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CHAPTER 1About this do
umentThis do
ument integrates le
ture notes for a one year graduate level 
ourse with 
om-puter programs that illustrate and apply the methods that are studied. The immediateavailability of exe
utable (and modi�able) example programs when using the PDF versionof the do
ument is one of the advantages of the system that has been used. On the otherhand, when viewed in printed form, the do
ument is a somewhat terse approximation to atextbook. These notes are not intended to be a perfe
t substitute for a printed textbook.If you are a student of mine, please note that last senten
e 
arefully. There are many goodtextbooks available. A few of my favorites are listed in the bibliography.With respe
t to 
ontents, the emphasis is on estimation and inferen
e within the worldof stationary data, with a bias toward mi
roe
onometri
s. The se
ond half is somewhatmore polished than the �rst half, sin
e I have taught that 
ourse more often. If you takea moment to read the li
ensing information in the next se
tion, you'll see that you arefree to 
opy and modify the do
ument. If anyone would like to 
ontribute material thatexpands the 
ontents, it would be very wel
ome. Error 
orre
tions and other additions arealso wel
ome. 1. Li
ensesAll materials are 
opyrighted by Mi
hael Creel with the date that appears above. Theyare provided under the terms of the GNU General Publi
 Li
ense, ver. 2, whi
h forms Se
-tion 1 of the notes, or, at your option, under the Creative Commons Attribution-Share Alike 2.5 li
ense,whi
h forms Se
tion 2 of the notes. The main thing you need to know is that you are freeto modify and distribute these materials in any way you like, as long as you share your
ontributions in the same way the materials are made available to you. In parti
ular, youmust make available the sour
e �les, in editable form, for your modi�ed version of thematerials. 2. Obtaining the materialsThe materials are available on my web page, in a variety of forms in
luding PDFand the editable sour
es, at pareto.uab.es/m
reel/E
onometri
s/. In addition to the �nalprodu
t, whi
h you're probably looking at in some form now, you 
an obtain the editablesour
es, whi
h will allow you to 
reate your own version, if you like, or send error 
orre
tionsand 
ontributions. The main do
ument was prepared using LYX (www.lyx.org) and GNUO
tave (www.o
tave.org). LYX is a free1 �what you see is what you mean� word pro
essor,basi
ally working as a graphi
al frontend to LATEX. It (with help from other appli
ations)
an export your work in LATEX, HTML, PDF and several other forms. It will run on Linux,Windows, and Ma
OS systems. Figure 1 shows LYX editing this do
ument.GNU O
tave has been used for the example programs, whi
h are s
attered thoughthe do
ument. This 
hoi
e is motivated by two fa
tors. The �rst is the high quality of1�Free� is used in the sense of �freedom�, but LYX is also free of 
harge.13

http://creativecommons.org/licenses/by-sa/2.5/
http://pareto.uab.es/mcreel/Econometrics/
http://www.lyx.org
http://www.octave.org


3. AN EASY WAY TO USE LYX AND OCTAVE TODAY 14Figure 1. LYX

the O
tave environment for doing applied e
onometri
s. The fundamental tools exist andare implemented in a way that make extending them fairly easy. The example programsin
luded here may 
onvin
e you of this point. Se
ondly, O
tave's li
ensing philosophy �tsin with the goals of this proje
t. Thirdly, it runs on Linux, Windows and Ma
OS. Figure2 shows an O
tave program being edited by NEdit, and the result of running the programin a shell window. 3. An easy way to use LYX and O
tave todayThe example programs are available as links to �les on my web page in the PDF version,and here. Support �les needed to run these are available here. The �les won't run properlyfrom your browser, sin
e there are dependen
ies between �les - they are only illustrativewhen browsing. To see how to use these �les (edit and run them), you should go to thehome page of this do
ument, sin
e you will probably want to download the pdf versiontogether with all the support �les and examples. Then set the base URL of the PDF �leto point to wherever the O
tave �les are installed. Then you need to install O
tave ando
tave-forge. All of this may sound a bit 
ompli
ated, be
ause it is. An easier solution isavailable:The ParallelKnoppix distribution of Linux is an ISO image �le that may be burntto CDROM. It 
ontains a bootable-from-CD Gnu/Linux system that has all of the toolsneeded to edit this do
ument, run the O
tave example programs, et
. In parti
ular, it willallow you to 
ut out small portions of the notes and edit them, and send them to me asLYX (or TEX) �les for in
lusion in future versions. Think error 
orre
tions, additions, et
.!The CD automati
ally dete
ts the hardware of your 
omputer, and will not tou
h your

http://pareto.uab.es/mcreel/Econometrics/Examples
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles
http://pareto.uab.es/mcreel/Econometrics
http://pareto.uab.es/mcreel/ParallelKnoppix


4. KNOWN BUGS 15Figure 2. O
tave

hard disk unless you expli
itly tell it to do so. The reason why these notes are integratedinto a Linux distribution for parallel 
omputing will be apparent if you get to Chapter 20.If you don't get that far and you're not interested in parallel 
omputing, please just ignorethe stu� on the CD that's not related to e
onometri
s. If you happen to be interested inparallel 
omputing but not e
onometri
s, just skip ahead to Chapter 20.4. Known BugsThis se
tion is a reminder to myself to try to �x a few things.
• The PDF version has hyperlinks to �gures that jump to the wrong �gure. Thenumbers are 
orre
t, but the links are not. ps2pdf bugs?



CHAPTER 2Introdu
tion: E
onomi
 and e
onometri
 modelsE
onomi
 theory tells us that an individual's demand fun
tion for a good is somethinglike:
x = x(p,m, z)

• x is the quantity demanded
• p is G× 1 ve
tor of pri
es of the good and its substitutes and 
omplements
• m is in
ome
• z is a ve
tor of other variables su
h as individual 
hara
teristi
s that a�e
t pref-eren
esSuppose we have a sample 
onsisting of one observation on n individuals' demands at timeperiod t (this is a 
ross se
tion, where i = 1, 2, ..., n indexes the individuals in the sample).The individual demand fun
tions are

xi = xi(pi,mi, zi)The model is not estimable as it stands, sin
e:
• The form of the demand fun
tion is di�erent for all i.
• Some 
omponents of zi may not be observable to an outside modeler. For example,people don't eat the same lun
h every day, and you 
an't tell what they will orderjust by looking at them. Suppose we 
an break zi into the observable 
omponents
wi and a single unobservable 
omponent εi.A step toward an estimable e
onometri
 model is to suppose that the model may be writtenas

xi = β1 + p′iβp +miβm + w′
iβw + εiWe have imposed a number of restri
tions on the theoreti
al model:

• The fun
tions xi(·) whi
h in prin
iple may di�er for all i have been restri
ted toall belong to the same parametri
 family.
• Of all parametri
 families of fun
tions, we have restri
ted the model to the 
lassof linear in the variables fun
tions.
• The parameters are 
onstant a
ross individuals.
• There is a single unobservable 
omponent, and we assume it is additive.If we assume nothing about the error term ǫ, we 
an always write the last equation. But inorder for the β 
oe�
ients to exist in a sense that has e
onomi
 meaning, and in order tobe able to use sample data to make reliable inferen
es about their values, we need to makeadditional assumptions. These additional assumptions have no theoreti
al basis, theyare assumptions on top of those needed to prove the existen
e of a demand fun
tion. Thevalidity of any results we obtain using this model will be 
ontingent on these additionalrestri
tions being at least approximately 
orre
t. For this reason, spe
i�
ation testing willbe needed, to 
he
k that the model seems to be reasonable. Only when we are 
onvin
edthat the model is at least approximately 
orre
t should we use it for e
onomi
 analysis.16



2. INTRODUCTION: ECONOMIC AND ECONOMETRIC MODELS 17When testing a hypothesis using an e
onometri
 model, at least three fa
tors 
an 
ausea statisti
al test to reje
t the null hypothesis:(1) the hypothesis is false(2) a type I error has o

ured(3) the e
onometri
 model is not 
orre
tly spe
i�ed so the test does not have theassumed distributionTo be able to make s
ienti�
 progress, we would like to ensure that the third reason isnot 
ontributing in a major way to reje
tions, so that reje
tion will be most likely dueto either the �rst or se
ond reasons. Hopefully the above example makes it 
lear thatthere are many possible sour
es of misspe
i�
ation of e
onometri
 models. In the next fewse
tions we will obtain results supposing that the e
onometri
 model is entirely 
orre
tlyspe
i�ed. Later we will examine the 
onsequen
es of misspe
i�
ation and see some methodsfor determining if a model is 
orre
tly spe
i�ed. Later on, e
onometri
 methods that seekto minimize maintained assumptions are introdu
ed.



CHAPTER 3Ordinary Least Squares1. The Linear ModelConsider approximating a variable y using the variables x1, x2, ..., xk. We 
an 
onsidera model that is a linear approximation:Linearity: the model is a linear fun
tion of the parameter ve
tor β0 :

y = β0
1x1 + β0

2x2 + ...+ β0
kxk + ǫor, using ve
tor notation:

y = x′β0 + ǫThe dependent variable y is a s
alar random variable, x = ( x1 x2 · · · xk)
′ is a k-ve
tor of explanatory variables, and β0 = ( β0

1 β0
2 · · · β0

k)
′

. The supers
ript �0� in β0means this is the �true value� of the unknown parameter. It will be de�ned more pre
iselylater, and usually suppressed when it's not ne
essary for 
larity.Suppose that we want to use data to try to determine the best linear approximationto y using the variables x. The data {(yt,xt)} , t = 1, 2, ..., n are obtained by some form ofsampling1. An individual observation is
yt = x′

tβ + εtThe n observations 
an be written in matrix form as(1) y = Xβ + ε,where y =
(
y1 y2 · · · yn

)′ is n× 1 and X =
(

x1 x2 · · · xn

)′.Linear models are more general than they might �rst appear, sin
e one 
an employnonlinear transformations of the variables:
ϕ0(z) =

[
ϕ1(w) ϕ2(w) · · · ϕp(w)

]
β + εwhere the φi() are known fun
tions. De�ning y = ϕ0(z), x1 = ϕ1(w), et
. leads to a modelin the form of equation 3. For example, the Cobb-Douglas model

z = Awβ2

2 wβ3

3 exp(ε)
an be transformed logarithmi
ally to obtain
ln z = lnA+ β2 lnw2 + β3 lnw3 + ε.If we de�ne y = ln z, β1 = lnA, et
., we 
an put the model in the form needed. Theapproximation is linear in the parameters, but not ne
essarily linear in the variables.

1For example, 
ross-se
tional data may be obtained by random sampling. Time series data a

umulatehistori
ally. 18



2. ESTIMATION BY LEAST SQUARES 19Figure 1. Typi
al data, Classi
al Model
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2. Estimation by least squaresFigure 1, obtained by running Typi
alData.m shows some data that follows the linearmodel yt = β1 + β2xt2 + ǫt. The green line is the �true� regression line β1 + β2xt2, andthe red 
rosses are the data points (xt2, yt), where ǫt is a random error that has mean zeroand is independent of xt2. Exa
tly how the green line is de�ned will be
ome 
lear later.In pra
ti
e, we only have the data, and we don't know where the green line lies. We needto gain information about the straight line that best �ts the data points.The ordinary least squares (OLS) estimator is de�ned as the value that minimizes thesum of the squared errors:
β̂ = arg min s(β)where

s(β) =
n∑

t=1

(
yt − x′

tβ
)2

= (y − Xβ)′ (y −Xβ)

= y′y − 2y′Xβ + β′X′Xβ

= ‖ y − Xβ ‖2This last expression makes it 
lear how the OLS estimator is de�ned: it minimizes theEu
lidean distan
e between y and Xβ. The �tted OLS 
oe�
ients are those that give thebest linear approximation to y using x as basis fun
tions, where �best� means minimumEu
lidean distan
e. One 
ould think of other estimators based upon other metri
s. Forexample, the minimum absolute distan
e (MAD) minimizes ∑n
t=1 |yt − x′

tβ|. Later, wewill see that whi
h estimator is best in terms of their statisti
al properties, rather than interms of the metri
s that de�ne them, depends upon the properties of ǫ, about whi
h wehave as yet made no assumptions.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/TypicalData.m
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• To minimize the 
riterion s(β), �nd the derivative with respe
t to β and set it tozero:

Dβs(β) = −2X′y + 2X′Xβ

Dβs(β̂) = −2X′y + 2X′Xβ̂ ≡ 0so
β̂ = (X′X)−1X′y.

• To verify that this is a minimum, 
he
k the se
ond order su�
ient 
ondition:
D2
βs(β̂) = 2X′XSin
e ρ(X) = K, this matrix is positive de�nite, sin
e it's a quadrati
 form in ap.d. matrix (identity matrix of order n), so β̂ is in fa
t a minimizer.

• The �tted values are the ve
tor ŷ = Xβ̂.

• The residuals are the ve
tor ε̂ = y − Xβ̂

• Note that
y = Xβ + ε

= Xβ̂ + ε̂

• Also, the �rst order 
onditions 
an be written as
X′y − X′Xβ̂ = 0

X′
(
y − Xβ̂

)
= 0

X′ε̂ = 0whi
h is to say, the OLS residuals are orthogonal to X. Let's look at this more
arefully.3. Geometri
 interpretation of least squares estimation3.1. InX,Y Spa
e. Figure 2 shows a typi
al �t to data, along with the true regressionline. Note that the true line and the estimated line are di�erent. This �gure was 
reated byrunning the O
tave program OlsFit.m . You 
an experiment with 
hanging the parametervalues to see how this a�e
ts the �t, and to see how the �tted line will sometimes be 
loseto the true line, and sometimes rather far away.3.2. In Observation Spa
e. If we want to plot in observation spa
e, we'll need touse only two or three observations, or we'll en
ounter some limitations of the bla
kboard.If we try to use 3, we'll en
ounter the limits of my artisti
 ability, so let's use two. Withonly two observations, we 
an't have K > 1.

• We 
an de
ompose y into two 
omponents: the orthogonal proje
tion onto the
K−dimensional spa
e spanned by X, Xβ̂, and the 
omponent that is the orthog-onal proje
tion onto the n − K subpa
e that is orthogonal to the span of X,
ε̂.

• Sin
e β̂ is 
hosen to make ε̂ as short as possible, ε̂ will be orthogonal to the spa
espanned by X. Sin
e X is in this spa
e, X ′ε̂ = 0. Note that the f.o.
. that de�nethe least squares estimator imply that this is so.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/OlsFit.m


3. GEOMETRIC INTERPRETATION OF LEAST SQUARES ESTIMATION 21Figure 2. Example OLS Fit
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Figure 3. The �t in observation spa
e
Observation 2

Observation 1

x

y

S(x)

x*beta=P_xY

e = M_xY

3.3. Proje
tion Matri
es. Xβ̂ is the proje
tion of y onto the span of X, or
Xβ̂ = X

(
X ′X

)−1
X ′yTherefore, the matrix that proje
ts y onto the span of X is

PX = X(X ′X)−1X ′sin
e
Xβ̂ = PXy.



4. INFLUENTIAL OBSERVATIONS AND OUTLIERS 22
ε̂ is the proje
tion of y onto the N −K dimensional spa
e that is orthogonal to the spanof X. We have that

ε̂ = y −Xβ̂

= y −X(X ′X)−1X ′y

=
[
In −X(X ′X)−1X ′] y.So the matrix that proje
ts y onto the spa
e orthogonal to the span of X is

MX = In −X(X ′X)−1X ′

= In − PX .We have
ε̂ = MXy.Therefore

y = PXy +MXy

= Xβ̂ + ε̂.These two proje
tion matri
es de
ompose the n dimensional ve
tor y into two orthogonal
omponents - the portion that lies in the K dimensional spa
e de�ned by X, and theportion that lies in the orthogonal n−K dimensional spa
e.
• Note that both PX and MX are symmetri
 and idempotent.� A symmetri
 matrix A is one su
h that A = A′.� An idempotent matrix A is one su
h that A = AA.� The only nonsingular idempotent matrix is the identity matrix.4. In�uential observations and outliersThe OLS estimator of the ith element of the ve
tor β0 is simply

β̂i =
[
(X ′X)−1X ′]

i· y

= c′iyThis is how we de�ne a linear estimator - it's a linear fun
tion of the dependent variable.Sin
e it's a linear 
ombination of the observations on the dependent variable, where theweights are determined by the observations on the regressors, some observations may havemore in�uen
e than others.To investigate this, let et be an n ve
tor of zeros with a 1 in the tth position, i.e., it'sthe tth 
olumn of the matrix In. De�ne
ht = (PX)tt

= e′tPXetso ht is the tth element on the main diagonal of PX . Note that
ht = ‖ PXet ‖2so
ht ≤‖ et ‖2= 1So 0 < ht < 1. Also,

TrPX = K ⇒ h = K/n.



4. INFLUENTIAL OBSERVATIONS AND OUTLIERS 23Figure 4. Dete
tion of in�uential observations

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.5  1  1.5  2  2.5  3

X

Data points
fitted

Leverage
Influence

So the average of the ht isK/n. The value ht is referred to as the leverage of the observation.If the leverage is mu
h higher than average, the observation has the potential to a�e
t theOLS �t importantly. However, an observation may also be in�uential due to the value of
yt, rather than the weight it is multiplied by, whi
h only depends on the xt's.To a

ount for this, 
onsider estimation of β without using the tth observation (des-ignate this estimator as β̂(t)). One 
an show (see Davidson and Ma
Kinnon, pp. 32-5 forproof) that

β̂(t) = β̂ −
(

1

1 − ht

)
(X ′X)−1X ′

tε̂tso the 
hange in the tth observations �tted value is
x′
tβ̂ − x′

tβ̂
(t) =

(
ht

1 − ht

)
ε̂tWhile an observation may be in�uential if it doesn't a�e
t its own �tted value, it 
ertainlyis in�uential if it does. A fast means of identifying in�uential observations is to plot(

ht

1−ht

)
ε̂t (whi
h I will refer to as the own in�uen
e of the observation) as a fun
tion of t.Figure 4 gives an example plot of data, �t, leverage and in�uen
e. The O
tave programis In�uentialObservation.m . If you re-run the program you will see that the leverage ofthe last observation (an outlying value of x) is always high, and the in�uen
e is sometimeshigh.After in�uential observations are dete
ted, one needs to determine why they are in�u-ential. Possible 
auses in
lude:
• data entry error, whi
h 
an easily be 
orre
ted on
e dete
ted. Data entry errorsare very 
ommon.
• spe
ial e
onomi
 fa
tors that a�e
t some observations. These would need tobe identi�ed and in
orporated in the model. This is the idea behind stru
tural
hange: the parameters may not be 
onstant a
ross all observations.
• pure randomness may have 
aused us to sample a low-probability observation.There exist robust estimation methods that downweight outliers.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/InfluentialObservation.m


5. GOODNESS OF FIT 245. Goodness of �tThe �tted model is
y = Xβ̂ + ε̂Take the inner produ
t:

y′y = β̂′X ′Xβ̂ + 2β̂′X ′ε̂+ ε̂′ε̂But the middle term of the RHS is zero sin
e X ′ε̂ = 0, so(2) y′y = β̂′X ′Xβ̂ + ε̂′ε̂The un
entered R2
u is de�ned as

R2
u = 1 − ε̂′ε̂

y′y

=
β̂′X ′Xβ̂
y′y

=
‖ PXy ‖2

‖ y ‖2

= cos2(φ),where φ is the angle between y and the span of X .
• The un
entered R2 
hanges if we add a 
onstant to y, sin
e this 
hanges φ (seeFigure 5, the yellow ve
tor is a 
onstant, sin
e it's on the 45 degree line in ob-servation spa
e). Another, more 
ommon de�nition measures the 
ontributionFigure 5. Un
entered R2

of the variables, other than the 
onstant term, to explaining the variation in y.Thus it measures the ability of the model to explain the variation of y about itsun
onditional sample mean.



6. THE CLASSICAL LINEAR REGRESSION MODEL 25Let ι = (1, 1, ..., 1)′ , a n -ve
tor. So
Mι = In − ι(ι′ι)−1ι′

= In − ιι′/n

Mιy just returns the ve
tor of deviations from the mean. In terms of deviations from themean, equation 2 be
omes
y′Mιy = β̂′X ′MιXβ̂ + ε̂′Mιε̂The 
entered R2

c is de�ned as
R2
c = 1 − ε̂′ε̂

y′Mιy
= 1 − ESS

TSSwhere ESS = ε̂′ε̂ and TSS = y′Mιy=∑n
t=1(yt − ȳ)2.Supposing that X 
ontains a 
olumn of ones (i.e., there is a 
onstant term),

X ′ε̂ = 0 ⇒
∑

t

ε̂t = 0so Mιε̂ = ε̂. In this 
ase
y′Mιy = β̂′X ′MιXβ̂ + ε̂′ε̂So

R2
c =

RSS

TSSwhere RSS = β̂′X ′MιXβ̂

• Supposing that a 
olumn of ones is in the spa
e spanned by X (PX ι = ι), thenone 
an show that 0 ≤ R2
c ≤ 1.6. The 
lassi
al linear regression modelUp to this point the model is empty of 
ontent beyond the de�nition of a best linearapproximation to y and some geometri
al properties. There is no e
onomi
 
ontent to themodel, and the regression parameters have no e
onomi
 interpretation. For example, whatis the partial derivative of y with respe
t to xj? The linear approximation is

y = β1x1 + β2x2 + ...+ βkxk + ǫThe partial derivative is
∂y

∂xj
= βj +

∂ǫ

∂xjUp to now, there's no guarantee that ∂ǫ
∂xj

=0. For the β to have an e
onomi
 meaning,we need to make additional assumptions. The assumptions that are appropriate to makedepend on the data under 
onsideration. We'll start with the 
lassi
al linear regressionmodel, whi
h in
orporates some assumptions that are 
learly not realisti
 for e
onomi
data. This is to be able to explain some 
on
epts with a minimum of 
onfusion andnotational 
lutter. Later we'll adapt the results to what we 
an get with more realisti
assumptions.Linearity: the model is a linear fun
tion of the parameter ve
tor β0 :

y = β0
1x1 + β0

2x2 + ...+ β0
kxk + ǫ(3)or, using ve
tor notation:

y = x′β0 + ǫ



7. SMALL SAMPLE STATISTICAL PROPERTIES OF THE LEAST SQUARES ESTIMATOR 26Nonsto
hasti
 linearly independent regressors: X is a �xed matrix of 
onstants,it has rank K, its number of 
olumns, and
lim

1

n
X′X = QX(4)where QX is a �nite positive de�nite matrix. This is needed to be able to identify theindividual e�e
ts of the explanatory variables.Independently and identi
ally distributed errors:(5) ǫ ∼ IID(0, σ2In)

ε is jointly distributed IID. This implies the following two properties:Homos
edasti
 errors:(6) V (εt) = σ2
0,∀tNonauto
orrelated errors:(7) E(εtǫs) = 0,∀t 6= sOptionally, we will sometimes assume that the errors are normally distributed.Normally distributed errors:(8) ǫ ∼ N(0, σ2In)7. Small sample statisti
al properties of the least squares estimatorUp to now, we have only examined numeri
 properties of the OLS estimator, thatalways hold. Now we will examine statisti
al properties. The statisti
al properties dependupon the assumptions we make.7.1. Unbiasedness. We have β̂ = (X ′X)−1X ′y. By linearity,

β̂ = (X ′X)−1X ′ (Xβ + ε)

= β + (X ′X)−1X ′εBy 4 and 5
E(X ′X)−1X ′ε = E(X ′X)−1X ′ε

= (X ′X)−1X ′Eε

= 0so the OLS estimator is unbiased under the assumptions of the 
lassi
al model.Figure 6 shows the results of a small Monte Carlo experiment where the OLS estimatorwas 
al
ulated for 10000 samples from the 
lassi
al model with y = 1+2x+ε, where n = 20,
σ2
ε = 9, and x is �xed a
ross samples. We 
an see that the β2 appears to be estimatedwithout bias. The program that generates the plot is Unbiased.m , if you would like toexperiment with this.With time series data, the OLS estimator will often be biased. Figure 7 shows theresults of a small Monte Carlo experiment where the OLS estimator was 
al
ulated for1000 samples from the AR(1) model with yt = 0 + 0.9yt−1 + εt, where n = 20 and σ2

ε = 1.In this 
ase, assumption 4 does not hold: the regressors are sto
hasti
. We 
an see thatthe bias in the estimation of β2 is about -0.2.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Unbiased.m


7. SMALL SAMPLE STATISTICAL PROPERTIES OF THE LEAST SQUARES ESTIMATOR 27Figure 6. Unbiasedness of OLS under 
lassi
al assumptions
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Figure 7. Biasedness of OLS when an assumption fails
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The program that generates the plot is Biased.m , if you would like to experiment withthis.7.2. Normality. With the linearity assumption, we have β̂ = β+ (X ′X)−1X ′ε. Thisis a linear fun
tion of ε. Adding the assumption of normality (8, whi
h implies strongexogeneity), then
β̂ ∼ N

(
β, (X ′X)−1σ2

0

)sin
e a linear fun
tion of a normal random ve
tor is also normally distributed. In Figure6 you 
an see that the estimator appears to be normally distributed. It in fa
t is normally

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Biased.m


7. SMALL SAMPLE STATISTICAL PROPERTIES OF THE LEAST SQUARES ESTIMATOR 28distributed, sin
e the DGP (see the O
tave program) has normal errors. Even when thedata may be taken to be IID, the assumption of normality is often questionable or simplyuntenable. For example, if the dependent variable is the number of automobile trips perweek, it is a 
ount variable with a dis
rete distribution, and is thus not normally distributed.Many variables in e
onomi
s 
an take on only nonnegative values, whi
h, stri
tly speaking,rules out normality.27.3. The varian
e of the OLS estimator and the Gauss-Markov theorem.Now let's make all the 
lassi
al assumptions ex
ept the assumption of normality. We have
β̂ = β + (X ′X)−1X ′ε and we know that E(β̂) = β. So

V ar(β̂) = E

{(
β̂ − β

)(
β̂ − β

)′}

= E
{
(X ′X)−1X ′εε′X(X ′X)−1

}

= (X ′X)−1σ2
0The OLS estimator is a linear estimator , whi
h means that it is a linear fun
tion ofthe dependent variable, y.

β̂ =
[
(X ′X)−1X ′] y

= Cywhere C is a fun
tion of the explanatory variables only, not the dependent variable. Itis also unbiased under the present assumptions, as we proved above. One 
ould 
onsiderother weights W that are a fun
tion of X that de�ne some other linear estimator. We'llstill insist upon unbiasedness. Consider β̃ = Wy, where W = W (X) is some k× n matrixfun
tion ofX. Note that sin
eW is a fun
tion ofX, it is nonsto
hasti
, too. If the estimatoris unbiased, then we must have WX = IK :
E(Wy) = E(WXβ0 +Wε)

= WXβ0

= β0

⇒
WX = IKThe varian
e of β̃ is

V (β̃) = WW ′σ2
0 .De�ne

D = W − (X ′X)−1X ′so
W = D + (X ′X)−1X ′Sin
e WX = IK , DX = 0, so

V (β̃) =
(
D + (X ′X)−1X ′) (D + (X ′X)−1X ′)′ σ2

0

=
(
DD′ +

(
X ′X

)−1
)
σ2

02Normality may be a good model nonetheless, as long as the probability of a negative value o

uring isnegligable under the model. This depends upon the mean being large enough in relation to the varian
e.
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 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0  0.5  1  1.5  2  2.5  3  3.5  4

Beta 2 hat, OLS

So
V (β̃) ≥ V (β̂)The inequality is a shorthand means of expressing, more formally, that V (β̃) − V (β̂) is apositive semi-de�nite matrix. This is a proof of the Gauss-Markov Theorem. The OLSestimator is the �best linear unbiased estimator� (BLUE).

• It is worth emphasizing again that we have not used the normality assumption inany way to prove the Gauss-Markov theorem, so it is valid if the errors are notnormally distributed, as long as the other assumptions hold.To illustrate the Gauss-Markov result, 
onsider the estimator that results from splittingthe sample into p equally-sized parts, estimating using ea
h part of the data separatelyby OLS, then averaging the p resulting estimators. You should be able to show that thisestimator is unbiased, but ine�
ient with respe
t to the OLS estimator. The programE�
ien
y.m illustrates this using a small Monte Carlo experiment, whi
h 
ompares theOLS estimator and a 3-way split sample estimator. The data generating pro
ess followsthe 
lassi
al model, with n = 21. The true parameter value is β = 2. In Figures 8 and9 we 
an see that the OLS estimator is more e�
ient, sin
e the tails of its histogram aremore narrow.We have that E(β̂) = β and V ar(β̂) =
(
X

′

X
)−1

σ2
0 , but we still need to estimatethe varian
e of ǫ, σ2

0, in order to have an idea of the pre
ision of the estimates of β. A
ommonly used estimator of σ2
0 is

σ̂2
0 =

1

n−K
ε̂′ε̂This estimator is unbiased:

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Efficiency.m


8. EXAMPLE: THE NERLOVE MODEL 30Figure 9. Gauss-Markov Resul: The split sample estimator
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σ̂2
0 =

1

n−K
ε̂′ε̂

=
1

n−K
ε′Mε

E(σ̂2
0) =

1

n−K
E(Trε′Mε)

=
1

n−K
E(TrMεε′)

=
1

n−K
TrE(Mεε′)

=
1

n−K
σ2

0TrM

=
1

n−K
σ2

0 (n− k)

= σ2
0where we use the fa
t that Tr(AB) = Tr(BA) when both produ
ts are 
onformable. Thus,this estimator is also unbiased under these assumptions.8. Example: The Nerlove model8.1. Theoreti
al ba
kground. For a �rm that takes input pri
es w and the outputlevel q as given, the 
ost minimization problem is to 
hoose the quantities of inputs x tosolve the problem

min
x
w′xsubje
t to the restri
tion

f(x) = q.



8. EXAMPLE: THE NERLOVE MODEL 31The solution is the ve
tor of fa
tor demands x(w, q). The 
ost fun
tion is obtained bysubstituting the fa
tor demands into the 
riterion fun
tion:
Cw, q) = w′x(w, q).

• Monotoni
ity In
reasing fa
tor pri
es 
annot de
rease 
ost, so
∂C(w, q)

∂w
≥ 0Remember that these derivatives give the 
onditional fa
tor demands (Shephard'sLemma).

• Homogeneity The 
ost fun
tion is homogeneous of degree 1 in input pri
es:
C(tw, q) = tC(w, q) where t is a s
alar 
onstant. This is be
ause the fa
tordemands are homogeneous of degree zero in fa
tor pri
es - they only depend uponrelative pri
es.

• Returns to s
ale The returns to s
ale parameter γ is de�ned as the inverse ofthe elasti
ity of 
ost with respe
t to output:
γ =

(
∂C(w, q)

∂q

q

C(w, q)

)−1Constant returns to s
ale is the 
ase where in
reasing produ
tion q implies that
ost in
reases in the proportion 1:1. If this is the 
ase, then γ = 1.8.2. Cobb-Douglas fun
tional form. The Cobb-Douglas fun
tional form is linearin the logarithms of the regressors and the dependent variable. For a 
ost fun
tion, if thereare g fa
tors, the Cobb-Douglas 
ost fun
tion has the form
C = Awβ1

1 ...w
βg
g q

βqeεWhat is the elasti
ity of C with respe
t to wj?
eCwj

=

(
∂C

∂WJ

)(wj
C

)

= βjAw
β1

1 .w
βj−1
j ..w

βg
g q

βqeε
wj

Awβ1

1 ...w
βg
g qβqeε

= βjThis is one of the reasons the Cobb-Douglas form is popular - the 
oe�
ients are easyto interpret, sin
e they are the elasti
ities of the dependent variable with respe
t to theexplanatory variable. Not that in this 
ase,
eCwj

=

(
∂C

∂WJ

)(wj
C

)

= xj(w, q)
wj
C

≡ sj(w, q)the 
ost share of the jth input. So with a Cobb-Douglas 
ost fun
tion, βj = sj(w, q). The
ost shares are 
onstants.Note that after a logarithmi
 transformation we obtain
lnC = α+ β1 lnw1 + ...+ βg lnwg + βq ln q + ǫwhere α = lnA . So we see that the transformed model is linear in the logs of the data.



8. EXAMPLE: THE NERLOVE MODEL 32One 
an verify that the property of HOD1 implies that
g∑

i=1

βg = 1In other words, the 
ost shares add up to 1.The hypothesis that the te
hnology exhibits CRTS implies that
γ =

1

βq
= 1so βq = 1. Likewise, monotoni
ity implies that the 
oe�
ients βi ≥ 0, i = 1, ..., g.8.3. The Nerlove data and OLS. The �le nerlove.data 
ontains data on 145 ele
tri
utility 
ompanies' 
ost of produ
tion, output and input pri
es. The data are for the U.S.,and were 
olle
ted by M. Nerlove. The observations are by row, and the 
olumns areCOMPANY, COST (C), OUTPUT (Q), PRICE OF LABOR (PL), PRICE OFFUEL (PF ) and PRICE OF CAPITAL (PK). Note that the data are sorted by outputlevel (the third 
olumn).We will estimate the Cobb-Douglas model(9) lnC = β1 + β2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ǫusing OLS. To do this yourself, you need the data �le mentioned above, as well as Nerlove.m (the estimation program), and the library of O
tave fun
tions mentioned in the introdu
tion to O
tave that formsse
tion 22 of this do
ument.3The results are*********************************************************OLS estimation resultsObservations 145R-squared 0.925955Sigma-squared 0.153943Results (Ordinary var-
ov estimator)estimate st.err. t-stat. p-value
onstant -3.527 1.774 -1.987 0.049output 0.720 0.017 41.244 0.000labor 0.436 0.291 1.499 0.136fuel 0.427 0.100 4.249 0.000
apital -0.220 0.339 -0.648 0.518*********************************************************

• Do the theoreti
al restri
tions hold?
• Does the model �t well?
• What do you think about RTS?While we will use O
tave programs as examples in this do
ument, sin
e following theprogramming statements is a useful way of learning how theory is put into pra
ti
e, youmay be interested in a more �user-friendly� environment for doing e
onometri
s. I heartilyre
ommend Gretl, the Gnu Regression, E
onometri
s, and Time-Series Library. This is aneasy to use program, available in English, Fren
h, and Spanish, and it 
omes with a lot3If you are running the bootable CD, you have all of this installed and ready to run.

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/nerlove.data
http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Nerlove.m
http://gretl.sourceforge.net


EXERCISES 33of data ready to use. It even has an option to save output as LATEX fragments, so that I
an just in
lude the results into this do
ument, no muss, no fuss. Here the results of theNerlove model from GRETL:Model 2: OLS estimates using the 145 observations 1�145Dependent variable: l_
ostVariable Coe�
ient Std. Error t-statisti
 p-value
onst −3.5265 1.77437 −1.9875 0.0488l_output 0.720394 0.0174664 41.2445 0.0000l_labor 0.436341 0.291048 1.4992 0.1361l_fuel 0.426517 0.100369 4.2495 0.0000l_
apita −0.219888 0.339429 −0.6478 0.5182Mean of dependent variable 1.72466S.D. of dependent variable 1.42172Sum of squared residuals 21.5520Standard error of residuals (σ̂) 0.392356Unadjusted R2 0.925955Adjusted R̄2 0.923840

F (4, 140) 437.686Akaike information 
riterion 145.084S
hwarz Bayesian 
riterion 159.967Fortunately, Gretl and my OLS program agree upon the results. Gretl is in
luded in thebootable CD mentioned in the introdu
tion. I re
ommend using GRETL to repeat theexamples that are done using O
tave.The previous properties hold for �nite sample sizes. Before 
onsidering the asymptoti
properties of the OLS estimator it is useful to review the MLE estimator, sin
e under theassumption of normal errors the two estimators 
oin
ide.9. Exer
isesExer
ises(1) Prove that the split sample estimator used to generate �gure 9 is unbiased.(2) Cal
ulate the OLS estimates of the Nerlove model using O
tave and GRETL, andprovide printouts of the results. Interpret the results.(3) Do an analysis of whether or not there are in�uential observations for OLS estimationof the Nerlove model. Dis
uss.(4) Using GRETL, examine the residuals after OLS estimation and tell me whether or notyou believe that the assumption of independent identi
ally distributed normal errorsis warranted. No need to do formal tests, just look at the plots. Print out any thatyou think are relevant, and interpret them.(5) For a random ve
tor X ∼ N(µx,Σ), what is the distribution of AX + b, where A and
b are 
onformable matri
es of 
onstants?(6) Using O
tave, write a little program that veri�es that Tr(AB) = Tr(BA) for A and
B 4x4 matri
es of random numbers. Note: there is an O
tave fun
tion tra
e.



EXERCISES 34(7) For the model with a 
onstant and a single regressor, yt = β1+β2xt+ǫt, whi
h satis�esthe 
lassi
al assumptions, prove that the varian
e of the OLS estimator de
lines to zeroas the sample size in
reases.



