized. The SNP density is,
according to the following location-scale transformation y = oz + p,

Frc(wl6) = ~hie(=LL)

Following our notation, h(z) = p(z,y|p°) is the transition density and p°
is the true vector of parameters. Therefore, the location-scale transformation
becomes

Y= Roz+ 1y,

where z is an innovation and R, is an upper triangular matrix. R, for a
GARCH specification which is the one that model the data used in this paper,
is given by

L L

- g
UeCh(th—l) = pp + Z‘F)'Aytfl*l/r - /J/a:t,gfLr+i| + Zdiag(Gi)th727Lg+i7
=1 =1

where vech(R) is a vector of dimension M (M + 1)/2 which contains the
unique elements of the matrix R, p, denotes a vector of dimension M (M +1)/2,
Py through Pr, are M(M+1)/2 by M matrices and G1 through G, are vectors
of length M(M +1)/2 .

The density function of this innovation is

Pi(z,7)¢(2)
h = ol
K (zl7) [ PE(u,z)p(u)du’
where P(z,x) is a polynomial in (z, z) of degree K and ¢(z) is the multivari-

ate density of M independent standard normal random variables. As before,
the polynomial Pk (z,x) equals



K, K,
Pr(z2) = 3 (Y agaa?)2",

a=0 B=0

where o and (3 are multi-indexes with degrees K, and K, respectively. Since
hi (z|z) is a homogeneous function of the coefficients of Pk (z,x), it is necessary
to impose a restriction (agp = 1) to have a unique representation.

The location function is linear
ty = bo + Bxi_1,

with b, a vector and B a matrix, both formed of parameters to be estimated.
Taking in account the location-scale transformation the SNP density be-
comes at last

he[By ' (y — po) 2]

flylr,0) = 22

The maximal number of lags is L = max(Ly, Ly + Ly, Ly). L, denotes the
number of lags in yu,,, L, + L, is the number of lags in R, and finally L, denotes
the number of lags that go into the x part of the polynomial Pk (z,x).

SNP Estimation Results In this subsection of the paper we present the

results of the projection step.

The auxiliary model that best fits the raw data is found using the SNP model
described in the previous section. The first 47 observations were reserved for
forming lags. The values taken by L., Ly, L,, L,, K, and K, were determined
by going along a expansion path and the selection criterion used was the BIC
(Bayesian Information Criterion), Schwarz (1978).

As always, models that present a small value for the BIC criterion are pre-
ferred to the ones with higher values. The expansion path has a tree structure.
As Gallant and Tauchen (1996) suggested, better than expanding the entire tree
structure is to start expanding L, keeping L, = L, = K, = K, = 0 till the BIC
increases value. The following step is to expand in L, with L, = K, = K, =0.
Next, one expands K, with K, = 0 and finally L, and K,. Sometimes it can
happen that the smallest value of the BIC is somewhere inside the tree. So, it
is convenient for this reason to expand K., L, and K, at a few intermediate
values of L,.

The best model according to this procedure!! has

1 This strategy reveals itself reasonable in much applied work, Fenton and Gallant (1996b).
Gallant and Tauchen (2001) also arrived to the same specification.



Ly=1L,=1,L,=1,L,=1,K, =6 and K, =0

and can be characterized as a Semiparametric GARCH.

3.1 The estimation step

In this section the main aims are: first of all estimate the vector of parameters
p, test if the specification proposed for modeling the data is adequate by using
the minimum chi-square criterion, and finally analyze the reasons of the system
failure and shed light on the possible modifications that can better fit the data.

The EMM estimator p,, is determined as follows. First, we use the score
generator determined in the projection step

F(ilwe—1,0) 0 € RPe

and the data {y,}}_; in order to obtain the quasi-maximum likelihood
estimate

1 ~ ~
0,, = arg max— lo Ti_1,0)].
%e@ n; g[f(yt| t—1 )]

The information matrix is

0
——Z tog f(yrle1, 00l 108 £yl 1,00

In the literature it is assumed that f(y|z,6,) is a good approximation to
the true density of the data. Otherwise, more complicated expressions for the
weighting matrix should be used!?.

Defining the moment conditions by

12Gee Gallant and Tauchen (1996) and Gallant and Tauchen (2001). However, Gallant and
Long (1997), Gallant and Tauchen (1999) and Coppejans and Gallant (2002), proved if the
auxiliary model corresponds to the SNP density the information matrix above will be the
adequate.



