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Abstract

This paper evaluates the forecasting performance of a continuous stochas-
tic volatility model with two factors of volatility (SV2F) and compares it to
those of GARCH and ARFIMA models. The empirical results show that
the volatility forecasting ability of the SV2F model is better than that
of the GARCH and ARFIMA models, especially when volatility seems
to change pattern. We use ex-post volatility as a proxy of the realized
volatility obtained from intraday data and the forecasts from the SV2F
are calculated using the reprojection technique proposed by Gallant and
Tauchen (1998).

Keywords: Efficient Method of Moments (EMM), Reprojection, Fac-
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1 Introduction

Volatility plays an important role for asset pricing theory as it is directly linked
to the risk-return relation. Good measures and forecasts of future volatility
are of vital importance for finance theory'. One measure of volatility has been
”the implied volatility” obtained from Black-Scholes model, but as empirical
evidence has been showing, the performance of this model is not the same in all
periods. In fact, after the October 1987 stock market crash, the model is not
adjusting reality so well and the implied volatility seems to have little predictive

*Email contact: mlopes@idea.uab.es. Grant Sponsors: FCT, Programa Praxis XXI and
FEP (Faculdade de Economia do Porto).

1Notice that volatility is used as a measure of risk. The higger is the volatility, the higger
is the risk and consequently the higger is going to be the expected return.



power relative to the historical volatility, Canina and Figlewski (1993). On the
other hand, the standard well known ARCH/GARCH models seem to perform
poorly in forecasting volatility?.

Nowadays with the availability of high-frequency data and the advances of
computational tools it is possible to improve volatility forecasting. There are
two ways of forecasting volatility. The first way treats volatility as observed and
uses intra-period data to get the so called "realized volatility” obtained basi-
cally by summing intra-period squared returns and fitting to them models that
incorporate the main features of this data, for instance long-memory property.
Since much theoretical work assumes that the logarithm of asset prices follow a
continuous time model, like a diffusion, one advantage of this procedure is that
the realized volatility can be made arbitrarily close to the underlying integrated
volatility® by reducing the intra-period. However, if we choose tick-by-tick prices
we might have to use some forms of interpolation since these prices are not gen-
erally available at all equally spaced time. Empirical evidence shows that it
can cause negative correlation in the returns series and consequently grow poor
the forecasts made by models using this data. Other problems are related with
volatility change of pattern due to market microstructures, for instance the ex-
istence of lunch periods, the close of the market, etc.. In order to try avoiding
these drawbacks, in this paper, we use 15-minutes intraday data. The second
way treats volatility as latent in the sense that it can be filtered after esti-
mation. Getting a correct specification is pivotal since volatility estimates are
model dependent. In this paper, we follow this second alternative and we fit
the continuous time model with two factors of volatility of Gallant and Tauchen
(2001) for the return of a Microsoft share.

To sum up, the aim of this paper is to evaluate the volatility forecasting
performance of the continuous time stochastic volatility model comparatively to
the ones obtained with the traditional GARCH and ARFIMA models. In order
to inquire into this, we estimate using the Efficient Method of Moments (EMM)
of Gallant and Tauchen (1996) a continuous time stochastic volatility model
for the logarithm of asset price and we filter the underlying volatility using the
reprojection technique of Gallant and Tauchen (1998). Under the assumption
that the model is correctly specified, we obtain a consistent estimator of the
integrated volatility by fitting a continuous time stochastic volatility model to
the data. The forecasting evaluation for the three estimated models is going
to be done with the help of the R*? of the individual regressions of realized
volatility* on the volatility forecasts obtained from the estimated models. The
empirical results indicate the better performance of the continuous time model in
the out-of-sample periods compared to the ones of the traditional GARCH and
ARFIMA models. Further, these two last models show difficulties in tracking
the growth pattern of the realized volatility. This probably is due to the change

2See Day and Lewis (1992), Jorian (1996), Pagan and Schwert (1990), West and Cho
(1995), etc.

3The integral of instantaneous volatility over the period.

4Since realized volatility is considered a good measure of volatility. R*2 is the corrected
R? of Anderson and Bollerslev (2002).



of pattern in volatility in this last part of the sample.

The plan of the paper is as follows. Section 2 introduces the concept of
realized volatility and the way to calculate it. Section 3 presents the continu-
ous time model and the estimation results. Section 4 evaluates the forecasting
performance of the three estimated specifications and Section 5 concludes the

paper.

2 Realized Volatility

2.1 Theoretical relation between realized volatility and in-
tegrated volatility

Let ryj, 0 < j < n, represent a set of n + 1 intraday returns for day ¢t. j =0
refers to the closed market period that ranges from day ¢ — 1 until the open on
day t. j = 1 is the fifteen minutes commencing at the open and j = n is the
last fifteen minutes return before market closes.

Much theoretical work models the logarithm of asset prices (py) as a uni-
variate diffusion, Bollerslev, Diebold and Labys (2000),

dpy = pidt + opdW

where W is a Wiener process. So the daily return of asset k is given by

pe(t) —pe(t — 1) =ri(t) = /,uk(s)ds+/ak(s)dW(s). (1)
t—1 t—1

These authors proved that under innocuous regularity conditions, the real-

n t
ized volatility ZOT%»J converges to the integrated volatility [ o7 (s)dW (s) as n
Jj= t—1

converges to 0o. So, the performance of the realized volatility estimator depends
only on the number of observations. For a given sample period the higher the
frequency of the data and the larger the number of observations, the better the
approximation of the realized volatility estimator to the integrated volatility.

2.2 Data

Realized volatility has been calculated from the intraday 15-minutes price of
a share of Microsoft®, from 10" of April, 1997, till 23" of February, 2001,
according to Nelson and Taylor (2000).

5The data was obtain freely from Price-data.com



The models, GARCH, ARFIMA and the continuous time model with two
factors of volatility described below use daily data on Microsoft® from 13" of
March, 1986, till 23"¢ of February, 20017, for 3,778 observations.

2.2.1 Calculating the realized volatility

In this paper the realized variance for the trading day t® is calculated as a
weighted average of the intraday squared returns. Accordingly to Nelson and
Taylor (2000) it is given by

2
0y = ijrtz,ja (2)
=0

and we must impose the constraint ) Ajw; = 1 in order to ensure condition-
j=0
ally unbiased estimates when intraday returns are uncorrelated. A; represents

the proportion of a trading’s day total return variance that is attributed to
.2

period j. They assume that the \'s are equal for all days ¢. In order that o,
is a consistent, unbiased and efficient (with the least variance) estimate of the
integrated volatility, Nelson and Taylor (2000) deduced that

n

1

In particular, because the weight wg for the closed market return is much
less than for the other returns (because \g is very big) they specify w; as

1
i = T 1<j<
Wi (1—)\0)77/]6]‘, J "

wj =0 jZO,

where k; is the proportion of the open-market variance given by

/\j . n
k=175, it j;k] =1.