CHAPTER 4Maximum likelihood estimationThe maximum likelihood estimator is important sin
e it is asymptoti
ally e�
ient,as is shown below. For the 
lassi
al linear model with normal errors, the ML and OLSestimators of β are the same, so the following theory is presented without examples. Inthe se
ond half of the 
ourse, nonlinear models with nonnormal errors are introdu
ed, andexamples may be found there.1. The likelihood fun
tionSuppose we have a sample of size n of the random ve
tors y and z. Suppose the jointdensity of Y =
(
y1 . . . yn

) and Z =
(
z1 . . . zn

) is 
hara
terized by a parameterve
tor ψ0 :

fY Z(Y,Z, ψ0).This is the joint density of the sample. This density 
an be fa
tored as
fY Z(Y,Z, ψ0) = fY |Z(Y |Z, θ0)fZ(Z, ρ0)The likelihood fun
tion is just this density evaluated at other values ψ

L(Y,Z, ψ) = f(Y,Z, ψ), ψ ∈ Ψ,where Ψ is a parameter spa
e.The maximum likelihood estimator of ψ0 is the value of ψ that maximizes the likelihoodfun
tion.Note that if θ0 and ρ0 share no elements, then the maximizer of the 
onditional likeli-hood fun
tion fY |Z(Y |Z, θ) with respe
t to θ is the same as the maximizer of the overalllikelihood fun
tion fY Z(Y,Z, ψ) = fY |Z(Y |Z, θ)fZ(Z, ρ), for the elements of ψ that 
orre-spond to θ. In this 
ase, the variables Z are said to be exogenous for estimation of θ, andwe may more 
onveniently work with the 
onditional likelihood fun
tion fY |Z(Y |Z, θ) forthe purposes of estimating θ0.Definition 1.1. The maximum likelihood estimator of θ0 = arg max fY |Z(Y |Z, θ)

• If the n observations are independent, the likelihood fun
tion 
an be written as
L(Y |Z, θ) =

n∏

t=1

f(yt|zt, θ)where the ft are possibly of di�erent form.
• If this is not possible, we 
an always fa
tor the likelihood into 
ontributions ofobservations, by using the fa
t that a joint density 
an be fa
tored into the produ
tof a marginal and 
onditional (doing this iteratively)
L(Y, θ) = f(y1|z1, θ)f(y2|y1, z2, θ)f(y3|y1, y2, z3, θ) · · · f(yn|y1,y2, . . . yt−n, zn, θ)To simplify notation, de�ne

xt = {y1, y2, ..., yt−1, zt}35



1. THE LIKELIHOOD FUNCTION 36so x1 = z1, x2 = {y1, z2}, et
. - it 
ontains exogenous and predetermined endogeousvariables. Now the likelihood fun
tion 
an be written as
L(Y, θ) =

n∏

t=1

f(yt|xt, θ)The 
riterion fun
tion 
an be de�ned as the average log-likelihood fun
tion:
sn(θ) =

1

n
lnL(Y, θ) =

1

n

n∑

t=1

ln f(yt|xt, θ)The maximum likelihood estimator may thus be de�ned equivalently as
θ̂ = arg max sn(θ),where the set maximized over is de�ned below. Sin
e ln(·) is a monotoni
 in
reasingfun
tion, lnL and L maximize at the same value of θ. Dividing by n has no e�e
t on θ̂.1.1. Example: Bernoulli trial. Suppose that we are �ipping a 
oin that may bebiased, so that the probability of a heads may not be 0.5. Maybe we're interested inestimating the probability of a heads. Let y = 1(heads) be a binary variable that indi
ateswhether or not a heads is observed. The out
ome of a toss is a Bernoulli random variable:

fY (y, p0) = py0 (1 − p0)
1−y , y ∈ {0, 1}

= 0, y /∈ {0, 1}So a representative term that enters the likelihood fun
tion is
fY (y, p) = py (1 − p)1−yand

ln fY (y, p) = y ln p+ (1 − y) ln (1 − p)The derivative of this is
∂ ln fY (y, p)

∂p
=

y

p
− (1 − y)

(1 − p)

=
y − p

p (1 − p)Averaging this over a sample of size n gives
∂sn(p)

∂p
=

1

n

n∑

i=1

yi − p

p (1 − p)Setting to zero and solving gives(10) p̂ = ȳSo it's easy to 
al
ulate the MLE of p0in this 
ase.Now imagine that we had a bag full of bent 
oins, ea
h bent around a sphere of adi�erent radius (with the head pointing to the outside of the sphere). We might suspe
tthat the probability of a heads 
ould depend upon the radius. Suppose that pi ≡ p(xi, β) =

(1 + exp(−x′iβ))−1 where xi =
[

1 ri

]′, so that β is a 2×1 ve
tor. Now
∂pi(β)

∂β
= pi (1 − pi) xi
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∂ ln fY (y, β)

∂β
=

y − pi
pi (1 − pi)

pi (1 − pi)xi

= (yi − p(xi, β)) xiSo the derivative of the average log lihelihood fun
tion is now
∂sn(β)

∂β
=

∑n
i=1 (yi − p(xi, β)) xi

nThis is a set of 2 nonlinear equations in the two unknown elements in β. There is noexpli
it solution for the two elements that set the equations to zero. This is 
ommonly the
ase with ML estimators: they are often nonlinear, and �nding the value of the estimateoften requires use of numeri
 methods to �nd solutions to the �rst order 
onditions. Thispossibility is explored further in the se
ond half of these notes (see se
tion 5).2. Consisten
y of MLETo show 
onsisten
y of the MLE, we need to make expli
it some assumptions.Compa
t parameter spa
e: θ ∈ Θ, an open bounded subset of ℜK . Maximix-ation is over Θ, whi
h is 
ompa
t.This implies that θ is an interior point of the parameter spa
e Θ.Uniform 
onvergen
e:
sn(θ)

u.a.s→ lim
n→∞

Eθ0sn(θ) ≡ s∞(θ, θ0),∀θ ∈ Θ.We have suppressed Y here for simpli
ity. This requires that almost sure 
onvergen
eholds for all possible parameter values. For a given parameter value, an ordinary Law ofLarge Numbers will usually imply almost sure 
onvergen
e to the limit of the expe
tation.Convergen
e for a single element of the parameter spa
e, 
ombined with the assumptionof a 
ompa
t parameter spa
e, ensures uniform 
onvergen
e.Continuity: sn(θ) is 
ontinuous in θ, θ ∈ Θ. This implies that s∞(θ, θ0) is 
on-tinuous in θ.Identi�
ation: s∞(θ, θ0) has a unique maximum in its �rst argument.We will use these assumptions to show that θ̂n a.s.→ θ0.First, θ̂n 
ertainly exists, sin
e a 
ontinuous fun
tion has a maximum on a 
ompa
tset. Se
ond, for any θ 6= θ0

E
(

ln

(
L(θ)

L(θ0)

))
≤ ln

(
E
(
L(θ)

L(θ0)

))by Jensen's inequality ( ln (·) is a 
on
ave fun
tion).Now, the expe
tation on the RHS is
E
(
L(θ)

L(θ0)

)
=

∫
L(θ)

L(θ0)
L(θ0)dy = 1,sin
e L(θ0) is the density fun
tion of the observations, and sin
e the integral of any densityis 1. Therefore, sin
e ln(1) = 0,

E
(

ln

(
L(θ)

L(θ0)

))
≤ 0,
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E (sn (θ)) − E (sn (θ0)) ≤ 0.Taking limits, this is (by the assumption on uniform 
onvergen
e)
s∞(θ, θ0) − s∞(θ0, θ0) ≤ 0ex
ept on a set of zero probability.By the identi�
ation assumption there is a unique maximizer, so the inequality is stri
tif θ 6= θ0:

s∞(θ, θ0) − s∞(θ0, θ0) < 0,∀θ 6= θ0, a.s.Suppose that θ∗ is a limit point of θ̂n (any sequen
e from a 
ompa
t set has at leastone limit point). Sin
e θ̂n is a maximizer, independent of n, we must have
s∞(θ∗, θ0) − s∞(θ0, θ0) ≥ 0.These last two inequalities imply that

θ∗ = θ0, a.s.Thus there is only one limit point, and it is equal to the true parameter value, withprobability one. In other words,
lim
n→∞

θ̂ = θ0, a.s.This 
ompletes the proof of strong 
onsisten
y of the MLE. One 
an use weaker assumptionsto prove weak 
onsisten
y (
onvergen
e in probability to θ0) of the MLE. This is omittedhere. Note that almost sure 
onvergen
e implies 
onvergen
e in probability.
3. The s
ore fun
tionDi�erentiability: Assume that sn(θ) is twi
e 
ontinuously di�erentiable in aneighborhood N(θ0) of θ0, at least when n is large enough.To maximize the log-likelihood fun
tion, take derivatives:

gn(Y, θ) = Dθsn(θ)

=
1

n

n∑

t=1

Dθ ln f(yt|xx, θ)

≡ 1

n

n∑

t=1

gt(θ).This is the s
ore ve
tor (with dim K × 1). Note that the s
ore fun
tion has Y as anargument, whi
h implies that it is a random fun
tion. Y (and any exogeneous variables)will often be suppressed for 
larity, but one should not forget that they are still there.The ML estimator θ̂ sets the derivatives to zero:
gn(θ̂) =

1

n

n∑

t=1

gt(θ̂) ≡ 0.



4. ASYMPTOTIC NORMALITY OF MLE 39We will show that Eθ [gt(θ)] = 0, ∀t. This is the expe
tation taken with respe
t to thedensity f(θ), not ne
essarily f (θ0) .

Eθ [gt(θ)] =

∫
[Dθ ln f(yt|xt, θ)]f(yt|x, θ)dyt

=

∫
1

f(yt|xt, θ)
[Dθf(yt|xt, θ)] f(yt|xt, θ)dyt

=

∫
Dθf(yt|xt, θ)dyt.Given some regularity 
onditions on boundedness of Dθf, we 
an swit
h the order ofintegration and di�erentiation, by the dominated 
onvergen
e theorem. This gives

Eθ [gt(θ)] = Dθ

∫
f(yt|xt, θ)dyt

= Dθ1

= 0where we use the fa
t that the integral of the density is 1.
• So Eθ(gt(θ) = 0 : the expe
tation of the s
ore ve
tor is zero.
• This hold for all t, so it implies that Eθgn(Y, θ) = 0.4. Asymptoti
 normality of MLERe
all that we assume that sn(θ) is twi
e 
ontinuously di�erentiable. Take a �rst orderTaylor's series expansion of g(Y, θ̂) about the true value θ0 :

0 ≡ g(θ̂) = g(θ0) + (Dθ′g(θ
∗))
(
θ̂ − θ0

)or with appropriate de�nitions
H(θ∗)

(
θ̂ − θ0

)
= −g(θ0),where θ∗ = λθ̂ + (1 − λ)θ0, 0 < λ < 1. Assume H(θ∗) is invertible (we'll justify this in aminute). So √

n
(
θ̂ − θ0

)
= −H(θ∗)−1√ng(θ0)Now 
onsider H(θ∗). This is

H(θ∗) = Dθ′g(θ
∗)

= D2
θsn(θ

∗)

=
1

n

n∑

t=1

D2
θ ln ft(θ

∗)where the notation
D2
θsn(θ) ≡

∂2sn(θ)

∂θ∂θ′
.Given that this is an average of terms, it should usually be the 
ase that this satis�es astrong law of large numbers (SLLN). Regularity 
onditions are a set of assumptions thatguarantee that this will happen. There are di�erent sets of assumptions that 
an be used tojustify appeal to di�erent SLLN's. For example, the D2
θ ln ft(θ

∗) must not be too stronglydependent over time, and their varian
es must not be
ome in�nite. We don't assume anyparti
ular set here, sin
e the appropriate assumptions will depend upon the parti
ularitiesof a given model. However, we assume that a SLLN applies.



4. ASYMPTOTIC NORMALITY OF MLE 40Also, sin
e we know that θ̂ is 
onsistent, and sin
e θ∗ = λθ̂ + (1 − λ)θ0, we have that
θ∗
a.s.→ θ0. Also, by the above di�erentiability assumtion, H(θ) is 
ontinuous in θ. Giventhis, H(θ∗) 
onverges to the limit of it's expe
tation:

H(θ∗)
a.s.→ lim

n→∞
E
(
D2
θsn(θ0)

)
= H∞(θ0) <∞This matrix 
onverges to a �nite limit.Re-arranging orders of limits and di�erentiation, whi
h is legitimate given regularity
onditions, we get

H∞(θ0) = D2
θ lim
n→∞

E (sn(θ0))

= D2
θs∞(θ0, θ0)We've already seen that

s∞(θ, θ0) < s∞(θ0, θ0)i.e., θ0 maximizes the limiting obje
tive fun
tion. Sin
e there is a unique maximizer, andby the assumption that sn(θ) is twi
e 
ontinuously di�erentiable (whi
h holds in the limit),then H∞(θ0) must be negative de�nite, and therefore of full rank. Therefore the previousinversion is justi�ed, asymptoti
ally, and we have(11) √
n
(
θ̂ − θ0

)
a.s.→ −H∞(θ0)

−1√ng(θ0).Now 
onsider √ng(θ0). This is
√
ngn(θ0) =

√
nDθsn(θ)

=

√
n

n

n∑

t=1

Dθ ln ft(yt|xt, θ0)

=
1√
n

n∑

t=1

gt(θ0)We've already seen that Eθ [gt(θ)] = 0. As su
h, it is reasonable to assume that a CLTapplies.Note that gn(θ0) a.s.→ 0, by 
onsisten
y. To avoid this 
ollapse to a degenerate r.v. (a
onstant ve
tor) we need to s
ale by √
n. A generi
 CLT states that, for Xn a randomve
tor that satis�es 
ertain 
onditions,

Xn − E(Xn)
d→ N(0, lim V (Xn))The �
ertain 
onditions� that Xn must satisfy depend on the 
ase at hand. Usually, Xnwill be of the form of an average, s
aled by √

n:
Xn =

√
n

∑n
t=1Xt

nThis is the 
ase for √
ng(θ0) for example. Then the properties of Xn depend on theproperties of the Xt. For example, if the Xt have �nite varian
es and are not too stronglydependent, then a CLT for dependent pro
esses will apply. Supposing that a CLT applies,and noting that E(

√
ngn(θ0) = 0, we get

I∞(θ0)
−1/2√ngn(θ0) d→ N [0, IK ]



4. ASYMPTOTIC NORMALITY OF MLE 41where
I∞(θ0) = lim

n→∞
Eθ0
(
n [gn(θ0)] [gn(θ0)]

′)

= lim
n→∞

Vθ0
(√
ngn(θ0)

)This 
an also be written as(12) √
ngn(θ0)

d→ N [0,I∞(θ0)]

• I∞(θ0) is known as the information matrix.
• Combining [11℄ and [12℄, we get

√
n
(
θ̂ − θ0

)
a∼ N

[
0,H∞(θ0)

−1I∞(θ0)H∞(θ0)
−1
]
.The MLE estimator is asymptoti
ally normally distributed.Definition 1 (CAN). An estimator θ̂ of a parameter θ0 is √n-
onsistent and asymp-toti
ally normally distributed if(13) √

n
(
θ̂ − θ0

)
d→ N (0, V∞)where V∞ is a �nite positive de�nite matrix.There do exist, in spe
ial 
ases, estimators that are 
onsistent su
h that√n(θ̂ − θ0

)
p→

0. These are known as super
onsistent estimators, sin
e normally, √n is the highest fa
torthat we 
an multiply by and still get 
onvergen
e to a stable limiting distribution.Definition 2 (Asymptoti
 unbiasedness). An estimator θ̂ of a parameter θ0 is asymp-toti
ally unbiased if(14) lim
n→∞

Eθ(θ̂) = θ.Estimators that are CAN are asymptoti
ally unbiased, though not all 
onsistent esti-mators are asymptoti
ally unbiased. Su
h 
ases are unusual, though. An example is4.1. Coin �ipping, again. In se
tion 1.1 we saw that the MLE for the parameter ofa Bernoulli trial, with i.i.d. data, is the sample mean: p̂ = ȳ (equation 10). Now let's �ndthe limiting varian
e of √n (p̂− p).
limV ar

√
n (p̂− p) = limnV ar (p̂− p)

= limnV ar (p̂)

= limnV ar (ȳ)

= limnV ar

(∑
yt
n

)

= lim
1

n

∑
V ar(yt) (by independen
e of obs.)

= lim
1

n
nV ar(y) (by identi
ally distributed obs.)

= p (1 − p)



5. THE INFORMATION MATRIX EQUALITY 425. The information matrix equalityWe will show that H∞(θ) = −I∞(θ). Let ft(θ) be short for f(yt|xt, θ)

1 =

∫
ft(θ)dy, so

0 =

∫
Dθft(θ)dy

=

∫
(Dθ ln ft(θ)) ft(θ)dyNow di�erentiate again:

0 =

∫ [
D2
θ ln ft(θ)

]
ft(θ)dy +

∫
[Dθ ln ft(θ)]Dθ′ft(θ)dy

= Eθ
[
D2
θ ln ft(θ)

]
+

∫
[Dθ ln ft(θ)] [Dθ′ ln ft(θ)] ft(θ)dy

= Eθ
[
D2
θ ln ft(θ)

]
+ Eθ [Dθ ln ft(θ)] [Dθ′ ln ft(θ)]

= Eθ [Ht(θ)] + Eθ [gt(θ)] [gt(θ)]
′(15)Now sum over n and multiply by 1

n

Eθ
1

n

n∑

t=1

[Ht(θ)] = −Eθ
[

1

n

n∑

t=1

[gt(θ)] [gt(θ)]
′
]The s
ores gt and gs are un
orrelated for t 6= s, sin
e for t > s, ft(yt|y1, ..., yt−1, θ) has
onditioned on prior information, so what was random in s is �xed in t. (This forms thebasis for a spe
i�
ation test proposed by White: if the s
ores appear to be 
orrelated onemay question the spe
i�
ation of the model). This allows us to write

Eθ [H(θ)] = −Eθ
(
n [g(θ)] [g(θ)]′

)sin
e all 
ross produ
ts between di�erent periods expe
t to zero. Finally take limits, weget(16) H∞(θ) = −I∞(θ).This holds for all θ, in parti
ular, for θ0. Using this,
√
n
(
θ̂ − θ0

)
a.s.→ N

[
0,H∞(θ0)

−1I∞(θ0)H∞(θ0)
−1
]simpli�es to(17) √

n
(
θ̂ − θ0

)
a.s.→ N

[
0,I∞(θ0)

−1
]To estimate the asymptoti
 varian
e, we need estimators of H∞(θ0) and I∞(θ0). We 
anuse

Î∞(θ0) = n

n∑

t=1

gt(θ̂)gt(θ̂)
′

Ĥ∞(θ0) = H(θ̂).Note, one 
an't use
Î∞(θ0) = n

[
gn(θ̂)

] [
gn(θ̂)

]′to estimate the information matrix. Why not?



6. THE CRAMÉR-RAO LOWER BOUND 43From this we see that there are alternative ways to estimate V∞(θ0) that are all valid.These in
lude
V̂∞(θ0) = −Ĥ∞(θ0)

−1

V̂∞(θ0) = Î∞(θ0)
−1

V̂∞(θ0) = Ĥ∞(θ0)
−1

Î∞(θ0)Ĥ∞(θ0)
−1These are known as the inverse Hessian, outer produ
t of the gradient (OPG) and sandwi
hestimators, respe
tively. The sandwi
h form is the most robust, sin
e it 
oin
ides with the
ovarian
e estimator of the quasi-ML estimator.6. The Cramér-Rao lower boundTheorem 3. [Cramer-Rao Lower Bound℄ The limiting varian
e of a CAN estimatorof θ0, say θ̃, minus the inverse of the information matrix is a positive semide�nite matrix.Proof: Sin
e the estimator is CAN, it is asymptoti
ally unbiased, so

lim
n→∞

Eθ(θ̃ − θ) = 0Di�erentiate wrt θ′ :

Dθ′ lim
n→∞

Eθ(θ̃ − θ) = lim
n→∞

∫
Dθ′

[
f(Y, θ)

(
θ̃ − θ

)]
dy

= 0 (this is a K ×K matrix of zeros).Noting that Dθ′f(Y, θ) = f(θ)Dθ′ ln f(θ), we 
an write
lim
n→∞

∫ (
θ̃ − θ

)
f(θ)Dθ′ ln f(θ)dy + lim

n→∞

∫
f(Y, θ)Dθ′

(
θ̃ − θ

)
dy = 0.Now note that Dθ′

(
θ̃ − θ

)
= −IK , and ∫ f(Y, θ)(−IK)dy = −IK . With this we have

lim
n→∞

∫ (
θ̃ − θ

)
f(θ)Dθ′ ln f(θ)dy = IK .Playing with powers of n we get

lim
n→∞

∫ √
n
(
θ̃ − θ

)√
n

1

n
[Dθ′ ln f(θ)]

︸ ︷︷ ︸
f(θ)dy = IKNote that the bra
keted part is just the transpose of the s
ore ve
tor, g(θ), so we 
an write

lim
n→∞

Eθ
[√

n
(
θ̃ − θ

)√
ng(θ)′

]
= IKThis means that the 
ovarian
e of the s
ore fun
tion with √

n
(
θ̃ − θ

)
, for θ̃ any CANestimator, is an identity matrix. Using this, suppose the varian
e of √n(θ̃ − θ

) tends to
V∞(θ̃). Therefore,(18) V∞

[ √
n
(
θ̃ − θ

)

√
ng(θ)

]
=

[
V∞(θ̃) IK

IK I∞(θ)

]
.Sin
e this is a 
ovarian
e matrix, it is positive semi-de�nite. Therefore, for any K -ve
tor

α,
[
α′ −α′I−1

∞ (θ)
] [ V∞(θ̃) IK

IK I∞(θ)

][
α

−I∞(θ)−1α

]
≥ 0.



EXERCISES 44This simpli�es to
α′
[
V∞(θ̃) − I−1

∞ (θ)
]
α ≥ 0.Sin
e α is arbitrary, V∞(θ̃) − I−1

∞ (θ) is positive semide�nite. This 
onludes the proof.This means that I−1
∞ (θ) is a lower bound for the asymptoti
 varian
e of a CAN esti-mator.Definition 6.1. (Asymptoti
 e�
ien
y) Given two CAN estimators of a parameter

θ0, say θ̃ and θ̂, θ̂ is asymptoti
ally e�
ient with respe
t to θ̃ if V∞(θ̃)−V∞(θ̂) is a positivesemide�nite matrix.A dire
t proof of asymptoti
 e�
ien
y of an estimator is infeasible, but if one 
an showthat the asymptoti
 varian
e is equal to the inverse of the information matrix, then theestimator is asymptoti
ally e�
ient. In parti
ular, the MLE is asymptoti
ally e�
ient withrespe
t to any other CAN estimator.Summary of MLE
• Consistent
• Asymptoti
ally normal (CAN)
• Asymptoti
ally e�
ient
• Asymptoti
ally unbiased
• This is for general MLE: we haven't spe
i�ed the distribution or the linearity/non-linearity of the estimator 7. Exer
isesExer
ises(1) Consider 
oin tossing with a single possibly biased 
oin. The density fun
tion for therandom variable y = 1(heads) is

fY (y, p0) = py0 (1 − p0)
1−y , y ∈ {0, 1}

= 0, y /∈ {0, 1}Suppose that we have a sample of size n. We know from above that the ML estimatoris p̂0 = ȳ. We also know from the theory above that
√
n (ȳ − p0)

a∼ N
[
0,H∞(p0)

−1I∞(p0)H∞(p0)
−1
]a) �nd the analyti
 expression for gt(θ) and show that Eθ [gt(θ)] = 0b) �nd the analyti
al expressions for H∞(p0) and I∞(p0) for this problem
) verify that the result for limV ar

√
n (p̂− p) found in se
tion 4.1 is equal toH∞(p0)

−1I∞(p0)H∞(p0)
−1d)Write an O
tave program that does a Monte Carlo study that shows that√n (ȳ − p0)is approximately normally distributed when n is large. Please give me histograms thatshow the sampling frequen
y of √n (ȳ − p0) for several values of n.(2) Consider the model yt = x′tβ+αǫt where the errors follow the Cau
hy (Student-t with1 degree of freedom) density. So

f(ǫt) =
1

π
(
1 + ǫ2t

) ,−∞ < ǫt <∞The Cau
hy density has a shape similar to a normal density, but with mu
h thi
kertails. Thus, extremely small and large errors o

ur mu
h more frequently with thisdensity than would happen if the errors were normally distributed. Find the s
orefun
tion gn(θ) where θ =
(
β′ α

)′.



EXERCISES 45(3) Consider the model 
lassi
al linear regression model yt = x′tβ+ǫt where ǫt ∼ IIN(0, σ2).Find the s
ore fun
tion gn(θ) where θ =
(
β′ σ

)′.(4) Compare the �rst order 
onditions that de�ne the ML estimators of problems 2 and 3and interpret the di�eren
es. Why are the �rst order 
onditions that de�ne an e�
ientestimator di�erent in the two 
ases?



CHAPTER 5Asymptoti
 properties of the least squares estimatorThe OLS estimator under the 
lassi
al assumptions is BLUE1, for all sample sizes.Now let's see what happens when the sample size tends to in�nity.1. Consisten
y
β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′ (Xβ + ε)

= β0 + (X ′X)−1X ′ε

= β0 +

(
X ′X
n

)−1 X ′ε
nConsider the last two terms. By assumption limn→∞

(
X′X
n

)
= QX ⇒ limn→∞

(
X′X
n

)−1
=

Q−1
X , sin
e the inverse of a nonsingular matrix is a 
ontinuous fun
tion of the elements ofthe matrix. Considering X′ε

n ,

X ′ε
n

=
1

n

n∑

t=1

xtεtEa
h xtεt has expe
tation zero, so
E

(
X ′ε
n

)
= 0The varian
e of ea
h term is

V (xtǫt) = xtx
′
tσ

2.As long as these are �nite, and given a te
hni
al 
ondition2, the Kolmogorov SLLN applies,so
1

n

n∑

t=1

xtεt
a.s.→ 0.This implies that

β̂
a.s.→ β0.This is the property of strong 
onsisten
y: the estimator 
onverges in almost surely to thetrue value.

• The 
onsisten
y proof does not use the normality assumption.
• Remember that almost sure 
onvergen
e implies 
onvergen
e in probability.1BLUE ≡ best linear unbiased estimator if I haven't de�ned it before2For appli
ation of LLN's and CLT's, of whi
h there are very many to 
hoose from, I'm going to avoid thete
hni
alities. Basi
ally, as long as terms that make up an average have �nite varian
es and are not toostrongly dependent, one will be able to �nd a LLN or CLT to apply. Whi
h one it is doesn't matter, weonly need the result. 46



3. ASYMPTOTIC EFFICIENCY 472. Asymptoti
 normalityWe've seen that the OLS estimator is normally distributed under the assumption ofnormal errors. If the error distribution is unknown, we of 
ourse don't know the distribu-tion of the estimator. However, we 
an get asymptoti
 results. Assuming the distributionof ε is unknown, but the the other 
lassi
al assumptions hold:
β̂ = β0 + (X ′X)−1X ′ε

β̂ − β0 = (X ′X)−1X ′ε

√
n
(
β̂ − β0

)
=

(
X ′X
n

)−1 X ′ε√
n

• Now as before, (X′X
n

)−1
→ Q−1

X .

• Considering X′ε√
n
, the limit of the varian
e is
lim
n→∞

V

(
X ′ε√
n

)
= lim

n→∞
E

(
X ′ǫǫ′X
n

)

= σ2
0QXThe mean is of 
ourse zero. To get asymptoti
 normality, we need to apply aCLT. We assume one (for instan
e, the Lindeberg-Feller CLT) holds, so

X ′ε√
n

d→ N
(
0, σ2

0QX
)Therefore, √

n
(
β̂ − β0

)
d→ N

(
0, σ2

0Q
−1
X

)

• In summary, the OLS estimator is normally distributed in small and large samplesif ε is normally distributed. If ε is not normally distributed, β̂ is asymptoti
allynormally distributed when a CLT 
an be applied.3. Asymptoti
 e�
ien
yThe least squares obje
tive fun
tion is
s(β) =

n∑

t=1

(
yt − x′tβ

)2Supposing that ε is normally distributed, the model is
y = Xβ0 + ε,

ε ∼ N(0, σ2
0In), so

f(ε) =

n∏

t=1

1√
2πσ2

exp

(
− ε2t

2σ2

)The joint density for y 
an be 
onstru
ted using a 
hange of variables. We have ε = y−Xβ,so ∂ε
∂y′ = In and | ∂ε∂y′ | = 1, so

f(y) =
n∏

t=1

1√
2πσ2

exp

(
−(yt − x′tβ)2

2σ2

)
.



4. EXERCISES 48Taking logs,
lnL(β, σ) = −n ln

√
2π − n lnσ −

n∑

t=1

(yt − x′tβ)2

2σ2
.It's 
lear that the fon
 for the MLE of β0 are the same as the fon
 for OLS (up to mul-tipli
ation by a 
onstant), so the estimators are the same, under the present assumptions.Therefore, their properties are the same. In parti
ular, under the 
lassi
al assumptionswith normality, the OLS estimator β̂ is asymptoti
ally e�
ient.As we'll see later, it will be possible to use (iterated) linear estimation methods and stilla
hieve asymptoti
 e�
ien
y even if the assumption that V ar(ε) 6= σ2In, as long as ε is stillnormally distributed. This is not the 
ase if ε is nonnormal. In general with nonnormalerrors it will be ne
essary to use nonlinear estimation methods to a
hieve asymptoti
allye�
ient estimation. That possibility is addressed in the se
ond half of the notes.4. Exer
ises(1) Write an O
tave program that generates a histogram for R Monte Carlo repli-
ations of √n(β̂j − βj

), where β̂ is the OLS estimator and βj is one of the kslope parameters. R should be a large number, at least 1000. The model usedto generate data should follow the 
lassi
al assumptions, ex
ept that the errorsshould not be normally distributed (try U(−a, a), t(p), χ2(p)− p, et
). Generatehistograms for n ∈ {20, 50, 100, 1000}. Do you observe eviden
e of asymptoti
normality? Comment.



CHAPTER 6Restri
tions and hypothesis tests1. Exa
t linear restri
tionsIn many 
ases, e
onomi
 theory suggests restri
tions on the parameters of a model.For example, a demand fun
tion is supposed to be homogeneous of degree zero in pri
esand in
ome. If we have a Cobb-Douglas (log-linear) model,
ln q = β0 + β1 ln p1 + β2 ln p2 + β3 lnm+ ε,then we need that

k0 ln q = β0 + β1 ln kp1 + β2 ln kp2 + β3 ln km+ ε,so
β1 ln p1 + β2 ln p2 + β3 lnm = β1 ln kp1 + β2 ln kp2 + β3 ln km

= (ln k) (β1 + β2 + β3) + β1 ln p1 + β2 ln p2 + β3 lnm.The only way to guarantee this for arbitrary k is to set
β1 + β2 + β3 = 0,whi
h is a parameter restri
tion. In parti
ular, this is a linear equality restri
tion, whi
his probably the most 
ommonly en
ountered 
ase.1.1. Imposition. The general formulation of linear equality restri
tions is the model
y = Xβ + ε

Rβ = rwhere R is a Q×K matrix, Q < K and r is a Q× 1 ve
tor of 
onstants.
• We assume R is of rank Q, so that there are no redundant restri
tions.
• We also assume that ∃β that satis�es the restri
tions: they aren't infeasible.Let's 
onsider how to estimate β subje
t to the restri
tions Rβ = r. The most obviousapproa
h is to set up the Lagrangean

min
β
s(β) =

1

n
(y −Xβ)′ (y −Xβ) + 2λ′(Rβ − r).The Lagrange multipliers are s
aled by 2, whi
h makes things less messy. The fon
 are

Dβs(β̂, λ̂) = −2X ′y + 2X ′Xβ̂R + 2R′λ̂ ≡ 0

Dλs(β̂, λ̂) = Rβ̂R − r ≡ 0,whi
h 
an be written as [
X ′X R′

R 0

][
β̂R

λ̂

]
=

[
X ′y

r

]
.49



1. EXACT LINEAR RESTRICTIONS 50We get [
β̂R

λ̂

]
=

[
X ′X R′

R 0

]−1 [
X ′y

r

]
.For the maso
hists: Stepwise InversionNote that[

(X ′X)−1 0

−R (X ′X)−1 IQ

][
X ′X R′

R 0

]
≡ AB

=

[
IK (X ′X)−1R′

0 −R (X ′X)−1R′

]

≡
[
IK (X ′X)−1R′

0 −P

]

≡ C,and [
IK (X ′X)−1R′P−1

0 −P−1

] [
IK (X ′X)−1R′

0 −P

]
≡ DC

= IK+Q,so
DAB = IK+Q

DA = B−1

B−1 =

[
IK (X ′X)−1R′P−1

0 −P−1

] [
(X ′X)−1 0

−R (X ′X)−1 IQ

]

=

[
(X ′X)−1 − (X ′X)−1R′P−1R (X ′X)−1 (X ′X)−1R′P−1

P−1R (X ′X)−1 −P−1

]
,so (everyone should start paying attention again, and please note that we have made thede�nition P = R (X ′X)−1R′)

[
β̂R

λ̂

]
=

[
(X ′X)−1 − (X ′X)−1R′P−1R (X ′X)−1 (X ′X)−1R′P−1

P−1R (X ′X)−1 −P−1

][
X ′y

r

]

=


 β̂ − (X ′X)−1R′P−1

(
Rβ̂ − r

)

P−1
(
Rβ̂ − r

)



=

[ (
IK − (X ′X)−1R′P−1R

)

P−1R

]
β̂ +

[
(X ′X)−1R′P−1r

−P−1r

]The fa
t that β̂R and λ̂ are linear fun
tions of β̂ makes it easy to determine their distribu-tions, sin
e the distribution of β̂ is already known. Re
all that for x a random ve
tor, andfor A and b a matrix and ve
tor of 
onstants, respe
tively, V ar (Ax+ b) = AV ar(x)A′.Though this is the obvious way to go about �nding the restri
ted estimator, an easierway, if the number of restri
tions is small, is to impose them by substitution. Write
y = X1β1 +X2β2 + ε

[
R1 R2

] [ β1

β2

]
= r



1. EXACT LINEAR RESTRICTIONS 51where R1 is Q×Q nonsingular. Supposing the Q restri
tions are linearly independent, one
an always make R1 nonsingular by reorganizing the 
olumns of X. Then
β1 = R−1

1 r −R−1
1 R2β2.Substitute this into the model

y = X1R
−1
1 r −X1R

−1
1 R2β2 +X2β2 + ε

y −X1R
−1
1 r =

[
X2 −X1R

−1
1 R2

]
β2 + εor with the appropriate de�nitions,

yR = XRβ2 + ε.This model satis�es the 
lassi
al assumptions, supposing the restri
tion is true. One 
anestimate by OLS. The varian
e of β̂2 is as before
V (β̂2) =

(
X ′
RXR

)−1
σ2

0and the estimator is
V̂ (β̂2) =

(
X ′
RXR

)−1
σ̂2where one estimates σ2

0 in the normal way, using the restri
ted model, i.e.,
σ̂2

0 =

(
yR −XRβ̂2

)′ (
yR −XRβ̂2

)

n− (K −Q)To re
over β̂1, use the restri
tion. To �nd the varian
e of β̂1, use the fa
t that it is a linearfun
tion of β̂2, so
V (β̂1) = R−1

1 R2V (β̂2)R
′
2

(
R−1

1

)′

= R−1
1 R2

(
X ′

2X2

)−1
R′

2

(
R−1

1

)′
σ2

01.2. Properties of the restri
ted estimator. We have that
β̂R = β̂ − (X ′X)−1R′P−1

(
Rβ̂ − r

)

= β̂ + (X ′X)−1R′P−1r − (X ′X)−1R′P−1R(X ′X)−1X ′y

= β + (X ′X)−1X ′ε+ (X ′X)−1R′P−1 [r −Rβ] − (X ′X)−1R′P−1R(X ′X)−1X ′ε

β̂R − β = (X ′X)−1X ′ε

+ (X ′X)−1R′P−1 [r −Rβ]

− (X ′X)−1R′P−1R(X ′X)−1X ′εMean squared error is
MSE(β̂R) = E(β̂R − β)(β̂R − β)′Noting that the 
rosses between the se
ond term and the other terms expe
t to zero, andthat the 
ross of the �rst and third has a 
an
ellation with the square of the third, weobtain

MSE(β̂R) = (X ′X)−1σ2

+ (X ′X)−1R′P−1 [r −Rβ] [r −Rβ]′ P−1R(X ′X)−1

− (X ′X)−1R′P−1R(X ′X)−1σ2



2. TESTING 52So, the �rst term is the OLS 
ovarian
e. The se
ond term is PSD, and the third term isNSD.
• If the restri
tion is true, the se
ond term is 0, so we are better o�. True restri
tionsimprove e�
ien
y of estimation.
• If the restri
tion is false, we may be better or worse o�, in terms of MSE, dependingon the magnitudes of r −Rβ and σ2.2. TestingIn many 
ases, one wishes to test e
onomi
 theories. If theory suggests parameterrestri
tions, as in the above homogeneity example, one 
an test theory by testing parameterrestri
tions. A number of tests are available.2.1. t-test. Suppose one has the model

y = Xβ + εand one wishes to test the single restri
tion H0 :Rβ = r vs. HA :Rβ 6= r . Under H0, withnormality of the errors,
Rβ̂ − r ∼ N

(
0, R(X ′X)−1R′σ2

0

)so
Rβ̂ − r√

R(X ′X)−1R′σ2
0

=
Rβ̂ − r

σ0

√
R(X ′X)−1R′ ∼ N (0, 1) .The problem is that σ2

0 is unknown. One 
ould use the 
onsistent estimator σ̂2
0 in pla
e of

σ2
0, but the test would only be valid asymptoti
ally in this 
ase.Proposition 4.(19) N(0, 1)√

χ2(q)
q

∼ t(q)as long as the N(0, 1) and the χ2(q) are independent.We need a few results on the χ2 distribution.Proposition 5. If x ∼ N(µ, In) is a ve
tor of n independent r.v.'s., then(20) x′x ∼ χ2(n, λ)where λ =
∑

i µ
2
i = µ′µ is the non
entrality parameter.When a χ2 r.v. has the non
entrality parameter equal to zero, it is referred to asa 
entral χ2 r.v., and it's distribution is written as χ2(n), suppressing the non
entralityparameter.Proposition 6. If the n dimensional random ve
tor x ∼ N(0, V ), then x′V −1x ∼

χ2(n).We'll prove this one as an indi
ation of how the following unproven propositions 
ouldbe proved.Proof: Fa
tor V −1 as P ′P (this is the Cholesky fa
torization, where P is de�ned to beupper triangular). Then 
onsider y = Px. We have
y ∼ N(0, PV P ′)



2. TESTING 53but
V P ′P = In

PV P ′P = Pso PV P ′ = In and thus y ∼ N(0, In). Thus y′y ∼ χ2(n) but
y′y = x′P ′Px = xV −1xand we get the result we wanted.A more general proposition whi
h implies this result isProposition 7. If the n dimensional random ve
tor x ∼ N(0, V ), then(21) x′Bx ∼ χ2(ρ(B))if and only if BV is idempotent.An immediate 
onsequen
e isProposition 8. If the random ve
tor (of dimension n) x ∼ N(0, I), and B is idem-potent with rank r, then(22) x′Bx ∼ χ2(r).Consider the random variablê

ε′ε̂

σ2
0

=
ε′MXε

σ2
0

=

(
ε

σ0

)′
MX

(
ε

σ0

)

∼ χ2(n−K)Proposition 9. If the random ve
tor (of dimension n) x ∼ N(0, I), then Ax and
x′Bx are independent if AB = 0.Now 
onsider (remember that we have only one restri
tion in this 
ase)

Rβ̂−r
σ0

√
R(X′X)−1R′

√
ε̂′ε̂

(n−K)σ2
0

=
Rβ̂ − r

σ̂0

√
R(X ′X)−1R′This will have the t(n − K) distribution if β̂ and ε̂′ε̂ are independent. But β̂ = β +

(X ′X)−1X ′ε and
(X ′X)−1X ′MX = 0,so

Rβ̂ − r

σ̂0

√
R(X ′X)−1R′ =

Rβ̂ − r

σ̂Rβ̂
∼ t(n−K)In parti
ular, for the 
ommonly en
ountered test of signi�
an
e of an individual 
oe�
ient,for whi
h H0 : βi = 0 vs. H0 : βi 6= 0 , the test statisti
 is

β̂i
σ̂β̂i

∼ t(n−K)

• Note: the t− test is stri
tly valid only if the errors are a
tually normally dis-tributed. If one has nonnormal errors, one 
ould use the above asymptoti
 resultto justify taking 
riti
al values from the N(0, 1) distribution, sin
e t(n − K)
d→
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N(0, 1) as n→ ∞. In pra
ti
e, a 
onservative pro
edure is to take 
riti
al valuesfrom the t distribution if nonnormality is suspe
ted. This will reje
t H0 less oftensin
e the t distribution is fatter-tailed than is the normal.2.2. F test. The F test allows testing multiple restri
tions jointly.Proposition 10. If x ∼ χ2(r) and y ∼ χ2(s), then(23) x/r

y/s
∼ F (r, s)provided that x and y are independent.Proposition 11. If the random ve
tor (of dimension n) x ∼ N(0, I), then x′Ax and

x′Bx are independent if AB = 0.Using these results, and previous results on the χ2 distribution, it is simple to showthat the following statisti
 has the F distribution:
F =

(
Rβ̂ − r

)′ (
R (X ′X)−1R′

)−1 (
Rβ̂ − r

)

qσ̂2
∼ F (q, n −K).A numeri
ally equivalent expression is

(ESSR − ESSU ) /q

ESSU/(n−K)
∼ F (q, n −K).