0
m(p,0) = Ep{ 5108 f(y,|i-1,0)},
which are obtained by averaging over a long simulation

~ 1 N 8 o ~
m(p7 9’”) = NZ[% log f(yt|xt—1797l)]7

t=0

the EMM estimator is obtained by

po = argminm’(p, 6,) (1) " m(p,6y,). (10)

The asymptotic properties of the estimator are derived in Gallant and Tauchen
(1996) and presented below. Define p¥ as the true value of the parameter p and
6" as an isolated solution of the moment conditions m(p°,) = 0. Then under
regularity conditions it can be shown that

lim p, = p° a.s.,

Vi(p, — ) B N{0, [(MO) (1)~ (MO)] 1},

lim M,, = M° a.s. and

n—oo

limI, =1° a.s.,

n—oo

where M, = M(bn? On), M° = M(p07 90)7 M(p,0) = (ai/)m(P, 0) and

0 0
70 = Epo[% log f(y0|x,1,90)][% log f(yolz_1,6°)].

10



These asymptotic results permit testing if the model is correctly specified.
Under the Hy that p(y_r, ......, Yo|p) is the correct model

Ly = nm'(pn, 0n) (In)_lm(pn, On)

follows asymptotically a chi-square with pg — p, degrees of freedom. It is also
possible to test restrictions on the parameters, i.e.,

Hy : h(p°) =0

where h is a mapping from R into R? and the test statistic is given by

Ly = i (o, 00) (1) " m(py, 0n) = 1 (9, 00) (L) " "mipy,00)]  X3(0)

and

Pp = arg minm,(ﬁ? 0")(In)71m(p7 07!)'
h(p)=0

Finally, it is also possible to obtain confidence intervals for the parameters
by computing the standard deviations using numeric methods. These intervals
present a drawback because sometimes a parameter approaches a value for which
the model is explosive and this fact is not accompanied by an increase in the
EMM objective function. Gallant and Tauchen (1996) came up with a solution
that consists of inverting the difference test Lj,'3. These ”inverted” intervals
are not free of problems. In fact, it was shown that they do not present more
accurate coverage probabilities, especially when the degrees of freedom are low.

Since

Vam(p,, 0n) 5 N0, 10 = (MO)[(MO) (1%~} (M)] (M)},

the t-ratios are given by

7—1n - S;l\/ﬁm(bn, an)v

13In order to invert the test we select for the interval that values of p; for which the Ho:
p? = p; is not reject under the test L.

11



where Sn = (diag{j7z - (Mn)[(Mn)/(In)il(Mn)]il(Mn)/})' The character-
istics of the data are reflected in the different elements of score. If the model
fails to fit these characteristics this fact comes out in the large values taken by
the t-ratios (of the elements of the score). In this case, the failure can suggest
alternative modelizations.

4 EMM Empirical Results

All the estimated results were obtained using the computer package EMM pro-
grammed by Gallant and Tauchen (1996) with Fortran 77 available at ftp.econ.
duke.edu. The global minima of equations 4 and 7 were found through an
exhaustive search grid of the starting values and the help of randomization.
Table 2 gives a summary of the specifications presented in section two and
shows the value of the diagnostic test which follows an asymptotic chi-square
with pg — p, degrees of freedom. From the table and in particular from the
chi-square test, we can infer that the results for the one factor volatility model
without feedback confirm prior findings in the literature. The model is sharply
rejected at a 5% level of confidence. A new result comes out when we intro-
duce the feedback factor. It turns out not only significant but also it is of
vital importance for the good fit of the model that now passes the specification
test without violating any of the moment conditions'*. When we analyze the
estimates for this latter model, we see that all coeflicients are statistically signif-
icant. The feedback factor turns out to be very relevant and reports a negative
value. This implies that if now the volatility factor U, is high its instanta-
neous volatility decreases and in the future the volatility factor Us is expected
to decrease. This combined with the negative value of 815 (the coefficient of
the volatility factor in (4)) makes perfect sense and matches financial theory's.
So this feature allows that the variability of the volatility factor is low when
itself is low (volatility clustering). Another characteristic that comes out from
the estimation is the value of the parameter that corresponds to the mean re-
version feature, aso. Its value is inferior to unity. Thus, shocks to volatility
of returns take time to dissipate - long memory property. If we also observe
the graph of volatility we will see a possible structural change in the volatility
pattern for the last period of the sample'®. Recent studies, for instance: Beine
and Laurent (2001), Granger and Hyung(1999) and Diebold and Inoue (1999)
report that there is an increase in volatility persistence if we do not account for
structural changes. In order to investigate this, we consider the sample used
in Gallant and Tauchen (2001) that ranges from March 13, 1986 till November
16, 2000 and our sample. We compute the ACF’s (autocorrelation functions) of
the squared returns of the absolute values of returns and we observe specially

14See tables 2 and 4.
15This is so because if the volatility factor is high now the instantaneous volatility of the
return decreases, implying an expected decrease of the return in the future.