Natural estimates of these variance proportions are:

6 Adjusted for stock splits.
7See figure 1.
8The period ranges from the close on day t-1 to the the close on day t.



Do T?,j
n 9
1=

>t T?,j

)\j = n 9 ?
Do ert,z‘
1=

and kj =

where the sums over days ¢ can be for all days or for particular days®.

3 The model

Recently researchers tend to model volatility as stochastic. The literature is
vast referring to the estimation of models with or without stochastic volatility
or with or without jumps, see Bates (2000), Gallant et al. (2001), Gallant and
Tauchen (2001), Ghysels et al. (1995), etc..

This paper estimates the stochastic volatility model with two factors of
volatility'? given by:

dP,
?t = O(lodt + exp(ﬁlo + 612U2t + ﬂlgUgt)dWH (4)
t
dUy = (042() + a22U2t)dt + dWoy (5)
dUsy = (30 + azsUsy)dt + dWs, (6)

where P; is the daily value of a share of Microsoft and W; with ¢ = 1,2, are
Wiener processes.

In this system the instantaneous standard deviation of the rate of return is
an exponential function of the factors Us; and Uss. The drifts in equations 5
and 6 allow for mean reversion when ags # 0 and ass # 0. Small values of aiag
and ag3 mean that a shock to the volatility of the return takes time to dissipate.
This is referred in the financial econometrics literature as persistence, and a big
percentage of the financial series seem to show this feature, Zaffaroni (2000).
B1p is also an important parameter since it takes care of the long-run mean of
the volatility of the price equation 4.

9See figure 3. For more about these estimates, see Taylor and Xu (1997).
10Gallant and Tauchen (2001) already estimated this model for a subsample of the data
used in this paper.



3.0.2 Identification restrictions

To achieve identification it is necessary to impose some restrictions. In this
concrete case for the logarithmic specification we set

Qo — 0, azp = 0.

Hence the previous specification becomes:

dP,
?t = a0dt 4 exp(Brg + B12Uzt + B13Us)dW1; (7)
t
dUszs = aaUsidt + dWoy (8)
dUsz; = aizzUsdt + dW, (9)

We use these restrictions, like in Gallant and Tauchen (2001), first because
they are common in previous similar SDE and second because they provide
flexibility and numerical stability in the estimation phase.

3.1 The EMM

The model above is estimated using the Efficient Method of Moments (EMM).
Let {y:}2_ o, yr € RM | be a multiple, discrete stationary time series and
¢ = (Yt—L, .-, y¢) astretch from the previous process with density p(y—r, ..., yo|p)

defined over R!,1 = M (L+1). pis a vector of unknown parameters and {y, }1__,
the real data from which it is to be estimated. The main problem that makes
traditional methods of estimation inviable is that this density is in general not
available. However, expectations of the forms

E,(9) :/-~-/g(y—L,-.-,yo)p(y—L,.-.,yo)dy-L.---dyo

can be approximated quite well by averaging over a long simulation

N



Let {y,}._; denote the simulation from p(y/ z,p), where v = z_; =
(Y-r, Y1), ¥y = yo and p(y/ z,p) = p(y-r, -, %0lp)/P(Y-1, -, y-1/p) . No-
tice that the length of simulation should be large enough for the Monte Carlo
error to be negligible.

Gallant and Tauchen (1996) proposed an estimator for the vector of param-
eters p in the situation above. This method relies on a minimum chi-square
estimator for the vector of parameters, which permits the optimized chi-square
criterion to be used to test the specification adopted. The moment condi-
tions entering the minimum chi-square criterion come from the score vector
% log f(yt/xi—1,0) of an auxiliary model f(y;/x:—1,60) that closely approxi-
mates the true density. If this is true, the EMM estimator will be nearly as
efficient as the ML estimator. One commonly used auxiliary model in applica-
tions is the SNP density fx(y/z,0) that was proposed by Gallant and Nychka
(1987). It has been showed that the efficiency of the EMM estimator can be as
close as the efficiency of the ML estimator by making K large enough, Gallant
and Long (1995).

3.1.1 Projection step

The first step is to obtain the auxiliary model. Therefore, we use the SNP
density that is obtained by expanding in a Hermite expansion the square root
of h(z), an innovation density,

Vh(z) = 0:2°/9(2).
=0

Here ¢(z) is the standard normal density function'!. The reshaped density
is given by

Pi(2)¢(2)

"= TR ot

where
K .
PK(Z) = Zﬁizl,
=0

and hg(z) integrates to one since it is normalized. The SNP density is,
according to the following location-scale transformation y = oz + p,

Fic(ol6) =~ hie (L)

1 This expansion exists because Hermite functions are dense in Ly and /h(z) is an Lg
function.



Following our notation, h(z) = p(z,y|p°) is the transition density and p°
is the true vector of parameters. Therefore, the location-scale transformation
becomes

Y= Ryz+ iy,

where z is an innovation and R, is an upper triangular matrix. R, for a
GARCH specification which is the one that model the data used in this paper,
is given by

L L

[ g
UeCh(th—l) = Po + Z‘F)'Aytfl*l/r - /J/a:t,gfLr+i| + Zdiag(Gi)RIt72*Lg+ia
=1 =1

where vech(R) is a vector of dimension M (M + 1)/2 which contains the
unique elements of the matrix R, p, denotes a vector of dimension M (M +1)/2,
Py through P, are M(M+1)/2 by M matrices and G through G, are vectors
of length M (M +1)/2 .

The density function of this innovation is

Pi(z,2)¢(2)
h .
) TR (ot
where P(z,x) is a polynomial in (z, z) of degree K and ¢(z) is the multivari-

ate density of M independent standard normal random variables. As before,
the polynomial Pk (z,x) equals

K, K,
Pr(z2) = 3 (> agaa?)2",

a=0 B=0

where o and (3 are multi-indexes with degrees K, and K, respectively. Since
hi (z|z) is a homogeneous function of the coefficients of Pk (z,x), it is necessary
to impose a restriction (agp = 1) to have a unique representation.