• Note: The F test is stri
tly valid only if the errors are truly normally distributed.The following tests will be appropriate when one 
annot assume normally dis-tributed errors.2.3. Wald-type tests. The Wald prin
iple is based on the idea that if a restri
tionis true, the unrestri
ted model should �approximately� satisfy the restri
tion. Given thatthe least squares estimator is asymptoti
ally normally distributed:
√
n
(
β̂ − β0

)
d→ N

(
0, σ2

0Q
−1
X

)then under H0 : Rβ0 = r, we have
√
n
(
Rβ̂ − r

)
d→ N

(
0, σ2

0RQ
−1
X R′)so by Proposition [6℄

n
(
Rβ̂ − r

)′ (
σ2

0RQ
−1
X R′)−1

(
Rβ̂ − r

)
d→ χ2(q)Note that Q−1

X or σ2
0 are not observable. The test statisti
 we use substitutes the 
onsistentestimators. Use (X ′X/n)−1 as the 
onsistent estimator of Q−1

X . With this, there is a
an
ellation of n′s, and the statisti
 to use is
(
Rβ̂ − r

)′ (
σ̂2

0R(X ′X)−1R′
)−1 (

Rβ̂ − r
)

d→ χ2(q)

• The Wald test is a simple way to test restri
tions without having to estimate therestri
ted model.
• Note that this formula is similar to one of the formulae provided for the F test.2.4. S
ore-type tests (Rao tests, Lagrange multiplier tests). In some 
ases,an unrestri
ted model may be nonlinear in the parameters, but the model is linear in the



2. TESTING 55parameters under the null hypothesis. For example, the model
y = (Xβ)γ + εis nonlinear in β and γ, but is linear in β under H0 : γ = 1. Estimation of nonlinear modelsis a bit more 
ompli
ated, so one might prefer to have a test based upon the restri
ted,linear model. The s
ore test is useful in this situation.

• S
ore-type tests are based upon the general prin
iple that the gradient ve
tor ofthe unrestri
ted model, evaluated at the restri
ted estimate, should be asymp-toti
ally normally distributed with mean zero, if the restri
tions are true. Theoriginal development was for ML estimation, but the prin
iple is valid for a widevariety of estimation methods.We have seen that
λ̂ =

(
R(X ′X)−1R′)−1

(
Rβ̂ − r

)

= P−1
(
Rβ̂ − r

)so √
nP̂λ =

√
n
(
Rβ̂ − r

)Given that √
n
(
Rβ̂ − r

)
d→ N

(
0, σ2

0RQ
−1
X R′)under the null hypothesis, we obtain

√
nP̂λ

d→ N
(
0, σ2

0RQ
−1
X R′)So (√

nP̂λ
)′ (

σ2
0RQ

−1
X R′)−1

(√
nP̂λ

)
d→ χ2(q)Noting that limnP = RQ−1

X R′, we obtain,
λ̂′
(
R(X ′X)−1R′

σ2
0

)
λ̂

d→ χ2(q)sin
e the powers of n 
an
el. To get a usable test statisti
 substitute a 
onsistent estimatorof σ2
0.

• This makes it 
lear why the test is sometimes referred to as a Lagrange multipliertest. It may seem that one needs the a
tual Lagrange multipliers to 
al
ulate this.If we impose the restri
tions by substitution, these are not available. Note thatthe test 
an be written as
(
R′λ̂

)′
(X ′X)−1R′λ̂

σ2
0

d→ χ2(q)However, we 
an use the fon
 for the restri
ted estimator:
−X ′y +X ′Xβ̂R +R′λ̂to get that
R′λ̂ = X ′(y −Xβ̂R)

= X ′ε̂R



2. TESTING 56Substituting this into the above, we get
ε̂′RX(X ′X)−1X ′ε̂R

σ2
0

d→ χ2(q)but this is simply
ε̂′R
PX
σ2

0

ε̂R
d→ χ2(q).To see why the test is also known as a s
ore test, note that the fon
 for restri
ted leastsquares

−X ′y +X ′Xβ̂R +R′λ̂give us
R′λ̂ = X ′y −X ′Xβ̂Rand the rhs is simply the gradient (s
ore) of the unrestri
ted model, evaluated at therestri
ted estimator. The s
ores evaluated at the unrestri
ted estimate are identi
allyzero. The logi
 behind the s
ore test is that the s
ores evaluated at the restri
ted estimateshould be approximately zero, if the restri
tion is true. The test is also known as a Raotest, sin
e P. Rao �rst proposed it in 1948.

2.5. Likelihood ratio-type tests. The Wald test 
an be 
al
ulated using the un-restri
ted model. The s
ore test 
an be 
al
ulated using only the restri
ted model. Thelikelihood ratio test, on the other hand, uses both the restri
ted and the unrestri
tedestimators. The test statisti
 is
LR = 2

(
lnL(θ̂) − lnL(θ̃)

)where θ̂ is the unrestri
ted estimate and θ̃ is the restri
ted estimate. To show that it isasymptoti
ally χ2, take a se
ond order Taylor's series expansion of lnL(θ̃) about θ̂ :

lnL(θ̃) ≃ lnL(θ̂) +
n

2

(
θ̃ − θ̂

)′
H(θ̂)

(
θ̃ − θ̂

)(note, the �rst order term drops out sin
e Dθ lnL(θ̂) ≡ 0 by the fon
 and we need tomultiply the se
ond-order term by n sin
e H(θ) is de�ned in terms of 1
n lnL(θ)) so

LR ≃ −n
(
θ̃ − θ̂

)′
H(θ̂)

(
θ̃ − θ̂

)As n→ ∞,H(θ̂) → H∞(θ0) = −I(θ0), by the information matrix equality. So
LR

a
= n

(
θ̃ − θ̂

)′
I∞(θ0)

(
θ̃ − θ̂

)We also have that, from [??℄ that
√
n
(
θ̂ − θ0

)
a
= I∞(θ0)

−1n1/2g(θ0).An analogous result for the restri
ted estimator is (this is unproven here, to prove this setup the Lagrangean for MLE subje
t to Rβ = r, and manipulate the �rst order 
onditions): √
n
(
θ̃ − θ0

)
a
= I∞(θ0)

−1
(
In −R′ (RI∞(θ0)

−1R′)−1
RI∞(θ0)

−1
)
n1/2g(θ0).Combining the last two equations

√
n
(
θ̃ − θ̂

)
a
= −n1/2I∞(θ0)

−1R′ (RI∞(θ0)
−1R′)−1

RI∞(θ0)
−1g(θ0)
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LR

a
=
[
n1/2g(θ0)

′I∞(θ0)
−1R′

] [
RI∞(θ0)

−1R′]−1
[
RI∞(θ0)

−1n1/2g(θ0)
]But sin
e

n1/2g(θ0)
d→ N (0,I∞(θ0))the linear fun
tion

RI∞(θ0)
−1n1/2g(θ0)

d→ N(0, RI∞(θ0)
−1R′).We 
an see that LR is a quadrati
 form of this rv, with the inverse of its varian
e in themiddle, so

LR
d→ χ2(q).3. The asymptoti
 equivalen
e of the LR, Wald and s
ore testsWe have seen that the three tests all 
onverge to χ2 random variables. In fa
t, theyall 
onverge to the same χ2 rv, under the null hypothesis. We'll show that the Wald andLR tests are asymptoti
ally equivalent. We have seen that the Wald test is asymptoti
allyequivalent to

W
a
= n

(
Rβ̂ − r

)′ (
σ2

0RQ
−1
X R′)−1

(
Rβ̂ − r

)
d→ χ2(q)Using

β̂ − β0 = (X ′X)−1X ′εand
Rβ̂ − r = R(β̂ − β0)we get

√
nR(β̂ − β0) =

√
nR(X ′X)−1X ′ε

= R

(
X ′X
n

)−1

n−1/2X ′εSubstitute this into [??℄ to get
W

a
= n−1ε′XQ−1

X R′ (σ2
0RQ

−1
X R′)−1

RQ−1
X X ′ε

a
= ε′X(X ′X)−1R′ (σ2

0R(X ′X)−1R′)−1
R(X ′X)−1X ′ε

a
=

ε′A(A′A)−1A′ε

σ2
0

a
=

ε′PRε

σ2
0where PR is the proje
tion matrix formed by the matrix X(X ′X)−1R′.

• Note that this matrix is idempotent and has q 
olumns, so the proje
tion matrixhas rank q.Now 
onsider the likelihood ratio statisti

LR

a
= n1/2g(θ0)

′I(θ0)
−1R′ (RI(θ0)

−1R′)−1
RI(θ0)

−1n1/2g(θ0)Under normality, we have seen that the likelihood fun
tion is
lnL(β, σ) = −n ln

√
2π − n lnσ − 1

2

(y −Xβ)′ (y −Xβ)

σ2
.
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g(β0) ≡ Dβ

1

n
lnL(β, σ)

=
X ′(y −Xβ0)

nσ2

=
X ′ε
nσ2Also, by the information matrix equality:

I(θ0) = −H∞(θ0)

= lim−Dβ′g(β0)

= lim−Dβ′

X ′(y −Xβ0)

nσ2

= lim
X ′X
nσ2

=
QX
σ2so

I(θ0)
−1 = σ2Q−1

XSubstituting these last expressions into [??℄, we get
LR

a
= ε′X ′(X ′X)−1R′ (σ2

0R(X ′X)−1R′)−1
R(X ′X)−1X ′ε

a
=

ε′PRε

σ2
0

a
= WThis 
ompletes the proof that the Wald and LR tests are asymptoti
ally equivalent. Sim-ilarly, one 
an show that, under the null hypothesis,

qF
a
= W

a
= LM

a
= LR

• The proof for the statisti
s ex
ept for LR does not depend upon normality of theerrors, as 
an be veri�ed by examining the expressions for the statisti
s.
• The LR statisti
 is based upon distributional assumptions, sin
e one 
an't writethe likelihood fun
tion without them.
• However, due to the 
lose relationship between the statisti
s qF and LR, sup-posing normality, the qF statisti
 
an be thought of as a pseudo-LR statisti
, inthat it's like a LR statisti
 in that it uses the value of the obje
tive fun
tionsof the restri
ted and unrestri
ted models, but it doesn't require distributionalassumptions.
• The presentation of the s
ore and Wald tests has been done in the 
ontext ofthe linear model. This is readily generalizable to nonlinear models and/or otherestimation methods.

Though the four statisti
s are asymptoti
ally equivalent, they are numeri
ally di�erent insmall samples. The numeri
 values of the tests also depend upon how σ2 is estimated, andwe've already seen than there are several ways to do this. For example all of the followingare 
onsistent for σ2 under H0
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ε̂′ε̂
n−k
ε̂′ε̂
n

ε̂′Rε̂R

n−k+q
ε̂′Rε̂R

nand in general the denominator 
all be repla
ed with any quantity a su
h that lim a/n = 1.It 
an be shown, for linear regression models subje
t to linear restri
tions, and if ε̂′ε̂n isused to 
al
ulate the Wald test and ε̂′Rε̂R

n is used for the s
ore test, that
W > LR > LM.For this reason, the Wald test will always reje
t if the LR test reje
ts, and in turn the LRtest reje
ts if the LM test reje
ts. This is a bit problemati
: there is the possibility that by
areful 
hoi
e of the statisti
 used, one 
an manipulate reported results to favor or disfavora hypothesis. A 
onservative/honest approa
h would be to report all three test statisti
swhen they are available. In the 
ase of linear models with normal errors the F test is tobe preferred, sin
e asymptoti
 approximations are not an issue.The small sample behavior of the tests 
an be quite di�erent. The true size (probabilityof reje
tion of the null when the null is true) of the Wald test is often dramati
ally higherthan the nominal size asso
iated with the asymptoti
 distribution. Likewise, the true sizeof the s
ore test is often smaller than the nominal size.4. Interpretation of test statisti
sNow that we have a menu of test statisti
s, we need to know how to use them.5. Con�den
e intervalsCon�den
e intervals for single 
oe�
ients are generated in the normal manner. Giventhe t statisti

t(β) =

β̂ − β

σ̂β̂a 100 (1 − α) % 
on�den
e interval for β0 is de�ned by the bounds of the set of β su
h that
t(β) does not reje
t H0 : β0 = β, using a α signi�
an
e level:

C(α) = {β : −cα/2 <
β̂ − β

σ̂β̂
< cα/2}The set of su
h β is the interval

β̂ ± σ̂β̂cα/2A 
on�den
e ellipse for two 
oe�
ients jointly would be, analogously, the set of {β1, β2}su
h that the F (or some other test statisti
) doesn't reje
t at the spe
i�ed 
riti
al value.This generates an ellipse, if the estimators are 
orrelated.
• The region is an ellipse, sin
e the CI for an individual 
oe�
ient de�nes a (in-�nitely long) re
tangle with total prob. mass 1 − α, sin
e the other 
oe�
ient ismarginalized (e.g., 
an take on any value). Sin
e the ellipse is bounded in bothdimensions but also 
ontains mass 1 − α, it must extend beyond the bounds ofthe individual CI.
• From the pi
tue we 
an see that:



6. BOOTSTRAPPING 60Figure 1. Joint and Individual Con�den
e Regions

� Reje
tion of hypotheses individually does not imply that the joint test willreje
t.� Joint reje
tion does not imply individal tests will reje
t.6. BootstrappingWhen we rely on asymptoti
 theory to use the normal distribution-based tests and 
on-�den
e intervals, we're often at serious risk of making important errors. If the sample size is



6. BOOTSTRAPPING 61small and errors are highly nonnormal, the small sample distribution of √n(β̂ − β0

) maybe very di�erent than its large sample distribution. Also, the distributions of test statisti
smay not resemble their limiting distributions at all. A means of trying to gain informationon the small sample distribution of test statisti
s and estimators is the bootstrap. We'll
onsider a simple example, just to get the main idea.Suppose that
y = Xβ0 + ε

ε ∼ IID(0, σ2
0)

X is nonsto
hasti
Given that the distribution of ε is unknown, the distribution of β̂ will be unknown in smallsamples. However, sin
e we have random sampling, we 
ould generate arti�
ial data. Thesteps are:(1) Draw n observations from ε̂ with repla
ement. Call this ve
tor ε̃j (it's a n×1).(2) Then generate the data by ỹj = Xβ̂ + ε̃j(3) Now take this and estimatẽ
βj = (X ′X)−1X ′ỹj.(4) Save β̃j(5) Repeat steps 1-4, until we have a large number, J, of β̃j .With this, we 
an use the repli
ations to 
al
ulate the empiri
al distribution of β̃j . Oneway to form a 100(1-α)% 
on�den
e interval for β0 would be to order the β̃j from smallestto largest, and drop the �rst and last Jα/2 of the repli
ations, and use the remainingendpoints as the limits of the CI. Note that this will not give the shortest CI if the empiri
aldistribution is skewed.

• Suppose one was interested in the distribution of some fun
tion of β̂, for examplea test statisti
. Simple: just 
al
ulate the transformation for ea
h j, and workwith the empiri
al distribution of the transformation.
• If the assumption of iid errors is too strong (for example if there is heteros
edas-ti
ity or auto
orrelation, see below) one 
an work with a bootstrap de�ned bysampling from (y, x) with repla
ement.
• How to 
hoose J : J should be large enough that the results don't 
hange withrepetition of the entire bootstrap. This is easy to 
he
k. If you �nd the results
hange a lot, in
rease J and try again.
• The bootstrap is based fundamentally on the idea that the empiri
al distributionof the sample data 
onverges to the a
tual sampling distribution as n be
omeslarge, so statisti
s based on sampling from the empiri
al distribution should 
on-verge in distribution to statisti
s based on sampling from the a
tual samplingdistribution.
• In �nite samples, this doesn't hold. At a minimum, the bootstrap is a good wayto 
he
k if asymptoti
 theory results o�er a de
ent approximation to the smallsample distribution.
• Bootstrapping 
an be used to test hypotheses. Basi
ally, use the bootstrap toget an approximation to the empiri
al distribution of the test statisti
 underthe alternative hypothesis, and use this to get 
riti
al values. Compare the test
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al
ulated using the real data, under the null, to the bootstrap 
riti
alvalues. There are many variations on this theme, whi
h we won't go into here.7. Testing nonlinear restri
tions, and the Delta MethodTesting nonlinear restri
tions of a linear model is not mu
h more di�
ult, at least whenthe model is linear. Sin
e estimation subje
t to nonlinear restri
tions requires nonlinearestimation methods, whi
h are beyond the s
ore of this 
ourse, we'll just 
onsider the Waldtest for nonlinear restri
tions on a linear model.Consider the q nonlinear restri
tions
r(β0) = 0.where r(·) is a q-ve
tor valued fun
tion. Write the derivative of the restri
tion evaluatedat β as

Dβ′r(β)
∣∣
β

= R(β)We suppose that the restri
tions are not redundant in a neighborhood of β0, so that
ρ(R(β)) = qin a neighborhood of β0. Take a �rst order Taylor's series expansion of r(β̂) about β0:

r(β̂) = r(β0) +R(β∗)(β̂ − β0)where β∗ is a 
onvex 
ombination of β̂ and β0. Under the null hypothesis we have
r(β̂) = R(β∗)(β̂ − β0)Due to 
onsisten
y of β̂ we 
an repla
e β∗ by β0, asymptoti
ally, so

√
nr(β̂)

a
=

√
nR(β0)(β̂ − β0)We've already seen the distribution of √n(β̂ − β0). Using this we get

√
nr(β̂)

d→ N
(
0, R(β0)Q

−1
X R(β0)

′σ2
0

)
.Considering the quadrati
 form

nr(β̂)′
(
R(β0)Q

−1
X R(β0)

′)−1
r(β̂)

σ2
0

d→ χ2(q)under the null hypothesis. Substituting 
onsistent estimators for β0,QX and σ2
0, the re-sulting statisti
 is

r(β̂)′
(
R(β̂)(X ′X)−1R(β̂)′

)−1
r(β̂)

σ̂2

d→ χ2(q)under the null hypothesis.
• This is known in the literature as the Delta method, or as Klein's approximation.
• Sin
e this is a Wald test, it will tend to over-reje
t in �nite samples. The s
ore andLR tests are also possibilities, but they require estimation methods for nonlinearmodels, whi
h aren't in the s
ope of this 
ourse.Note that this also gives a 
onvenient way to estimate nonlinear fun
tions and asso
iatedasymptoti
 
on�den
e intervals. If the nonlinear fun
tion r(β0) is not hypothesized to bezero, we just have

√
n
(
r(β̂) − r(β0)

)
d→ N

(
0, R(β0)Q

−1
X R(β0)

′σ2
0

)



7. TESTING NONLINEAR RESTRICTIONS, AND THE DELTA METHOD 63so an approximation to the distribution of the fun
tion of the estimator is
r(β̂) ≈ N(r(β0), R(β0)(X

′X)−1R(β0)
′σ2

0)For example, the ve
tor of elasti
ities of a fun
tion f(x) is
η(x) =

∂f(x)

∂x
⊙ x

f(x)where ⊙ means element-by-element multipli
ation. Suppose we estimate a linear fun
tion
y = x′β + ε.The elasti
ities of y w.r.t. x are

η(x) =
β

x′β
⊙ x(note that this is the entire ve
tor of elasti
ities). The estimated elasti
ities are

η̂(x) =
β̂

x′β̂
⊙ xTo 
al
ulate the estimated standard errors of all �ve elasti
ites, use

R(β) =
∂η(x)

∂β′

=




x1 0 · · · 0

0 x2
...... . . . 0

0 · · · 0 xk



x′β −




β1x
2
1 0 · · · 0

0 β2x
2
2

...... . . . 0

0 · · · 0 βkx
2
k




(x′β)2
.To get a 
onsistent estimator just substitute in β̂. Note that the elasti
ity and the standarderror are fun
tions of x. The program ExampleDeltaMethod.m shows how this 
an be done.In many 
ases, nonlinear restri
tions 
an also involve the data, not just the parameters.For example, 
onsider a model of expenditure shares. Let x(p,m) be a demand fun
ion,where p is pri
es and m is in
ome. An expenditure share system for G goods is

si(p,m) =
pixi(p,m)

m
, i = 1, 2, ..., G.Now demand must be positive, and we assume that expenditures sum to in
ome, so wehave the restri
tions

0 ≤ si(p,m) ≤ 1, ∀i
G∑

i=1

si(p,m) = 1Suppose we postulate a linear model for the expenditure shares:
si(p,m) = βi1 + p′βip +mβim + εiIt is fairly easy to write restri
tions su
h that the shares sum to one, but the restri
tionthat the shares lie in the [0, 1] interval depends on both parameters and the values of pand m. It is impossible to impose the restri
tion that 0 ≤ si(p,m) ≤ 1 for all possible pand m. In su
h 
ases, one might 
onsider whether or not a linear model is a reasonablespe
i�
ation.

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/ExampleDeltaMethod.m


8. EXAMPLE: THE NERLOVE DATA 648. Example: the Nerlove dataRemember that we in a previous example (se
tion 8.3) that the OLS results for theNerlove model are*********************************************************OLS estimation resultsObservations 145R-squared 0.925955Sigma-squared 0.153943Results (Ordinary var-
ov estimator)estimate st.err. t-stat. p-value
onstant -3.527 1.774 -1.987 0.049output 0.720 0.017 41.244 0.000labor 0.436 0.291 1.499 0.136fuel 0.427 0.100 4.249 0.000
apital -0.220 0.339 -0.648 0.518*********************************************************Note that sK = βK < 0, and that βL + βF + βK 6= 1.Remember that if we have 
onstant returns to s
ale, then βQ = 1, and if there ishomogeneity of degree 1 then βL + βF + βK = 1. We 
an test these hypotheses eitherseparately or jointly. NerloveRestri
tions.m imposes and tests CRTS and then HOD1.From it we obtain the results that follow:Imposing and testing HOD1*******************************************************Restri
ted LS estimation resultsObservations 145R-squared 0.925652Sigma-squared 0.155686estimate st.err. t-stat. p-value
onstant -4.691 0.891 -5.263 0.000output 0.721 0.018 41.040 0.000labor 0.593 0.206 2.878 0.005fuel 0.414 0.100 4.159 0.000
apital -0.007 0.192 -0.038 0.969*******************************************************Value p-valueF 0.574 0.450Wald 0.594 0.441LR 0.593 0.441S
ore 0.592 0.442

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/NerloveRestrictions.m


8. EXAMPLE: THE NERLOVE DATA 65Imposing and testing CRTS*******************************************************Restri
ted LS estimation resultsObservations 145R-squared 0.790420Sigma-squared 0.438861estimate st.err. t-stat. p-value
onstant -7.530 2.966 -2.539 0.012output 1.000 0.000 Inf 0.000labor 0.020 0.489 0.040 0.968fuel 0.715 0.167 4.289 0.000
apital 0.076 0.572 0.132 0.895*******************************************************Value p-valueF 256.262 0.000Wald 265.414 0.000LR 150.863 0.000S
ore 93.771 0.000Noti
e that the input pri
e 
oe�
ients in fa
t sum to 1 when HOD1 is imposed. HOD1is not reje
ted at usual signi�
an
e levels (e.g., α = 0.10). Also, R2 does not drop mu
hwhen the restri
tion is imposed, 
ompared to the unrestri
ted results. For CRTS, youshould note that βQ = 1, so the restri
tion is satis�ed. Also note that the hypothesis that
βQ = 1 is reje
ted by the test statisti
s at all reasonable signi�
an
e levels. Note that R2drops quite a bit when imposing CRTS. If you look at the unrestri
ted estimation results,you 
an see that a t-test for βQ = 1 also reje
ts, and that a 
on�den
e interval for βQ doesnot overlap 1.From the point of view of neo
lassi
al e
onomi
 theory, these results are not anomalous:HOD1 is an impli
ation of the theory, but CRTS is not.Exer
ise 12. Modify the NerloveRestri
tions.m program to impose and test the re-stri
tions jointly.The Chow test. Sin
e CRTS is reje
ted, let's examine the possibilities more 
arefully.Re
all that the data is sorted by output (the third 
olumn). De�ne 5 subsamples of �rms,with the �rst group being the 29 �rms with the lowest output levels, then the next 29 �rms,et
. The �ve subsamples 
an be indexed by j = 1, 2, ..., 5, where j = 1 for t = 1, 2, ...29,
j = 2 for t = 30, 31, ...58, et
. De�ne a pie
ewise linear model(24) lnCt = βj1 + βj2 lnQt + βj3 lnPLt + βj4 lnPFt + βj5 lnPKt + ǫtwhere j is a supers
ript (not a power) that ini
ates that the 
oe�
ients may be di�erenta

ording to the subsample in whi
h the observation falls. That is, the 
oe�
ients dependupon j whi
h in turn depends upon t. Note that the �rst 
olumn of nerlove.data indi
ates



9. EXERCISES 66Figure 2. RTS as a fun
tion of �rm size
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this way of breaking up the sample. The new model may be written as(25) 


y1

y2...
y5




=




X1 0 · · · 0

0 X2... X3

X4 0

0 X5







β1

β2

β5




+




ǫ1

ǫ2...
ǫ5


where y1 is 29×1, X1 is 29×5, βj is the 5 × 1 ve
tor of 
oe�
ient for the jth subsample,and ǫj is the 29 × 1 ve
tor of errors for the jth subsample.The O
tave program Restri
tions/ChowTest.m estimates the above model. It also teststhe hypothesis that the �ve subsamples share the same parameter ve
tor, or in other words,that there is 
oe�
ient stability a
ross the �ve subsamples. The null to test is that theparameter ve
tors for the separate groups are all the same, that is,

β1 = β2 = β3 = β4 = β5This type of test, that parameters are 
onstant a
ross di�erent sets of data, is sometimesreferred to as a Chow test.
• There are 20 restri
tions. If that's not 
lear to you, look at the O
tave program.
• The restri
tions are reje
ted at all 
onventional signi�
an
e levels.Sin
e the restri
tions are reje
ted, we should probably use the unrestri
ted model foranalysis. What is the pattern of RTS as a fun
tion of the output group (small to large)?Figure 2 plots RTS. We 
an see that there is in
reasing RTS for small �rms, but that RTSis approximately 
onstant for large �rms.9. Exer
ises(1) Using the Chow test on the Nerlove model, we reje
t that there is 
oe�
ientstability a
ross the 5 groups. But perhaps we 
ould restri
t the input pri
e 
oef-�
ients to be the same but let the 
onstant and output 
oe�
ients vary by group

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/ChowTest.m


9. EXERCISES 67size. This new model is(26) lnCi = βj1 + βj2 lnQi + β3 lnPLi + β4 lnPF i + β5 lnPKi + ǫi(a) estimate this model by OLS, giving R, estimated standard errors for 
o-e�
ients, t-statisti
s for tests of signi�
an
e, and the asso
iated p-values.Interpret the results in detail.(b) Test the restri
tions implied by this model (relative to the model that lets all
oe�
ients vary a
ross groups) using the F, qF, Wald, s
ore and likelihoodratio tests. Comment on the results.(
) Estimate this model but imposing the HOD1 restri
tion, using an OLS esti-mation program. Don't use m
_olsr or any other restri
ted OLS estimationprogram. Give estimated standard errors for all 
oe�
ients.(d) Plot the estimated RTS parameters as a fun
tion of �rm size. Compare theplot to that given in the notes for the unrestri
ted model. Comment on theresults.(2) For the simple Nerlove model, estimated returns to s
ale is R̂TS = 1
cβq

. Applythe delta method to 
al
ulate the estimated standard error for estimated RTS.Dire
tly test H0 : RTS = 1 versus HA : RTS 6= 1 rather than testing H0 : βQ = 1versus HA : βQ 6= 1. Comment on the results.(3) Perform a Monte Carlo study that generates data from the model
y = −2 + 1x2 + 1x3 + ǫwhere the sample size is 30, x2 and x3 are independently uniformly distributedon [0, 1] and ǫ ∼ IIN(0, 1)(a) Compare the means and standard errors of the estimated 
oe�
ients usingOLS and restri
ted OLS, imposing the restri
tion that β2 + β3 = 2.(b) Compare the means and standard errors of the estimated 
oe�
ients usingOLS and restri
ted OLS, imposing the restri
tion that β2 + β3 = 1.(
) Dis
uss the results.



CHAPTER 7Generalized least squaresOne of the assumptions we've made up to now is that
εt ∼ IID(0, σ2),or o

asionally
εt ∼ IIN(0, σ2).Now we'll investigate the 
onsequen
es of nonidenti
ally and/or dependently distributederrors. We'll assume �xed regressors for now, relaxing this admittedly unrealisti
 assump-tion later. The model is
y = Xβ + ε

E(ε) = 0

V (ε) = Σwhere Σ is a general symmetri
 positive de�nite matrix (we'll write β in pla
e of β0 tosimplify the typing of these notes).
• The 
ase where Σ is a diagonal matrix gives un
orrelated, nonidenti
ally dis-tributed errors. This is known as heteros
edasti
ity.
• The 
ase where Σ has the same number on the main diagonal but nonzero elementso� the main diagonal gives identi
ally (assuming higher moments are also thesame) dependently distributed errors. This is known as auto
orrelation.
• The general 
ase 
ombines heteros
edasti
ity and auto
orrelation. This is knownas �nonspheri
al� disturban
es, though why this term is used, I have no idea.Perhaps it's be
ause under the 
lassi
al assumptions, a joint 
on�den
e region for
ε would be an n− dimensional hypersphere.1. E�e
ts of nonspheri
al disturban
es on the OLS estimatorThe least square estimator is

β̂ = (X ′X)−1X ′y

= β + (X ′X)−1X ′ε

• We have unbiasedness, as before.
• The varian
e of β̂ is

E
[
(β̂ − β)(β̂ − β)′

]
= E

[
(X ′X)−1X ′εε′X(X ′X)−1

]

= (X ′X)−1X ′ΣX(X ′X)−1(27) Due to this, any test statisti
 that is based upon an estimator of σ2 is invalid, sin
ethere isn't any σ2, it doesn't exist as a feature of the true d.g.p. In parti
ular,the formulas for the t, F, χ2 based tests given above do not lead to statisti
s withthese distributions. 68
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• β̂ is still 
onsistent, following exa
tly the same argument given before.
• If ε is normally distributed, then

β̂ ∼ N
(
β, (X ′X)−1X ′ΣX(X ′X)−1

)The problem is that Σ is unknown in general, so this distribution won't be usefulfor testing hypotheses.
• Without normality, and un
onditional on X we still have

√
n
(
β̂ − β

)
=

√
n(X ′X)−1X ′ε

=

(
X ′X
n

)−1

n−1/2X ′εDe�ne the limiting varian
e of n−1/2X ′ε (supposing a CLT applies) as
lim
n→∞

E
(
X ′εε′X

n

)
= Ωso we obtain √

n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)Summary: OLS with heteros
edasti
ity and/or auto
orrelation is:
• unbiased in the same 
ir
umstan
es in whi
h the estimator is unbiased with iiderrors
• has a di�erent varian
e than before, so the previous test statisti
s aren't valid
• is 
onsistent
• is asymptoti
ally normally distributed, but with a di�erent limiting 
ovarian
ematrix. Previous test statisti
s aren't valid in this 
ase for this reason.
• is ine�
ient, as is shown below.2. The GLS estimatorSuppose Σ were known. Then one 
ould form the Cholesky de
omposition

P ′P = Σ−1Here, P is an upper triangular matrix. We have
P ′PΣ = Inso

P ′PΣP ′ = P ′,whi
h implies that
PΣP ′ = InConsider the model

Py = PXβ + Pε,or, making the obvious de�nitions,
y∗ = X∗β + ε∗.This varian
e of ε∗ = Pε is

E(Pεε′P ′) = PΣP ′

= In



2. THE GLS ESTIMATOR 70Therefore, the model
y∗ = X∗β + ε∗

E(ε∗) = 0

V (ε∗) = Insatis�es the 
lassi
al assumptions. The GLS estimator is simply OLS applied to the trans-formed model:
β̂GLS = (X∗′X∗)−1X∗′y∗

= (X ′P ′PX)−1X ′P ′Py

= (X ′Σ−1X)−1X ′Σ−1yThe GLS estimator is unbiased in the same 
ir
umstan
es under whi
h the OLS esti-mator is unbiased. For example, assuming X is nonsto
hasti

E(β̂GLS) = E

{
(X ′Σ−1X)−1X ′Σ−1y

}

= E
{
(X ′Σ−1X)−1X ′Σ−1(Xβ + ε

}

= β.The varian
e of the estimator, 
onditional on X 
an be 
al
ulated using
β̂GLS = (X∗′X∗)−1X∗′y∗

= (X∗′X∗)−1X∗′ (X∗β + ε∗)

= β + (X∗′X∗)−1X∗′ε∗so
E
{(

β̂GLS − β
)(

β̂GLS − β
)′}

= E
{
(X∗′X∗)−1X∗′ε∗ε∗′X∗(X∗′X∗)−1

}

= (X∗′X∗)−1X∗′X∗(X∗′X∗)−1

= (X∗′X∗)−1

= (X ′Σ−1X)−1Either of these last formulas 
an be used.
• All the previous results regarding the desirable properties of the least squaresestimator hold, when dealing with the transformed model, sin
e the transformedmodel satis�es the 
lassi
al assumptions..
• Tests are valid, using the previous formulas, as long as we substitute X∗ in pla
eof X. Furthermore, any test that involves σ2 
an set it to 1. This is preferable tore-deriving the appropriate formulas.
• The GLS estimator is more e�
ient than the OLS estimator. This is a 
onsequen
eof the Gauss-Markov theorem, sin
e the GLS estimator is based on a model thatsatis�es the 
lassi
al assumptions but the OLS estimator is not. To see thisdire
tly, not that (the following needs to be 
ompleted)

V ar(β̂) − V ar(β̂GLS) = (X ′X)−1X ′ΣX(X ′X)−1 − (X ′Σ−1X)−1

= AΣA
′
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[
(X ′X)−1X ′ − (X ′Σ−1X)−1X ′Σ−1

]
. This may not seem obvious, butit is true, as you 
an verify for yourself. Then noting that AΣA

′ is a quadrati
form in a positive de�nite matrix, we 
on
lude that AΣA
′ is positive semi-de�nite,and that GLS is e�
ient relative to OLS.

• As one 
an verify by 
al
ulating fon
, the GLS estimator is the solution to theminimization problem
β̂GLS = arg min(y −Xβ)′Σ−1(y −Xβ)so the metri
 Σ−1 is used to weight the residuals.3. Feasible GLSThe problem is that Σ isn't known usually, so this estimator isn't available.

• Consider the dimension of Σ : it's an n × n matrix with (n2 − n
)
/2 + n =(

n2 + n
)
/2 unique elements.

• The number of parameters to estimate is larger than n and in
reases faster than
n. There's no way to devise an estimator that satis�es a LLN without addingrestri
tions.