16See figure 3.
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for the latter that the ACF decays slower towards zero'”. We also compare

their L1 model results with ours and we observe that the parameter of mean
reversion, aws, is abruptly greater than one in absolute value, which means fast
mean reversion and consequently low persistence in volatility. In contrast, the
same specification estimated considering the sample used in this paper reports
an empirical result for that parameter of -0.902 much smaller in absolute value
than the previous one'®. Both evidences are signals of an increase in persistence
in the presence of structural changes in volatility. This extra persistence leads
to volatility clustering with periods of low volatility being followed by periods
of low volatility and vice-versa. Therefore, the estimation results may suggest
that structural change and feedback factor may be imperfect substitutes ( the
latter can capture the former by allowing for volatility clustering that results
from an increase in persistence).

Although the frequency of data is daily, it is scaled so that the coefficients
are on an annually basis. That is, a value of 0.4102 for ay¢ represents an annual
average rate of return equal to 41.02%. The step size is A = 1/6048, which
corresponds to 24 steps per day and 252 trading days per year.

Since the feedback factor reveals itself of extreme importance we estimate a
two factors logarithmic volatility model incorporating this feature. Analyzing
the results we can say that for all the lengths the parameter 3,5 is not significant,
which means that for this data and for this sample, the second factor of volatility
is unimportant. We report its results for NV = 100 000 in table 3.

Finally, we estimate the L2 specification as in Gallant and Tauchen (2001)
and we infer from the results that this model is another possible candidate to
modelize the data. We observe that one factor of volatility is extremely slow
mean reversing while the other is very fast mean reversing!®.

Finally, the table 4 summarizes the EMM quasi-t-ratios diagnostics for L1,
L1F and L2. These statistics are asymptotically normal when evaluated at the
true parameter values. Since they are evaluated at the point estimates they are
asymptotically downward biased relative to 2.0. Gallant and Tauchen (1996)
presented some corrections to this t-ratios but recent evidence showed that
they might not be especially reliable when there are few degrees of freedom.
Consequently, in this paper we present only the unadjusted t-ratios, without
forgetting the downward bias. Relatively to the one factor logarithmic volatility
model without feedback, it does not seem to fit the scores corresponding to the
GARCH scale. This may be due to the strong persistent stochastic volatility
in the data. When we introduce the feedback factor, none of the scores are
violated, i.e., the model seems to fit the Hermite parameters as well as the
GARCH parameters. The same for model L2.

From the estimation step, two models come out, L1F and L2. It is not

17See figures 6 and 7.

18See table 3.

19As in Gallant and Tauchen (2001). All the coefficients are statistically significant at a
5% significance level, except a2z that is significant at a 10% significance level. We consider
it different from zero, otherwise the model would be similar to the L1 model, which has been
sharply rejected by the specification test.

13



possible to choose between them based on the diagnostics computed at this
step. The reprojection step will give us more tools that will help us to evaluate
their performance.

4.1 The Reprojection Step

The reprojection step allows us to filter the volatility factors Us; and Us; for any
desired sampling frequency. In fact, as a by-product of the estimation step we

obtain a long simulation of the volatility factors {Us; }1¥; and {U3;},. Having
as the main aim to obtain

E(Uatl{yr}r=1);

and

E(Usil{y-}7=1),

we start generating simulations of {Ug }N, {Us}Y, and {7}, at the es-
timated vector of parameters p and with N equal 100 000. Then, we impose
the same SNP-GARCH model founded in the projection step, on the simulated
values ¢;. According to Gallant and Tauchen (2001), this provides a good repre-
sentation of the one-step ahead conditional variance 67 of ;41 given {g, }1_,%.
We follow by running regressions of Uy and Us; on Ertz, 9 and || and lags of
these series:

UQt - 0404’0[15_?+a25‘?71+....+O[p0/\'?7p+91gt+92gt71+,_,
+0,01—q + 1|0t | + To|Gr—1] + ... + 0 |G—r];

Ut = Bo+B167 +By67 1+t ﬁp&?fp + Y19t + Volt—1 +
o VgUt—q + AGe| + A2l Ge—1] + oo + Ar|Ge—r .

With this procedure we obtain calibrated functions inside the simulation that
gives predicted us values of Us; and Us; given {y, }._,. Finally, we evaluate these
functions on the observed data series {g,}._; to obtain reprojected values of
the volatility factors, Us; and f]gt.