The location function is linear

ty = bo+ Bxy_q,



with b, a vector and B a matrix, both formed of parameters to be estimated.
Taking in account the location-scale transformation the SNP density be-
comes at last

hi[R; ' (y — p,)|2]
det(R;)

fK (y|1’,9) -

The maximal number of lags is L = max(Ly, Ly + Ly, Ly). L, denotes the
number of lags in yu,,, L, + L, is the number of lags in R, and finally L, denotes
the number of lags that go into the x part of the polynomial Pk (z,x).

SNP Estimation Results In this subsection of the paper we present the

results of the projection step.

The auxiliary model that best fits the raw data is found using the SNP model
described in the previous section. The first 47 observations were reserved for
forming lags. The values taken by L., Ly, L., L,, K, and K, were determined
by going along a expansion path and the selection criterion used was the BIC
(Bayesian Information Criterion), Schwarz (1978).

As always, models that present a small value for the BIC criterion are pre-
ferred to the ones with higher values. The expansion path has a tree structure.
As Gallant and Tauchen (1996) suggested, better than expanding the entire tree
structure is to start expanding L, keeping L, = L, = K, = K, = 0 till the BIC
increases value. The following step is to expand in L, with L, = K, = K, =0.
Next, one expands K, with K, = 0 and finally L, and K,. Sometimes it can
happen that the smallest value of the BIC is somewhere inside the tree. So, it
is convenient for this reason to expand K, L, and K, at a few intermediate
values of L,.

The best model according to this procedure'? has

Ly=1,L,=1,L,=1,L,=1,K, =6 and K, =0

and can be characterized as a Semiparametric GARCH.

3.2 The estimation step

In this section the main aims are: first of all estimate the vector of parameters
p, test if the specification proposed for modeling the data is adequate by using
the minimum chi-square criterion, and finally analyze the reasons of the system
failure and shed light on the possible modifications that can better fit the data.

12This strategy reveals itself reasonable in much applied work, Fenton and Gallant (1996b).
Gallant and Tauchen (2001) also arrived to the same specification.



The EMM estimator p,, is determined as follows. First, we use the score
generator determined in the projection step

fyelwe—1,0) 0 R

and the data {g;t}?:_ . in order to obtain the quasi-maximum likelihood
estimate

1 n ~ ~
0,, = arg max— lo Ti—1,0)].
g n; glf (yilwi-1,0)]

The information matrix is

~ n ~ ~

1~ 9 - - 9 - -
I, = EZ[% log f(y¢|ze—1,0n)ll55 108 f (yel2i—1,00)]"

t=0

In the literature it is assumed that f(y|z,6,) is a good approximation to
the true density of the data. Otherwise, more complicated expressions for the
weighting matrix should be used!3.

Defining the moment conditions by

0
m(p,0) = Ep{@ log f(y;|wi-1,0)},

which are obtained by averaging over a long simulation

- N

1 0 s -
m(p,0,) = NZ[% log f(yt|xt—179n)]7

t=0

the EMM estimator is obtained by

13See Gallant and Tauchen (1996) and Gallant and Tauchen (2001). However, Gallant and
Long (1997), Gallant and Tauchen (1999) and Coppejans and Gallant (2002), proved if the
auxiliary model corresponds to the SNP density the information matrix above will be the
adequate.

10



bn = argminm’(p, an)(In)ilm(pv an)- (10)

The asymptotic properties of the estimator are derived in Gallant and Tauchen
(1996) and presented below. Define p¥ as the true value of the parameter p and
6" as an isolated solution of the moment conditions m(p°,) = 0. Then under
regularity conditions it can be shown that

lim p,, = p° a.s.,

Vi, — p%) 2 N{0, (M) (1% (M) 1,

lim M,, = M° a.s. and

n—oo

limI, =1° a.s.,

n—oo

where M’ﬂ - M(b?zvan): MO - M(povao)v M(p7 9) - (ai/)m(p7 9) and

0 0
70 = Epo[% log f(y0|x_1,90)][@ log f (yolz—1, 90)]/.

These asymptotic results permit testing if the model is correctly specified.
Under the Hy that p(y_pr, ...... ,Yo|p) is the correct model

Lo = nm’ (9, 00) (1)~ ml(pn, 0)

follows asymptotically a chi-square with pg — p, degrees of freedom. It is also
possible to test restrictions on the parameters, i.e.,

Hy:h(p®) =0

where h is a mapping from R into 17 and the test statistic is given by

11



Ly = n[m'(pn, H,L)(In)_lm(pn, 0n) — ml(Pm 9")(In)_1m(pn, On)] ~X2(Q)

and

Pn = arg minm’(p, en)(In)ilm(pa 9n)-
h(p)=0

Finally, it is also possible to obtain confidence intervals for the parameters
by computing the standard deviations using numeric methods. These intervals
present a drawback because sometimes a parameter approaches a value for which
the model is explosive and this fact is not accompanied by an increase in the
EMM objective function. Gallant and Tauchen (1996) came up with a solution
that consists of inverting the difference test Lj,'*. These ”inverted” intervals
are not free of problems. In fact, it was shown that they do not present more
accurate coverage probabilities, especially when the degrees of freedom are low.

Since

Vam(p,, 0n) 5 N0, 10 = (MO)[(MO) (1°) 7} (MO)] (M)},

the t-ratios are given by

Tn = Sglﬁm(Pm 971)7
Where S’ﬂ = (diag{jn - (Mn)[(Mn)l(In)_l(Mn)]_l(Mn)l})' The CharaCter'
istics of the data are reflected in the different elements of score. If the model
fails to fit these characteristics this fact comes out in the large values taken by
the t-ratios (of the elements of the score). In this case, the failure can suggest
alternative modelizations.

3.2.1 Empirical results

All the estimated results were obtained using the computer package EMM pro-
grammed by Gallant and Tauchen (1997) with Fortran 77 available at ftp.econ.
duke.edu. The global minima of equations 4 to 6 were found through an ex-
haustive search grid of the starting values and the help of randomization.

14In order to invert the test we select for the interval that values of p; for which the Ho:
p? = p; is not reject under the test L.

12



Table 1 gives a summary of the specification presented in section three and
shows the value of the diagnostic test which follows an asymptotic chi-square
with ps — p, degrees of freedom. From the table and in particular from the
chi-square test, we can verify that the two factors volatility model passes the
specfication test without violating any of the moment conditions. Moreover,
all coefficients are statistically significant'® and the first volatility factor is very
slow mean reverting while the second is extremely fast mean reverting, as in
Gallant and Tauchen (2001).