• The feasible GLS estimator is based upon making su�
ient assumptions regardingthe form of Σ so that a 
onsistent estimator 
an be devised.Suppose that we parameterize Σ as a fun
tion of X and θ, where θ may in
lude β as wellas other parameters, so that
Σ = Σ(X, θ)where θ is of �xed dimension. If we 
an 
onsistently estimate θ, we 
an 
onsistentlyestimate Σ, as long as Σ(X, θ) is a 
ontinuous fun
tion of θ (by the Slutsky theorem). Inthis 
ase,

Σ̂ = Σ(X, θ̂)
p→ Σ(X, θ)If we repla
e Σ in the formulas for the GLS estimator with Σ̂, we obtain the FGLS estima-tor. The FGLS estimator shares the same asymptoti
 properties as GLS. Theseare (1) Consisten
y(2) Asymptoti
 normality(3) Asymptoti
 e�
ien
y if the errors are normally distributed. (Cramer-Rao).(4) Test pro
edures are asymptoti
ally valid.In pra
ti
e, the usual way to pro
eed is(1) De�ne a 
onsistent estimator of θ. This is a 
ase-by-
ase proposition, dependingon the parameterization Σ(θ). We'll see examples below.(2) Form Σ̂ = Σ(X, θ̂)(3) Cal
ulate the Cholesky fa
torization P̂ = Chol(Σ̂−1).(4) Transform the model using

P̂ ′y = P̂ ′Xβ + P̂ ′ε(5) Estimate using OLS on the transformed model.
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edasti
ityHeteros
edasti
ity is the 
ase where
E(εε′) = Σis a diagonal matrix, so that the errors are un
orrelated, but have di�erent varian
es.Heteros
edasti
ity is usually thought of as asso
iated with 
ross se
tional data, thoughthere is absolutely no reason why time series data 
annot also be heteros
edasti
. A
tually,the popular ARCH (autoregressive 
onditionally heteros
edasti
) models expli
itly assumethat a time series is heteros
edasti
.Consider a supply fun
tion

qi = β1 + βpPi + βsSi + εiwhere Pi is pri
e and Si is some measure of size of the ith �rm. One might suppose thatunobservable fa
tors (e.g., talent of managers, degree of 
oordination between produ
tionunits, et
.) a

ount for the error term εi. If there is more variability in these fa
tors forlarge �rms than for small �rms, then εi may have a higher varian
e when Si is high thanwhen it is low.Another example, individual demand.
qi = β1 + βpPi + βmMi + εiwhere P is pri
e and M is in
ome. In this 
ase, εi 
an re�e
t variations in preferen
es.There are more possibilities for expression of preferen
es when one is ri
h, so it is possiblethat the varian
e of εi 
ould be higher when M is high.Add example of group means.4.1. OLS with heteros
edasti
 
onsistent var
ov estimation. Ei
ker (1967) andWhite (1980) showed how to modify test statisti
s to a

ount for heteros
edasti
ity ofunknown form. The OLS estimator has asymptoti
 distribution

√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)as we've already seen. Re
all that we de�ned
lim
n→∞

E
(
X ′εε′X

n

)
= ΩThis matrix has dimension K × K and 
an be 
onsistently estimated, even if we 
an'testimate Σ 
onsistently. The 
onsistent estimator, under heteros
edasti
ity but no auto-
orrelation is

Ω̂ =
1

n

n∑

t=1

xtx
′
tε̂

2
tOne 
an then modify the previous test statisti
s to obtain tests that are valid when thereis heteros
edasti
ity of unknown form. For example, the Wald test for H0 : Rβ − r = 0would be

n
(
Rβ̂ − r

)′
(
R

(
X ′X
n

)−1

Ω̂

(
X ′X
n

)−1

R′
)−1 (

Rβ̂ − r
)

a∼ χ2(q)4.2. Dete
tion. There exist many tests for the presen
e of heteros
edasti
ity. We'lldis
uss three methods.



4. HETEROSCEDASTICITY 73Goldfeld-Quandt. The sample is divided in to three parts, with n1, n2 and n3 observa-tions, where n1 + n2 + n3 = n. The model is estimated using the �rst and third parts ofthe sample, separately, so that β̂1 and β̂3 will be independent. Then we have
ε̂1′ε̂1

σ2
=
ε1

′

M1ε1

σ2

d→ χ2(n1 −K)and
ε̂3′ε̂3

σ2
=
ε3

′

M3ε3

σ2

d→ χ2(n3 −K)so
ε̂1′ε̂1/(n1 −K)

ε̂3′ε̂3/(n3 −K)

d→ F (n1 −K,n3 −K).The distributional result is exa
t if the errors are normally distributed. This test is a two-tailed test. Alternatively, and probably more 
onventionally, if one has prior ideas about thepossible magnitudes of the varian
es of the observations, one 
ould order the observationsa

ordingly, from largest to smallest. In this 
ase, one would use a 
onventional one-tailedF-test. Draw pi
ture.
• Ordering the observations is an important step if the test is to have any power.
• The motive for dropping the middle observations is to in
rease the di�eren
ebetween the average varian
e in the subsamples, supposing that there exists het-eros
edasti
ity. This 
an in
rease the power of the test. On the other hand,dropping too many observations will substantially in
rease the varian
e of thestatisti
s ε̂1′ε̂1 and ε̂3′ε̂3. A rule of thumb, based on Monte Carlo experiments isto drop around 25% of the observations.
• If one doesn't have any ideas about the form of the het. the test will probablyhave low power sin
e a sensible data ordering isn't available.White's test. When one has little idea if there exists heteros
edasti
ity, and no idea ofits potential form, the White test is a possibility. The idea is that if there is homos
edas-ti
ity, then

E(ε2t |xt) = σ2,∀tso that xt or fun
tions of xt shouldn't help to explain E(ε2t ). The test works as follows:(1) Sin
e εt isn't available, use the 
onsistent estimator ε̂t instead.(2) Regress
ε̂2t = σ2 + z′tγ + vtwhere zt is a P -ve
tor. zt may in
lude some or all of the variables in xt, as wellas other variables. White's original suggestion was to use xt, plus the set of allunique squares and 
ross produ
ts of variables in xt.(3) Test the hypothesis that γ = 0. The qF statisti
 in this 
ase is

qF =
P (ESSR − ESSU ) /P

ESSU/ (n− P − 1)Note that ESSR = TSSU , so dividing both numerator and denominator by thiswe get
qF = (n− P − 1)

R2

1 −R2Note that this is the R2 or the arti�
ial regression used to test for heteros
edas-ti
ity, not the R2 of the original model.
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ally equivalent statisti
, under the null of no heteros
edasti
ity (so that R2should tend to zero), is
nR2 a∼ χ2(P ).This doesn't require normality of the errors, though it does assume that the fourth momentof εt is 
onstant, under the null. Question: why is this ne
essary?

• The White test has the disadvantage that it may not be very powerful unless the
zt ve
tor is 
hosen well, and this is hard to do without knowledge of the form ofheteros
edasti
ity.

• It also has the problem that spe
i�
ation errors other than heteros
edasti
ity maylead to reje
tion.
• Note: the null hypothesis of this test may be interpreted as θ = 0 for the varian
emodel V (ε2t ) = h(α + z′tθ), where h(·) is an arbitrary fun
tion of unknown form.The test is more general than is may appear from the regression that is used.Plotting the residuals. A very simple method is to simply plot the residuals (or theirsquares). Draw pi
tures here. Like the Goldfeld-Quandt test, this will be more informativeif the observations are ordered a

ording to the suspe
ted form of the heteros
edasti
ity.4.3. Corre
tion. Corre
ting for heteros
edasti
ity requires that a parametri
 formfor Σ(θ) be supplied, and that a means for estimating θ 
onsistently be determined. Theestimation method will be spe
i�
 to the for supplied for Σ(θ).We'll 
onsider two examples.Before this, let's 
onsider the general nature of GLS when there is heteros
edasti
ity.Multipli
ative heteros
edasti
itySuppose the model is

yt = x′tβ + εt

σ2
t = E(ε2t ) =

(
z′tγ
)δbut the other 
lassi
al assumptions hold. In this 
ase

ε2t =
(
z′tγ
)δ

+ vtand vt has mean zero. Nonlinear least squares 
ould be used to estimate γ and δ 
onsis-tently, were εt observable. The solution is to substitute the squared OLS residuals ε̂2t inpla
e of ε2t , sin
e it is 
onsistent by the Slutsky theorem. On
e we have γ̂ and δ̂, we 
anestimate σ2
t 
onsistently using

σ̂2
t =

(
z′tγ̂
)δ̂ p

→ σ2
t .In the se
ond step, we transform the model by dividing by the standard deviation:

yt
σ̂t

=
x′tβ
σ̂t

+
εt
σ̂tor

y∗t = x∗′t β + ε∗t .Asymptoti
ally, this model satis�es the 
lassi
al assumptions.
• This model is a bit 
omplex in that NLS is required to estimate the model of thevarian
e. A simpler version would be

yt = x′tβ + εt

σ2
t = E(ε2t ) = σ2zδt



4. HETEROSCEDASTICITY 75where zt is a single variable. There are still two parameters to be estimated, andthe model of the varian
e is still nonlinear in the parameters. However, the sear
hmethod 
an be used in this 
ase to redu
e the estimation problem to repeatedappli
ations of OLS.
• First, we de�ne an interval of reasonable values for δ, e.g., δ ∈ [0, 3].

• Partition this interval into M equally spa
ed values, e.g., {0, .1, .2, ..., 2.9, 3}.
• For ea
h of these values, 
al
ulate the variable zδmt .

• The regression
ε̂2t = σ2zδmt + vtis linear in the parameters, 
onditional on δm, so one 
an estimate σ2 by OLS.

• Save the pairs (σ2
m, δm), and the 
orresponding ESSm. Choose the pair with theminimum ESSm as the estimate.

• Next, divide the model by the estimated standard deviations.
• Can re�ne. Draw pi
ture.
• Works well when the parameter to be sear
hed over is low dimensional, as in this
ase.Groupwise heteros
edasti
ityA 
ommon 
ase is where we have repeated observations on ea
h of a number of e
onomi
agents: e.g., 10 years of ma
roe
onomi
 data on ea
h of a set of 
ountries or regions, ordaily observations of transa
tions of 200 banks. This sort of data is a pooled 
ross-se
tiontime-series model. It may be reasonable to presume that the varian
e is 
onstant over timewithin the 
ross-se
tional units, but that it di�ers a
ross them (e.g., �rms or 
ountries ofdi�erent sizes...). The model is

yit = x′itβ + εit

E(ε2it) = σ2
i ,∀twhere i = 1, 2, ..., G are the agents, and t = 1, 2, ..., n are the observations on ea
h agent.

• The other 
lassi
al assumptions are presumed to hold.
• In this 
ase, the varian
e σ2

i is spe
i�
 to ea
h agent, but 
onstant over the nobservations for that agent.
• In this model, we assume that E(εitεis) = 0. This is a strong assumption thatwe'll relax later.To 
orre
t for heteros
edasti
ity, just estimate ea
h σ2

i using the natural estimator:
σ̂2
i =

1

n

n∑

t=1

ε̂2it

• Note that we use 1/n here sin
e it's possible that there are more than n regressors,so n−K 
ould be negative. Asymptoti
ally the di�eren
e is unimportant.
• With ea
h of these, transform the model as usual:

yit
σ̂i

=
x′itβ
σ̂i

+
εit
σ̂iDo this for ea
h 
ross-se
tional group. This transformed model satis�es the 
las-si
al assumptions, asymptoti
ally.4.4. Example: the Nerlove model (again!) Let's 
he
k the Nerlove data for evi-den
e of heteros
edasti
ity. In what follows, we're going to use the model with the 
onstant



4. HETEROSCEDASTICITY 76Figure 1. Residuals, Nerlove model, sorted by �rm size
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and output 
oe�
ient varying a
ross 5 groups, but with the input pri
e 
oe�
ients �xed(see Equation 26 for the rationale behind this). Figure 1, whi
h is generated by the O
taveprogram GLS/NerloveResiduals.m plots the residuals. We 
an see pretty 
learly that theerror varian
e is larger for small �rms than for larger �rms.Now let's try out some tests to formally 
he
k for heteros
edasti
ity. The O
taveprogram GLS/HetTests.m performs the White and Goldfeld-Quandt tests, using the abovemodel. The results areValue p-valueWhite's test 61.903 0.000Value p-valueGQ test 10.886 0.000All in all, it is very 
lear that the data are heteros
edasti
. That means that OLS estimationis not e�
ient, and tests of restri
tions that ignore heteros
edasti
ity are not valid. Theprevious tests (CRTS, HOD1 and the Chow test) were 
al
ulated assuming homos
edas-ti
ity. The O
tave program GLS/NerloveRestri
tions-Het.m uses the Wald test to 
he
kfor CRTS and HOD1, but using a heteros
edasti
-
onsistent 
ovarian
e estimator.1 Theresults areTesting HOD1 Value p-valueWald test 6.161 0.013Testing CRTS1By the way, noti
e that GLS/NerloveResiduals.m and GLS/HetTests.m use the restri
ted LS estimatordire
tly to restri
t the fully general model with all 
oe�
ients varying to the model with only the 
onstantand the output 
oe�
ient varying. But GLS/NerloveRestri
tions-Het.m estimates the model by substitut-ing the restri
tions into the model. The methods are equivalent, but the se
ond is more 
onvenient andeasier to understand.

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveResiduals.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/HetTests.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveRestrictions-Het.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveResiduals.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/HetTests.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveRestrictions-Het.m


4. HETEROSCEDASTICITY 77Value p-valueWald test 20.169 0.001We see that the previous 
on
lusions are altered - both CRTS is and HOD1 are reje
ted atthe 5% level. Maybe the reje
tion of HOD1 is due to to Wald test's tenden
y to over-reje
t?From the previous plot, it seems that the varian
e of ǫ is a de
reasing fun
tion ofoutput. Suppose that the 5 size groups have di�erent error varian
es (heteros
edasti
ityby groups):
V ar(ǫi) = σ2

j ,where j = 1 if i = 1, 2, ..., 29, et
., as before. The O
tave program GLS/NerloveGLS.mestimates the model using GLS (through a transformation of the model so that OLS 
anbe applied). The estimation results are*********************************************************OLS estimation resultsObservations 145R-squared 0.958822Sigma-squared 0.090800Results (Het. 
onsistent var-
ov estimator)estimate st.err. t-stat. p-value
onstant1 -1.046 1.276 -0.820 0.414
onstant2 -1.977 1.364 -1.450 0.149
onstant3 -3.616 1.656 -2.184 0.031
onstant4 -4.052 1.462 -2.771 0.006
onstant5 -5.308 1.586 -3.346 0.001output1 0.391 0.090 4.363 0.000output2 0.649 0.090 7.184 0.000output3 0.897 0.134 6.688 0.000output4 0.962 0.112 8.612 0.000output5 1.101 0.090 12.237 0.000labor 0.007 0.208 0.032 0.975fuel 0.498 0.081 6.149 0.000
apital -0.460 0.253 -1.818 0.071******************************************************************************************************************OLS estimation resultsObservations 145R-squared 0.987429Sigma-squared 1.092393Results (Het. 
onsistent var-
ov estimator)estimate st.err. t-stat. p-value

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveGLS.m
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onstant1 -1.580 0.917 -1.723 0.087
onstant2 -2.497 0.988 -2.528 0.013
onstant3 -4.108 1.327 -3.097 0.002
onstant4 -4.494 1.180 -3.808 0.000
onstant5 -5.765 1.274 -4.525 0.000output1 0.392 0.090 4.346 0.000output2 0.648 0.094 6.917 0.000output3 0.892 0.138 6.474 0.000output4 0.951 0.109 8.755 0.000output5 1.093 0.086 12.684 0.000labor 0.103 0.141 0.733 0.465fuel 0.492 0.044 11.294 0.000
apital -0.366 0.165 -2.217 0.028*********************************************************Testing HOD1 Value p-valueWald test 9.312 0.002The �rst panel of output are the OLS estimation results, whi
h are used to 
onsistentlyestimate the σ2
j . The se
ond panel of results are the GLS estimation results. Some 
om-ments:

• The R2 measures are not 
omparable - the dependent variables are not the same.The measure for the GLS results uses the transformed dependent variable. One
ould 
al
ulate a 
omparable R2 measure, but I have not done so.
• The di�eren
es in estimated standard errors (smaller in general for GLS) 
an beinterpreted as eviden
e of improved e�
ien
y of GLS, sin
e the OLS standarderrors are 
al
ulated using the Huber-White estimator. They would not be 
om-parable if the ordinary (in
onsistent) estimator had been used.
• Note that the previously noted pattern in the output 
oe�
ients persists. Thenon
onstant CRTS result is robust.
• The 
oe�
ient on 
apital is now negative and signi�
ant at the 3% level. Thatseems to indi
ate some kind of problem with the model or the data, or e
onomi
theory.
• Note that HOD1 is now reje
ted. Problem of Wald test over-reje
ting? Spe
i�
a-tion error in model? 5. Auto
orrelationAuto
orrelation, whi
h is the serial 
orrelation of the error term, is a problem thatis usually asso
iated with time series data, but also 
an a�e
t 
ross-se
tional data. Forexample, a sho
k to oil pri
es will simultaneously a�e
t all 
ountries, so one 
ould expe
t
ontemporaneous 
orrelation of ma
roe
onomi
 variables a
ross 
ountries.5.1. Causes. Auto
orrelation is the existen
e of 
orrelation a
ross the error term:

E(εtεs) 6= 0, t 6= s.
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orrelation indu
ed by misspe
i�
ation

Why might this o

ur? Plausible explanations in
lude(1) Lags in adjustment to sho
ks. In a model su
h as
yt = x′tβ + εt,one 
ould interpret x′tβ as the equilibrium value. Suppose xt is 
onstant overa number of observations. One 
an interpret εt as a sho
k that moves the sys-tem away from equilibrium. If the time needed to return to equilibrium is longwith respe
t to the observation frequen
y, one 
ould expe
t εt+1 to be positive,
onditional on εt positive, whi
h indu
es a 
orrelation.(2) Unobserved fa
tors that are 
orrelated over time. The error term is often assumedto 
orrespond to unobservable fa
tors. If these fa
tors are 
orrelated, there willbe auto
orrelation.(3) Misspe
i�
ation of the model. Suppose that the DGP is

yt = β0 + β1xt + β2x
2
t + εtbut we estimate

yt = β0 + β1xt + εtThe e�e
ts are illustrated in Figure 2.5.2. E�e
ts on the OLS estimator. The varian
e of the OLS estimator is the sameas in the 
ase of heteros
edasti
ity - the standard formula does not apply. The 
orre
tformula is given in equation 27. Next we dis
uss two GLS 
orre
tions for OLS. These willpotentially indu
e in
onsisten
y when the regressors are nonsto
hasti
 (see Chapter 8) and



5. AUTOCORRELATION 80should either not be used in that 
ase (whi
h is usually the relevant 
ase) or used with
aution. The more re
ommended pro
edure is dis
ussed in se
tion 5.5.5.3. AR(1). There are many types of auto
orrelation. We'll 
onsider two examples.The �rst is the most 
ommonly en
ountered 
ase: autoregressive order 1 (AR(1) errors.The model is
yt = x′tβ + εt

εt = ρεt−1 + ut

ut ∼ iid(0, σ2
u)

E(εtus) = 0, t < sWe assume that the model satis�es the other 
lassi
al assumptions.
• We need a stationarity assumption: |ρ| < 1. Otherwise the varian
e of εt explodesas t in
reases, so standard asymptoti
s will not apply.
• By re
ursive substitution we obtain

εt = ρεt−1 + ut

= ρ (ρεt−2 + ut−1) + ut

= ρ2εt−2 + ρut−1 + ut

= ρ2 (ρεt−3 + ut−2) + ρut−1 + utIn the limit the lagged ε drops out, sin
e ρm → 0 as m→ ∞, so we obtain
εt =

∞∑

m=0

ρmut−mWith this, the varian
e of εt is found as
E(ε2t ) = σ2

u

∞∑

m=0

ρ2m

=
σ2
u

1 − ρ2

• If we had dire
tly assumed that εt were 
ovarian
e stationary, we 
ould obtainthis using
V (εt) = ρ2E(ε2t−1) + 2ρE(εt−1ut) + E(u2

t )

= ρ2V (εt) + σ2
u,so

V (εt) =
σ2
u

1 − ρ2

• The varian
e is the 0th order auto
ovarian
e: γ0 = V (εt)

• Note that the varian
e does not depend on tLikewise, the �rst order auto
ovarian
e γ1 is
Cov(εt, εt−1) = γs = E((ρεt−1 + ut) εt−1)

= ρV (εt)

=
ρσ2

u

1 − ρ2
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• Using the same method, we �nd that for s < t

Cov(εt, εt−s) = γs =
ρsσ2

u

1 − ρ2

• The auto
ovarian
es don't depend on t: the pro
ess {εt} is 
ovarian
e stationaryThe 
orrelation ( in general, for r.v.'s x and y) is de�ned as
orr(x, y) =

ov(x, y)se(x)se(y)but in this 
ase, the two standard errors are the same, so the s-order auto
orrelation ρs is

ρs = ρs

• All this means that the overall matrix Σ has the form
Σ =

σ2
u

1 − ρ2
︸ ︷︷ ︸this is the varian
e




1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2... . . . .... . . ρ

ρn−1 · · · 1




︸ ︷︷ ︸this is the 
orrelation matrixSo we have homos
edasti
ity, but elements o� the main diagonal are not zero.All of this depends only on two parameters, ρ and σ2
u. If we 
an estimate these
onsistently, we 
an apply FGLS.It turns out that it's easy to estimate these 
onsistently. The steps are(1) Estimate the model yt = x′tβ + εt by OLS.(2) Take the residuals, and estimate the model

ε̂t = ρε̂t−1 + u∗tSin
e ε̂t p→ εt, this regression is asymptoti
ally equivalent to the regression
εt = ρεt−1 + utwhi
h satis�es the 
lassi
al assumptions. Therefore, ρ̂ obtained by applying OLSto ε̂t = ρε̂t−1 + u∗t is 
onsistent. Also, sin
e u∗t p→ ut, the estimator

σ̂2
u =

1

n

n∑

t=2

(û∗t )
2 p→ σ2

u(3) With the 
onsistent estimators σ̂2
u and ρ̂, form Σ̂ = Σ(σ̂2

u, ρ̂) using the previousstru
ture of Σ, and estimate by FGLS. A
tually, one 
an omit the fa
tor σ̂2
u/(1−

ρ2), sin
e it 
an
els out in the formula
β̂FGLS =

(
X ′Σ̂−1X

)−1
(X ′Σ̂−1y).

• One 
an iterate the pro
ess, by taking the �rst FGLS estimator of β, re-estimating
ρ and σ2

u, et
. If one iterates to 
onvergen
es it's equivalent to MLE (supposingnormal errors).
• An asymptoti
ally equivalent approa
h is to simply estimate the transformedmodel

yt − ρ̂yt−1 = (xt − ρ̂xt−1)
′β + u∗t
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e y0 and x0 aren't available). This is the method ofCo
hrane and Or
utt. Dropping the �rst observation is asymptoti
ally irrelevant,but it 
an be very important in small samples. One 
an re
uperate the �rstobservation by putting
y∗1 = y1

√
1 − ρ̂2

x∗1 = x1

√
1 − ρ̂2This somewhat odd-looking result is related to the Cholesky fa
torization of Σ−1.See Davidson and Ma
Kinnon, pg. 348-49 for more dis
ussion. Note that thevarian
e of y∗1 is σ2

u, asymptoti
ally, so we see that the transformed model willbe homos
edasti
 (and nonauto
orrelated, sin
e the u′s are un
orrelated with the
y′s, in di�erent time periods.

5.4. MA(1). The linear regression model with moving average order 1 errors is
yt = x′tβ + εt

εt = ut + φut−1

ut ∼ iid(0, σ2
u)

E(εtus) = 0, t < sIn this 
ase,
V (εt) = γ0 = E

[
(ut + φut−1)

2
]

= σ2
u + φ2σ2

u

= σ2
u(1 + φ2)Similarly

γ1 = E [(ut + φut−1) (ut−1 + φut−2)]

= φσ2
uand

γ2 = [(ut + φut−1) (ut−2 + φut−3)]

= 0so in this 
ase
Σ = σ2

u




1 + φ2 φ 0 · · · 0

φ 1 + φ2 φ

0 φ
. . . ...... . . . φ

0 · · · φ 1 + φ2


Note that the �rst order auto
orrelation is

ρ1 = φσ2
u

σ2
u(1+φ2) =

γ1

γ0

=
φ

(1 + φ2)
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• This a
hieves a maximum at φ = 1 and a minimum at φ = −1, and the maximaland minimal auto
orrelations are 1/2 and -1/2. Therefore, series that are morestrongly auto
orrelated 
an't be MA(1) pro
esses.Again the 
ovarian
e matrix has a simple stru
ture that depends on only two parameters.The problem in this 
ase is that one 
an't estimate φ using OLS on

ε̂t = ut + φut−1be
ause the ut are unobservable and they 
an't be estimated 
onsistently. However, thereis a simple way to estimate the parameters.
• Sin
e the model is homos
edasti
, we 
an estimate

V (εt) = σ2
ε = σ2

u(1 + φ2)using the typi
al estimator:
σ̂2
ε = ̂σ2

u(1 + φ2) =
1

n

n∑

t=1

ε̂2t

• By the Slutsky theorem, we 
an interpret this as de�ning an (unidenti�ed) esti-mator of both σ2
u and φ, e.g., use this as

σ̂2
u(1 + φ̂2) =

1

n

n∑

t=1

ε̂2tHowever, this isn't su�
ient to de�ne 
onsistent estimators of the parameters,sin
e it's unidenti�ed.
• To solve this problem, estimate the 
ovarian
e of εt and εt−1 using

Ĉov(εt, εt−1) = φ̂σ2
u =

1

n

n∑

t=2

ε̂tε̂t−1This is a 
onsistent estimator, following a LLN (and given that the epsilon hatsare 
onsistent for the epsilons). As above, this 
an be interpreted as de�ning anunidenti�ed estimator:
φ̂σ̂2

u =
1

n

n∑

t=2

ε̂tε̂t−1

• Now solve these two equations to obtain identi�ed (and therefore 
onsistent) es-timators of both φ and σ2
u. De�ne the 
onsistent estimator

Σ̂ = Σ(φ̂, σ̂2
u)following the form we've seen above, and transform the model using the Choleskyde
omposition. The transformed model satis�es the 
lassi
al assumptions asymp-toti
ally.5.5. Asymptoti
ally valid inferen
es with auto
orrelation of unknown form.See Hamilton Ch. 10, pp. 261-2 and 280-84.When the form of auto
orrelation is unknown, one may de
ide to use the OLS estima-tor, without 
orre
tion. We've seen that this estimator has the limiting distribution

√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)
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Ω = lim

n→∞
E
(
X ′εε′X

n

)We need a 
onsistent estimate of Ω. De�ne mt = xtεt (re
all that xt is de�ned as a K × 1ve
tor). Note that
X ′ε =

[
x1 x2 · · · xn

]




ε1

ε2...
εn




=

n∑

t=1

xtεt

=

n∑

t=1

mtso that
Ω = lim

n→∞
1

n
E
[(

n∑

t=1

mt

)(
n∑

t=1

m′
t

)]We assume that mt is 
ovarian
e stationary (so that the 
ovarian
e between mt and mt−sdoes not depend on t).De�ne the v − th auto
ovarian
e of mt as
Γv = E(mtm

′
t−v).Note that E(mtm

′
t+v) = Γ′

v. (show this with an example). In general, we expe
t that:
• mt will be auto
orrelated, sin
e εt is potentially auto
orrelated:

Γv = E(mtm
′
t−v) 6= 0Note that this auto
ovarian
e does not depend on t, due to 
ovarian
e stationarity.

• 
ontemporaneously 
orrelated ( E(mitmjt) 6= 0 ), sin
e the regressors in xt will ingeneral be 
orrelated (more on this later).
• and heteros
edasti
 (E(m2

it) = σ2
i , whi
h depends upon i ), again sin
e theregressors will have di�erent varian
es.While one 
ould estimate Ω parametri
ally, we in general have little information upon whi
hto base a parametri
 spe
i�
ation. Re
ent resear
h has fo
used on 
onsistent nonparametri
estimators of Ω.Now de�ne

Ωn = E 1

n

[(
n∑

t=1

mt

)(
n∑

t=1

m′
t

)]We have (show that the following is true, by expanding sum and shifting rows to left)
Ωn = Γ0 +

n− 1

n

(
Γ1 + Γ′

1

)
+
n− 2

n

(
Γ2 + Γ′

2

)
· · · + 1

n

(
Γn−1 + Γ′

n−1

)The natural, 
onsistent estimator of Γv is
Γ̂v =

1

n

n∑

t=v+1

m̂tm̂
′
t−v.where

m̂t = xtε̂t



5. AUTOCORRELATION 85(note: one 
ould put 1/(n − v) instead of 1/n here). So, a natural, but in
onsistent,estimator of Ωn would be
Ω̂n = Γ̂0 +

n− 1

n

(
Γ̂1 + Γ̂′

1

)
+
n− 2

n

(
Γ̂2 + Γ̂′

2

)
+ · · · + 1

n

(
Γ̂n−1 + Γ̂′

n−1

)

= Γ̂0 +

n−1∑

v=1

n− v

n

(
Γ̂v + Γ̂′

v

)
.This estimator is in
onsistent in general, sin
e the number of parameters to estimate ismore than the number of observations, and in
reases more rapidly than n, so informationdoes not build up as n→ ∞.On the other hand, supposing that Γv tends to zero su�
iently rapidly as v tends to

∞, a modi�ed estimator
Ω̂n = Γ̂0 +

q(n)∑

v=1

(
Γ̂v + Γ̂′

v

)
,where q(n)

p→ ∞ as n→ ∞ will be 
onsistent, provided q(n) grows su�
iently slowly.
• The assumption that auto
orrelations die o� is reasonable in many 
ases. Forexample, the AR(1) model with |ρ| < 1 has auto
orrelations that die o�.
• The term n−v

n 
an be dropped be
ause it tends to one for v < q(n), given that
q(n) in
reases slowly relative to n.

• A disadvantage of this estimator is that is may not be positive de�nite. This
ould 
ause one to 
al
ulate a negative χ2 statisti
, for example!
• Newey and West proposed and estimator (E
onometri
a, 1987) that solves theproblem of possible nonpositive de�niteness of the above estimator. Their esti-mator is

Ω̂n = Γ̂0 +

q(n)∑

v=1

[
1 − v

q + 1

] (
Γ̂v + Γ̂′

v

)
.This estimator is p.d. by 
onstru
tion. The 
ondition for 
onsisten
y is that

n−1/4q(n) → 0. Note that this is a very slow rate of growth for q. This estimatoris nonparametri
 - we've pla
ed no parametri
 restri
tions on the form of Ω. It isan example of a kernel estimator.Finally, sin
e Ωn has Ω as its limit, Ω̂n
p→ Ω.We 
an now use Ω̂n and Q̂X = 1

nX
′X to 
on-sistently estimate the limiting distribution of the OLS estimator under heteros
edasti
ityand auto
orrelation of unknown form. With this, asymptoti
ally valid tests are 
onstru
tedin the usual way.5.6. Testing for auto
orrelation. Durbin-Watson testThe Durbin-Watson test statisti
 is

DW =

∑n
t=2 (ε̂t − ε̂t−1)

2

∑n
t=1 ε̂

2
t

=

∑n
t=2

(
ε̂2t − 2ε̂tε̂t−1 + ε̂2t−1

)
∑n

t=1 ε̂
2
t

• The null hypothesis is that the �rst order auto
orrelation of the errors is zero:
H0 : ρ1 = 0. The alternative is of 
ourse HA : ρ1 6= 0. Note that the alternative isnot that the errors are AR(1), sin
e many general patterns of auto
orrelation willhave the �rst order auto
orrelation di�erent than zero. For this reason the test isuseful for dete
ting auto
orrelation in general. For the same reason, one shouldn't
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riti
al values

just assume that an AR(1) model is appropriate when the DW test reje
ts thenull.
• Under the null, the middle term tends to zero, and the other two tend to one, so
DW

p→ 2.

• Supposing that we had an AR(1) error pro
ess with ρ = 1. In this 
ase the middleterm tends to −2, so DW p→ 0

• Supposing that we had an AR(1) error pro
ess with ρ = −1. In this 
ase themiddle term tends to 2, so DW p→ 4

• These are the extremes: DW always lies between 0 and 4.
• The distribution of the test statisti
 depends on the matrix of regressors, X, sotables 
an't give exa
t 
riti
al values. The give upper and lower bounds, whi
h
orrespond to the extremes that are possible. See Figure 3. There are means ofdetermining exa
t 
riti
al values 
onditional on X.
• Note that DW 
an be used to test for nonlinearity (add dis
ussion).
• The DW test is based upon the assumption that the matrix X is �xed in repeatedsamples. This is often unreasonable in the 
ontext of e
onomi
 time series, whi
his pre
isely the 
ontext where the test would have appli
ation. It is possible torelate the DW test to other test statisti
s whi
h are valid without stri
t exogeneity.Breus
h-Godfrey testThis test uses an auxiliary regression, as does the White test for heteros
edasti
ity.The regression is

ε̂t = x′tδ + γ1ε̂t−1 + γ2ε̂t−2 + · · · + γP ε̂t−P + vtand the test statisti
 is the nR2 statisti
, just as in the White test. There are P restri
tions,so the test statisti
 is asymptoti
ally distributed as a χ2(P ).
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• The intuition is that the lagged errors shouldn't 
ontribute to explaining the
urrent error if there is no auto
orrelation.
• xt is in
luded as a regressor to a

ount for the fa
t that the ε̂t are not independenteven if the εt are. This is a te
hni
ality that we won't go into here.
• This test is valid even if the regressors are sto
hasti
 and 
ontain lagged dependentvariables, so it is 
onsiderably more useful than the DW test for typi
al time seriesdata.
• The alternative is not that the model is an AR(P), following the argument above.The alternative is simply that some or all of the �rst P auto
orrelations are dif-ferent from zero. This is 
ompatible with many spe
i�
 forms of auto
orrelation.5.7. Lagged dependent variables and auto
orrelation. We've seen that the OLSestimator is 
onsistent under auto
orrelation, as long as plimX′ε

n = 0. This will be the 
asewhen E(X ′ε) = 0, following a LLN. An important ex
eption is the 
ase where X 
ontainslagged y′s and the errors are auto
orrelated. A simple example is the 
ase of a single lagof the dependent variable with AR(1) errors. The model is
yt = x′tβ + yt−1γ + εt

εt = ρεt−1 + utNow we 
an write
E(yt−1εt) = E

{
(x′t−1β + yt−2γ + εt−1)(ρεt−1 + ut)

}

6= 0sin
e one of the terms is E(ρε2t−1) whi
h is 
learly nonzero. In this 
ase E(X ′ε) 6= 0, andtherefore plimX′ε
n 6= 0. Sin
e

plimβ̂ = β + plim
X ′ε
nthe OLS estimator is in
onsistent in this 
ase. One needs to estimate by instrumentalvariables (IV), whi
h we'll get to later.5.8. Examples.Nerlove model, yet again. The Nerlove model uses 
ross-se
tional data, so one maynot think of performing tests for auto
orrelation. However, spe
i�
ation error 
an indu
eauto
orrelated errors. Consider the simple Nerlove model

lnC = β1 + β2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ǫand the extended Nerlove model
lnC = βj1 + βj2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ǫ.We have seen eviden
e that the extended model is preferred. So if it is in fa
t the propermodel, the simple model is misspe
i�ed. Let's 
he
k if this misspe
i�
ation might indu
eauto
orrelated errors.The O
tave program GLS/NerloveAR.m estimates the simple Nerlove model, and plotsthe residuals as a fun
tion of lnQ, and it 
al
ulates a Breus
h-Godfrey test statisti
. Theresidual plot is in Figure 4 , and the test results are:Value p-valueBreus
h-Godfrey test 34.930 0.000

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveAR.m
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Clearly, there is a problem of auto
orrelated residuals.Exer
ise 6. Repeat the auto
orrelation tests using the extended Nerlove model (Equa-tion ??) to see the problem is solved.Klein model. Klein's Model I is a simple ma
roe
onometri
 model. One of the equationsin the model explains 
onsumption (C) as a fun
tion of pro�ts (P ), both 
urrent and lagged,as well as the sum of wages in the private se
tor (W p) and wages in the government se
tor(W g). Have a look at the README �le for this data set. This gives the variable namesand other information.Consider the model
Ct = α0 + α1Pt + α2Pt−1 + α3(W

p
t +W g

t ) + ǫ1tThe O
tave program GLS/Klein.m estimates this model by OLS, plots the residuals, andperforms the Breus
h-Godfrey test, using 1 lag of the residuals. The estimation and testresults are:*********************************************************OLS estimation resultsObservations 21R-squared 0.981008Sigma-squared 1.051732Results (Ordinary var-
ov estimator)estimate st.err. t-stat. p-valueConstant 16.237 1.303 12.464 0.000Profits 0.193 0.091 2.115 0.049

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/klein_readme.txt
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/Klein.m
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Lagged Profits 0.090 0.091 0.992 0.335Wages 0.796 0.040 19.933 0.000*********************************************************Value p-valueBreus
h-Godfrey test 1.539 0.215and the residual plot is in Figure 5. The test does not reje
t the null of nonauto
orrelatetderrors, but we should remember that we have only 21 observations, so power is likely to befairly low. The residual plot leads me to suspe
t that there may be auto
orrelation - thereare some signi�
ant runs below and above the x-axis. Your opinion may di�er.Sin
e it seems that there may be auto
orrelation, lets's try an AR(1) 
orre
tion. TheO
tave program GLS/KleinAR1.m estimates the Klein 
onsumption equation assumingthat the errors follow the AR(1) pattern. The results, with the Breus
h-Godfrey test forremaining auto
orrelation are:*********************************************************OLS estimation resultsObservations 21R-squared 0.967090Sigma-squared 0.983171Results (Ordinary var-
ov estimator)estimate st.err. t-stat. p-valueConstant 16.992 1.492 11.388 0.000Profits 0.215 0.096 2.232 0.039Lagged Profits 0.076 0.094 0.806 0.431

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/KleinAR1.m


EXERCISES 90Wages 0.774 0.048 16.234 0.000*********************************************************Value p-valueBreus
h-Godfrey test 2.129 0.345
• The test is farther away from the reje
tion region than before, and the residualplot is a bit more favorable for the hypothesis of nonauto
orrelated residuals,IMHO. For this reason, it seems that the AR(1) 
orre
tion might have improvedthe estimation.
• Nevertheless, there has not been mu
h of an e�e
t on the estimated 
oe�
ientsnor on their estimated standard errors. This is probably be
ause the estimatedAR(1) 
oe�
ient is not very large (around 0.2)
• The existen
e or not of auto
orrelation in this model will be important later, inthe se
tion on simultaneous equations.7. Exer
isesExer
ises(1) Comparing the varian
es of the OLS and GLS estimators, I 
laimed that the followingholds:

V ar(β̂) − V ar(β̂GLS) = AΣA
′Verify that this is true.(2) Show that the GLS estimator 
an be de�ned as

β̂GLS = arg min(y −Xβ)′Σ−1(y −Xβ)(3) The limiting distribution of the OLS estimator with heteros
edasti
ity of unknownform is √
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)
,where

lim
n→∞

E
(
X ′εε′X

n

)
= ΩExplain why

Ω̂ =
1

n

n∑

t=1

xtx
′
tε̂

2
tis a 
onsistent estimator of this matrix.(4) De�ne the v−th auto
ovarian
e of a 
ovarian
e stationary pro
essmt, where E(mt = 0)as

Γv = E(mtm
′
t−v).Show that E(mtm

′
t+v) = Γ′

v.(5) For the Nerlove model
lnC = βj1 + βj2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ǫassume that V (ǫt|xt) = σ2

j , j = 1, 2, ..., 5. That is, the varian
e depends upon whi
h ofthe 5 �rm size groups the observation belongs to.a) Apply White's test using the OLS residuals, to test for homos
edasti
ity
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ulate the FGLS estimator and interpret the estimation results.
) Test the transformed model to 
he
k whether it appears to satisfy homos
edasti
ity.