Figures 10.0,10.1, 11 and 12 show the reprojected volatility factors of models
L2 and L1F, respectively. As to be expected Us; for the L2 is quite choppy
and Us; is sightly slower moving than Us; as we can verify by figures 10.0 and

201n fact, given the length of simulation, these regressions are as Gallant and Tauchen (2001)
say analytic projections.
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10.1%%. Curiously, the increase in volatility in the last part of the sample and
the crash of 1987 are attributed in its majority to the fast mean reverting factor,
Us; . This suggests that both events were temporary. Finally, the reprojected
volatility factor from the L1F model is the most ”alive” of the three. It tracks
quite well the patterns of both factors in the previous model L2 and it captures
some extra noise in the volatility. So, it seems, for the purpose of volatility
modelling , that the L1F specification works quite well and at the same time it
is computationally faster to implement.

5 Conclusion

This paper studies four systems of SDE for modelling the daily return on the
Microsoft shares, L1, L1F, L2 and L2F. From the diagnostics at the estimation
step two models seem to fit data, L1F and L2. One possible reason for the
failure of the model with only one volatility factor could be its inadequacy to
model the strong persistent stochastic volatility caused by a possible structural
change in volatility. This drawback, however, is overcome by introducing the
feedback factor. It allows for volatility clustering and it is able to capture the
strong persistence. The model, now, seems to fit all the score moment conditions
associated with the GARCH parameters as well as the score moment conditions
corresponding to the Hermite parameters responsible for the tail behavior. The
second valid model that comes out from estimation is the logarithmic with two
volatility factors.

Reprojection assumes an important role in the model selection since it gives
us more tools for comparing models. By computing the reprojected volatility
factors implied by the previous specifications we see that there is no advantage
in estimating the two factors stochastic volatily model for this sample. The L1F
model is able to reproject volatility quite well. It even does not miss the crash
of 1987.

Relatively to the more complicated specification L2F the empirical results
show that the second factor is not significant.

21775, could be much more slowly moving as in Gallant and Tauchen (2001) . The fact that
it is not, can be justified by the value of the t-statistic for a2, 1.86667 (that is not statistically
significant at a 5% significance level). We considered it significant due to the possibility of
computational error in the wald standard deviation justified by the relatively big amplitude
of the confidence interval and its asymetry to the estimate.
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6 Figures and Tables
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Figure 1

Percent Return on Microsoft Share Price
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Figure 2

Volatility
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Figure 3

Semiparametric GARCH
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Figure 5: Sample Statistics- Percent Return on Microsoft, March 14, 1986 -

February 23,

2001

[ | I | Parameters

[L—0]L, 0L 0] L0

| K. =0 Ko =0 |

iid Gaussian

[La>0|Lyg=0]L,=0] L,>0 [K.=0]K,=0] Gaussian VAR |
|| L,>0 || L,=0 || L.=0 || L,>0 || K,>0 || K,=0 || Semiparametric VAR ||
[L.o0L,—0L>0] L,50 [K.—0[K,—0] Goauwsian ARCH _|

|| L,>0 || L,=0 || L.>0 || L,>0 || K,>0 || K,=0 || Semiparametric ARCH ||
[L.>0]Ly,>0]L,>0] L,>0 [K.=0]K,=0] Gaussian GARCH |
|| L,>0 || Ly, >0 || L.>0 || L,>0 || K,>0 || K,=0 || Semiparmetric GARCH ||
|| L,>0 || Ly;>0 || L.>0 || L,>0 || K,>0 || K; >0 || Nonlinear Nonparametric ||

Table 1: note: ” L, is the lag length of the location function. L is
the lag lenght of the GARCH part of the scale function. L, is the lag
lenght of the ARCH part of the scale function. Ly, is the lag length of the
polynomials in x. K, is the degree of polynomials in x that determine the

coefficients of the Hermite expansion of the inovation density”, Gallant

and Tauchen (2001).
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ACF (squared returns)
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Figure 6: ACF’s of the squared returns of the Gallant and Tauchen (2001)
sample (ACRV) and of my sample (ACTV).
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Figure 7: ACF’s of the absolute value of returns. Gallant and Tauchen (2001)
sample ACR and my sample ACT.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