4 Forecasting

Forecasting using the continuous time stochastic volatility model requires the
reprojection step. It allows us to filter the volatility factors U and Us; and
consequently to obtain a forecast of the underlying integrated volatility for any
desired sampling frequency. In fact, as a by-product of the estimation step we

obtain a long simulation of the volatility factors {Us; }1¥; and {U3;}.,. Having
as the main aim to obtain

E(Uatl{yr}r=1);

E(Ustl{y-}r=1)

we start generating simulations of {Ug }N , {Us}Y, and {7}, at the es-
timated parameter p and with N equal 100 000. Then we impose the same
SNP-GARCH model founded in the projection step, on the simulated values ;.
According to Gallant and Tauchen (2001), this provides a good representation
of the one-step ahead conditional variance &tz of 11 given {f,}L_,'6. Then,
we run regressions of Us; and Us; on lags of Ertz, Uty |G-

02,5 =g + 011&,52_1 + ...+ O(p&?_p + 0191+ ...+ qut_q + 7T1|§t_1| + ...+ 9r|gt—r|

Use = By + 81671 + oo + Byt + V1811 + oo F Ygt—g + M| Te1| + oo + A |G-

With this procedure we obtain calibrated functions inside the simulation that
give predicted values of Us; and Us; given {yT}tT;l1 Finally, we evaluate these

15See table 2.
161n fact, given the length of simulation, these regressions are as Gallant and Tauchen (2001)
say analytic projections.

13



functions on the observed data series {9, }1Z4 to obtain forecasts of the volatility
factors, Us; and Us;. The volatility forecast, for day t +1 will be

exp(Byg + 312U2(t+1) + B13U3(t+1))-

We are going to split the sample in two subsamples, the first subsample is
used to estimate the models and the second part (the out-of- sample period)
is used to evaluate the models’ forecasts. We use three out-of-sample periods.
The first out-of-sample period ranges from the 11** of January 2001 till the
237¢ February 2001, the second ranges from the 37¢ of January 2000 till the
2374 February 2001 and the third out-of-sample ranges from the 4" of January
1999 till the 31%¢ of December 199917,

4.1 Alternative Models

We also tried two different specifications. The first one is the traditional GARCH
model. The parameters of this model are estimated with the historical daily data
to build out-of-sample volatility forecasts'®.

There is strong empirical evidence that the volatility has long memory, in
the sense that the effect of a shock to volatility persists for a long number of
periods. The second specification is the ARFIMA model and it tries to fit this
feature by modelling volatility as a fractionally integrated process.

Definition 1 A stationary process {y;} is said to be long memory 2if its
ACF (autocorrelation function ) decays toward zero so slowly that

Zwy(u)ﬁoo as n—oo

uU=—"n

In order to make inferences about the long memory characteristic of the
volatility series?® we will use a formal test.

4.1.1 Testing the existence of long memory

There are many tests that we can apply to check for long memory of volatility.
In this paper, we first use the traditional R/S method.

Consider Y7,Y53,..., Y, the observations in n successive periods and Y the

17We use this last out-of-sample period because we would also like to see the forecasting
performance of the models in a horizon that does not seem to show structural changes in
volatility.

18Gee table 1 for the estimation results. We use the GARCH package for Ox to estimate
the model available at Jurgen A. Doornik web page.

19Zaffaroni (2001) lecture notes.

20T use as a proxy of the volatility the squared returns.

14



empirical average. The adjusted range R is defined as

l _ l _
R(n) = O?%L{;m —1ly} - OISnllél"{;Yi 1Y}

and an estimate of the variance of the process underlying the data is

S2(n,q) = Y wa(G1(h),

Jj=—q

where 7(3) is an estimate of the autocovariance function at lag j and wq(j)
are weights. Finally the R/S statistic is then defined as

_ R

Helms et al.(1984) set ¢ = 0 and wo(0) = 1. The R/S statistic with these
restrictions suffers from two disavantages: first its distribution is not known and
secondly it can be affected by short-memory components. Lo (1991) modified
this statistic by putting g # 0 in order to deal with these problems. His weights
were given by

wq(j)zl—ﬁ with g<n

and ¢ was chosen as the greatest integer less than or equal to

(22 3

1—p (1)

with p(1) as an estimate of the first order autocorrelation of the process.

For short memory processes the values of Q(n,q) converge to n”’. d is the
long memory parameter and J is related to it by J = d + 1/2. Mandelbrot and
Taqqu (1979) also proved that the process has long memory when J > 1/2 and
their estimator for J was

&

Wl
W

_ log(A(n)/S(w)
N logn '

According to the correlogram and the long memory test it seems that the
series of squared returns?! is fractionally integrated, that is

21Gee figure 4 and table 4.

15



Definition 2 A stationary process {y:} is said to be fractionally integrated with
long memory if it can be written as

(1= L)*é(L)ye = O(L)es,

where L is the lag operator, ¢(L) and O(L) are polynomials in the lag operator
with roots inside the unit circle, €, are independently and identically distributed
as N(0,0?) and

1
0<d< <.
< <2

Therefore, we can think of an ARFIMA model as a quite good description
of the volatility dynamics.

4.1.2 Estimating the ARFIMA model

We use the ARFIMA package for Ox?2 in order to estimate the parameters of
the ARFIMA model. The best model according to the BIC criterion does not

have a moving average part and the autorregressive part is of order one??.

4.2 Evaluating and comparing alternative volatility fore-
casts

In this subsection we assess the performance of the volatility forecasts generated
from the continuous time stochastic volatility model and compare it with the
performance of the GARCH and ARFIMA forecasts for the three out-of-sample
periods?*.

For the first out-of-sample period we are going to use one-day-ahead volatility
forecasts?® and then we compare them to the estimate of realized volatility
determined before. For this, we proceed following the analysis in Andersen and
Bollerslev (1997) by regressing the realized volatilities on a constant and on the
various model forecasts. Tables 6 to 8 report the estimated regressions for the
one-day-ahead out-of-sample forecasts that assumes the following form:

—

rvolatility, .y = Bo + 51071 )y arprara T Wt (11)
rvolatility,  ; = By + ﬂlaf+1/t7GARCH + Ut41 (12)

22 Available at Jurgen A. Doornik web page: www.nuff.ox.ac.uk/Users/Doornik.

23Gee table 5.

24The first out-of-sample period ranges from the 11** of January 2001 till the 23"¢ February
2001, the second ranges from the 3"¢ of January 2000 till the 23" February 2001 and the
third out-of-sample ranges from the 4" of January 1999 till the 315t of December 1999.