CHAPTER 8Sto
hasti
 regressorsUp to now we have treated the regressors as �xed, whi
h is 
learly unrealisti
. Now wewill assume they are random. There are several ways to think of the problem. First, if weare interested in an analysis 
onditional on the explanatory variables, then it is irrelevantif they are sto
hasti
 or not, sin
e 
onditional on the values of they regressors take on,they are nonsto
hasti
, whi
h is the 
ase already 
onsidered.
• In 
ross-se
tional analysis it is usually reasonable to make the analysis 
onditionalon the regressors.
• In dynami
 models, where yt may depend on yt−1, a 
onditional analysis is notsu�
iently general, sin
e we may want to predi
t into the future many periodsout, so we need to 
onsider the behavior of β̂ and the relevant test statisti
sun
onditional on X.The model we'll deal will involve a 
ombination of the following assumptionsLinearity: the model is a linear fun
tion of the parameter ve
tor β0 :

yt = x′tβ0 + εt,or in matrix form,
y = Xβ0 + ε,where y is n × 1, X =

(
x1 x2 · · · xn

)′
, where xt is K × 1, and β0 and ε are 
on-formable.Sto
hasti
, linearly independent regressors

X has rank K with probability 1
X is sto
hasti

limn→∞ Pr

(
1
nX

′X = QX
)

= 1, where QX is a �nite positive de�nite matrix.Central limit theorem
n−1/2X ′ε

d→ N(0, QXσ
2
0)Normality (Optional): ε|X ∼ N(0, σ2In): ǫ is normally distributedStrongly exogenous regressors:

E(εt|X) = 0,∀t(28)Weakly exogenous regressors:
E(εt|xt) = 0,∀t(29)In both 
ases, x′

tβ is the 
onditional mean of yt given xt: E(yt|xt) = x′
tβ1. Case 1Normality of ε, strongly exogenous regressorsIn this 
ase,

β̂ = β0 + (X ′X)−1X ′ε92
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E(β̂|X) = β0 + (X ′X)−1X ′E(ε|X)

= β0and sin
e this holds for all X, E(β̂) = β, un
onditional on X. Likewise,
β̂|X ∼ N

(
β, (X ′X)−1σ2

0

)

• If the density of X is dµ(X), the marginal density of β̂ is obtained by multiplyingthe 
onditional density by dµ(X) and integrating over X. Doing this leads to anonnormal density for β̂, in small samples.
• However, 
onditional on X, the usual test statisti
s have the t, F and χ2 distribu-tions. Importantly, these distributions don't depend on X, so when marginalizingto obtain the un
onditional distribution, nothing 
hanges. The tests are valid insmall samples.
• Summary: When X is sto
hasti
 but strongly exogenous and ε is normally dis-tributed:(1) β̂ is unbiased(2) β̂ is nonnormally distributed(3) The usual test statisti
s have the same distribution as with nonsto
hasti
 X.(4) The Gauss-Markov theorem still holds, sin
e it holds 
onditionally on X, andthis is true for all X.(5) Asymptoti
 properties are treated in the next se
tion.2. Case 2

ε nonnormally distributed, strongly exogenous regressorsThe unbiasedness of β̂ 
arries through as before. However, the argument regarding teststatisti
s doesn't hold, due to nonnormality of ε. Still, we have
β̂ = β0 + (X ′X)−1X ′ε

= β0 +

(
X ′X
n

)−1 X ′ε
nNow (

X ′X
n

)−1
p→ Q−1

Xby assumption, and
X ′ε
n

=
n−1/2X ′ε√

n

p→ 0sin
e the numerator 
onverges to a N(0, QXσ
2) r.v. and the denominator still goes to in-�nity. We have unbiasedness and the varian
e disappearing, so, the estimator is 
onsistent :

β̂
p→ β0.Considering the asymptoti
 distribution

√
n
(
β̂ − β0

)
=

√
n

(
X ′X
n

)−1 X ′ε
n

=

(
X ′X
n

)−1

n−1/2X ′εso √
n
(
β̂ − β0

)
d→ N(0, Q−1

X σ2
0)
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tly following the assumptions. Asymptoti
 normality of the estimator still holds. Sin
ethe asymptoti
 results on all test statisti
s only require this, all the previous asymptoti
results on test statisti
s are also valid in this 
ase.
• Summary: Under strongly exogenous regressors, with ε normal or nonnormal, β̂has the properties:(1) Unbiasedness(2) Consisten
y(3) Gauss-Markov theorem holds, sin
e it holds in the previous 
ase and doesn'tdepend on normality.(4) Asymptoti
 normality(5) Tests are asymptoti
ally valid(6) Tests are not valid in small samples if the error is normally distributed3. Case 3Weakly exogenous regressorsAn important 
lass of models are dynami
 models, where lagged dependent variableshave an impa
t on the 
urrent value. A simple version of these models that 
aptures theimportant points is

yt = z′tα+

p∑

s=1

γsyt−s + εt

= x′tβ + εtwhere now xt 
ontains lagged dependent variables. Clearly, even with E(ǫt|xt) = 0, X and
ε are not un
orrelated, so one 
an't show unbiasedness. For example,

E(εt−1xt) 6= 0sin
e xt 
ontains yt−1 (whi
h is a fun
tion of εt−1) as an element.
• This fa
t implies that all of the small sample properties su
h as unbiasedness,Gauss-Markov theorem, and small sample validity of test statisti
s do not hold inthis 
ase. Re
all Figure 7. This is a 
ase of weakly exogenous regressors, and wesee that the OLS estimator is biased in this 
ase.
• Nevertheless, under the above assumptions, all asymptoti
 properties 
ontinue tohold, using the same arguments as before.4. When are the assumptions reasonable?The two assumptions we've added are(1) limn→∞ Pr

(
1
nX

′X = QX
)

= 1, a QX �nite positive de�nite matrix.(2) n−1/2X ′ε
d→ N(0, QXσ

2
0)The most 
ompli
ated 
ase is that of dynami
 models, sin
e the other 
ases 
an be treatedas nested in this 
ase. There exist a number of 
entral limit theorems for dependentpro
esses, many of whi
h are fairly te
hni
al. We won't enter into details (see Hamilton,Chapter 7 if you're interested). A main requirement for use of standard asymptoti
s for adependent sequen
e

{st} = { 1

n

n∑

t=1

zt}to 
onverge in probability to a �nite limit is that zt be stationary, in some sense.
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• Strong stationarity requires that the joint distribution of the set

{zt, zt+s, zt−q, ...}not depend on t.
• Covarian
e (weak) stationarity requires that the �rst and se
ond moments of thisset not depend on t.
• An example of a sequen
e that doesn't satisfy this is an AR(1) pro
ess with aunit root (a random walk):

xt = xt−1 + εt

εt ∼ IIN(0, σ2)One 
an show that the varian
e of xt depends upon t in this 
ase, so it's notweakly stationary.
• The series sin t + ǫt has a �rst moment that depends upon t, so it's not weaklystationary either.Stationarity prevents the pro
ess from trending o� to plus or minus in�nity, and prevents
y
li
al behavior whi
h would allow 
orrelations between far removed zt znd zs to be high.Draw a pi
ture here.
• In summary, the assumptions are reasonable when the sto
hasti
 
onditioningvariables have varian
es that are �nite, and are not too strongly dependent. TheAR(1) model with unit root is an example of a 
ase where the dependen
e is toostrong for standard asymptoti
s to apply.
• The e
onometri
s of nonstationary pro
esses has been an a
tive area of resear
hin the last two de
ades. The standard asymptoti
s don't apply in this 
ase. Thisisn't in the s
ope of this 
ourse.5. Exer
isesExer
ises(1) Show that for two random variables A and B, if E(A|B) = 0, then E (Af(B)) = 0.How is this used in the proof of the Gauss-Markov theorem?(2) Is it possible for an AR(1) model for time series data, e.g., yt = 0+0.9yt−1 + εt satisfyweak exogeneity? Strong exogeneity? Dis
uss.



CHAPTER 9Data problemsIn this se
tion well 
onsider problems asso
iated with the regressor matrix: 
ollinearity,missing observation and measurement error.1. CollinearityCollinearity is the existen
e of linear relationships amongst the regressors. We 
analways write
λ1x1 + λ2x2 + · · · + λKxK + v = 0where xi is the ith 
olumn of the regressor matrix X, and v is an n × 1 ve
tor. In the
ase that there exists 
ollinearity, the variation in v is relatively small, so that there is anapproximately exa
t linear relation between the regressors.

• �relative� and �approximate� are impre
ise, so it's di�
ult to de�ne when 
ollineariltyexists.In the extreme, if there are exa
t linear relationships (every element of v equal) then
ρ(X) < K, so ρ(X ′X) < K, so X ′X is not invertible and the OLS estimator is notuniquely de�ned. For example, if the model is

yt = β1 + β2x2t + β3x3t + εt

x2t = α1 + α2x3tthen we 
an write
yt = β1 + β2 (α1 + α2x3t) + β3x3t + εt

= β1 + β2α1 + β2α2x3t + β3x3t + εt

= (β1 + β2α1) + (β2α2 + β3) x3t

= γ1 + γ2x3t + εt

• The γ′s 
an be 
onsistently estimated, but sin
e the γ′s de�ne two equations inthree β′s, the β′s 
an't be 
onsistently estimated (there are multiple values of βthat solve the fon
). The β′s are unidenti�ed in the 
ase of perfe
t 
ollinearity.
• Perfe
t 
ollinearity is unusual, ex
ept in the 
ase of an error in 
onstru
tion ofthe regressor matrix, su
h as in
luding the same regressor twi
e.Another 
ase where perfe
t 
ollinearity may be en
ountered is with models with dummyvariables, if one is not 
areful. Consider a model of rental pri
e (yi) of an apartment. This
ould depend fa
tors su
h as size, quality et
., 
olle
ted in xi, as well as on the lo
ationof the apartment. Let Bi = 1 if the ith apartment is in Bar
elona, Bi = 0 otherwise.Similarly, de�ne Gi, Ti and Li for Girona, Tarragona and Lleida. One 
ould use a modelsu
h as

yi = β1 + β2Bi + β3Gi + β4Ti + β5Li + x′iγ + εi96



1. COLLINEARITY 97Figure 1. s(β) when there is no 
ollinearity
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In this model, Bi + Gi + Ti + Li = 1, ∀i, so there is an exa
t relationship between thesevariables and the 
olumn of ones 
orresponding to the 
onstant. One must either drop the
onstant, or one of the qualitative variables.1.1. A brief aside on dummy variables. Introdu
e a brief dis
ussion of dummyvariables here.1.2. Ba
k to 
ollinearity. The more 
ommon 
ase, if one doesn't make mistakessu
h as these, is the existen
e of inexa
t linear relationships, i.e., 
orrelations between theregressors that are less than one in absolute value, but not zero. The basi
 problem isthat when two (or more) variables move together, it is di�
ult to determine their separatein�uen
es. This is re�e
ted in impre
ise estimates, i.e., estimates with high varian
es.With e
onomi
 data, 
ollinearity is 
ommonly en
ountered, and is often a severe problem.When there is 
ollinearity, the minimizing point of the obje
tive fun
tion that de�nesthe OLS estimator (s(β), the sum of squared errors) is relatively poorly de�ned. This isseen in Figures 1 and 2.To see the e�e
t of 
ollinearity on varian
es, partition the regressor matrix as
X =

[
x W

]where x is the �rst 
olumn of X (note: we 
an inter
hange the 
olumns of X isf we like,so there's no loss of generality in 
onsidering the �rst 
olumn). Now, the varian
e of β̂,under the 
lassi
al assumptions, is
V (β̂) =

(
X ′X

)−1
σ2Using the partition,

X ′X =

[
x′x x′W

W ′x W ′W

]



1. COLLINEARITY 98Figure 2. s(β) when there is 
ollinearity
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and following a rule for partitioned inversion,
(
X ′X

)−1

1,1
=

(
x′x− x′W (W ′W )−1W ′x

)−1

=
(
x′
(
In −W (W ′W )

′1W ′
)

x
)−1

=
(
ESSx|W

)−1where by ESSx|W we mean the error sum of squares obtained from the regression
x = Wλ+ v.Sin
e

R2 = 1 −ESS/TSS,we have
ESS = TSS(1 −R2)so the varian
e of the 
oe�
ient 
orresponding to x is

V (β̂x) =
σ2

TSSx(1 −R2
x|W )We see three fa
tors in�uen
e the varian
e of this 
oe�
ient. It will be high if(1) σ2 is large(2) There is little variation in x. Draw a pi
ture here.(3) There is a strong linear relationship between x and the other regressors, so that

W 
an explain the movement in x well. In this 
ase, R2
x|W will be 
lose to 1. As

R2
x|W → 1, V (β̂x) → ∞.The last of these 
ases is 
ollinearity.Intuitively, when there are strong linear relations between the regressors, it is di�
ultto determine the separate in�uen
e of the regressors on the dependent variable. This 
anbe seen by 
omparing the OLS obje
tive fun
tion in the 
ase of no 
orrelation between



1. COLLINEARITY 99regressors with the obje
tive fun
tion with 
orrelation between the regressors. See the�gures no
ollin.ps (no 
orrelation) and 
ollin.ps (
orrelation), available on the web site.1.3. Dete
tion of 
ollinearity. The best way is simply to regress ea
h explanatoryvariable in turn on the remaining regressors. If any of these auxiliary regressions has ahigh R2, there is a problem of 
ollinearity. Furthermore, this pro
edure identi�es whi
hparameters are a�e
ted.
• Sometimes, we're only interested in 
ertain parameters. Collinearity isn't a prob-lem if it doesn't a�e
t what we're interested in estimating.An alternative is to examine the matrix of 
orrelations between the regressors. High
orrelations are su�
ient but not ne
essary for severe 
ollinearity.Also indi
ative of 
ollinearity is that the model �ts well (high R2), but none of thevariables is signi�
antly di�erent from zero (e.g., their separate in�uen
es aren't well de-termined).In summary, the arti�
ial regressions are the best approa
h if one wants to be 
areful.1.4. Dealing with 
ollinearity. More informationCollinearity is a problem of an uninformative sample. The �rst question is: is all theavailable information being used? Is more data available? Are there 
oe�
ient restri
tionsthat have been negle
ted? Pi
ture illustrating how a restri
tion 
an solve problem of perfe
t
ollinearity.Sto
hasti
 restri
tions and ridge regressionSupposing that there is no more data or negle
ted restri
tions, one possibility is to
hange perspe
tives, to Bayesian e
onometri
s. One 
an express prior beliefs regarding the
oe�
ients using sto
hasti
 restri
tions. A sto
hasti
 linear restri
tion would be somethingof the form

Rβ = r + vwhere R and r are as in the 
ase of exa
t linear restri
tions, but v is a random ve
tor. Forexample, the model 
ould be
y = Xβ + ε

Rβ = r + v(
ε

v

)
∼ N

(
0

0

)
,

(
σ2
εIn 0n×q

0q×n σ2
vIq

)This sort of model isn't in line with the 
lassi
al interpretation of parameters as 
onstants:a

ording to this interpretation the left hand side of Rβ = r + v is 
onstant but the rightis random. This model does �t the Bayesian perspe
tive: we 
ombine information 
omingfrom the model and the data, summarized in
y = Xβ + ε

ε ∼ N(0, σ2
εIn)with prior beliefs regarding the distribution of the parameter, summarized in

Rβ ∼ N(r, σ2
vIq)Sin
e the sample is random it is reasonable to suppose that E(εv′) = 0, whi
h is the lastpie
e of information in the spe
i�
ation. How 
an you estimate using this model? The



1. COLLINEARITY 100solution is to treat the restri
tions as arti�
ial data. Write[
y

r

]
=

[
X

R

]
β +

[
ε

v

]This model is heteros
edasti
, sin
e σ2
ε 6= σ2

v . De�ne the prior pre
ision k = σε/σv . Thisexpresses the degree of belief in the restri
tion relative to the variability of the data.Supposing that we spe
ify k, then the model
[
y

kr

]
=

[
X

kR

]
β +

[
ε

kv

]is homos
edasti
 and 
an be estimated by OLS. Note that this estimator is biased. It is
onsistent, however, given that k is a �xed 
onstant, even if the restri
tion is false (thisis in 
ontrast to the 
ase of false exa
t restri
tions). To see this, note that there are Qrestri
tions, where Q is the number of rows of R. As n→ ∞, these Q arti�
ial observationshave no weight in the obje
tive fun
tion, so the estimator has the same limiting obje
tivefun
tion as the OLS estimator, and is therefore 
onsistent.To motivate the use of sto
hasti
 restri
tions, 
onsider the expe
tation of the squaredlength of β̂:
E(β̂′β̂) = E

{(
β +

(
X ′X

)−1
X ′ε

)′ (
β +

(
X ′X

)−1
X ′ε

)}

= β′β + E
(
ε′X(X ′X)−1(X ′X)−1X ′ε

)

= β′β + Tr
(
X ′X

)−1
σ2

= β′β + σ2
K∑

i=1

λi(the tra
e is the sum of eigenvalues)
> β′β + λmax(X′X−1)σ

2(the eigenvalues are all positive, sin
eX ′X is p.d.so
E(β̂′β̂) > β′β +

σ2

λmin(X′X)where λmin(X′X) is the minimum eigenvalue of X ′X (whi
h is the inverse of the maximumeigenvalue of (X ′X)−1). As 
ollinearity be
omes worse and worse, X ′X be
omes morenearly singular, so λmin(X′X) tends to zero (re
all that the determinant is the produ
t ofthe eigenvalues) and E(β̂′β̂) tends to in�nite. On the other hand, β′β is �nite.Now 
onsidering the restri
tion IKβ = 0 + v. With this restri
tion the model be
omes
[
y

0

]
=

[
X

kIK

]
β +

[
ε

kv

]and the estimator is
β̂ridge =

([
X ′ kIK

] [ X

kIK

])−1 [
X ′ IK

] [ y

0

]

=
(
X ′X + k2IK

)−1
X ′yThis is the ordinary ridge regression estimator. The ridge regression estimator 
an be seento add k2IK , whi
h is nonsingular, to X ′X, whi
h is more and more nearly singular as
ollinearity be
omes worse and worse. As k → ∞, the restri
tions tend to β = 0, that is,
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oe�
ients are shrunken toward zero. Also, the estimator tends to
β̂ridge =

(
X ′X + k2IK

)−1
X ′y →

(
k2IK

)−1
X ′y =

X ′y
k2

→ 0so β̂′ridgeβ̂ridge → 0. This is 
learly a false restri
tion in the limit, if our original model isat al sensible.There should be some amount of shrinkage that is in fa
t a true restri
tion. The prob-lem is to determine the k su
h that the restri
tion is 
orre
t. The interest in ridge regression
enters on the fa
t that it 
an be shown that there exists a k su
h that MSE(β̂ridge) <

β̂OLS. The problem is that this k depends on β and σ2, whi
h are unknown.The ridge tra
e method plots β̂′ridgeβ̂ridge as a fun
tion of k, and 
hooses the value of kthat �artisti
ally� seems appropriate (e.g., where the e�e
t of in
reasing k dies o�). Drawpi
ture here. This means of 
hoosing k is obviously subje
tive. This is not a problem fromthe Bayesian perspe
tive: the 
hoi
e of k re�e
ts prior beliefs about the length of β.In summary, the ridge estimator o�ers some hope, but it is impossible to guaranteethat it will outperform the OLS estimator. Collinearity is a fa
t of life in e
onometri
s,and there is no 
lear solution to the problem.2. Measurement errorMeasurement error is exa
tly what it says, either the dependent variable or the re-gressors are measured with error. Thinking about the way e
onomi
 data are reported,measurement error is probably quite prevalent. For example, estimates of growth of GDP,in�ation, et
. are 
ommonly revised several times. Why should the last revision ne
essarilybe 
orre
t?2.1. Error of measurement of the dependent variable. Measurement errors inthe dependent variable and the regressors have important di�eren
es. First 
onsider errorin measurement of the dependent variable. The data generating pro
ess is presumed to be
y∗ = Xβ + ε

y = y∗ + v

vt ∼ iid(0, σ2
v )where y∗ is the unobservable true dependent variable, and y is what is observed. We assumethat ε and v are independent and that y∗ = Xβ + ε satis�es the 
lassi
al assumptions.Given this, we have

y + v = Xβ + εso
y = Xβ + ε− v

= Xβ + ω

ωt ∼ iid(0, σ2
ε + σ2

v)

• As long as v is un
orrelated with X, this model satis�es the 
lassi
al assumptionsand 
an be estimated by OLS. This type of measurement error isn't a problem,then.



2. MEASUREMENT ERROR 1022.2. Error of measurement of the regressors. The situation isn't so good in this
ase. The DGP is
yt = x∗′t β + εt

xt = x∗t + vt

vt ∼ iid(0,Σv)where Σv is a K ×K matrix. Now X∗ 
ontains the true, unobserved regressors, and X iswhat is observed. Again assume that v is independent of ε, and that the model y = X∗β+εsatis�es the 
lassi
al assumptions. Now we have
yt = (xt − vt)

′ β + εt

= x′tβ − v′tβ + εt

= x′tβ + ωtThe problem is that now there is a 
orrelation between xt and ωt, sin
e
E(xtωt) = E

(
(x∗t + vt)

(
−v′tβ + εt

))

= −Σvβwhere
Σv = E

(
vtv

′
t

)
.Be
ause of this 
orrelation, the OLS estimator is biased and in
onsistent, just as in the
ase of auto
orrelated errors with lagged dependent variables. In matrix notation, writethe estimated model as

y = Xβ + ωWe have that
β̂ =

(
X ′X
n

)−1(X ′y
n

)and
plim

(
X ′X
n

)−1

= plim
(X∗′ + V ′) (X∗ + V )

n

= (QX∗ + Σv)
−1sin
e X∗ and V are independent, and

plim
V ′V
n

= lim E 1

n

n∑

t=1

vtv
′
t

= ΣvLikewise,
plim

(
X ′y
n

)
= plim

(X∗′ + V ′) (X∗β + ε)

n

= QX∗βso
plimβ̂ = (QX∗ + Σv)

−1QX∗βSo we see that the least squares estimator is in
onsistent when the regressors are measuredwith error.
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• A potential solution to this problem is the instrumental variables (IV) estimator,whi
h we'll dis
uss shortly.3. Missing observationsMissing observations o

ur quite frequently: time series data may not be gathered ina 
ertain year, or respondents to a survey may not answer all questions. We'll 
onsidertwo 
ases: missing observations on the dependent variable and missing observations on theregressors.3.1. Missing observations on the dependent variable. In this 
ase, we have

y = Xβ + εor [
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]where y2 is not observed. Otherwise, we assume the 
lassi
al assumptions hold.
• A 
lear alternative is to simply estimate using the 
ompete observations

y1 = X1β + ε1Sin
e these observations satisfy the 
lassi
al assumptions, one 
ould estimate byOLS.
• The question remains whether or not one 
ould somehow repla
e the unobserved
y2 by a predi
tor, and improve over OLS in some sense. Let ŷ2 be the predi
torof y2. Now

β̂ =

{[
X1

X2

]′ [
X1

X2

]}−1 [
X1

X2

]′ [
y1

ŷ2

]

=
[
X ′

1X1 +X ′
2X2

]−1 [
X ′

1y1 +X ′
2ŷ2

]Re
all that the OLS fon
 are
X ′Xβ̂ = X ′yso if we regressed using only the �rst (
omplete) observations, we would have

X ′
1X1β̂1 = X ′

1y1.Likewise, an OLS regression using only the se
ond (�lled in) observations would give
X ′

2X2β̂2 = X ′
2ŷ2.Substituting these into the equation for the overall 
ombined estimator gives

β̂ =
[
X ′

1X1 +X ′
2X2

]−1
[
X ′

1X1β̂1 +X ′
2X2β̂2

]

=
[
X ′

1X1 +X ′
2X2

]−1
X ′

1X1β̂1 +
[
X ′

1X1 +X ′
2X2

]−1
X ′

2X2β̂2

≡ Aβ̂1 + (IK −A)β̂2where
A ≡

[
X ′

1X1 +X ′
2X2

]−1
X ′

1X1
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[
X ′

1X1 +X ′
2X2

]−1
X ′

2X2 =
[
X ′

1X1 +X ′
2X2

]−1 [(
X ′

1X1 +X ′
2X2

)
−X ′

1X1

]

= IK −
[
X ′

1X1 +X ′
2X2

]−1
X ′

1X1

= IK −A.Now,
E(β̂) = Aβ + (IK −A)E

(
β̂2

)and this will be unbiased only if E (β̂2

)
= β.

• The 
on
lusion is the this �lled in observations alone would need to de�ne anunbiased estimator. This will be the 
ase only if
ŷ2 = X2β + ε̂2where ε̂2 has mean zero. Clearly, it is di�
ult to satisfy this 
ondition withoutknowledge of β.

• Note that putting ŷ2 = ȳ1 does not satisfy the 
ondition and therefore leads to abiased estimator.Exer
ise 13. Formally prove this last statement.
• One possibility that has been suggested (see Greene, page 275) is to estimate βusing a �rst round estimation using only the 
omplete observations

β̂1 = (X ′
1X1)

−1X ′
1y1then use this estimate, β̂1,to predi
t y2 :

ŷ2 = X2β̂1

= X2(X
′
1X1)

−1X ′
1y1Now, the overall estimate is a weighted average of β̂1 and β̂2, just as above, butwe have

β̂2 = (X ′
2X2)

−1X ′
2ŷ2

= (X ′
2X2)

−1X ′
2X2β̂1

= β̂1This shows that this suggestion is 
ompletely empty of 
ontent: the �nal estimatoris the same as the OLS estimator using only the 
omplete observations.3.2. The sample sele
tion problem. In the above dis
ussion we assumed that themissing observations are random. The sample sele
tion problem is a 
ase where the missingobservations are not random. Consider the model
y∗t = x′tβ + εtwhi
h is assumed to satisfy the 
lassi
al assumptions. However, y∗t is not always observed.What is observed is yt de�ned as

yt = y∗t if y∗t ≥ 0Or, in other words, y∗t is missing when it is less than zero.
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tion bias
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The di�eren
e in this 
ase is that the missing values are not random: they are 
orrelatedwith the xt. Consider the 
ase
y∗ = x+ εwith V (ε) = 25, but using only the observations for whi
h y∗ > 0 to estimate. Figure 3illustrates the bias. The O
tave program is sampsel.m3.3. Missing observations on the regressors. Again the model is

[
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]but we assume now that ea
h row of X2 has an unobserved 
omponent(s). Again, one 
ouldjust estimate using the 
omplete observations, but it may seem frustrating to have to dropobservations simply be
ause of a single missing variable. In general, if the unobserved
X2 is repla
ed by some predi
tion, X∗

2 , then we are in the 
ase of errors of observation.As before, this means that the OLS estimator is biased when X∗
2 is used instead of X2.Consisten
y is salvaged, however, as long as the number of missing observations doesn'tin
rease with n.

• In
luding observations that have missing values repla
ed by ad ho
 values 
an beinterpreted as introdu
ing false sto
hasti
 restri
tions. In general, this introdu
esbias. It is di�
ult to determine whether MSE in
reases or de
reases. Monte Carlostudies suggest that it is dangerous to simply substitute the mean, for example.
• In the 
ase that there is only one regressor other than the 
onstant, subtitutionof x̄ for the missing xt does not lead to bias. This is a spe
ial 
ase that doesn'thold for K > 2.Exer
ise 14. Prove this last statement.
• In summary, if one is strongly 
on
erned with bias, it is best to drop observationsthat have missing 
omponents. There is potential for redu
tion of MSE through

http://pareto.uab.es/mcreel/Econometrics/Examples/Figures/sampsel.m


EXERCISES 106�lling in missing elements with intelligent guesses, but this 
ould also in
reaseMSE. 4. Exer
isesExer
ises(1) Consider the Nerlove model
lnC = βj1 + βj2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ǫWhen this model is estimated by OLS, some 
oe�
ients are not signi�
ant. This maybe due to 
ollinearity.Exer
ises(a) Cal
ulate the 
orrelation matrix of the regressors.(b) Perform arti�
ial regressions to see if 
ollinearity is a problem.(
) Apply the ridge regression estimator.Exer
ises(i) Plot the ridge tra
e diagram(ii) Che
k what happens as k goes to zero, and as k be
omes very large.



CHAPTER 10Fun
tional form and nonnested testsThough theory often suggests whi
h 
onditioning variables should be in
luded, and sug-gests the signs of 
ertain derivatives, it is usually silent regarding the fun
tional form of therelationship between the dependent variable and the regressors. For example, 
onsideringa 
ost fun
tion, one 
ould have a Cobb-Douglas model
c = Awβ1

1 wβ2

2 qβqeεThis model, after taking logarithms, gives
ln c = β0 + β1 lnw1 + β2 lnw2 + βq ln q + εwhere β0 = lnA. Theory suggests that A > 0, β1 > 0, β2 > 0, β3 > 0. This model isn't
ompatible with a �xed 
ost of produ
tion sin
e c = 0 when q = 0. Homogeneity of degreeone in input pri
es suggests that β1+β2 = 1, while 
onstant returns to s
ale implies βq = 1.While this model may be reasonable in some 
ases, an alternative
√
c = β0 + β1

√
w1 + β2

√
w2 + βq

√
q + εmay be just as plausible. Note that √

x and ln(x) look quite alike, for 
ertain values ofthe regressors, and up to a linear transformation, so it may be di�
ult to 
hoose betweenthese models.The basi
 point is that many fun
tional forms are 
ompatible with the linear-in-parameters model, sin
e this model 
an in
orporate a wide variety of nonlinear trans-formations of the dependent variable and the regressors. For example, suppose that g(·) isa real valued fun
tion and that x(·) is a K− ve
tor-valued fun
tion. The following modelis linear in the parameters but nonlinear in the variables:
xt = x(zt)

yt = x′tβ + εtThere may be P fundamental 
onditioning variables zt, but there may be K regressors,where K may be smaller than, equal to or larger than P. For example, xt 
ould in
ludesquares and 
ross produ
ts of the 
onditioning variables in zt.1. Flexible fun
tional formsGiven that the fun
tional form of the relationship between the dependent variable andthe regressors is in general unknown, one might wonder if there exist parametri
 mod-els that 
an 
losely approximate a wide variety of fun
tional relationships. A �Diewert-Flexible� fun
tional form is de�ned as one su
h that the fun
tion, the ve
tor of �rst deriva-tives and the matrix of se
ond derivatives 
an take on an arbitrary value at a single datapoint. Flexibility in this sense 
learly requires that there be at least
K = 1 + P +

(
P 2 − P

)
/2 + Pfree parameters: one for ea
h independent e�e
t that we wish to model.107



1. FLEXIBLE FUNCTIONAL FORMS 108Suppose that the model is
y = g(x) + εA se
ond-order Taylor's series expansion (with remainder term) of the fun
tion g(x) aboutthe point x = 0 is

g(x) = g(0) + x′Dxg(0) +
x′D2

xg(0)x

2
+RUse the approximation, whi
h simply drops the remainder term, as an approximation to

g(x) :

g(x) ≃ gK(x) = g(0) + x′Dxg(0) +
x′D2

xg(0)x

2As x → 0, the approximation be
omes more and more exa
t, in the sense that gK(x) →
g(x), DxgK(x) → Dxg(x) and D2

xgK(x) → D2
xg(x). For x = 0, the approximation is exa
t,up to the se
ond order. The idea behind many �exible fun
tional forms is to note that g(0),

Dxg(0) and D2
xg(0) are all 
onstants. If we treat them as parameters, the approximationwill have exa
tly enough free parameters to approximate the fun
tion g(x), whi
h is ofunknown form, exa
tly, up to se
ond order, at the point x = 0. The model is

gK(x) = α+ x′β + 1/2x′Γxso the regression model to �t is
y = α+ x′β + 1/2x′Γx+ ε

• While the regression model has enough free parameters to be Diewert-�exible, thequestion remains: is plimα̂ = g(0)? Is plimβ̂ = Dxg(0)? Is plimΓ̂ = D2
xg(0)?

• The answer is no, in general. The reason is that if we treat the true values of theparameters as these derivatives, then ε is for
ed to play the part of the remainderterm, whi
h is a fun
tion of x, so that x and ε are 
orrelated in this 
ase. Asbefore, the estimator is biased in this 
ase.
• A simpler example would be to 
onsider a �rst-order T.S. approximation to aquadrati
 fun
tion. Draw pi
ture.
• The 
on
lusion is that ��exible fun
tional forms� aren't really �exible in a usefulstatisti
al sense, in that neither the fun
tion itself nor its derivatives are 
on-sistently estimated, unless the fun
tion belongs to the parametri
 family of thespe
i�ed fun
tional form. In order to lead to 
onsistent inferen
es, the regressionmodel must be 
orre
tly spe
i�ed.1.1. The translog form. In spite of the fa
t that FFF's aren't really �exible for thepurposes of e
onometri
 estimation and inferen
e, they are useful, and they are 
ertainlysubje
t to less bias due to misspe
i�
ation of the fun
tional form than are many popularforms, su
h as the Cobb-Douglas or the simple linear in the variables model. The translogmodel is probably the most widely used FFF. This model is as above, ex
ept that thevariables are subje
ted to a logarithmi
 tranformation. Also, the expansion point is usuallytaken to be the sample mean of the data, after the logarithmi
 transformation. The modelis de�ned by

y = ln(c)

x = ln
(z
z̄

)

= ln(z) − ln(z̄)

y = α+ x′β + 1/2x′Γx+ ε



1. FLEXIBLE FUNCTIONAL FORMS 109In this presentation, the t subs
ript that distinguishes observations is suppressed for sim-pli
ity. Note that
∂y

∂x
= β + Γx

=
∂ ln(c)

∂ ln(z)
(the other part of x is 
onstant)

=
∂c

∂z

z

cwhi
h is the elasti
ity of c with respe
t to z. This is a 
onvenient feature of the translogmodel. Note that at the means of the 
onditioning variables, z̄, x = 0, so
∂y

∂x

∣∣∣∣
z=z̄

= βso the β are the �rst-order elasti
ities, at the means of the data.To illustrate, 
onsider that y is 
ost of produ
tion:
y = c(w, q)where w is a ve
tor of input pri
es and q is output. We 
ould add other variables byextending q in the obvious manner, but this is supressed for simpli
ity. By Shephard'slemma, the 
onditional fa
tor demands are
x =

∂c(w, q)

∂wand the 
ost shares of the fa
tors are therefore
s =

wx

c
=
∂c(w, q)

∂w

w

cwhi
h is simply the ve
tor of elasti
ities of 
ost with respe
t to input pri
es. If the 
ostfun
tion is modeled using a translog fun
tion, we have
ln(c) = α+ x′β + z′δ + 1/2

[
x′ z

] [ Γ11 Γ12

Γ′
12 Γ22

][
x

z

]

= α+ x′β + z′δ + 1/2x′Γ11x+ x′Γ12z + 1/2z2γ22where x = ln(w/w̄) (element-by-element division) and z = ln(q/q̄), and
Γ11 =

[
γ11 γ12

γ12 γ22

]

Γ12 =

[
γ13

γ23

]

Γ22 = γ33.Note that symmetry of the se
ond derivatives has been imposed.Then the share equations are just
s = β +

[
Γ11 Γ12

] [ x

z

]Therefore, the share equations and the 
ost equation have parameters in 
ommon. Bypooling the equations together and imposing the (true) restri
tion that the parameters ofthe equations be the same, we 
an gain e�
ien
y.