[ Model [ aro [ @2 [ ass [ Buo [ Bro [ Bra [ Boo [ B [ N [ x* [ df[ pval
Lt ] s [ [ [ 50k [15983] 7 [ 0.0253
L =] B s [ [ [ 100k]1665 ] 7 [| 00198
I L0 0 1 I I I ] | [ |
Lo = s s %[ [ 50k | 9417 [ 6 [ 0.1514
L o et ¢ [l [/ 100k | 10635 | 6 || 0.1003
L o et ¢ [ [[150k || 8.078 || 6 || 02324
Lo [ ] B ] [ * [ [1rk] 8463 [ 6 [ 02061 |
I [ A | [ |
L2 | = s e F [ [[100k | 6.704 || 5 || 0-2436 )
I || AN | I L |
Lrew [ = ]« = [0 = [ * [ * [ * | 50k ] 5568 [ 4] 02338 ]
Lree [ = [ =0 =0 *J* [ * [ * [10o0k]2015]4[07330

Table 2: *is used for free parameters. 175k refers to a simulation of
length 175,000 at step size A = 1/6048, corresponding to 24 steps
per day and 252 trading days per year.
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[ Modd [ aw [ oan [ ass [ B [ B [ Bis | B [ O |
[ || [ || [ || ]
[ Estimate [ 042 [ -0.902 ] [ -0.124 ]| 0.429 | I I |
[ Std. Dev. [ 0.073 ] 0.097 ] [ 0.003 ] 0.038 ] I I |
[ 95% Lower [[ 0270 [| -1.048 | [-0.132 ] 0.373 I I |
[ 95% Upper [ 0571 [ -0.757 ] [ -0.116 ]| 0.485 | I I |
[ I | | | I | I | I
[ LiF ] [ [ [ I [ I [ I
[ Estimate [ 0410 ] -0.159 | [ -0.112 ] -0.160 | [-0.224 ] |
[ Std. Dev. [ 0.037 [ 0.002 [ 0.003 ]| 0.003 ] [ 0.004 | |
[ 95% Lower [[ 0.326 | -0.164 | [ -0.119 ][ -0.166 | [ -0.234 | |
| 95% Upper || 0499 || -0.155 || | -0.104 [| -0.153 || | -0.215 || |
I I [ | [ I [ I [ I
L2 | [ [ [ I [ I [ |
[ Estimate [[ 0.424 [ -0.00028 [ -89.21 [ -0.120 [] 0.0063 || -4.628 | I |
[ Std. Dev. [ 0.074 | 0.00015 [ 3.932 ] 0.0087 ]| 0.0010 || 0.076 | I |
[ 95% Lower [[ 0.269 [| -0.00049 [ -97.154 [| -0.123 ]| 0.0043 || -4.778 | I |

[ 95% Lower ] 0.579 ]| -0.000078

-81.432 ]| -0.097 ][ 0.0083 || -4.480 | [ I

L_L2r | | | | I | I | I
| Estimate [[ 0415 [ -2.161 [ 0.214 [ -0.126 || 0.723 || -0.504 [ 0.733 | 7.190 ||
[ Std. Dev. [ 0.084 [ 0.077 [ 2.691 [ 0.089 || 0.035 [ 6.668 || 0.623 || 0.635 ||
[ 95% Lower [| 0.414 [ -2.162 [ 0.172 [ -0.127 | 0.723 || -0.607 [ 0.727 [ 7.180 ||
[ 95% Lower [] 0.415 [ -2.161 [ 0.252 [ -0.124 [ 0.727 ]| -0.408 [[ 0.740 [ 7.199 |

Table 3: Estimates,

Standard Deviations and Confidence Intervals
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|| Coefficient ||

[ L1 [LiF [ Lo

|| Location Function: ||

I bo [ psi(1) ] 0.066 [ 0.361 [ 0.101 |
l by [ psi(2) ]| 1.685 [ 0.839 [ 1.239 |
[ Sale Function: || I I [ I
| 70 [ tau(l)  1.824 [ 0.377 ][ 0.764 ]
[ Tgz [ tau(2) | 2.540 [ 0.132 ]| 1.032 ]
[ Tga [ tau(3) ] 2.315 J 0.282 ]| 0.921 |
| Hermite Polynomial: || | I | I
| 20,1 [ A(2) ] 0.081 ] 0.453 ][ 0.358 |
[ 20,2 [ A(3) [ 1.868 [ L.212 ] -0.018 |
[ 20,3 [ A(4) [[-0.069 ] 0.544 | 0.500 |
[ 20,4 [ A() [ 1.809 ] 1.981 ] 0.146 |
[ 0.5 [ A(6) [[-0-418 ] 0499 ]| 0.418 ||
[ 20,6 [ A(7) || 1.226 ]| 1.858 || -0.032 |

Table 4: Scores Diagnostic
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Figure 10.0
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U2 (L2)

Figure 10.1 - Different scale
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Figure 11
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Figure 12
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