25Tn this case the models and the filters have been estimated and computed 27 times.
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o —

rvolatility, .y = Bo + P17, )1 syar + Ut+1

The analysis of the results is based on the R*? of the regressions above?S
and on the t-statistics for the hypothesis of 3, = 0 and/or §; = 1. We use both
OLS and instrumental variables (IV) methods of estimation. The use of IV can
be justified by the existence of a possible error in the forecast of future volatility
that would lead the OLS estimates to be inconsistent. The instruments that
were used are the past volatility forecasts for the two first equations and the
squared return for the last equation because it seemed more correlated to the
volatility forecast than to its past value.

For the considered out-of-sample period we verify that the hypothesis of

o = 0 and §; = 1 are both rejected at a 5% significance level for the GARCH
and ARFIMA models. Moreover the coefficients of volatility forecasts of both
regression models 12 and 13 show negative signs, which could lead us think that
both models are inappropriate to forecast volatility (however both variables
are statistically insignificant). These strange results may be explained by a
structural change in volatility observed in the out-of-sample period and not
taken in to account in both specifications.

Contrarily, the SV2F model seems to forecast much better in the out-of-
sample period of 28 days. The empirical results report that the variable volatility
forecast is probably an unbiased estimator of future volatility since the hypoth-
esis of B, = 0 and 3; = 1 are not reject at a 5% significance level?”. The R*? is
equal to 0.235883, which is larger than the ones observed for the GARCH and
the ARFIMA.

The better performance of the continuous stochastic volatility model is due
probably to its flexibility and ability to capture volatility persistence. As has
been reported in several papers, for instance in Diebold and Inoue (1999),
Granger and Hyung (1999), Kim and Kon (1999) and Beine and Laurent (2000),
structural change in volatility and persistence in volatility are imperfect sub-
stitutes. By this we mean that the persistence captured in a model is strongly
reduced when we include structural shifts in the variance. Since we do not allow

26 Anderson and Bollerslev (2002) show that there is a bias in empirical realized volatility
measures built directly from high- frequency data due to the existence of market microstruc-
ture frictions. This leads to a downward bias in the R? obtained from the above regressions.
In fact, they show that these R? will under-estimate the true R*? by the multiplicative factor:

Var[RVy(h)]/Var[IVi] = Var[RVi(h)]/{Var[RVi(h)] — hE[RQ¢(h)]} where RV is the re-
alized volatility, IV is the integrated volatility and

1 2l/h
h)4
RQq(h) = Egzr&“h,
=1

with 1/h = 96 corresponding to the use of ”15-minute” returns. For more details please
check Anderson and Bollerslev (2002).

27See tables 6 and 7.
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for shifts in the variance, since they occur over a short period at the very end of
sample, and thus cannot be explicitly modeled, the SV2F tries to accommodate
the ”missing” shifts by allowing that one factor of volatility be extremely slow
mean reversing (a sign of strong persistence in volatility). The GARCH and
ARFIMA models are not able to account for the apparent switch in volatility.

Next, we use the second out-of-sample period to investigate the forecasting
performance of the SV2F model at longer horizons. We denote the whole out-
of-sample period as [t,T], where ¢ corresponds to the 3"¢ of January 2000 and
T to the 23"¢ February 2001. We split the out-of sample period [t,T] into the
subsets [t,t1], [t14+1,%2] and [to41,T] which are used for volatility forecasting.
Notice that ¢; corresponds to the 18" of May 2000 and t5 to the 4* of October
2000. In other words, we estimate the SV2F model and calculate the volatility
factors Uy and Us; three times, at ¢t — 1 (12¢" of December 1999), ¢; and t,.
Therefore, the volatility forecast for day ¢ + 7 is for example

exp(B1g + B12Us(riry + BisUsean)-

Remember that the 3's and the calibrated coefficients of U, and Us remain
the same till the next estimation date.

Table 8 reports the forecasting results for the SV2F, GARCH and ARFIMA
models. Once more the GARCH and the ARFIMA models perform poorly. The
hypothesis of 3, = 0 and/or 8; = 1 are both rejected at a 5% significance level
for these two models and the coefficients of volatility forecasts of both regression
models 12 and 13 show negative signs as before.

The volatility forecasting performance based on the stochastic volatility
model improves over the other two although we can no longer claim that the
volatility forecast is an unbiased estimator of future volatility. Observing once
more figure 3, we see that the out-of-sample period of 289 periods corresponds
exactly to the part of sample where volatility pattern seems to change. This
probably explains the poor performance of both GARCH and ARFIMA. The
SV2F model performs better due, as it was explained before, to its ability of
capturing volatility persistence.

Finally, we also evaluate the forecasting performance of the continuous time
model in the out-of-sample period that ranges from the 4** of January 1999
till the 315 of December 1999. We choose this period because it precedes the
period of volatility’s pattern change. As before, we denote the whole out-of-
sample period as [t,T], where ¢ corresponds to the 4th of January, 1999 and T
to the 31%¢ December, 1999. We split the out-of sample period [t,T] into the
subsets [t, 1], [t141,t2] and [ta11, T] which are used for volatility forecasting?®.
Notice that ¢; corresponds to the 4** of May 1999 and ¢, to the 2"¢ of September
1999. In other words, we estimate the SV2F model and calculate the volatility
factors Usy and Usg three times, at ¢t — 1 (31%¢ of December 1998), ¢; and ts.

28We use, this time, 10-days-ahead forecasts.
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Considering this out-of-sample period we observe??, for the continuous time
model, that the hypothesis of 5, = 0 is not rejected at a 1% significance level
and the hypothesis of 3; = 1 is not rejected at any conventional significance
levels. The GARCH and ARFIMA models perform worse accordingly to R*2
and the previous hypothesis of 3; = 1 is rejected at all conventional significance
levels.

Moreover, following the analysis in Anderson, Bollerslev, Diebold and Labys
(2001), we also focus our forecasting evaluation on regressions of the realized
volatility on a constant, on the SV2F model forecasts and on the other bench-
mark model’s forecasts:

-

rvolatility, .y = Bo + 51971 )y svar + B207 1 j.carcm + w1 (13)

—

rvolatility, 1= By + 81071 1 svap T Ba0tsr s arpra + Wi (14)

Table 10 reports the empirical results. On including both the SV2F and the
GARCH or the ARFIMA forecasts in the same regression, the estimates of the
coeflicients 3, in equations 13 and 14 are not different from zero statistically and
the hypothesis of 3, = 0 and/or 8; =1 in both regressions are not rejected at
any conventional significance levels. Futhermore, the inclusion of the GARCH
or ARFIMA forecasts does not improve significantly the R*? relatively to the
one based only on the SV2F forecasts. So, according to these results, when
there is not an aparent change of pattern in volatility, it seems that the SV2F
volatility forecast is an unbiased estimator of future volatility.