1. FLEXIBLE FUNCTIONAL FORMS 110To illustrate in more detail, 
onsider the 
ase of two inputs, so
x =

[
x1

x2

]
.In this 
ase the translog model of the logarithmi
 
ost fun
tion is

ln c = α+ β1x1 + β2x2 + δz +
γ11

2
x2

1 +
γ22

2
x2

2 +
γ33

2
z2 + γ12x1x2 + γ13x1z + γ23x2zThe two 
ost shares of the inputs are the derivatives of ln c with respe
t to x1 and x2:

s1 = β1 + γ11x1 + γ12x2 + γ13z

s2 = β2 + γ12x1 + γ22x2 + γ13zNote that the share equations and the 
ost equation have parameters in 
ommon. One
an do a pooled estimation of the three equations at on
e, imposing that the parametersare the same. In this way we're using more observations and therefore more information,whi
h will lead to imporved e�
ien
y. Note that this does assume that the 
ost equationis 
orre
tly spe
i�ed (i.e., not an approximation), sin
e otherwise the derivatives wouldnot be the true derivatives of the log 
ost fun
tion, and would then be misspe
i�ed for theshares. To pool the equations, write the model in matrix form (adding in error terms)



ln c

s1

s2


 =




1 x1 x2 z
x2
1

2
x2
2

2
z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0

0 0 1 0 0 x2 0 x1 0 z







α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23




+



ε1

ε2

ε3




This is one observation on the three equations. With the appropriate notation, a singleobservation 
an be written as
yt = Xtθ + εtThe overall model would sta
k n observations on the three equations for a total of 3nobservations: 



y1

y2...
yn




=




X1

X2...
Xn



θ +




ε1

ε2...
εn


Next we need to 
onsider the errors. For observation t the errors 
an be pla
ed in a ve
tor

εt =



ε1t

ε2t

ε3t


First 
onsider the 
ovarian
e matrix of this ve
tor: the shares are 
ertainly 
orrelatedsin
e they must sum to one. (In fa
t, with 2 shares the varian
es are equal and the
ovarian
e is -1 times the varian
e. General notation is used to allow easy extension to the
ase of more than 2 inputs). Also, it's likely that the shares and the 
ost equation have



1. FLEXIBLE FUNCTIONAL FORMS 111di�erent varian
es. Supposing that the model is 
ovarian
e stationary, the varian
e of εtwon′t depend upon t:
V arεt = Σ0 =



σ11 σ12 σ13

· σ22 σ23

· · σ33


Note that this matrix is singular, sin
e the shares sum to 1. Assuming that there isno auto
orrelation, the overall 
ovarian
e matrix has the seemingly unrelated regressions(SUR) stru
ture.

V ar




ε1

ε2...
εn




= Σ

=




Σ0 0 · · · 0

0 Σ0
. . . ...... . . . 0

0 · · · 0 Σ0




= In ⊗ Σ0where the symbol ⊗ indi
ates the Krone
ker produ
t. The Krone
ker produ
t of twomatri
es A and B is
A⊗B =




a11B a12B · · · a1qB

a21B
. . . ......

apqB · · · apqB



.

1.2. FGLS estimation of a translog model. So, this model has heteros
edasti
ityand auto
orrelation, so OLS won't be e�
ient. The next question is: how do we estimatee�
iently using FGLS? FGLS is based upon inverting the estimated error 
ovarian
e Σ̂.So we need to estimate Σ.An asymptoti
ally e�
ient pro
edure is (supposing normality of the errors)(1) Estimate ea
h equation by OLS(2) Estimate Σ0 using
Σ̂0 =

1

n

n∑

t=1

ε̂tε̂
′
t(3) Next we need to a

ount for the singularity of Σ0. It 
an be shown that Σ̂0 willbe singular when the shares sum to one, so FGLS won't work. The solution is to



1. FLEXIBLE FUNCTIONAL FORMS 112drop one of the share equations, for example the se
ond. The model be
omes
[

ln c

s1

]
=

[
1 x1 x2 z

x2
1

2
x2
2

2
z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0

]




α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23




+

[
ε1

ε2

]

or in matrix notation for the observation:
y∗t = X∗

t θ + ε∗tand in sta
ked notation for all observations we have the 2n observations:



y∗1
y∗2...
y∗n




=




X∗
1

X∗
2...

X∗
n



θ +




ε∗1
ε∗2...
ε∗n


or, �nally in matrix notation for all observations:

y∗ = X∗θ + ε∗Considering the error 
ovarian
e, we 
an de�ne
Σ∗

0 = V ar

[
ε1

ε2

]

Σ∗ = In ⊗ Σ∗
0De�ne Σ̂∗

0 as the leading 2 × 2 blo
k of Σ̂0 , and form
Σ̂∗ = In ⊗ Σ̂∗

0.This is a 
onsistent estimator, following the 
onsisten
y of OLS and applying aLLN.(4) Next 
ompute the Cholesky fa
torization
P̂0 = Chol

(
Σ̂∗

0

)−1(I am assuming this is de�ned as an upper triangular matrix, whi
h is 
onsis-tent with the way O
tave does it) and the Cholesky fa
torization of the overall
ovarian
e matrix of the 2 equation model, whi
h 
an be 
al
ulated as
P̂ = CholΣ̂∗ = In ⊗ P̂0(5) Finally the FGLS estimator 
an be 
al
ulated by applying OLS to the transformedmodel
P̂ ′y∗ = P̂ ′X∗θ +

ˆ̂ ′
Pε∗
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tly using the GLS formula
θ̂FGLS =

(
X∗′

(
Σ̂∗

0

)−1
X∗
)−1

X∗′
(
Σ̂∗

0

)−1
y∗It is equivalent to transform ea
h observation individually:

P̂ ′
0y

∗
y = P̂ ′

0X
∗
t θ + P̂ ′

0ε
∗and then apply OLS. This is probably the simplest approa
h.A few last 
omments.(1) We have assumed no auto
orrelation a
ross time. This is 
learly restri
tive. It isrelatively simple to relax this, but we won't go into it here.(2) Also, we have only imposed symmetry of the se
ond derivatives. Another restri
-tion that the model should satisfy is that the estimated shares should sum to 1.This 
an be a

omplished by imposing

β1 + β2 = 1
3∑

i=1

γij = 0, j = 1, 2, 3.These are linear parameter restri
tions, so they are easy to impose and will im-prove e�
ien
y if they are true.(3) The estimation pro
edure outlined above 
an be iterated. That is, estimate θ̂FGLSas above, then re-estimate Σ∗
0 using errors 
al
ulated as
ε̂ = y −Xθ̂FGLSThese might be expe
ted to lead to a better estimate than the estimator basedon θ̂OLS, sin
e FGLS is asymptoti
ally more e�
ient. Then re-estimate θ using thenew estimated error 
ovarian
e. It 
an be shown that if this is repeated until theestimates don't 
hange (i.e., iterated to 
onvergen
e) then the resulting estimatoris the MLE. At any rate, the asymptoti
 properties of the iterated and uniteratedestimators are the same, sin
e both are based upon a 
onsistent estimator of theerror 
ovarian
e. 2. Testing nonnested hypothesesGiven that the 
hoi
e of fun
tional form isn't perfe
tly 
lear, in that many possibilitiesexist, how 
an one 
hoose between forms? When one form is a parametri
 restri
tion ofanother, the previously studied tests su
h as Wald, LR, s
ore or qF are all possibilities.For example, the Cobb-Douglas model is a parametri
 restri
tion of the translog: Thetranslog is

yt = α+ x′tβ + 1/2x′tΓxt + εwhere the variables are in logarithms, while the Cobb-Douglas is
yt = α+ x′tβ + εso a test of the Cobb-Douglas versus the translog is simply a test that Γ = 0.The situation is more 
ompli
ated when we want to test non-nested hypotheses. If thetwo fun
tional forms are linear in the parameters, and use the same transformation of the



2. TESTING NONNESTED HYPOTHESES 114dependent variable, then they may be written as
M1 : y = Xβ + ε

εt ∼ iid(0, σ2
ε )

M2 : y = Zγ + η

η ∼ iid(0, σ2
η)We wish to test hypotheses of the form: H0 : Mi is 
orre
tly spe
i�ed versus HA : Mi ismisspe
i�ed, for i = 1, 2.

• One 
ould a

ount for non-iid errors, but we'll suppress this for simpli
ity.
• There are a number of ways to pro
eed. We'll 
onsider the J test, proposed byDavidson and Ma
Kinnon, E
onometri
a (1981). The idea is to arti�
ially nestthe two models, e.g.,

y = (1 − α)Xβ + α(Zγ) + ωIf the �rst model is 
orre
tly spe
i�ed, then the true value of α is zero. On theother hand, if the se
ond model is 
orre
tly spe
i�ed then α = 1.� The problem is that this model is not identi�ed in general. For example, ifthe models share some regressors, as in
M1 : yt = β1 + β2x2t + β3x3t + εt

M2 : yt = γ1 + γ2x2t + γ3x4t + ηtthen the 
omposite model is
yt = (1 − α)β1 + (1 − α)β2x2t + (1 − α)β3x3t + αγ1 + αγ2x2t + αγ3x4t + ωtCombining terms we get

yt = ((1 − α)β1 + αγ1) + ((1 − α)β2 + αγ2)x2t + (1 − α)β3x3t + αγ3x4t + ωt

= δ1 + δ2x2t + δ3x3t + δ4x4t + ωtThe four δ′s are 
onsistently estimable, but α is not, sin
e we have four equations in 7unknowns, so one 
an't test the hypothesis that α = 0.The idea of the J test is to substitute γ̂ in pla
e of γ. This is a 
onsistent estimatorsupposing that the se
ond model is 
orre
tly spe
i�ed. It will tend to a �nite probabilitylimit even if the se
ond model is misspe
i�ed. Then estimate the model
y = (1 − α)Xβ + α(Zγ̂) + ω

= Xθ + αŷ + ωwhere ŷ = Z(Z ′Z)−1Z ′y = PZy. In this model, α is 
onsistently estimable, and one 
anshow that, under the hypothesis that the �rst model is 
orre
t, α p→ 0 and that the ordinary
t -statisti
 for α = 0 is asymptoti
ally normal:

t =
α̂

σ̂α̂

a∼ N(0, 1)

• If the se
ond model is 
orre
tly spe
i�ed, then t p→ ∞, sin
e α̂ tends in probabilityto 1, while it's estimated standard error tends to zero. Thus the test will alwaysreje
t the false null model, asymptoti
ally, sin
e the statisti
 will eventually ex
eedany 
riti
al value with probability one.
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• We 
an reverse the roles of the models, testing the se
ond against the �rst.
• It may be the 
ase that neither model is 
orre
tly spe
i�ed. In this 
ase, the testwill still reje
t the null hypothesis, asymptoti
ally, if we use 
riti
al values fromthe N(0, 1) distribution, sin
e as long as α̂ tends to something di�erent from zero,
|t| p→ ∞. Of 
ourse, when we swit
h the roles of the models the other will also bereje
ted asymptoti
ally.

• In summary, there are 4 possible out
omes when we test two models, ea
h againstthe other. Both may be reje
ted, neither may be reje
ted, or one of the two maybe reje
ted.
• There are other tests available for non-nested models. The J− test is simple toapply when both models are linear in the parameters. The P -test is similar, buteasier to apply when M1 is nonlinear.
• The above presentation assumes that the same transformation of the dependentvariable is used by both models. Ma
Kinnon, White and Davidson, Journal ofE
onometri
s, (1983) shows how to deal with the 
ase of di�erent transformations.
• Monte-Carlo eviden
e shows that these tests often over-reje
t a 
orre
tly spe
i�edmodel. Can use bootstrap 
riti
al values to get better-performing tests.



CHAPTER 11Exogeneity and simultaneitySeveral times we've en
ountered 
ases where 
orrelation between regressors and theerror term lead to biasedness and in
onsisten
y of the OLS estimator. Cases in
ludeauto
orrelation with lagged dependent variables and measurement error in the regressors.Another important 
ase is that of simultaneous equations. The 
ause is di�erent, but thee�e
t is the same. 1. Simultaneous equationsUp until now our model is
y = Xβ + εwhere, for purposes of estimation we 
an treatX as �xed. This means that when estimating

β we 
ondition on X.When analyzing dynami
 models, we're not interested in 
onditioningon X, as we saw in the se
tion on sto
hasti
 regressors. Nevertheless, the OLS estimatorobtained by treating X as �xed 
ontinues to have desirable asymptoti
 properties even inthat 
ase.Simultaneous equations is a di�erent prospe
t. An example of a simultaneous equationsystem is a simple supply-demand system:Demand: qt = α1 + α2pt + α3yt + ε1tSupply: qt = β1 + β2pt + ε2t

E
([

ε1t

ε2t

] [
ε1t ε2t

])
=

[
σ11 σ12

· σ22

]

≡ Σ,∀tThe presumption is that qt and pt are jointly determined at the same time by the inter-se
tion of these equations. We'll assume that yt is determined by some unrelated pro
ess.It's easy to see that we have 
orrelation between regressors and errors. Solving for pt :
α1 + α2pt + α3yt + ε1t = β1 + β2pt + ε2t

β2pt − α2pt = α1 − β1 + α3yt + ε1t − ε2t

pt =
α1 − β1

β2 − α2
+

α3yt
β2 − α2

+
ε1t − ε2t
β2 − α2Now 
onsider whether pt is un
orrelated with ε1t :

E(ptε1t) = E
{(

α1 − β1

β2 − α2
+

α3yt
β2 − α2

+
ε1t − ε2t
β2 − α2

)
ε1t

}

=
σ11 − σ12

β2 − α2Be
ause of this 
orrelation, OLS estimation of the demand equation will be biased andin
onsistent. The same applies to the supply equation, for the same reason.In this model, qt and pt are the endogenous varibles (endogs), that are determinedwithin the system. yt is an exogenous variable (exogs). These 
on
epts are a bit tri
ky,116



2. EXOGENEITY 117and we'll return to it in a minute. First, some notation. Suppose we group together 
urrentendogs in the ve
tor Yt. If there are G endogs, Yt is G×1. Group 
urrent and lagged exogs,as well as lagged endogs in the ve
tor Xt , whi
h is K × 1. Sta
k the errors of the Gequations into the error ve
tor Et. The model, with additional assumtions, 
an be writtenas
Y ′
t Γ = X ′

tB + E′
t

Et ∼ N(0,Σ),∀t
E(EtE

′
s) = 0, t 6= sWe 
an sta
k all n observations and write the model as
Y Γ = XB + E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)where
Y =




Y ′
1

Y ′
2...
Y ′
n



,X =




X ′
1

X ′
2...

X ′
n



, E =




E′
1

E′
2...

E′
n




Y is n×G, X is n×K, and E is n×G.

• This system is 
omplete, in that there are as many equations as endogs.
• There is a normality assumption. This isn't ne
essary, but allows us to 
onsiderthe relationship between least squares and ML estimators.
• Sin
e there is no auto
orrelation of the Et 's, and sin
e the 
olumns of E areindividually homos
edasti
, then

Ψ =




σ11In σ12In · · · σ1GIn

σ22In
.... . . ...

· σGGIn




= In ⊗ Σ

• X may 
ontain lagged endogenous and exogenous variables. These variables arepredetermined.
• We need to de�ne what is meant by �endogenous� and �exogenous� when 
lassi-fying the 
urrent period variables.2. ExogeneityThe model de�nes a data generating pro
ess. The model involves two sets of variables,

Yt and Xt, as well as a parameter ve
tor
θ =

[
vec(Γ)′ vec(B)′ vec∗(Σ)′

]′

• In general, without additional restri
tions, θ is a G2 + GK +
(
G2 −G

)
/2 + Gdimensional ve
tor. This is the parameter ve
tor that were interested in estimat-ing.
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• In prin
iple, there exists a joint density fun
tion for Yt and Xt, whi
h depends ona parameter ve
tor φ. Write this density as

ft(Yt,Xt|φ,It)where It is the information set in period t. This in
ludes lagged Y ′
t s and lagged

Xt 's of 
ourse. This 
an be fa
tored into the density of Yt 
onditional on Xttimes the marginal density of Xt :
ft(Yt,Xt|φ,It) = ft(Yt|Xt, φ,It)ft(Xt|φ,It)This is a general fa
torization, but is may very well be the 
ase that not allparameters in φ a�e
t both fa
tors. So use φ1 to indi
ate elements of φ thatenter into the 
onditional density and write φ2 for parameters that enter into themarginal. In general, φ1 and φ2 may share elements, of 
ourse. We have
ft(Yt,Xt|φ,It) = ft(Yt|Xt, φ1,It)ft(Xt|φ2,It)

• Re
all that the model is
Y ′
t Γ = X ′

tB + E′
t

Et ∼ N(0,Σ),∀t
E(EtE

′
s) = 0, t 6= sNormality and la
k of 
orrelation over time imply that the observations are independentof one another, so we 
an write the log-likelihood fun
tion as the sum of likelihood 
ontri-butions of ea
h observation:

lnL(Y |θ,It) =
n∑

t=1

ln ft(Yt,Xt|φ,It)

=

n∑

t=1

ln (ft(Yt|Xt, φ1,It)ft(Xt|φ2,It))

=

n∑

t=1

ln ft(Yt|Xt, φ1,It) +

n∑

t=1

ln ft(Xt|φ2,It) =Definition 15 (Weak Exogeneity). Xt is weakly exogeneous for θ (the original pa-rameter ve
tor) if there is a mapping from φ to θ that is invariant to φ2. More formally,for an arbitrary (φ1, φ2), θ(φ) = θ(φ1).This implies that φ1 and φ2 
annot share elements if Xt is weakly exogenous, sin
e
φ1 would 
hange as φ2 
hanges, whi
h prevents 
onsideration of arbitrary 
ombinations of
(φ1, φ2).Supposing that Xt is weakly exogenous, then the MLE of φ1 using the joint density isthe same as the MLE using only the 
onditional density

lnL(Y |X, θ,It) =

n∑

t=1

ln ft(Yt|Xt, φ1,It)sin
e the 
onditional likelihood doesn't depend on φ2. In other words, the joint and 
ondi-tional log-likelihoods maximize at the same value of φ1.

• With weak exogeneity, knowledge of the DGP of Xt is irrelevant for inferen
e on
φ1, and knowledge of φ1 is su�
ient to re
over the parameter of interest, θ. Sin
ethe DGP of Xt is irrelevant, we 
an treat Xt as �xed in inferen
e.
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• By the invarian
e property of MLE, the MLE of θ is θ(φ̂1),and this mapping isassumed to exist in the de�nition of weak exogeneity.
• Of 
ourse, we'll need to �gure out just what this mapping is to re
over θ̂ from φ̂1.This is the famous identi�
ation problem.
• With la
k of weak exogeneity, the joint and 
onditional likelihood fun
tions max-imize in di�erent pla
es. For this reason, we 
an't treat Xt as �xed in inferen
e.The joint MLE is valid, but the 
onditional MLE is not.
• In resume, we require the variables in Xt to be weakly exogenous if we are to beable to treat them as �xed in estimation. Lagged Yt satisfy the de�nition, sin
ethey are in the 
onditioning information set, e.g., Yt−1 ∈ It. Lagged Yt aren'texogenous in the normal usage of the word, sin
e their values are determinedwithin the model, just earlier on. Weakly exogenous variables in
lude exogenous(in the normal sense) variables as well as all predetermined variables.

3. Redu
ed formRe
all that the model is
Y ′
t Γ = X ′

tB + E′
t

V (Et) = ΣThis is the model in stru
tural form.Definition 16 (Stru
tural form). An equation is in stru
tural form when more thanone 
urrent period endogenous variable is in
luded.The solution for the 
urrent period endogs is easy to �nd. It is
Y ′
t = X ′

tBΓ−1 + E′
tΓ

−1

= X ′
tΠ + V ′

t =Now only one 
urrent period endog appears in ea
h equation. This is the redu
ed form.Definition 17 (Redu
ed form). An equation is in redu
ed form if only one 
urrentperiod endog is in
luded.An example is our supply/demand system. The redu
ed form for quantity is obtainedby solving the supply equation for pri
e and substituting into demand:
qt = α1 + α2

(
qt − β1 − ε2t

β2

)
+ α3yt + ε1t

β2qt − α2qt = β2α1 − α2 (β1 + ε2t) + β2α3yt + β2ε1t

qt =
β2α1 − α2β1

β2 − α2
+

β2α3yt
β2 − α2

+
β2ε1t − α2ε2t
β2 − α2

= π11 + π21yt + V1t



4. IV ESTIMATION 120Similarly, the rf for pri
e is
β1 + β2pt + ε2t = α1 + α2pt + α3yt + ε1t

β2pt − α2pt = α1 − β1 + α3yt + ε1t − ε2t

pt =
α1 − β1

β2 − α2
+

α3yt
β2 − α2

+
ε1t − ε2t
β2 − α2

= π12 + π22yt + V2tThe interesting thing about the rf is that the equations individually satisfy the 
lassi-
al assumptions, sin
e yt is un
orrelated with ε1t and ε2t by assumption, and therefore
E(ytVit) = 0, i=1,2, ∀t. The errors of the rf are

[
V1t

V2t

]
=

[
β2ε1t−α2ε2t

β2−α2

ε1t−ε2t

β2−α2

]The varian
e of V1t is
V (V1t) = E

[(
β2ε1t − α2ε2t
β2 − α2

)(
β2ε1t − α2ε2t
β2 − α2

)]

=
β2

2σ11 − 2β2α2σ12 + α2σ22

(β2 − α2)
2

• This is 
onstant over time, so the �rst rf equation is homos
edasti
.
• Likewise, sin
e the εt are independent over time, so are the Vt.The varian
e of the se
ond rf error is

V (V2t) = E
[(

ε1t − ε2t
β2 − α2

)(
ε1t − ε2t
β2 − α2

)]

=
σ11 − 2σ12 + σ22

(β2 − α2)
2and the 
ontemporaneous 
ovarian
e of the errors a
ross equations is

E(V1tV2t) = E
[(

β2ε1t − α2ε2t
β2 − α2

)(
ε1t − ε2t
β2 − α2

)]

=
β2σ11 − (β2 + α2) σ12 + σ22

(β2 − α2)
2

• In summary the rf equations individually satisfy the 
lassi
al assumptions, underthe assumtions we've made, but they are 
ontemporaneously 
orrelated.The general form of the rf is
Y ′
t = X ′

tBΓ−1 + E′
tΓ

−1

= X ′
tΠ + V ′

tso we have that
Vt =

(
Γ−1

)′
Et ∼ N

(
0,
(
Γ−1

)′
ΣΓ−1

)
,∀tand that the Vt are timewise independent (note that this wouldn't be the 
ase if the Etwere auto
orrelated). 4. IV estimationThe IV estimator may appear a bit unusual at �rst, but it will grow on you over time.The simultaneous equations model is

Y Γ = XB + E



4. IV ESTIMATION 121Considering the �rst equation (this is without loss of generality, sin
e we 
an always reorderthe equations) we 
an partition the Y matrix as
Y =

[
y Y1 Y2

]

• y is the �rst 
olumn
• Y1 are the other endogenous variables that enter the �rst equation
• Y2 are endogs that are ex
luded from this equationSimilarly, partition X as

X =
[
X1 X2

]

• X1 are the in
luded exogs, and X2 are the ex
luded exogs.Finally, partition the error matrix as
E =

[
ε E12

]Assume that Γ has ones on the main diagonal. These are normalization restri
tionsthat simply s
ale the remaining 
oe�
ients on ea
h equation, and whi
h s
ale the varian
esof the error terms.Given this s
aling and our partitioning, the 
oe�
ient matri
es 
an be written as
Γ =




1 Γ12

−γ1 Γ22

0 Γ32




B =

[
β1 B12

0 B22

]With this, the �rst equation 
an be written as
y = Y1γ1 +X1β1 + ε

= Zδ + εThe problem, as we've seen is that Z is 
orrelated with ε, sin
e Y1 is formed of endogs.Now, let's 
onsider the general problem of a linear regression model with 
orrelationbetween regressors and the error term:
y = Xβ + ε

ε ∼ iid(0, Inσ
2)

E(X ′ε) 6= 0.The present 
ase of a stru
tural equation from a system of equations �ts into this notation,but so do other problems, su
h as measurement error or lagged dependent variables withauto
orrelated errors. Consider some matrix W whi
h is formed of variables un
orrelatedwith ε. This matrix de�nes a proje
tion matrix
PW = W (W ′W )−1W ′so that anything that is proje
ted onto the spa
e spanned by W will be un
orrelated with

ε, by the de�nition of W. Transforming the model with this proje
tion matrix we get
PW y = PWXβ + PW εor

y∗ = X∗β + ε∗



4. IV ESTIMATION 122Now we have that ε∗ and X∗ are un
orrelated, sin
e this is simply
E(X∗′ε∗) = E(X ′P ′

WPW ε)

= E(X ′PW ε)and
PWX = W (W ′W )−1W ′Xis the �tted value from a regression of X on W. This is a linear 
ombination of the 
olumnsof W, so it must be un
orrelated with ε. This implies that applying OLS to the model

y∗ = X∗β + ε∗will lead to a 
onsistent estimator, given a few more assumptions. This is the generalizedinstrumental variables estimator. W is known as the matrix of instruments. The estimatoris
β̂IV = (X ′PWX)−1X ′PW yfrom whi
h we obtain

β̂IV = (X ′PWX)−1X ′PW (Xβ + ε)

= β + (X ′PWX)−1X ′PW εso
β̂IV − β = (X ′PWX)−1X ′PW ε

=
(
X ′W (W ′W )−1W ′X

)−1
X ′W (W ′W )−1W ′εNow we 
an introdu
e fa
tors of n to get

β̂IV − β =

((
X ′W
n

)(
W ′W
n

−1
)(

W ′X
n

))−1(
X ′W
n

)(
W ′W
n

)−1(W ′ε
n

)Assuming that ea
h of the terms with a n in the denominator satis�es a LLN, so that
• W ′W

n

p→ QWW , a �nite pd matrix
• X′W

n

p→ QXW , a �nite matrix with rank K (= 
ols(X) )
• W ′ε

n

p→ 0then the plim of the rhs is zero. This last term has plim 0 sin
e we assume that W and εare un
orrelated, e.g.,
E(W ′

tεt) = 0,Given these assumtions the IV estimator is 
onsistent
β̂IV

p→ β.Furthermore, s
aling by √
n, we have

√
n
(
β̂IV − β

)
=

((
X ′W
n

)(
W ′W
n

)−1(W ′X
n

))−1(
X ′W
n

)(
W ′W
n

)−1(W ′ε√
n

)Assuming that the far right term sati�es a CLT, so that
• W ′ε√

n

d→ N(0, QWWσ
2)then we get √

n
(
β̂IV − β

)
d→ N

(
0, (QXWQ

−1
WWQ

′
XW )−1σ2

)



5. IDENTIFICATION BY EXCLUSION RESTRICTIONS 123The estimators for QXW and QWW are the obvious ones. An estimator for σ2 is
σ̂2
IV =

1

n

(
y −Xβ̂IV

)′ (
y −Xβ̂IV

)
.This estimator is 
onsistent following the proof of 
onsisten
y of the OLS estimator of σ2,when the 
lassi
al assumptions hold.The formula used to estimate the varian
e of β̂IV is

V̂ (β̂IV ) =
((
X ′W

) (
W ′W

)−1 (
W ′X

))−1
σ̂2
IVThe IV estimator is(1) Consistent(2) Asymptoti
ally normally distributed(3) Biased in general, sin
e even though E(X ′PW ε) = 0, E(X ′PWX)−1X ′PW ε maynot be zero, sin
e (X ′PWX)−1 and X ′PW ε are not independent.An important point is that the asymptoti
 distribution of β̂IV depends upon QXW and

QWW , and these depend upon the 
hoi
e of W. The 
hoi
e of instruments in�uen
es thee�
ien
y of the estimator.
• When we have two sets of instruments, W1 and W2 su
h that W1 ⊂W2, then theIV estimator using W2 is at least as e�
iently asymptoti
ally as the estimatorthat usedW1.More instruments leads to more asymptoti
ally e�
ient estimation,in general.
• There are spe
ial 
ases where there is no gain (simultaneous equations is an ex-ample of this, as we'll see).
• The penalty for indis
riminant use of instruments is that the small sample bias ofthe IV estimator rises as the number of instruments in
reases. The reason for thisis that PWX be
omes 
loser and 
loser to X itself as the number of instrumentsin
reases.
• IV estimation 
an 
learly be used in the 
ase of simultaneous equations. The onlyissue is whi
h instruments to use.5. Identi�
ation by ex
lusion restri
tionsThe identi�
ation problem in simultaneous equations is in fa
t of the same nature asthe identi�
ation problem in any estimation setting: does the limiting obje
tive fun
tionhave the proper 
urvature so that there is a unique global minimum or maximum at thetrue parameter value? In the 
ontext of IV estimation, this is the 
ase if the limiting
ovarian
e of the IV estimator is positive de�nite and plim 1

nW
′ε = 0. This matrix is

V∞(β̂IV ) = (QXWQ
−1
WWQ

′
XW )−1σ2

• The ne
essary and su�
ient 
ondition for identi�
ation is simply that this matrixbe positive de�nite, and that the instruments be (asymptoti
ally) un
orrelatedwith ε.
• For this matrix to be positive de�nite, we need that the 
onditions noted abovehold: QWW must be positive de�nite and QXW must be of full rank ( K ).
• These identi�
ation 
onditions are not that intuitive nor is it very obvious howto 
he
k them.



5. IDENTIFICATION BY EXCLUSION RESTRICTIONS 1245.1. Ne
essary 
onditions. If we use IV estimation for a single equation of thesystem, the equation 
an be written as
y = Zδ + εwhere

Z =
[
Y1 X1

]Notation:
• Let K be the total numer of weakly exogenous variables.
• Let K∗ = cols(X1) be the number of in
luded exogs, and let K∗∗ = K −K∗ bethe number of ex
luded exogs (in this equation).
• LetG∗ = cols(Y1)+1 be the total number of in
luded endogs, and letG∗∗ = G−G∗be the number of ex
luded endogs.Using this notation, 
onsider the sele
tion of instruments.
• Now the X1 are weakly exogenous and 
an serve as their own instruments.
• It turns out thatX exhausts the set of possible instruments, in that if the variablesin X don't lead to an identi�ed model then no other instruments will identify themodel either. Assuming this is true (we'll prove it in a moment), then a ne
essary
ondition for identi�
ation is that cols(X2) ≥ cols(Y1) sin
e if not then at leastone instrument must be used twi
e, so W will not have full 
olumn rank:

ρ(W ) < K∗ +G∗ − 1 ⇒ ρ(QZW ) < K∗ +G∗ − 1This is the order 
ondition for identi�
ation in a set of simultaneous equations.When the only identifying information is ex
lusion restri
tions on the variablesthat enter an equation, then the number of ex
luded exogs must be greater thanor equal to the number of in
luded endogs, minus 1 (the normalized lhs endog),e.g.,
K∗∗ ≥ G∗ − 1

• To show that this is in fa
t a ne
essary 
ondition 
onsider some arbitrary set ofinstruments W. A ne
essary 
ondition for identi�
ation is that
ρ

(
plim

1

n
W ′Z

)
= K∗ +G∗ − 1where

Z =
[
Y1 X1

]Re
all that we've partitioned the model
Y Γ = XB + Eas

Y =
[
y Y1 Y2

]

X =
[
X1 X2

]Given the redu
ed form
Y = XΠ + Vwe 
an write the redu
ed form using the same partition

[
y Y1 Y2

]
=
[
X1 X2

] [ π11 Π12 Π13

π21 Π22 Π23

]
+
[
v V1 V2

]



5. IDENTIFICATION BY EXCLUSION RESTRICTIONS 125so we have
Y1 = X1Π12 +X2Π22 + V1so

1

n
W ′Z =

1

n
W ′
[
X1Π12 +X2Π22 + V1 X1

]Be
ause the W 's are un
orrelated with the V1 's, by assumption, the 
ross between Wand V1 
onverges in probability to zero, so
plim

1

n
W ′Z = plim

1

n
W ′
[
X1Π12 +X2Π22 X1

]Sin
e the far rhs term is formed only of linear 
ombinations of 
olumns of X, the rankof this matrix 
an never be greater than K, regardless of the 
hoi
e of instruments. If Zhas more than K 
olumns, then it is not of full 
olumn rank. When Z has more than
K 
olumns we have

G∗ − 1 +K∗ > Kor noting that K∗∗ = K −K∗,

G∗ − 1 > K∗∗In this 
ase, the limiting matrix is not of full 
olumn rank, and the identi�
ation 
onditionfails.
5.2. Su�
ient 
onditions. Identi�
ation essentially requires that the stru
tural pa-rameters be re
overable from the data. This won't be the 
ase, in general, unless thestru
tural model is subje
t to some restri
tions. We've already identi�ed ne
essary 
ondi-tions. Turning to su�
ient 
onditions (again, we're only 
onsidering identi�
ation throughzero restri
itions on the parameters, for the moment).The model is

Y ′
t Γ = X ′

tB + Et

V (Et) = ΣThis leads to the redu
ed form
Y ′
t = X ′

tBΓ−1 + EtΓ
−1

= X ′
tΠ + Vt

V (Vt) =
(
Γ−1

)′
ΣΓ−1

= ΩThe redu
ed form parameters are 
onsistently estimable, but none of them are known apriori, and there are no restri
tions on their values. The problem is that more than onestru
tural form has the same redu
ed form, so knowledge of the redu
ed form parametersalone isn't enough to determine the stru
tural parameters. To see this, 
onsider the model
Y ′
t ΓF = X ′

tBF + EtF

V (EtF ) = F ′ΣF
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Y ′
t = X ′

tBF (ΓF )−1 + EtF (ΓF )−1

= X ′
tBFF

−1Γ−1 + EtFF
−1Γ−1

= X ′
tBΓ−1 + EtΓ

−1

= X ′
tΠ + VtLikewise, the 
ovarian
e of the rf of the transformed model is

V (EtF (ΓF )−1) = V (EtΓ
−1)

= ΩSin
e the two stru
tural forms lead to the same rf, and the rf is all that is dire
tly estimable,the models are said to be observationally equivalent. What we need for identi�
ation arerestri
tions on Γ and B su
h that the only admissible F is an identity matrix (if all of theequations are to be identi�ed). Take the 
oe�
ient matri
es as partitioned before:
[

Γ

B

]
=




1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22


The 
oe�
ients of the �rst equation of the transformed model are simply these 
oe�
ientsmultiplied by the �rst 
olumn of F . This gives

[
Γ

B

] [
f11

F2

]
=




1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22




[
f11

F2

]

For identi�
ation of the �rst equation we need that there be enough restri
tions so thatthe only admissible [
f11

F2

]be the leading 
olumn of an identity matrix, so that



1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22




[
f11

F2

]
=




1

−γ1

0

β1

0


Note that the third and �fth rows are[

Γ32

B22

]
F2 =

[
0

0

]Supposing that the leading matrix is of full 
olumn rank, e.g.,
ρ

([
Γ32

B22

])
= cols

([
Γ32

B22

])
= G− 1
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an hold, without additional restri
tions on the model's parameters,is if F2 is a ve
tor of zeros. Given that F2 is a ve
tor of zeros, then the �rst equation
[

1 Γ12

] [ f11

F2

]
= 1 ⇒ f11 = 1Therefore, as long as

ρ

([
Γ32

B22

])
= G− 1then [

f11

F2

]
=

[
1

0G−1

]The �rst equation is identi�ed in this 
ase, so the 
ondition is su�
ient for identi�
ation.It is also ne
essary, sin
e the 
ondition implies that this submatrix must have at least G−1rows. Sin
e this matrix has
G∗∗ +K∗∗ = G−G∗ +K∗∗rows, we obtain
G−G∗ +K∗∗ ≥ G− 1or

K∗∗ ≥ G∗ − 1whi
h is the previously derived ne
essary 
ondition.The above result is fairly intuitive (draw pi
ture here). The ne
essary 
ondition ensuresthat there are enough variables not in the equation of interest to potentially move the otherequations, so as to tra
e out the equation of interest. The su�
ient 
ondition ensures thatthose other equations in fa
t do move around as the variables 
hange their values. Somepoints:
• When an equation has K∗∗ = G∗ − 1, is is exa
tly identi�ed, in that omission ofan identi�ying restri
tion is not possible without loosing 
onsisten
y.
• When K∗∗ > G∗ − 1, the equation is overidenti�ed, sin
e one 
ould drop a re-stri
tion and still retain 
onsisten
y. Overidentifying restri
tions are thereforetestable. When an equation is overidenti�ed we have more instruments than arestri
tly ne
essary for 
onsistent estimation. Sin
e estimation by IV with moreinstruments is more e�
ient asymptoti
ally, one should employ overidentifyingrestri
tions if one is 
on�dent that they're true.
• We 
an repeat this partition for ea
h equation in the system, to see whi
h equa-tions are identi�ed and whi
h aren't.
• These results are valid assuming that the only identifying information 
omes fromknowing whi
h variables appear in whi
h equations, e.g., by ex
lusion restri
tions,and through the use of a normalization. There are other sorts of identifyinginformation that 
an be used. These in
lude(1) Cross equation restri
tions(2) Additional restri
tions on parameters within equations (as in the Klein modeldis
ussed below)(3) Restri
tions on the 
ovarian
e matrix of the errors(4) Nonlinearities in variables
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• When these sorts of information are available, the above 
onditions aren't ne
es-sary for identi�
ation, though they are of 
ourse still su�
ient.To give an example of how other information 
an be used, 
onsider the model

Y Γ = XB + Ewhere Γ is an upper triangular matrix with 1's on the main diagonal. This is a triangularsystem of equations. In this 
ase, the �rst equation is
y1 = XB·1 + E·1Sin
e only exogs appear on the rhs, this equation is identi�ed.The se
ond equation is

y2 = −γ21y1 +XB·2 +E·2This equation has K∗∗ = 0 ex
luded exogs, and G∗ = 2 in
luded endogs, so it fails theorder (ne
essary) 
ondition for identi�
ation.
• However, suppose that we have the restri
tion Σ21 = 0, so that the �rst andse
ond stru
tural errors are un
orrelated. In this 
ase

E(y1tε2t) = E
{
(X ′

tB·1 + ε1t)ε2t
}

= 0so there's no problem of simultaneity. If the entire Σ matrix is diagonal, thenfollowing the same logi
, all of the equations are identi�ed. This is known as afully re
ursive model.
5.3. Example: Klein's Model 1. To give an example of determining identi�
ationstatus, 
onsider the following ma
ro model (this is the widely known Klein's Model 1)Consumption: Ct = α0 + α1Pt + α2Pt−1 + α3(W

p
t +W g

t ) + ε1tInvestment: It = β0 + β1Pt + β2Pt−1 + β3Kt−1 + ε2tPrivate Wages: W p
t = γ0 + γ1Xt + γ2Xt−1 + γ3At + ε3tOutput: Xt = Ct + It +GtPro�ts: Pt = Xt − Tt −W p

tCapital Sto
k: Kt = Kt−1 + It


ǫ1t

ǫ2t

ǫ3t


 ∼ IID







0

0

0


 ,




σ11 σ12 σ13

σ22 σ23

σ33





The other variables are the government wage bill, W g

t , taxes, Tt, government nonwagespending, Gt,and a time trend, At. The endogenous variables are the lhs variables,
Y ′
t =

[
Ct It W p

t Xt Pt Kt

]and the predetermined variables are all others:
X ′
t =

[
1 W g

t Gt Tt At Pt−1 Kt−1 Xt−1

]
.
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ontemporaneously 
orrelated, bynonauto
orrelated. The model written as Y Γ = XB + E gives
Γ =




1 0 0 −1 0 0

0 1 0 −1 0 −1

−α3 0 1 0 1 0

0 0 −γ1 1 −1 0

−α1 −β1 0 0 1 0

0 0 0 0 0 1




B =




α0 β0 γ0 0 0 0

α3 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 γ3 0 0 0

α2 β2 0 0 0 0

0 β3 0 0 0 1

0 0 γ2 0 0 0


To 
he
k this identi�
ation of the 
onsumption equation, we need to extra
t Γ32 and B22,the submatri
es of 
oe�
ients of endogs and exogs that don't appear in this equation.These are the rows that have zeros in the �rst 
olumn, and we need to drop the �rst
olumn. We get

[
Γ32

B22

]
=




1 0 −1 0 −1

0 −γ1 1 −1 0

0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1

0 γ2 0 0 0


We need to �nd a set of 5 rows of this matrix gives a full-rank 5×5 matrix. For example,sele
ting rows 3,4,5,6, and 7 we obtain the matrix

A =




0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1


This matrix is of full rank, so the su�
ient 
ondition for identi�
ation is met. Countingin
luded endogs, G∗ = 3, and 
ounting ex
luded exogs, K∗∗ = 5, so

K∗∗ − L = G∗ − 1

5 − L = 3 − 1

L = 3

• The equation is over-identi�ed by three restri
tions, a

ording to the 
ountingrules, whi
h are 
orre
t when the only identifying information are the ex
lusionrestri
tions. However, there is additional information in this 
ase. Both W p
t and
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W g
t enter the 
onsumption equation, and their 
oe�
ients are restri
ted to be thesame. For this reason the 
onsumption equation is in fa
t overidenti�ed by fourrestri
tions. 6. 2SLSWhen we have no information regarding 
ross-equation restri
tions or the stru
ture ofthe error 
ovarian
e matrix, one 
an estimate the parameters of a single equation of thesystem without regard to the other equations.

• This isn't always e�
ient, as we'll see, but it has the advantage that misspe
i�-
ations in other equations will not a�e
t the 
onsisten
y of the estimator of theparameters of the equation of interest.
• Also, estimation of the equation won't be a�e
ted by identi�
ation problems inother equations.The 2SLS estimator is very simple: in the �rst stage, ea
h 
olumn of Y1 is regressed on allthe weakly exogenous variables in the system, e.g., the entire X matrix. The �tted valuesare

Ŷ1 = X(X ′X)−1X ′Y1

= PXY1

= XΠ̂1Sin
e these �tted values are the proje
tion of Y1 on the spa
e spanned by X, and sin
eany ve
tor in this spa
e is un
orrelated with ε by assumption, Ŷ1 is un
orrelated with ε.Sin
e Ŷ1 is simply the redu
ed-form predi
tion, it is 
orrelated with Y1, The only otherrequirement is that the instruments be linearly independent. This should be the 
ase whenthe order 
ondition is satis�ed, sin
e there are more 
olumns in X2 than in Y1 in this 
ase.The se
ond stage substitutes Ŷ1 in pla
e of Y1, and estimates by OLS. This originalmodel is
y = Y1γ1 +X1β1 + ε

= Zδ + εand the se
ond stage model is
y = Ŷ1γ1 +X1β1 + ε.Sin
e X1 is in the spa
e spanned by X, PXX1 = X1, so we 
an write the se
ond stagemodel as

y = PXY1γ1 + PXX1β1 + ε

≡ PXZδ + εThe OLS estimator applied to this model is
δ̂ = (Z ′PXZ)−1Z ′PXywhi
h is exa
tly what we get if we estimate using IV, with the redu
ed form predi
tions ofthe endogs used as instruments. Note that if we de�ne
Ẑ = PXZ

=
[
Ŷ1 X1

]



7. TESTING THE OVERIDENTIFYING RESTRICTIONS 131so that Ẑ are the instruments for Z, then we 
an write
δ̂ = (Ẑ ′Z)−1Ẑ ′y

• Important note: OLS on the transformed model 
an be used to 
al
ulate the2SLS estimate of δ, sin
e we see that it's equivalent to IV using a parti
ular setof instruments. However the OLS 
ovarian
e formula is not valid. We need toapply the IV 
ovarian
e formula already seen above.A
tually, there is also a simpli�
ation of the general IV varian
e formula. De�ne
Ẑ = PXZ

=
[
Ŷ X

]The IV 
ovarian
e estimator would ordinarily be
V̂ (δ̂) =

(
Z ′Ẑ

)−1 (
Ẑ ′Ẑ

)(
Ẑ ′Z

)−1
σ̂2
IVHowever, looking at the last term in bra
kets

Ẑ ′Z =
[
Ŷ1 X1

]′ [
Y1 X1

]
=

[
Y ′

1(PX)Y1 Y ′
1(PX)X1

X ′
1Y1 X ′

1X1

]but sin
e PX is idempotent and sin
e PXX = X, we 
an write
[
Ŷ1 X1

]′ [
Y1 X1

]
=

[
Y ′

1PXPXY1 Y ′
1PXX1

X ′
1PXY1 X ′

1X1

]

=
[
Ŷ1 X1

]′ [
Ŷ1 X1

]

= Ẑ ′ẐTherefore, the se
ond and last term in the varian
e formula 
an
el, so the 2SLS var
ovestimator simpli�es to
V̂ (δ̂) =

(
Z ′Ẑ

)−1
σ̂2
IVwhi
h, following some algebra similar to the above, 
an also be written as

V̂ (δ̂) =
(
Ẑ ′Ẑ

)−1
σ̂2
IVFinally, re
all that though this is presented in terms of the �rst equation, it is general sin
eany equation 
an be pla
ed �rst.Properties of 2SLS:(1) Consistent(2) Asymptoti
ally normal(3) Biased when the mean esists (the existen
e of moments is a te
hni
al issue wewon't go into here).(4) Asymptoti
ally ine�
ient, ex
ept in spe
ial 
ir
umstan
es (more on this later).7. Testing the overidentifying restri
tionsThe sele
tion of whi
h variables are endogs and whi
h are exogs is part of the spe
i�-
ation of the model. As su
h, there is room for error here: one might erroneously 
lassifya variable as exog when it is in fa
t 
orrelated with the error term. A general test for thespe
i�
ation on the model 
an be formulated as follows:
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an be 
al
ulated by applying OLS to the transformed model, so theIV obje
tive fun
tion at the minimized value is
s(β̂IV ) =

(
y −Xβ̂IV

)′
PW

(
y −Xβ̂IV

)
,but

ε̂IV = y −Xβ̂IV

= y −X(X ′PWX)−1X ′PW y

=
(
I −X(X ′PWX)−1X ′PW

)
y

=
(
I −X(X ′PWX)−1X ′PW

)
(Xβ + ε)

= A (Xβ + ε)where
A ≡ I −X(X ′PWX)−1X ′PWso

s(β̂IV ) =
(
ε′ + β′X ′)A′PWA (Xβ + ε)Moreover, A′PWA is idempotent, as 
an be veri�ed by multipli
ation:

A′PWA =
(
I − PWX(X ′PWX)−1X ′)PW

(
I −X(X ′PWX)−1X ′PW

)

=
(
PW − PWX(X ′PWX)−1X ′PW

) (
PW − PWX(X ′PWX)−1X ′PW

)

=
(
I − PWX(X ′PWX)−1X ′)PW .Furthermore, A is orthogonal to X

AX =
(
I −X(X ′PWX)−1X ′PW

)
X

= X −X

= 0so
s(β̂IV ) = ε′A′PWAεSupposing the ε are normally distributed, with varian
e σ2, then the random variable
s(β̂IV )

σ2
=
ε′A′PWAε

σ2is a quadrati
 form of a N(0, 1) random variable with an idempotent matrix in the middle,so
s(β̂IV )

σ2
∼ χ2(ρ(A′PWA))This isn't available, sin
e we need to estimate σ2. Substituting a 
onsistent estimator,

s(β̂IV )

σ̂2

a∼ χ2(ρ(A′PWA))

• Even if the ε aren't normally distributed, the asymptoti
 result still holds. Thelast thing we need to determine is the rank of the idempotent matrix. We have
A′PWA =

(
PW − PWX(X ′PWX)−1X ′PW

)



7. TESTING THE OVERIDENTIFYING RESTRICTIONS 133so
ρ(A′PWA) = Tr

(
PW − PWX(X ′PWX)−1X ′PW

)

= TrPW − TrX ′PWPWX(X ′PWX)−1

= TrW (W ′W )−1W ′ −KX

= TrW ′W (W ′W )−1 −KX

= KW −KXwhere KW is the number of 
olumns of W and KX is the number of 
olumnsof X. The degrees of freedom of the test is simply the number of overidentifyingrestri
tions: the number of instruments we have beyond the number that is stri
tlyne
essary for 
onsistent estimation.
• This test is an overall spe
i�
ation test: the joint null hypothesis is that themodel is 
orre
tly spe
i�ed and that the W form valid instruments (e.g., that thevariables 
lassi�ed as exogs really are un
orrelated with ε. Reje
tion 
an meanthat either the model y = Zδ + ε is misspe
i�ed, or that there is 
orrelationbetween X and ε.
• This is a parti
ular 
ase of the GMM 
riterion test, whi
h is 
overed in the se
ondhalf of the 
ourse. See Se
tion 8.
• Note that sin
e

ε̂IV = Aεand
s(β̂IV ) = ε′A′PWAεwe 
an write

s(β̂IV )

σ̂2
=

(
ε̂′W (W ′W )−1W ′) (W (W ′W )−1W ′ε̂

)

ε̂′ε̂/n

= n(RSSε̂IV |W /TSSε̂IV
)

= nR2
uwhere R2

u is the un
entered R2 from a regression of the IV residuals on all of theinstruments W . This is a 
onvenient way to 
al
ulate the test statisti
.
On an aside, 
onsider IV estimation of a just-identi�ed model, using the standard notation

y = Xβ + εand W is the matrix of instruments. If we have exa
t identi�
ation then cols(W ) =

cols(X), so W ′

X is a square matrix. The transformed model is
PW y = PWXβ + PW εand the fon
 are
X ′PW (y −Xβ̂IV ) = 0The IV estimator is

β̂IV =
(
X ′PWX

)−1
X ′PW y
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(
X ′PWX

)−1
=

(
X ′W (W ′W )−1W ′X

)−1

= (W ′X)−1
(
X ′W (W ′W )−1

)−1

= (W ′X)−1(W ′W )
(
X ′W

)−1Now multiplying this by X ′PW y, we obtain
β̂IV = (W ′X)−1(W ′W )

(
X ′W

)−1
X ′PW y

= (W ′X)−1(W ′W )
(
X ′W

)−1
X ′W (W ′W )−1W ′y

= (W ′X)−1W ′yThe obje
tive fun
tion for the generalized IV estimator is
s(β̂IV ) =

(
y −Xβ̂IV

)′
PW

(
y −Xβ̂IV

)

= y′PW
(
y −Xβ̂IV

)
− β̂′IVX

′PW
(
y −Xβ̂IV

)

= y′PW
(
y −Xβ̂IV

)
− β̂′IVX

′PW y + β̂′IVX
′PWXβ̂IV

= y′PW
(
y −Xβ̂IV

)
− β̂′IV

(
X ′PW y +X ′PWXβ̂IV

)

= y′PW
(
y −Xβ̂IV

)by the fon
 for generalized IV. However, when we're in the just indenti�ed 
ase, this is
s(β̂IV ) = y′PW

(
y −X(W ′X)−1W ′y

)

= y′PW
(
I −X(W ′X)−1W ′) y

= y′
(
W (W ′W )−1W ′ −W (W ′W )−1W ′X(W ′X)−1W ′) y

= 0The value of the obje
tive fun
tion of the IV estimator is zero in the just identi�ed 
ase.This makes sense, sin
e we've already shown that the obje
tive fun
tion after dividing by
σ2 is asymptoti
ally χ2 with degrees of freedom equal to the number of overidentifyingrestri
tions. In the present 
ase, there are no overidentifying restri
tions, so we have a
χ2(0) rv, whi
h has mean 0 and varian
e 0, e.g., it's simply 0. This means we're not ableto test the identifying restri
tions in the 
ase of exa
t identi�
ation.

8. System methods of estimation2SLS is a single equation method of estimation, as noted above. The advantage of asingle equation method is that it's una�e
ted by the other equations of the system, so theydon't need to be spe
i�ed (ex
ept for de�ning what are the exogs, so 2SLS 
an use the
omplete set of instruments). The disadvantage of 2SLS is that it's ine�
ient, in general.
• Re
all that overidenti�
ation improves e�
ien
y of estimation, sin
e an overi-denti�ed equation 
an use more instruments than are ne
essary for 
onsistentestimation.
• Se
ondly, the assumption is that
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Y Γ = XB + E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)

• Sin
e there is no auto
orrelation of the Et 's, and sin
e the 
olumns of E areindividually homos
edasti
, then
Ψ =




σ11In σ12In · · · σ1GIn

σ22In
.... . . ...

· σGGIn




= Σ ⊗ InThis means that the stru
tural equations are heteros
edasti
 and 
orrelated withone another
• In general, ignoring this will lead to ine�
ient estimation, following the se
tion onGLS. When equations are 
orrelated with one another estimation should a

ountfor the 
orrelation in order to obtain e�
ien
y.
• Also, sin
e the equations are 
orrelated, information about one equation is im-pli
itly information about all equations. Therefore, overidenti�
ation restri
tionsin any equation improve e�
ien
y for all equations, even the just identi�ed equa-tions.
• Single equation methods 
an't use these types of information, and are thereforeine�
ient (in general).8.1. 3SLS. Note: It is easier and more pra
ti
al to treat the 3SLS estimator as ageneralized method of moments estimator (see Chapter 15). I no longer tea
h the followingse
tion, but it is retained for its possible histori
al interest. Another alternative is to useFIML (Subse
tion 8.2), if you are willing to make distributional assumptions on the errors.This is 
omputationally feasible with modern 
omputers.Following our above notation, ea
h stru
tural equation 
an be written as

yi = Yiγ1 +Xiβ1 + εi

= Ziδi + εiGrouping the G equations together we get



y1

y2...
yG




=




Z1 0 · · · 0

0 Z2
...... . . . 0

0 · · · 0 ZG







δ1

δ2...
δG




+




ε1

ε2...
εG


or

y = Zδ + εwhere we already have that
E(εε′) = Ψ

= Σ ⊗ In



8. SYSTEM METHODS OF ESTIMATION 136The 3SLS estimator is just 2SLS 
ombined with a GLS 
orre
tion that takes advantage ofthe stru
ture of Ψ. De�ne Ẑ as
Ẑ =




X(X ′X)−1X ′Z1 0 · · · 0

0 X(X ′X)−1X ′Z2
...... . . . 0

0 · · · 0 X(X ′X)−1X ′ZG




=




Ŷ1 X1 0 · · · 0

0 Ŷ2 X2
...... . . . 0

0 · · · 0 ŶG XG


These instruments are simply the unrestri
ted rf predi
itions of the endogs, 
ombinedwith the exogs. The distin
tion is that if the model is overidenti�ed, then

Π = BΓ−1may be subje
t to some zero restri
tions, depending on the restri
tions on Γ and B, and
Π̂ does not impose these restri
tions. Also, note that Π̂ is 
al
ulated using OLS equationby equation. More on this later.The 2SLS estimator would be

δ̂ = (Ẑ ′Z)−1Ẑ ′yas 
an be veri�ed by simple multipli
ation, and noting that the inverse of a blo
k-diagonalmatrix is just the matrix with the inverses of the blo
ks on the main diagonal. This IVestimator still ignores the 
ovarian
e information. The natural extension is to add the GLStransformation, putting the inverse of the error 
ovarian
e into the formula, whi
h givesthe 3SLS estimator
δ̂3SLS =

(
Ẑ ′ (Σ ⊗ In)

−1 Z
)−1

Ẑ ′ (Σ ⊗ In)
−1 y

=
(
Ẑ ′ (Σ−1 ⊗ In

)
Z
)−1

Ẑ ′ (Σ−1 ⊗ In
)
yThis estimator requires knowledge of Σ. The solution is to de�ne a feasible estimator usinga 
onsistent estimator of Σ. The obvious solution is to use an estimator based on the 2SLSresiduals:

ε̂i = yi − Ziδ̂i,2SLS(IMPORTANT NOTE: this is 
al
ulated using Zi, not Ẑi). Then the element i, j of Σis estimated by
σ̂ij =

ε̂′iε̂j
nSubstitute Σ̂ into the formula above to get the feasible 3SLS estimator.Analogously to what we did in the 
ase of 2SLS, the asymptoti
 distribution of the3SLS estimator 
an be shown to be

√
n
(
δ̂3SLS − δ

)
a∼ N


0, lim

n→∞
E





(
Ẑ ′ (Σ ⊗ In)

−1 Ẑ

n

)−1









8. SYSTEM METHODS OF ESTIMATION 137A formula for estimating the varian
e of the 3SLS estimator in �nite samples (
an
ellingout the powers of n) is
V̂
(
δ̂3SLS

)
=
(
Ẑ ′
(
Σ̂−1 ⊗ In

)
Ẑ
)−1

• This is analogous to the 2SLS formula in equation (??), 
ombined with the GLS
orre
tion.
• In the 
ase that all equations are just identi�ed, 3SLS is numeri
ally equivalent to2SLS. Proving this is easiest if we use a GMM interpretation of 2SLS and 3SLS.GMM is presented in the next e
onometri
s 
ourse. For now, take it on faith.The 3SLS estimator is based upon the rf parameter estimator Π̂, 
al
ulated equation byequation using OLS:

Π̂ = (X ′X)−1X ′Ywhi
h is simply
Π̂ = (X ′X)−1X ′

[
y1 y2 · · · yG

]that is, OLS equation by equation using all the exogs in the estimation of ea
h 
olumn of
Π. It may seem odd that we use OLS on the redu
ed form, sin
e the rf equations are
orrelated:

Y ′
t = X ′

tBΓ−1 + E′
tΓ

−1

= X ′
tΠ + V ′

tand
Vt =

(
Γ−1

)′
Et ∼ N

(
0,
(
Γ−1

)′
ΣΓ−1

)
,∀tLet this var-
ov matrix be indi
ated by

Ξ =
(
Γ−1

)′
ΣΓ−1OLS equation by equation to get the rf is equivalent to




y1

y2...
yG




=




X 0 · · · 0

0 X
...... . . . 0

0 · · · 0 X







π1

π2...
πG




+




v1

v2...
vG


where yi is the n× 1 ve
tor of observations of the ith endog, X is the entire n×K matrixof exogs, πi is the ith 
olumn of Π, and vi is the ith 
olumn of V. Use the notation

y = Xπ + vto indi
ate the pooled model. Following this notation, the error 
ovarian
e matrix is
V (v) = Ξ ⊗ In

• This is a spe
ial 
ase of a type of model known as a set of seemingly unrelatedequations (SUR) sin
e the parameter ve
tor of ea
h equation is di�erent. Theequations are 
ontemporanously 
orrelated, however. The general 
ase wouldhave a di�erent Xi for ea
h equation.
• Note that ea
h equation of the system individually satis�es the 
lassi
al assump-tions.
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• However, pooled estimation using the GLS 
orre
tion is more e�
ient, sin
eequation-by-equation estimation is equivalent to pooled estimation, sin
e X isblo
k diagonal, but ignoring the 
ovarian
e information.
• The model is estimated by GLS, where Ξ is estimated using the OLS residualsfrom equation-by-equation estimation, whi
h are 
onsistent.
• In the spe
ial 
ase that all the Xi are the same, whi
h is true in the present 
aseof estimation of the rf parameters, SUR ≡OLS. To show this note that in this
ase X = In ⊗X. Using the rules(1) (A⊗B)−1 = (A−1 ⊗B−1)(2) (A⊗B)′ = (A′ ⊗B′) and(3) (A⊗B)(C ⊗D) = (AC ⊗BD), we get

π̂SUR =
(
(In ⊗X)′ (Ξ ⊗ In)

−1 (In ⊗X)
)−1

(In ⊗X)′ (Ξ ⊗ In)
−1 y

=
((

Ξ−1 ⊗X ′) (In ⊗X)
)−1 (

Ξ−1 ⊗X ′) y
=

(
Ξ ⊗ (X ′X)−1

) (
Ξ−1 ⊗X ′) y

=
[
IG ⊗ (X ′X)−1X ′] y

=




π̂1

π̂2...̂
πG




• So the unrestri
ted rf 
oe�
ients 
an be estimated e�
iently (assuming normality)by OLS, even if the equations are 
orrelated.
• We have ignored any potential zeros in the matrix Π, whi
h if they exist 
ouldpotentially in
rease the e�
ien
y of estimation of the rf.
• Another example where SUR≡OLS is in estimation of ve
tor autoregressions. Seetwo se
tions ahead.8.2. FIML. Full information maximum likelihood is an alternative estimation method.FIML will be asymptoti
ally e�
ient, sin
e ML estimators based on a given informationset are asymptoti
ally e�
ient w.r.t. all other estimators that use the same informationset, and in the 
ase of the full-information ML estimator we use the entire information set.The 2SLS and 3SLS estimators don't require distributional assumptions, while FIML of
ourse does. Our model is, re
all

Y ′
t Γ = X ′

tB + E′
t

Et ∼ N(0,Σ),∀t
E(EtE

′
s) = 0, t 6= sThe joint normality of Et means that the density for Et is the multivariate normal, whi
his

(2π)−g/2
(
detΣ−1

)−1/2
exp

(
−1

2
E′
tΣ

−1Et

)The transformation from Et to Yt requires the Ja
obian
|det

dEt
dY ′

t

| = |det Γ|



9. EXAMPLE: 2SLS AND KLEIN'S MODEL 1 139so the density for Yt is
(2π)−G/2|det Γ|

(
detΣ−1

)−1/2
exp

(
−1

2

(
Y ′
t Γ −X ′

tB
)
Σ−1

(
Y ′
t Γ −X ′

tB
)′
)Given the assumption of independen
e over time, the joint log-likelihood fun
tion is

lnL(B,Γ,Σ) = −nG
2

ln(2π)+n ln(|det Γ|)−n
2

ln detΣ−1−1

2

n∑

t=1

(
Y ′
t Γ −X ′

tB
)
Σ−1

(
Y ′
t Γ −X ′

tB
)′

• This is a nonlinear in the parameters obje
tive fun
tion. Maximixation of this
an be done using iterative numeri
 methods. We'll see how to do this in the nextse
tion.
• It turns out that the asymptoti
 distribution of 3SLS and FIML are the same,assuming normality of the errors.
• One 
an 
al
ulate the FIML estimator by iterating the 3SLS estimator, thusavoiding the use of a nonlinear optimizer. The steps are(1) Cal
ulate Γ̂3SLS and B̂3SLS as normal.(2) Cal
ulate Π̂ = B̂3SLSΓ̂−1

3SLS. This is new, we didn't estimate Π in this waybefore. This estimator may have some zeros in it. When Greene says iterated3SLS doesn't lead to FIML, he means this for a pro
edure that doesn't update
Π̂, but only updates Σ̂ and B̂ and Γ̂. If you update Π̂ you do 
onverge toFIML.(3) Cal
ulate the instruments Ŷ = XΠ̂ and 
al
ulate Σ̂ using Γ̂ and B̂ to getthe estimated errors, applying the usual estimator.(4) Apply 3SLS using these new instruments and the estimate of Σ.(5) Repeat steps 2-4 until there is no 
hange in the parameters.

• FIML is fully e�
ient, sin
e it's an ML estimator that uses all information. Thisimplies that 3SLS is fully e�
ient when the errors are normally distributed. Also,if ea
h equation is just identi�ed and the errors are normal, then 2SLS will befully e�
ient, sin
e in this 
ase 2SLS≡3SLS.
• When the errors aren't normally distributed, the likelihood fun
tion is of 
oursedi�erent than what's written above.9. Example: 2SLS and Klein's Model 1The O
tave program Simeq/Klein.m performs 2SLS estimation for the 3 equations ofKlein's model 1, assuming nonauto
orrelated errors, so that lagged endogenous variables
an be used as instruments. The results are:CONSUMPTION EQUATION*******************************************************2SLS estimation resultsObservations 21R-squared 0.976711Sigma-squared 1.044059estimate st.err. t-stat. p-valueConstant 16.555 1.321 12.534 0.000Profits 0.017 0.118 0.147 0.885

http://pareto.uab.es/mcreel/Econometrics/Examples/Simeq/Klein.m


9. EXAMPLE: 2SLS AND KLEIN'S MODEL 1 140Lagged Profits 0.216 0.107 2.016 0.060Wages 0.810 0.040 20.129 0.000*******************************************************INVESTMENT EQUATION*******************************************************2SLS estimation resultsObservations 21R-squared 0.884884Sigma-squared 1.383184estimate st.err. t-stat. p-valueConstant 20.278 7.543 2.688 0.016Profits 0.150 0.173 0.867 0.398Lagged Profits 0.616 0.163 3.784 0.001Lagged Capital -0.158 0.036 -4.368 0.000*******************************************************WAGES EQUATION*******************************************************2SLS estimation resultsObservations 21R-squared 0.987414Sigma-squared 0.476427estimate st.err. t-stat. p-valueConstant 1.500 1.148 1.307 0.209Output 0.439 0.036 12.316 0.000Lagged Output 0.147 0.039 3.777 0.002Trend 0.130 0.029 4.475 0.000*******************************************************The above results are not valid (spe
i�
ally, they are in
onsistent) if the errors areauto
orrelated, sin
e lagged endogenous variables will not be valid instruments in that
ase. You might 
onsider eliminating the lagged endogenous variables as instruments, andre-estimating by 2SLS, to obtain 
onsistent parameter estimates in this more 
omplex
ase. Standard errors will still be estimated in
onsistently, unless use a Newey-West type
ovarian
e estimator. Food for thought...



CHAPTER 12Introdu
tion to the se
ond halfWe'll begin with study of extremum estimators in general. Let Zn be the availabledata, based on a sample of size n.Definition 0.1. [Extremum estimator℄ An extremum estimator θ̂ is the optimizingelement of an obje
tive fun
tion sn(Zn, θ) over a set Θ.We'll usually write the obje
tive fun
tion suppressing the dependen
e on Zn.Example: Least squares, linear modelLet the d.g.p. be yt = x′
tθ

0 +εt, t = 1, 2, ..., n, θ0 ∈ Θ. Sta
king observations verti
ally,
yn = Xnθ

0+εn, where Xn =
(
x1 x2 · · · xn

)′
. The least squares estimator is de�nedas

θ̂ ≡ arg min
Θ
sn(θ) = (1/n) [yn − Xnθ]

′ [yn − Xnθ]We readily �nd that θ̂ = (X′X)−1X′y.Example: Maximum likelihoodSuppose that the 
ontinuous random variable yt ∼ IIN(θ0, 1). The maximum likeli-hood estimator is de�ned as
θ̂ ≡ arg max

Θ
Ln(θ) =

n∏

t=1

(2π)−1/2 exp

(
−(yt − θ)2

2

)Be
ause the logarithmi
 fun
tion is stri
tly in
reasing on (0,∞), maximization of theaverage logarithm of the likelihood fun
tion is a
hieved at the same θ̂ as for the likelihoodfun
tion:
θ̂ ≡ arg max

Θ
sn(θ) = (1/n) lnLn(θ) = −1/2 ln 2π − (1/n)

n∑

t=1

(yt − θ)2

2Solution of the f.o.
. leads to the familiar result that θ̂ = ȳ.

• MLE estimators are asymptoti
ally e�
ient (Cramér-Rao lower bound, Theo-rem3), supposing the strong distributional assumptions upon whi
h they are basedare true.
• One 
an investigate the properties of an �ML� estimator supposing that the distri-butional assumptions are in
orre
t. This gives a quasi-ML estimator, whi
h we'llstudy later.
• The strong distributional assumptions of MLE may be questionable in many 
ases.It is possible to estimate using weaker distributional assumptions based only onsome of the moments of a random variable(s).Example: Method of momentsSuppose we draw a random sample of yt from the χ2(θ0) distribution. Here, θ0 is theparameter of interest. The �rst moment (expe
tation), µ1, of a random variable will ingeneral be a fun
tion of the parameters of the distribution, i.e., µ1(θ

0) .
• µ1 = µ1(θ

0) is a moment-parameter equation.141
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• In this example, the relationship is the identity fun
tion µ1(θ

0) = θ0, though ingeneral the relationship may be more 
ompli
ated. The sample �rst moment is
µ̂1 =

n∑

t=1

yt/n.

• De�ne
m1(θ) = µ1(θ) − µ̂1

• The method of moments prin
iple is to 
hoose the estimator of the parameterto set the estimate of the population moment equal to the sample moment, i.e.,
m1(θ̂) ≡ 0. Then the moment-parameter equation is inverted to solve for theparameter estimate.In this 
ase,

m1(θ̂) = θ̂ −
n∑

t=1

yt/n = 0.Sin
e ∑n
t=1 yt/n

p→ θ0 by the LLN, the estimator is 
onsistent.More on the method of momentsContinuing with the above example, the varian
e of a χ2(θ0) r.v. is
V (yt) = E

(
yt − θ0

)2
= 2θ0.

• De�ne
m2(θ) = 2θ −

∑n
t=1 (yt − ȳ)2

n
• The MM estimator would set

m2(θ̂) = 2θ̂ −
∑n

t=1 (yt − ȳ)2

n
≡ 0.Again, by the LLN, the sample varian
e is 
onsistent for the true varian
e, thatis, ∑n

t=1 (yt − ȳ)2

n

p→ 2θ0.So,
θ̂ =

∑n
t=1 (yt − ȳ)2

2n
,whi
h is obtained by inverting the moment-parameter equation, is 
onsistent.Example: Generalized method of moments (GMM)The previous two examples give two estimators of θ0 whi
h are both 
onsistent. Witha given sample, the estimators will be di�erent in general.

• With two moment-parameter equations and only one parameter, we have overi-denti�
ation, whi
h means that we have more information than is stri
tly ne
es-sary for 
onsistent estimation of the parameter.
• The GMM 
ombines information from the two moment-parameter equations toform a new estimator whi
h will be more e�
ient, in general (proof of this below).



12. INTRODUCTION TO THE SECOND HALF 143From the �rst example, de�ne m1t(θ) = θ − yt. We already have that m1(θ) is the sampleaverage of m1t(θ), i.e.,
m1(θ) = 1/n

n∑

t=1

m1t(θ)

= θ −
n∑

t=1

yt/n.Clearly, when evaluated at the true parameter value θ0, bothE [m1t(θ
0)
]

= 0 and E [m1(θ
0)
]

=

0. From the se
ond example we de�ne additional moment 
onditions
m2t(θ) = 2θ − (yt − ȳ)2and

m2(θ) = 2θ −
∑n

t=1 (yt − ȳ)2

n
.Again, it is 
lear from the LLN that m2(θ

0)
a.s.→ 0. The MM estimator would 
hose θ̂ to seteither m1(θ̂) = 0 or m2(θ̂) = 0. In general, no single value of θ will solve the two equationssimultaneously.

• The GMM estimator is based on de�ning a measure of distan
e d(m(θ)), where
m(θ) = (m1(θ),m2(θ))

′ , and 
hoosing
θ̂ = arg min

Θ
sn(θ) = d (m(θ)) .An example would be to 
hoose d(m) = m′Am, where A is a positive de�nite matrix.While it's 
lear that the MM gives 
onsistent estimates if there is a one-to-one relationshipbetween parameters and moments, it's not immediately obvious that the GMM estimatoris 
onsistent. (We'll see later that it is.)These examples show that these widely used estimators may all be interpreted as thesolution of an optimization problem. For this reason, the study of extremum estimators isuseful for its generality. We will see that the general results extend smoothly to the morespe
ialized results available for spe
i�
 estimators. After studying extremum estimatorsin general, we will study the GMM estimator, then QML and NLS. The reason we studyGMM �rst is that LS, IV, NLS, MLE, QML and other well-known parametri
 estimatorsmay all be interpreted as spe
ial 
ases of the GMM estimator, so the general results onGMM 
an simplify and unify the treatment of these other estimators. Nevertheless, thereare some spe
ial results on QML and NLS, and both are important in empiri
al resear
h,whi
h makes fo
us on them useful.One of the fo
al points of the 
ourse will be nonlinear models. This is not to suggestthat linear models aren't useful. Linear models are more general than they might �rstappear, sin
e one 
an employ nonlinear transformations of the variables:

ϕ0(yt) =
[
ϕ1(xt) ϕ2(xt) · · · ϕp(xt)

]
θ0 + εtFor example,

ln yt = α+ βx1t + γx2
1t + δx1tx2t + εt�ts this form.

• The important point is that the model is linear in the parameters but not ne
es-sarily linear in the variables.



12. INTRODUCTION TO THE SECOND HALF 144In spite of this generality, situations often arise whi
h simply 
an not be 
onvin
inglyrepresented by linear in the parameters models. Also, theory that applies to nonlinearmodels also applies to linear models, so one may as well start o� with the general 
ase.Example: Expenditure sharesRoy's Identity states that the quantity demanded of the ith of G goods is
xi =

−∂v(p, y)/∂pi
∂v(p, y)/∂y

.An expenditure share is
si ≡ pixi/y,so ne
essarily si ∈ [0, 1], and ∑G

i=1 si = 1. No linear in the parameters model for xi or siwith a parameter spa
e that is de�ned independent of the data 
an guarantee that either ofthese 
onditions holds. These 
onstraints will often be violated by estimated linear models,whi
h 
alls into question their appropriateness in 
ases of this sort.Example: Binary limited dependent variableThe referendum 
ontingent valuation (CV) method of infering the so
ial value of aproje
t provides a simple example. This example is a spe
ial 
ase of more general dis
rete
hoi
e (or binary response) models. Individuals are asked if they would pay an amount Afor provision of a proje
t. Indire
t utility in the base 
ase (no proje
t) is v0(m, z)+ε0, where
m is in
ome and z is a ve
tor of other variables su
h as pri
es, personal 
hara
teristi
s, et
.After provision, utility is v1(m, z) + ε1. The random terms εi, i = 1, 2, re�e
t variations ofpreferen
es in the population. With this, an individual agrees1 to pay A if

ε0 − ε1︸ ︷︷ ︸
ε

<
v1(m−A, z) − v0(m, z)︸ ︷︷ ︸

∆v(w, A)De�ne ε = ε0 − ε1, let w 
olle
t m and z, and let ∆v(w, A) = v1(m − A, z) − v0(m, z).De�ne y = 1 if the 
onsumer agrees to pay A for the 
hange, y = 0 otherwise. Theprobability of agreement is(30) Pr(y = 1) = Fε [∆v(w, A)] .To simplify notation, de�ne p(w, A) ≡ Fε [∆v(w, A)] . To make the example spe
i�
, sup-pose that
v1(m, z) = α− βm

v0(m, z) = −βmand ε0 and ε1 are i.i.d. extreme value random variables. That is, utility depends only onin
ome, preferen
es in both states are homotheti
, and a spe
i�
 distributional assumptionis made on the distribution of preferen
es in the population. With these assumptions (thedetails are unimportant here, see arti
les by D. M
Fadden if you're interested) it 
an beshown that
p(A, θ) = Λ (α+ βA) ,where Λ(z) is the logisti
 distribution fun
tion
Λ(z) = (1 + exp(−z))−1 .1We assume here that responses are truthful, that is there is no strategi
 behavior and that individualsare able to order their preferen
es in this hypotheti
al situation.