5 Conclusion

In this paper we evaluate the predictive ability of the continuous time stochastic
volatility model with two factors of volatility (SV2F) and compare its volatil-
ity forecasts to the forecasts obtained from the traditional GARCH model and
ARFIMA models. We choose as a proxy of ex-post volatility the realized volatil-
ity obtained from the intraday returns. We argue that this is a good measure of
ex-post volatility because much theoretical work models the logarithm of asset
prices as a univariate diffusion and it has been shown that under innocuous reg-
ularity conditions, the realized volatility converges to the integrated volatility.
We have been careful in order to avoid microstructures problems by considering
only 15-minutes observations.

The main contributions of this paper include: First, the computation of the
realized volatility accordingly to Nelson and Taylor (2000) in order to ensure

29Gee table 9.
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conditionally unbiased estimates when intraday returns are uncorrelated. Sec-
ondly, we apply the reprojection technique proposed by Gallant and Tauchen
(1998) to obtain volatility forecasts from the SV2F model and finally, we com-
pare the forecasting performance of this last model with two others. The em-
pirical results show that the volatility forecasting performance of the stochastic
volatility model is significantly better than that of the other two models, which
both perform poorly in short and mid-ranges forecast horizons.

20



Acknowledgement 3 I thank my advisor Michael Creel for introducing me to
the idea of Efficient Method of Moments and for his advice and encouragement
during the research. I also thank George Tauchen and Tim Bollerslev for helpful
remarks during my stay at Duke University and seminar participants at the Duke
and UAB Universities.

References

[1]

Anderson, T. G.and Bollerslev, T. (1997), ” Answering the Critics:Yes,
ARCH Models Do Provide Good Volatility Forecasts”, NBER Working
paper, 6023, NBER.

Anderson, T. G., Bollerslev, T.,Diebold, F.X. and Labys, P. (2000), ”Ex-
change Rate Returns Standardized by Realized Volatility are (nearly) Gaus-
sian”, Multinational Finance Journal, 4, 159 -179.

Anderson, T. G., Bollerslev, T.,Diebold, F.X. and Labys, P. (2001), ”Mod-
eling and Forecasting Realized Volatility”, Working Paper 8160, NBER.

Anderson, T. G.and Bollerslev, T. (2002), ” Correcting the Errors: A Note
on Volatility Forecast Evaluation Based on High-Frequency Data and Re-
alized Volatilities”, Discussion paper, Duke University.

Areal, N.M.P.C. and Taylor, S.J. (2000), ” The Realized Volatility of FTSE-
100 Future Prices”, Discussion Paper, Lancaster University.

Bates, D. (2000), "Post-'87 Crash Fears in the S&P 500 Futures Option
market”, Journal of Econometrics, 94, 181-238.

Beine, M. and Laurent, S. (2000), ” Structural Change and Long Memory in
Volatility: New Evidence from Daily Exchange Rates”, Discussion Paper,
Université of Liege.

Campbell, J., A. Lo and C. MacKinlay (1997), The Econometrics of Fi-
nancial Markets, Princeton University Press.

Canina and Figlewski (1993), ”"The Informational Content of Implied
Volatility”, Review of Financial Studies.

Chernov, M., Gallant, A. R., Ghysels, E. and G. Tauchen (2001), ” Alter-
native Models for Stock Price Dynamics”, Discussion Paper, University of
North Caroline at Chapel Hill.

Coppegans, M. and Gallant, A.R. (2002), ”Cross-Validated SNP Density
Estimates”, Journal of Econometrics, 110, 27 - 65.

Day, T. E. & Lewis, C. M. (1992), ”Stock Market Volatility and the Infor-
mation Content of Stock Index Options”, Journal of Empirical Finance 5,
131-154.

21



[13]

[14]

Diebold, F.X., Inoue,A. (1999), ”Long Memory and Structural Change”,
Manuscript, Departmant of Finance, Stern School, NYU, May 1999.

Doornik, J.A. and Ooms, M. (2001), ” A Package for Estimating, Forecast-
ing and Simulating ARFIMA Models: ARFIMA Package 1.01 for Ox”,
Guide, Erasmus University.

Fenton, V.M. and Gallant, A. R. (1996), ”Qualitative and Asymptotic Per-
formance of SNP Density Estimators”, Journal of Econometrics, 74, T4
-118.

Gallant, A. R. and Long, J. R.(1995), ”Estimating Stochastic Differential
Equations Efficiently by Minimum Chi-Square”, Biometrika, 84, 125-141.

Gallant, A. R. and G. Tauchen (1996), ”Which Moments to Match?”,
Econometric Theory, 12, 657- 681.

Gallant, A. R., D. Hsieh and G. Tauchen (1997), ”Estimation of Stochastic
Volatility Models with Diagnostics”, Journal of Econometrics, 81, 159-192.

Gallant, A.R., C.-T. Hsu and G. Tauchen (1999), ”Using Daily Range
Data to Calibrate Volatility Diffusions and Extract the Forward Integrated
Variance”, Review of Economics and Statistics, (forthcoming).

Gallant, A.R. and J.R. Long (1997), ”Estimating Stochastic Differential
Equations Efficiently by Minimum Chi-Square”, Biometrika, 84, 125-141.

Gallant, A. R. and G. Tauchen (1989), ” Seminonparametric Estimation of
Conditionally Constrained Heterogeneous Processes: Asset Pricing Appli-
cations”, FEconometrica, 57, 1091-1120.

Gallant, A.R. and G. Tauchen (1993), ”SNP: A Program for Nonparamet-
ric Time Series Analysis, Version 8.3”, User’s Guide, Discussion Paper,
University of North Carolina at Chapel Hill.

Gallant, A. R. and G. Tauchen (1997), "EMM: A Program for Efficient
Method of Moments Estimation”, Version 1.4, User’s guide, Discussion
Paper, University of North Carolina at Chapel Hill.

Gallant, A. R. and G. Tauchen (1998), "Reprojecting Partially Observed
Systems with Application to Interest rate Diffusions”, Journal of American
Statistical Association, 93, 10-24.

Gallant, A. R. and G. Tauchen (1999), ” The Relative Efficiency of Methods
of Moments Estimators”, Journal of Econometrics 92, 149-172.

Gallant, A. R. and G. Tauchen (2001), ”Efficient Method of Moments”,
Discussion Paper,University of North carolina at Chapel Hill.

Granger, C.W.J.; Hyung, N. (1999), ”Occasional Structural Breaks and
Long Memory”, UCSD, Discussion Paper 99-14, June 1999.

22



[28]

[29]

[30]

[31]

[32]

[33]

[34]

Gysels, E., Harvey, A. and Renault, E. (1995), ”Stochastic Volatility”, in
Handbook of Statistics,14, Statistical Methods in Finance, G.S. Maddala
and C. Rao (eds), North Holland, Amsterdam.

Helms, B., Kaen, F., and Rosenman, R. (1984), ?Memory in Commodity
Futures Contracts”, Journal of Futures Markets, 4, 559-567.

Hol, E. and Koopman, S. J. (2000), ”Forecasting the Variability of Stock
Index Returns with Stochastic Volatility Models and Implied Volatility”,
Discussion Paper, Tinbergen Institute.

Jiang, G. J. and Sluis, P. J. (1998), ” Forecasting Volatily under Multivariate
Stochastic Volatility Model via Reprojection”, Discussion paper, Tilburg
University.

Jorion, P. (1996), "Risk and Turnover in the Foreign Exchange Market”, in
J.A. Frankel, G. Galli & A. Giovannini, eds, ” The Microstruture of Foreign
Exchange Markets”, The University of Chicago Press, Chicago.

Kim, D.; Kon, S.J (1999), ”Structural Change and Time Dependence in
Models of Stock Returns”, Journal of Empirical Finance, 6, 283-308.

Laurent, S. and Peters, J.P (2002), ” A Tutorial for GQrch 2.3, a Complete
Ox Package for Estimating and Forecasting ARCH Models”,

www.crest.fr /pageperso/lfa/sebastien.laurent /sebatien.laurent.htm.

Lo, AW. (1991), "Long Term Memory in Stock Market Prices”, Econo-
metrica 59, 1279-13135.

Mandelbrot, B.B. and Taqqu, M (1979), ”Robust R/S Analysis of Long-
Run Serial Correlation”, Proceedings of the 42nd Session of the Interna-
tional Statistical Institute, International Statistical Institute.

Nelson, D. B. (1990), ” ARCH Models as Diffusion Approximations”, Jour-
nal of Econometrics 45, 7-39.

Neslson, A. and Taylor, S. J.(2000), ” The Realized Volatility of FTSE -100
Future Prices”, Discussing paper, Department of Accounting and Finance,
Lancaster University.

Pagan, A. R. and Schwert, G.W. (1990), ” Alternative Models for Condi-
tional Stock Volatility”, Journal of Economics and Business Statistitcs 9,
63-71.

Schwarz, G. (1978), ”Estimating the Dimension of a Model”, The Annals
of Statistics, vol 6, no. 2, pp 461-464.

Taylor, S. J. and Xu, X. (1997), ” The Incremental Volatility Information in
One Million Foreign Exchange Quotations”, Journal of Empirical Finance
4, 317-340.

23



[42] West, K. D. and Cho, D. (1995), " The Preditive Ability of Several Models
of Exchange Rate Volatility”, Journal of Econometrics, 69, 367-391.

[43] Zaffaroni, P. (2000), ” Time Series Models of Changing Volatility”, Lecture
Notes.

24



0€11000C
02200002
80€00002
G2016661
1906661
62106661
G1608661
0508661
PASAVACIS
9080/661
G2e0.L661
80119661
82909661
G1209661
0015661
£250566 1
01105661
92807661
Viv0v661
L0c1E661
L2L0E66}
60€0€661
€201c661
21902661
0€10266+
81601661
20501661
Lecloe6l
0180066+
62€0066 1
VLLI686L
G0.06861
1220686}
20018861
92508861
1108861
10602861
L2y0.861
G02 19861
G2/09861
€1€09861

Microsoft Data

Figures and Tables

140
120
100
80
60

Figure 1

25



Volatility

1000

900

800

700

600

500

400

300

200

100

1220100c
G2600002
10500002
€021666 -
21,0666}
2120666
9160866+
22¥0866 |
lgL1.661
0€90/66
€020.66}
6060966
G10966 -
9111666}
£€290566
£210566 -
1060166 |
L0v0¥66 -
OLL1EGE L
£190€66 -
L210g66 1
9280266
L0¥0266 |
GOLLL66L
2lo0le61
9lLl0l66}
1280066 |
£2€0066
0€01686}
9090686
0110686}
G180886}
12€0886 1
€201/86}
10902861
G010/86}
8080986 -
71€0986 1

Figure 2

26



¢c-¢-1002
LI-1-1002
8-¢1-0002
¢-L1-0002
8¢-6-0002
€2-8-0002
61-2-0002
€1-9-0002
8-G-0002
1€-€-000C
§¢-¢-0002
02¢-1-0002
vi-cl-6661
8-11-666}
¥-01-666}
12-8-666}
€¢-L-666}
L1-9-666}
21-G-666}
L¥-6661
2-€-6661
Gc-1-666+
91-cI-8661
Ol-11-866}
G-01-866}
8¢-8-866}
¥2-L-866}
81-9-866}
€1-G-866}
L-¥-8661
€-€-866}
92-1-866}
Li-cl-L66)
Li-11-L661
£-01-266}
26-L661
8¢-L-/66}
02-9-266}
G1-G-L66}
0l-¥-L66}

Realized Volatility

120
100
8
6
4
2

Figure 3

27



AC Function

0.25

0.2 ——

o1 HHHH—

005 H H H H —

ALt e adnantTnadane Jannal Ll

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Figure 4

[Model [ow [on [00 [ Bual Al N [ X [a[pval]
Lsver | ¢ | = ] ¢ | * ] * [ * [[100k 6704 ] 5 || 02436 |
Table 1:*is used for free parameters. 100k refers to a simultion of length 100 000 at

step size A = 1/6048,corresponding to 24 steps per day and 252 trading days per

year.
[ Speficication ]| o [ am | am [ Bw [ B [| B |
[ sveF | I || | I I ||
| Estimate || 0.42419 [ -0.00027568 || -89.2101 [ -0.1099 | 0.006289 || -4.6277 |
[ Std. Dev. ] 0.0736671 [] 0.00014924 [| 3.932837 [ 0.008741 ] 0.001034 ] 0.0755 |

[ 95%Lower ] 0.2693015 ]| -0.00049470 || -97.15399 || -0.123322 ]| 0.004320 || -4.77841 |

[ 95% Upper ] 05793685 ]| -0.00007876 || -81.432454 || -0.097090 ][ 0.008299 | -4.480246 ||

Table 2: Estimates, Standard Deviations and Confidence Intervals
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|| Estimates || Std. Error || t-value || Prob ||

[ Cst(M) || 0.186230 || 0035534 | 5241 [ 0.000 |
[ Cst(V) | 0267130 || 0062602 | 4.267 | 0.000 |
[ GARCH(betal) || 0.564093 || 0020700 | 4L.74 | 0.000 |
[ ARCH(alphal) || 0.096255 || 0013620 | 7.067 | 0.000 |
Table 3
| Long Memory Test | q=0 [ q=q* |

I Q | 1116.861 || 680.330 ||

I J [ 0.852075 | 0.79189 ||

I d [ 0.352075 || 0.291894 |

Table 4
|| || Estimates || Std. Error || t-value || Prob || BIC ||
[ ARFIMA (0,d,0) | | | [ |
[ dparameter || 0.126917 [ 0.01142 [ 11.1 [ 0.000 [ 3.178017 |
[ ARFIMA (1,d,0) | | | | I |
[ dparameter [ 0.233008 || 0.01821 [ 12.8 [ 0.000 [ 3.163838 |
| AR-1 | -0.186391 || 0.02271 [ -821 | 0.000 | |
[ ARFIMA (2,d,0) | | | | [ |
[ dparameter [ 0.240679 [ 0.02533 [ 9.50 [ 0.000 [ 3.165289 ||
0 AR-1 [ -0.195044 [ 0.03005 [ -6.49 [ 0.000 | |
[ AR-2 [ -0.009916 || 0.02259 [ -0.439 [ 0.661 | |
[ ARFIMA (0,d,1) | | | | I |
|| d parameter || 0.265111 || 0.02659 || 9.97 || 0.000 || 3.164190 ||
0 MA-1 [ -0.216276 || 0.03214 [ -6.73 [ 0.000 | |
[ ARFIMA (0,d,2) | | | | I |
[ dparameter [ 0.243477 [ 0.03137 ] 7.76 [ 0.000 [ 3.165364 |
0 MA-1 [ -0.197413 || 0.03562 | -5.54 | 0.000 ] |
| MA-2 [ 0.0227693 || 0.01933 [ 1.18 [ 0.239 | |
[ ARFIMA (1,d,1) | | | | [ |
| d parameter | 0242072 || 0.02843 || 851 | 0.000 | 3.165280 ||
[ AR-1 [ 0138536 || 0.1095 [ -1.27 [ 0.206 | |
| MA-1 [ -0.057881 || 0.1298 [ -0.446 [ 0.656 | |
Table 5
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|| Dependent variable RV n = 28 || Estimates || Std. Error || T-value || Prob || R*? ||

I ARFIMA | [ [ [ | 0.054 |
I Bo [ 6018 [ 213 ] 2819 [ 0.0091 | |
|| B84 || -0.219 || 0.180 || -1.212 || 0.2362 || ||
I | [ [ [ | |
|| GARCH || || [ [ Joom]
I 5o [ 5129 || 1041 | 26378 | 0.0130 | [
I 5, [ 0148 || 0171 || -0.866 | 0.3946 | [
I | | | | | |
I SV2r | | | | | 024 |
| Bo [ 0634 | 1127 || 0562 | 0.5786 | |
|| 51 || 2.668 || 0.942 || 2.833 || 0.0088 || ||
Table 6: OLS estimation
|| Dependent variable RV n = 28 || Estimates || Std. Error || T-value || Prob ||
|| ARFIVA || || [ 1
|| Bo || 7.710 || 2.944 || 2.619 || 0.0148 ||
| 81 | -0370 || 0254 [ -1458 | 0.1574 |
I | | | | |
I GARCH | | [ | |
|| By || 6.928 || 2.933 || 2.944 || 0.0069 ||
| By [ -0318 [ 0212 [ -1.503 [ 0.1455 |
I | | | | |
I SVa2r | | | | |
0 B, [ 5225 [ 2951 [ -1.770 [ 0.0884 |
|| 061 || 8.097 || 2.648 || 3.057 || 0.0051 ||

Table 7: IV Estimation
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|| Dependent variable RV n = 289 || Estimates || Std. Error || T-value || Prob || R*? ||

I GARCH | | | | | 0.004 |
0 B, [ 10.601 4.726 [ 2243 ] 0.0257 | |
0 B, [ -1.027 0.733 [ -1.401 ] 0.1622 | |
I | | | | | |
I ARFIMA | | | | | 0.03 |
| B, [ 1066 | 2.396 [ 4.450 | 0.0000 | |
0 B, [ -0933 0.292 [ -3.194 ] 0.0016 [ |
[ | | | | | |
I SV2F | | | | | 0.12 |
| By | -1479 | 0.731 | -20.23 | 0.0000 | |
0 B, [ 1886 0.234 [ 80.63 ] 0.0000 [ |

Table 8: OLS estimation with Newey-West HAC Standard Errors
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|| Dependent variable RV n = 252 || Estimates || Std. Error || T-value || Prob || R*? ||

0 GARCH (10 days ahead) I I I I [ o.01 |
I 5o T 1016 | 0833 [ 1220 [ 02037 | I
|| B84 || 0.176 || 0.154 || 1.144 || 0.2539 || ||
I [ [ [ [ [ [
| ARFIMA (10 days ahead) I I I I | 0.041 ||
I 5o I 0079 | 1267 | -0.042 | 0.8876 | [
I 5, [ 038 || 0231 | 1667 | 0.0968 | [
I [ | [ | [ |
| SV2F (10 days ahead) I I I I | 0.10 |
|| Bo || 0.947 || 0.460 || 2.059 || 0.0405 || ||
|| 51 || 0.940 || 0.484 || 1.942 || 0.0533 || ||
Table 9: OLS estimation with Newey-West HAC Standard Errors
|| Dependent variable RV n = 252 || Estimates || Std. Error || T-value || Prob || Adj.R*? ||
|| regression 13 || || || || || 0.103 ||
|| B || 0.406 || 0.926 || 0.438 || 0.6618 || ||
I 5, [ 0048 || 0485 | 1957 | 0.0516 | [
|| Bs || 0.098 || 0.134 || 0.727 || 0.4679 || ||
I [ [ [ [ [ [
|| regression 14 || || || || || 0.114 ||
| B, [ 068 || 1281 [ -0.535 [ 0.5929 | |
| B, | 0870 || 0453 || 1920 | 0.0560 | |
|| B || 0.306 || 0.190 || 1.608 || 0.1091 || ||

Table 10: OLS estimation with Newey-West HAC Standard Errors
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