12. INTRODUCTION TO THE SECOND HALF 145This is the simple logit model: the 
hoi
e probability is the logit fun
tion of a linear inparameters fun
tion.Now, y is either 0 or 1, and the expe
ted value of y is Λ (α+ βA) . Thus, we 
an write
y = Λ(α+ βA) + η

E(η) = 0.One 
ould estimate this by (nonlinear) least squares
(
α̂,β̂
)

= arg min
1

n

∑

t

(y − Λ (α+ βA))2The main point is that it is impossible that Λ (α+ βA) 
an be written as a linear in theparameters model, in the sense that, for arbitrary A, there are no θ, ϕ(A) su
h that
Λ (α+ βA) = ϕ(A)′θ,∀Awhere ϕ(A) is a p-ve
tor valued fun
tion of A and θ is a p dimensional parameter. Thisis be
ause for any θ, we 
an always �nd a A su
h that ϕ(A)′θ will be negative or greaterthan 1, whi
h is illogi
al, sin
e it is the expe
tation of a 0/1 binary random variable. Sin
ethis sort of problem o

urs often in empiri
al work, it is useful to study NLS and othernonlinear models.After dis
ussing these estimation methods for parametri
 models we'll brie�y introdu
enonparametri
 estimation methods. These methods allow one, for example, to estimate

f(xt) 
onsistently when we are not willing to assume that a model of the form
yt = f(xt) + εt
an be restri
ted to a parametri
 form
yt = f(xt, θ) + εt

Pr(εt < z) = Fε(z|φ, xt)
θ ∈ Θ, φ ∈ Φwhere f(·) and perhaps Fε(z|φ, xt) are of known fun
tional form. This is important sin
ee
onomi
 theory gives us general information about fun
tions and the signs of their deriva-tives, but not about their spe
i�
 form.Then we'll look at simulation-based methods in e
onometri
s. These methods allowus to substitute 
omputer power for mental power. Sin
e 
omputer power is be
omingrelatively 
heap 
ompared to mental e�ort, any e
onometri
ian who lives by the prin
iplesof e
onomi
 theory should be interested in these te
hniques.Finally, we'll look at how e
onometri
 
omputations 
an be done in parallel on a
luster of 
omputers. This allows us to harness more 
omputational power to work withmore 
omplex models that 
an be dealt with using a desktop 
omputer.



CHAPTER 13Numeri
 optimization methodsReadings: Hamilton, 
h. 5, se
tion 7 (pp. 133-139)∗; Gourieroux and Monfort, Vol.1, 
h. 13, pp. 443-60∗; Go�e, et. al. (1994).If we're going to be applying extremum estimators, we'll need to know how to �ndan extremum. This se
tion gives a very brief introdu
tion to what is a large literatureon numeri
 optimization methods. We'll 
onsider a few well-known te
hniques, and onefairly new te
hnique that may allow one to solve di�
ult problems. The main obje
tiveis to be
ome familiar with the issues, and to learn how to use the BFGS algorithm at thepra
ti
al level.The general problem we 
onsider is how to �nd the maximizing element θ̂ (a K -ve
tor)of a fun
tion s(θ). This fun
tion may not be 
ontinuous, and it may not be di�erentiable.Even if it is twi
e 
ontinuously di�erentiable, it may not be globally 
on
ave, so lo
almaxima, minima and saddlepoints may all exist. Supposing s(θ) were a quadrati
 fun
tionof θ, e.g.,
s(θ) = a+ b′θ +

1

2
θ′Cθ,the �rst order 
onditions would be linear:

Dθs(θ) = b+ Cθso the maximizing (minimizing) element would be θ̂ = −C−1b. This is the sort of problemwe have with linear models estimated by OLS. It's also the 
ase for feasible GLS, sin
e
onditional on the estimate of the var
ov matrix, we have a quadrati
 obje
tive fun
tionin the remaining parameters.More general problems will not have linear f.o.
., and we will not be able to solve forthe maximizer analyti
ally. This is when we need a numeri
 optimization method.
1. Sear
hThe idea is to 
reate a grid over the parameter spa
e and evaluate the fun
tion at ea
hpoint on the grid. Sele
t the best point. Then re�ne the grid in the neighborhood of thebest point, and 
ontinue until the a

ura
y is �good enough�. See Figure 1. One has tobe 
areful that the grid is �ne enough in relationship to the irregularity of the fun
tion toensure that sharp peaks are not missed entirely.To 
he
k q values in ea
h dimension of a K dimensional parameter spa
e, we need to
he
k qK points. For example, if q = 100 and K = 10, there would be 10010 points to
he
k. If 1000 points 
an be 
he
ked in a se
ond, it would take 3. 171×109 years to performthe 
al
ulations, whi
h is approximately the age of the earth. The sear
h method is a veryreasonable 
hoi
e if K is small, but it qui
kly be
omes infeasible if K is moderate or large.146
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h method

2. Derivative-based methods2.1. Introdu
tion. Derivative-based methods are de�ned by(1) the method for 
hoosing the initial value, θ1(2) the iteration method for 
hoosing θk+1 given θk (based upon derivatives)(3) the stopping 
riterion.The iteration method 
an be broken into two problems: 
hoosing the stepsize ak (a s
alar)and 
hoosing the dire
tion of movement, dk, whi
h is of the same dimension of θ, so that
θ(k+1) = θ(k) + akdk.A lo
ally in
reasing dire
tion of sear
h d is a dire
tion su
h that
∃a :

∂s(θ + ad)

∂a
> 0for a positive but small. That is, if we go in dire
tion d, we will improve on the obje
tivefun
tion, at least if we don't go too far in that dire
tion.

• As long as the gradient at θ is not zero there exist in
reasing dire
tions, andthey 
an all be represented as Qkg(θk) where Qk is a symmetri
 pd matrix and
g (θ) = Dθs(θ) is the gradient at θ. To see this, take a T.S. expansion around
a0 = 0

s(θ + ad) = s(θ + 0d) + (a− 0) g(θ + 0d)′d+ o(1)

= s(θ) + ag(θ)′d+ o(1)
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reasing dire
tions of sear
h

For small enough a the o(1) term 
an be ignored. If d is to be an in
reasingdire
tion, we need g(θ)′d > 0. De�ning d = Qg(θ), where Q is positive de�nite,we guarantee that
g(θ)′d = g(θ)′Qg(θ) > 0unless g(θ) = 0. Every in
reasing dire
tion 
an be represented in this way (p.d.matri
es are those su
h that the angle between g and Qg(θ) is less that 90 degrees).See Figure 2.

• With this, the iteration rule be
omes
θ(k+1) = θ(k) + akQkg(θk)and we keep going until the gradient be
omes zero, so that there is no in
reasing dire
tion.The problem is how to 
hoose a and Q.

• Conditional on Q, 
hoosing a is fairly straightforward. A simple line sear
h isan attra
tive possibility, sin
e a is a s
alar.
• The remaining problem is how to 
hoose Q.
• Note also that this gives no guarantees to �nd a global maximum.2.2. Steepest des
ent. Steepest des
ent (as
ent if we're maximizing) just sets Q toand identity matrix, sin
e the gradient provides the dire
tion of maximum rate of 
hangeof the obje
tive fun
tion.
• Advantages: fast - doesn't require anything more than �rst derivatives.
• Disadvantages: This doesn't always work too well however (draw pi
ture of ba-nana fun
tion).



2. DERIVATIVE-BASED METHODS 149Figure 3. Newton-Raphson method

2.3. Newton-Raphson. The Newton-Raphson method uses information about theslope and 
urvature of the obje
tive fun
tion to determine whi
h dire
tion and how far tomove from an initial point. Supposing we're trying to maximize sn(θ). Take a se
ond orderTaylor's series approximation of sn(θ) about θk (an initial guess).
sn(θ) ≈ sn(θ

k) + g(θk)′
(
θ − θk

)
+ 1/2

(
θ − θk

)′
H(θk)

(
θ − θk

)To attempt to maximize sn(θ), we 
an maximize the portion of the right-hand side thatdepends on θ, i.e., we 
an maximize
s̃(θ) = g(θk)′θ + 1/2

(
θ − θk

)′
H(θk)

(
θ − θk

)with respe
t to θ. This is a mu
h easier problem, sin
e it is a quadrati
 fun
tion in θ, so ithas linear �rst order 
onditions. These are
Dθ s̃(θ) = g(θk) +H(θk)

(
θ − θk

)So the solution for the next round estimate is
θk+1 = θk −H(θk)−1g(θk)This is illustrated in Figure 3.However, it's good to in
lude a stepsize, sin
e the approximation to sn(θ) may be badfar away from the maximizer θ̂, so the a
tual iteration formula is
θk+1 = θk − akH(θk)−1g(θk)

• A potential problem is that the Hessian may not be negative de�nite when we'refar from the maximizing point. So −H(θk)−1 may not be positive de�nite, and
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−H(θk)−1g(θk) may not de�ne an in
reasing dire
tion of sear
h. This 
an happenwhen the obje
tive fun
tion has �at regions, in whi
h 
ase the Hessian matrix isvery ill-
onditioned (e.g., is nearly singular), or when we're in the vi
inity of a lo
alminimum, H(θk) is positive de�nite, and our dire
tion is a de
reasing dire
tionof sear
h. Matrix inverses by 
omputers are subje
t to large errors when thematrix is ill-
onditioned. Also, we 
ertainly don't want to go in the dire
tion of aminimum when we're maximizing. To solve this problem, Quasi-Newton methodssimply add a positive de�nite 
omponent to H(θ) to ensure that the resultingmatrix is positive de�nite, e.g., Q = −H(θ) + bI, where b is 
hosen large enoughso that Q is well-
onditioned and positive de�nite. This has the bene�t thatimprovement in the obje
tive fun
tion is guaranteed.

• Another variation of quasi-Newton methods is to approximate the Hessian by us-ing su

essive gradient evaluations. This avoids a
tual 
al
ulation of the Hessian,whi
h is an order of magnitude (in the dimension of the parameter ve
tor) more
ostly than 
al
ulation of the gradient. They 
an be done to ensure that theapproximation is p.d. DFP and BFGS are two well-known examples.Stopping 
riteriaThe last thing we need is to de
ide when to stop. A digital 
omputer is subje
t tolimited ma
hine pre
ision and round-o� errors. For these reasons, it is unreasonable tohope that a program 
an exa
tly �nd the point that maximizes a fun
tion. We need tode�ne a

eptable toleran
es. Some stopping 
riteria are:
• Negligable 
hange in parameters:

|θkj − θk−1
j | < ε1,∀j

• Negligable relative 
hange:
|
θkj − θk−1

j

θk−1
j

| < ε2,∀j

• Negligable 
hange of fun
tion:
|s(θk) − s(θk−1)| < ε3

• Gradient negligibly di�erent from zero:
|gj(θk)| < ε4,∀j

• Or, even better, 
he
k all of these.
• Also, if we're maximizing, it's good to 
he
k that the last round (real, not ap-proximate) Hessian is negative de�nite.Starting valuesThe Newton-Raphson and related algorithms work well if the obje
tive fun
tion is
on
ave (when maximizing), but not so well if there are 
onvex regions and lo
al minimaor multiple lo
al maxima. The algorithm may 
onverge to a lo
al minimum or to a lo
almaximum that is not optimal. The algorithm may also have di�
ulties 
onverging at all.
• The usual way to �ensure� that a global maximum has been found is to use manydi�erent starting values, and 
hoose the solution that returns the highest obje
tivefun
tion value. THIS IS IMPORTANT in pra
ti
e. More on this later.Cal
ulating derivatives



2. DERIVATIVE-BASED METHODS 151Figure 4. Using MuPAD to get analyti
 derivatives

The Newton-Raphson algorithm requires �rst and se
ond derivatives. It is often dif-�
ult to 
al
ulate derivatives (espe
ially the Hessian) analyti
ally if the fun
tion sn(·) is
ompli
ated. Possible solutions are to 
al
ulate derivatives numeri
ally, or to use programssu
h as MuPAD or Mathemati
a to 
al
ulate analyti
 derivatives. For example, Figure 4shows MuPAD1 
al
ulating a derivative that I didn't know o� the top of my head, and onethat I did know.
• Numeri
 derivatives are less a

urate than analyti
 derivatives, and are usuallymore 
ostly to evaluate. Both fa
tors usually 
ause optimization programs to beless su

essful when numeri
 derivatives are used.
• One advantage of numeri
 derivatives is that you don't have to worry abouthaving made an error in 
al
ulating the analyti
 derivative. When programminganalyti
 derivatives it's a good idea to 
he
k that they are 
orre
t by using numeri
derivatives. This is a lesson I learned the hard way when writing my thesis.
• Numeri
 se
ond derivatives are mu
h more a

urate if the data are s
aled so thatthe elements of the gradient are of the same order of magnitude. Example: ifthe model is yt = h(αxt + βzt) + εt, and estimation is by NLS, suppose that
Dαsn(·) = 1000 and Dβsn(·) = 0.001. One 
ould de�ne α∗ = α/1000; x∗t =

1000xt;β∗ = 1000β; z∗t = zt/1000. In this 
ase, the gradients Dα∗sn(·) andDβsn(·)will both be 1.1MuPAD is not a freely distributable program, so it's not on the CD. You 
an download it fromhttp://www.mupad.de/download.shtml



4. EXAMPLES 152In general, estimation programs always work better if data is s
aled in thisway, sin
e roundo� errors are less likely to be
ome important. This is importantin pra
ti
e.
• There are algorithms (su
h as BFGS and DFP) that use the sequential gradientevaluations to build up an approximation to the Hessian. The iterations arefaster for this reason sin
e the a
tual Hessian isn't 
al
ulated, but more iterationsusually are required for 
onvergen
e.
• Swit
hing between algorithms during iterations is sometimes useful.3. Simulated AnnealingSimulated annealing is an algorithm whi
h 
an �nd an optimum in the presen
e of non-
on
avities, dis
ontinuities and multiple lo
al minima/maxima. Basi
ally, the algorithmrandomly sele
ts evaluation points, a

epts all points that yield an in
rease in the obje
tivefun
tion, but also a

epts some points that de
rease the obje
tive fun
tion. This allows thealgorithm to es
ape from lo
al minima. As more and more points are tried, periodi
allythe algorithm fo
uses on the best point so far, and redu
es the range over whi
h randompoints are generated. Also, the probability that a negative move is a

epted redu
es. Thealgorithm relies on many evaluations, as in the sear
h method, but fo
uses in on promisingareas, whi
h redu
es fun
tion evaluations with respe
t to the sear
h method. It does notrequire derivatives to be evaluated. I have a program to do this if you're interested.4. ExamplesThis se
tion gives a few examples of how some nonlinear models may be estimatedusing maximum likelihood.4.1. Dis
rete Choi
e: The logit model. In this se
tion we will 
onsider maximumlikelihood estimation of the logit model for binary 0/1 dependent variables. We will usethe BFGS algotithm to �nd the MLE.We saw an example of a binary 
hoi
e model in equation 30. A more general represen-tation is

y∗ = g(x) − ε

y = 1(y∗ > 0)

Pr(y = 1) = Fε[g(x)]

≡ p(x, θ)The log-likelihood fun
tion is
sn(θ) =

1

n

n∑

i=1

(yi ln p(xi, θ) + (1 − yi) ln [1 − p(xi, θ)])For the logit model (see the 
ontingent valuation example above), the probability hasthe spe
i�
 form
p(x, θ) =

1

1 + exp(−x′θ)You should download and examine LogitDGP.m , whi
h generates data a

ording tothe logit model, logit.m , whi
h 
al
ulates the loglikelihood, and EstimateLogit.m , whi
hsets things up and 
alls the estimation routine, whi
h uses the BFGS algorithm.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/LogitDGP.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m


4. EXAMPLES 153Here are some estimation results with n = 100, and the true θ = (0, 1)′.***********************************************Trial of MLE estimation of Logit modelMLE Estimation ResultsBFGS 
onvergen
e: Normal 
onvergen
eAverage Log-L: 0.607063Observations: 100estimate st. err t-stat p-value
onstant 0.5400 0.2229 2.4224 0.0154slope 0.7566 0.2374 3.1863 0.0014Information CriteriaCAIC : 132.6230BIC : 130.6230AIC : 125.4127***********************************************The estimation program is 
alling mle_results(), whi
h in turn 
alls a number ofother routines. These fun
tions are part of the o
tave-forge repository.4.2. Count Data: The Poisson model. Demand for health 
are is usually thoughtof a a derived demand: health 
are is an input to a home produ
tion fun
tion that produ
eshealth, and health is an argument of the utility fun
tion. Grossman (1972), for example,models health as a 
apital sto
k that is subje
t to depre
iation (e.g., the e�e
ts of ageing).Health 
are visits restore the sto
k. Under the home produ
tion framework, individualsde
ide when to make health 
are visits to maintain their health sto
k, or to deal withnegative sho
ks to the sto
k in the form of a

idents or illnesses. As su
h, individualdemand will be a fun
tion of the parameters of the individuals' utility fun
tions.The MEPS health data �le , meps1996.data, 
ontains 4564 observations on six mea-sures of health 
are usage. The data is from the 1996 Medi
al Expenditure Panel Survey(MEPS). You 
an get more information at http://www.meps.ahrq.gov/. The six mea-sures of use are are o�
e-based visits (OBDV), outpatient visits (OPV), inpatient visits(IPV), emergen
y room visits (ERV), dental visits (VDV), and number of pres
riptiondrugs taken (PRESCR). These form 
olumns 1 - 6 of meps1996.data. The 
ondition-ing variables are publi
 insuran
e (PUBLIC), private insuran
e (PRIV), sex (SEX), age(AGE), years of edu
ation (EDUC), and in
ome (INCOME). These form 
olumns 7 - 12of the �le, in the order given here. PRIV and PUBLIC are 0/1 binary variables, where a1 indi
ates that the person has a

ess to publi
 or private insuran
e 
overage. SEX is also0/1, where 1 indi
ates that the person is female. This data will be used in examples fairlyextensively in what follows.The program ExploreMEPS.m shows how the data may be read in, and gives somedes
riptive information about variables, whi
h follows:All of the measures of use are 
ount data, whi
h means that they take on the values
0, 1, 2, .... It might be reasonable to try to use this information by spe
ifying the density

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/meps1996.data
http://www.meps.ahrq.gov/
http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/ExploreMEPS.m
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ount data density. One of the simplest 
ount data densities is the Poisson density,whi
h is
fY (y) =

exp(−λ)λy

y!
.The Poisson average log-likelihood fun
tion is

sn(θ) =
1

n

n∑

i=1

(−λi + yi lnλi − ln yi!)We will parameterize the model as
λi = exp(x′

iβ)

xi = [1 PUBLIC PRIV SEX AGE EDUC INC]′.This ensures that the mean is positive, as is required for the Poisson model. Note that forthis parameterization
βj =

∂λ/∂βj
λso

βjxj = ηλxj
,the elasti
ity of the 
onditional mean of y with respe
t to the jth 
onditioning variable.The program EstimatePoisson.m estimates a Poisson model using the full data set.The results of the estimation, using OBDV as the dependent variable are here:MPITB extensions foundOBDV******************************************************Poisson model, MEPS 1996 full data setMLE Estimation ResultsBFGS 
onvergen
e: Normal 
onvergen
eAverage Log-L: -3.671090Observations: 4564estimate st. err t-stat p-value
onstant -0.791 0.149 -5.290 0.000pub. ins. 0.848 0.076 11.093 0.000priv. ins. 0.294 0.071 4.137 0.000sex 0.487 0.055 8.797 0.000age 0.024 0.002 11.471 0.000edu 0.029 0.010 3.061 0.002in
 -0.000 0.000 -0.978 0.328Information CriteriaCAIC : 33575.6881 Avg. CAIC: 7.3566

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/EstimatePoisson.m


4. EXAMPLES 155BIC : 33568.6881 Avg. BIC: 7.3551AIC : 33523.7064 Avg. AIC: 7.3452******************************************************4.3. Duration data and the Weibull model. In some 
ases the dependent variablemay be the time that passes between the o

uren
e of two events. For example, it may bethe duration of a strike, or the time needed to �nd a job on
e one is unemployed. Su
hvariables take on values on the positive real line, and are referred to as duration data.A spell is the period of time between the o

uren
e of initial event and the 
on
ludingevent. For example, the initial event 
ould be the loss of a job, and the �nal event is the�nding of a new job. The spell is the period of unemployment.Let t0 be the time the initial event o

urs, and t1 be the time the 
on
luding evento

urs. For simpli
ity, assume that time is measured in years. The random variable Dis the duration of the spell, D = t1 − t0. De�ne the density fun
tion of D, fD(t), withdistribution fun
tion FD(t) = Pr(D < t).Several questions may be of interest. For example, one might wish to know the expe
tedtime one has to wait to �nd a job given that one has already waited s years. The probabilitythat a spell lasts s years is
Pr(D > s) = 1 − Pr(D ≤ s) = 1 − FD(s).The density of D 
onditional on the spell already having lasted s years is

fD(t|D > s) =
fD(t)

1 − FD(s)
.The expe
tan
ed additional time required for the spell to end given that is has alreadylasted s years is the expe
tation of D with respe
t to this density, minus s.

E = E(D|D > s) − s =

(∫ ∞

t
z

fD(z)

1 − FD(s)
dz

)
− sTo estimate this fun
tion, one needs to spe
ify the density fD(t) as a parametri
 density,then estimate by maximum likelihood. There are a number of possibilities in
luding theexponential density, the lognormal, et
. A reasonably �exible model that is a generalizationof the exponential density is the Weibull density

fD(t|θ) = e−(λt)γ

λγ(λt)γ−1.A

ording to this model, E(D) = λ−γ . The log-likelihood is just the produ
t of the logdensities.To illustrate appli
ation of this model, 402 observations on the lifespan of mongoosesin Serengeti National Park (Tanzania) were used to �t a Weibull model. The �spell� inthis 
ase is the lifetime of an individual mongoose. The parameter estimates and standarderrors are λ̂ = 0.559 (0.034) and γ̂ = 0.867 (0.033) and the log-likelihood value is -659.3.Figure 5 presents �tted life expe
tan
y (expe
ted additional years of life) as a fun
tion ofage, with 95% 
on�den
e bands. The plot is a

ompanied by a nonparametri
 Kaplan-Meier estimate of life-expe
tan
y. This nonparametri
 estimator simply averages all spelllengths greater than age, and then subtra
ts age. This is 
onsistent by the LLN.In the �gure one 
an see that the model doesn't �t the data well, in that it predi
tslife expe
tan
y quite di�erently than does the nonparametri
 model. For ages 4-6, the



4. EXAMPLES 156Figure 5. Life expe
tan
y of mongooses, Weibull model

nonparametri
 estimate is outside the 
on�den
e interval that results from the parametri
model, whi
h 
asts doubt upon the parametri
 model. Mongooses that are between 2-6years old seem to have a lower life expe
tan
y than is predi
ted by the Weibull model,whereas young mongooses that survive beyond infan
y have a higher life expe
tan
y, upto a bit beyond 2 years. Due to the dramati
 
hange in the death rate as a fun
tion of t,one might spe
ify fD(t) as a mixture of two Weibull densities,
fD(t|θ) = δ

(
e−(λ1t)

γ1

λ1γ1(λ1t)
γ1−1

)
+ (1 − δ)

(
e−(λ2t)

γ2

λ2γ2(λ2t)
γ2−1

)
.The parameters γi and λi, i = 1, 2 are the parameters of the two Weibull densities, and δis the parameter that mixes the two.With the same data, θ 
an be estimated using the mixed model. The results are alog-likelihood = -623.17. Note that a standard likelihood ratio test 
annot be used to
hose between the two models, sin
e under the null that δ = 1 (single density), the twoparameters λ2 and γ2 are not identi�ed. It is possible to take this into a

ount, but thistopi
 is out of the s
ope of this 
ourse. Nevertheless, the improvement in the likelihoodfun
tion is 
onsiderable. The parameter estimates are
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tan
y of mongooses, mixed Weibull model

Parameter Estimate St. Error
λ1 0.233 0.016
γ1 1.722 0.166
λ2 1.731 0.101
γ2 1.522 0.096
δ 0.428 0.035Note that the mixture parameter is highly signi�
ant. This model leads to the �t in Figure6. Note that the parametri
 and nonparametri
 �ts are quite 
lose to one another, up toaround 6 years. The disagreement after this point is not too important, sin
e less than 5%of mongooses live more than 6 years, whi
h implies that the Kaplan-Meier nonparametri
estimate has a high varian
e (sin
e it's an average of a small number of observations).Mixture models are often an e�e
tive way to model 
omplex responses, though they
an su�er from overparameterization. Alternatives will be dis
ussed later.5. Numeri
 optimization: pitfallsIn this se
tion we'll examine two 
ommon problems that 
an be en
ountered whendoing numeri
 optimization of nonlinear models, and some solutions.5.1. Poor s
aling of the data. When the data is s
aled so that the magnitudes ofthe �rst and se
ond derivatives are of di�erent orders, problems 
an easily result. If weun
omment the appropriate line in EstimatePoisson.m, the data will not be s
aled, and theestimation program will have di�
ulty 
onverging (it seems to take an in�nite amount oftime). With uns
aled data, the elements of the s
ore ve
tor have very di�erent magnitudes

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/EstimatePoisson.m
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at the initial value of θ (all zeros). To see this run Che
kS
ore.m. With uns
aled data,one element of the gradient is very large, and the maximum and minimum elements are5 orders of magnitude apart. This 
auses 
onvergen
e problems due to serious numeri
alina

ura
y when doing inversions to 
al
ulate the BFGS dire
tion of sear
h. With s
aleddata, none of the elements of the gradient are very large, and the maximum di�eren
e inorders of magnitude is 3. Convergen
e is qui
k.5.2. Multiple optima. Multiple optima (one global, others lo
al) 
an 
ompli
atelife, sin
e we have limited means of determining if there is a higher maximum the the onewe're at. Think of 
limbing a mountain in an unknown range, in a very foggy pla
e (Figure7). You 
an go up until there's nowhere else to go up, but sin
e you're in the fog you don'tknow if the true summit is a
ross the gap that's at your feet. Do you 
laim vi
tory and gohome, or do you trudge down the gap and explore the other side?The best way to avoid stopping at a lo
al maximum is to use many starting values,for example on a grid, or randomly generated. Or perhaps one might have priors aboutpossible values for the parameters (e.g., from previous studies of similar data).Let's try to �nd the true minimizer of minus 1 times the foggy mountain fun
tion (sin
ethe algoritms are set up to minimize). From the pi
ture, you 
an see it's 
lose to (0, 0), butlet's pretend there is fog, and that we don't know that. The program FoggyMountain.mshows that poor start values 
an lead to problems. It uses SA, whi
h �nds the true globalminimum, and it shows that BFGS using a battery of random start values 
an also �ndthe global minimum help. The output of one run is here:MPITB extensions found

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/CheckScore.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/FoggyMountain.m


5. NUMERIC OPTIMIZATION: PITFALLS 159======================================================BFGSMIN final resultsUsed numeri
 gradient------------------------------------------------------STRONG CONVERGENCEFun
tion 
onv 1 Param 
onv 1 Gradient 
onv 1------------------------------------------------------Obje
tive fun
tion value -0.0130329Stepsize 0.10283343 iterations------------------------------------------------------param gradient 
hange15.9999 -0.0000 0.0000-28.8119 0.0000 0.0000The result with poor start valuesans =16.000 -28.812================================================SAMIN final resultsNORMAL CONVERGENCEFun
. tol. 1.000000e-10 Param. tol. 1.000000e-03Obj. fn. value -0.100023parameter sear
h width0.037419 0.000018-0.000000 0.000051================================================Now try a battery of random start values anda short BFGS on ea
h, then iterate to 
onvergen
eThe result using 20 randoms start valuesans =3.7417e-02 2.7628e-07The true maximizer is near (0.037,0)In that run, the single BFGS run with bad start values 
onverged to a point far fromthe true minimizer, whi
h simulated annealing and BFGS using a battery of random startvalues both found the true maximizaer. battery of random start values managed to �nd



5. NUMERIC OPTIMIZATION: PITFALLS 160the global max. The moral of the story is be 
autious and don't publish your results tooqui
kly.



EXERCISES 161Exer
ises(1) In o
tave, type �help bfgsmin_example�, to �nd out the lo
ation of the �le. Edit the�le to examine it and learn how to 
all bfgsmin. Run it, and examine the output.(2) In o
tave, type �help samin_example�, to �nd out the lo
ation of the �le. Edit the�le to examine it and learn how to 
all samin. Run it, and examine the output.(3) Using logit.m and EstimateLogit.m as templates, write a fun
tion to 
al
ulate theprobit loglikelihood, and a s
ript to estimate a probit model. Run it using data thata
tually follows a logit model (you 
an generate it in the same way that is done in thelogit example).(4) Study mle_results.m to see what it does. Examine the fun
tions that mle_results.m
alls, and in turn the fun
tions that those fun
tions 
all. Write a 
omplete des
riptionof how the whole 
hain works.(5) Look at the Poisson estimation results for the OBDV measure of health 
are use andgive an e
onomi
 interpretation. Estimate Poisson models for the other 5 measures ofhealth 
are usage.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m


CHAPTER 14Asymptoti
 properties of extremum estimatorsReadings: Gourieroux and Monfort (1995), Vol. 2, Ch. 24∗; Amemiya, Ch. 4 se
tion4.1∗; Davidson and Ma
Kinnon, pp. 591-96; Gallant, Ch. 3; Newey and M
Fadden (1994),�Large Sample Estimation and Hypothesis Testing,� in Handbook of E
onometri
s, Vol. 4,Ch. 36. 1. Extremum estimatorsIn De�nition 0.1 we de�ned an extremum estimator θ̂ as the optimizing element of anobje
tive fun
tion sn(θ) over a set Θ. Let the obje
tive fun
tion sn(Zn, θ) depend upon a
n× p random matrix Zn =

[
z1 z2 · · · zn

]′ where the zt are p-ve
tors and p is �nite.Example 18. Given the model yi = x′iθ+ εi, with n observations, de�ne zi = (yi, x
′
i)
′.The OLS estimator minimizes

sn(Zn, θ) = 1/n

n∑

i=1

(
yi − x′iθ

)2

= 1/n ‖ Y −Xθ ‖2where Y and X are de�ned similarly to Z.2. Consisten
yThe following theorem is patterned on a proof in Gallant (1987) (the arti
le, ref. later),whi
h we'll see in its original form later in the 
ourse. It is interesting to 
ompare thefollowing proof with Amemiya's Theorem 4.1.1, whi
h is done in terms of 
onvergen
e inprobability.Theorem 19. [Consisten
y of e.e.℄ Suppose that θ̂n is obtained by maximizing sn(θ)over Θ.Assume(1) Compa
tness: The parameter spa
e Θ is an open bounded subset of Eu
lideanspa
e ℜK . So the 
losure of Θ, Θ, is 
ompa
t.(2) Uniform Convergen
e: There is a nonsto
hasti
 fun
tion s∞(θ) that is 
ontinuousin θ on Θ su
h that
lim
n→∞

sup
θ∈Θ

|sn(θ) − s∞(θ)| = 0, a.s.(3) Identi�
ation: s∞(·) has a unique global maximum at θ0 ∈ Θ, i.e., s∞(θ0) >

s∞(θ), ∀θ 6= θ0, θ ∈ ΘThen θ̂n a.s.→ θ0.Proof: Sele
t a ω ∈ Ω and hold it �xed. Then {sn(ω, θ)} is a �xed sequen
e offun
tions. Suppose that ω is su
h that sn(θ) 
onverges uniformly to s∞(θ). This happenswith probability one by assumption (b). The sequen
e {θ̂n} lies in the 
ompa
t set Θ, by162



2. CONSISTENCY 163assumption (1) and the fa
t that maximixation is over Θ. Sin
e every sequen
e from a
ompa
t set has at least one limit point (Davidson, Thm. 2.12), say that θ̂ is a limit pointof {θ̂n}. There is a subsequen
e {θ̂nm} ({nm} is simply a sequen
e of in
reasing integers)with limm→∞ θ̂nm = θ̂. By uniform 
onvergen
e and 
ontinuity
lim
m→∞

snm(θ̂nm) = s∞(θ̂).To see this, �rst of all, sele
t an element θ̂t from the sequen
e {θ̂nm

}
. Then uniform
onvergen
e implies

lim
m→∞

snm(θ̂t) = s∞(θ̂t).Continuity of s∞ (·) implies that
lim
t→∞

s∞(θ̂t) = s∞(θ̂)sin
e the limit as t→ ∞ of {θ̂t} is θ̂. So the above 
laim is true.Next, by maximization
snm(θ̂nm) ≥ snm(θ0)whi
h holds in the limit, so

lim
m→∞

snm(θ̂nm) ≥ lim
m→∞

snm(θ0).However,
lim
m→∞

snm(θ̂nm) = s∞(θ̂),as seen above, and
lim
m→∞

snm(θ0) = s∞(θ0)by uniform 
onvergen
e, so
s∞(θ̂) ≥ s∞(θ0).But by assumption (3), there is a unique global maximum of s∞(θ) at θ0, so we must have

s∞(θ̂) = s∞(θ0), and θ̂ = θ0. Finally, all of the above limits hold almost surely, sin
e sofar we have held ω �xed, but now we need to 
onsider all ω ∈ Ω. Therefore {θ̂n} has onlyone limit point, θ0, ex
ept on a set C ⊂ Ω with P (C) = 0.Dis
ussion of the proof:
• This proof relies on the identi�
ation assumption of a unique global maximum at
θ0. An equivalent way to state this is(2) Identi�
ation: Any point θ in Θ with s∞(θ) ≥ s∞(θ0) must be su
h that ‖ θ−θ0 ‖= 0,whi
h mat
hes the way we will write the assumption in the se
tion on nonparametri
inferen
e.

• We assume that θ̂n is in fa
t a global maximum of sn (θ) . It is not required to beunique for n �nite, though the identi�
ation assumption requires that the limitingobje
tive fun
tion have a unique maximizing argument. The previous se
tion onnumeri
 optimization methods showed that a
tually �nding the global maximumof sn (θ) may be a non-trivial problem.
• See Amemiya's Example 4.1.4 for a 
ase where dis
ontinuity leads to breakdownof 
onsisten
y.
• The assumption that θ0 is in the interior of Θ (part of the identi�
ation assump-tion) has not been used to prove 
onsisten
y, so we 
ould dire
tly assume that θ0is simply an element of a 
ompa
t set Θ. The reason that we assume it's in the



2. CONSISTENCY 164interior here is that this is ne
essary for subsequent proof of asymptoti
 normality,and I'd like to maintain a minimal set of simple assumptions, for 
larity. Param-eters on the boundary of the parameter set 
ause theoreti
al di�
ulties that wewill not deal with in this 
ourse. Just note that 
onventional hypothesis testingmethods do not apply in this 
ase.
• Note that sn (θ) is not required to be 
ontinuous, though s∞(θ) is.
• The following �gures illustrate why uniform 
onvergen
e is important. In these
ond �gure, if the fun
tion is not 
onverging around the lower of the two maxima,there is no guarantee that the maximizer will be in the neighborhood of the globalmaximizer.

With uniform convergence, the maximum of the sample
objective function eventually must be in the neighborhood
of the maximum of the limiting objective function

With pointwise convergence, the sample objective function
may have its maximum far away from that of the limiting
objective function

We need a uniform strong law of large numbers in order to verify assumption (2) ofTheorem 19. The following theorem is from Davidson, pg. 337.



3. EXAMPLE: CONSISTENCY OF LEAST SQUARES 165Theorem 20. [Uniform Strong LLN℄ Let {Gn(θ)} be a sequen
e of sto
hasti
 real-valued fun
tions on a totally-bounded metri
 spa
e (Θ, ρ). Then
sup
θ∈Θ

|Gn(θ)| a.s.→ 0if and only if(a) Gn(θ) a.s.→ 0 for ea
h θ ∈ Θ0, where Θ0 is a dense subset of Θ and(b) {Gn(θ)} is strongly sto
hasti
ally equi
ontinuous..
• The metri
 spa
e we are interested in now is simply Θ ⊂ ℜK , using the Eu
lideannorm.
• The pointwise almost sure 
onvergen
e needed for assuption (a) 
omes from oneof the usual SLLN's.
• Stronger assumptions that imply those of the theorem are:� the parameter spa
e is 
ompa
t (this has already been assumed)� the obje
tive fun
tion is 
ontinuous and bounded with probability one on theentire parameter spa
e� a standard SLLN 
an be shown to apply to some point in the parameterspa
e
• These are reasonable 
onditions in many 
ases, and hen
eforth when dealing withspe
i�
 estimators we'll simply assume that pointwise almost sure 
onvergen
e
an be extended to uniform almost sure 
onvergen
e in this way.
• The more general theorem is useful in the 
ase that the limiting obje
tive fun
tion
an be 
ontinuous in θ even if sn(θ) is dis
ontinuous. This 
an happen be
ausedis
ontinuities may be smoothed out as we take expe
tations over the data. Inthe se
tion on simlation-based estimation we will se a 
ase of a dis
ontinuousobje
tive fun
tion.

3. Example: Consisten
y of Least SquaresWe suppose that data is generated by random sampling of (y,w), where yt = α0 +β0wt

+εt. (wt, εt) has the 
ommon distribution fun
tion µwµε (w and ε are independent) withsupport W × E . Suppose that the varian
es σ2
w and σ2

ε are �nite. Let θ0 = (α0, β0)′ ∈ Θ,for whi
h Θ is 
ompa
t. Let xt = (1, wt)
′, so we 
an write yt = x′tθ

0 + εt. The sampleobje
tive fun
tion for a sample size n is
sn(θ) = 1/n

n∑

t=1

(
yt − x′tθ

)2
= 1/n

n∑

i=1

(
x′tθ

0 + εt − x′tθ
)2

= 1/n

n∑

t=1

(
x′t
(
θ0 − θ

))2
+ 2/n

n∑

t=1

x′t
(
θ0 − θ

)
εt + 1/n

n∑

t=1

ε2t

• Considering the last term, by the SLLN,
1/n

n∑

t=1

ε2t
a.s.→
∫

W

∫

E
ε2dµWdµE = σ2

ε .

• Considering the se
ond term, sin
e E(ε) = 0 and w and ε are independent, theSLLN implies that it 
onverges to zero.
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• Finally, for the �rst term, for a given θ, we assume that a SLLN applies so that

1/n
n∑

t=1

(
x′t
(
θ0 − θ

))2 a.s.→
∫

W

(
x′
(
θ0 − θ

))2
dµW(31)

=
(
α0 − α

)2
+ 2

(
α0 − α

) (
β0 − β

) ∫

W
wdµW +

(
β0 − β

)2 ∫

W
w2dµW

=
(
α0 − α

)2
+ 2

(
α0 − α

) (
β0 − β

)
E(w) +

(
β0 − β

)2
E
(
w2
)Finally, the obje
tive fun
tion is 
learly 
ontinuous, and the parameter spa
e is assumedto be 
ompa
t, so the 
onvergen
e is also uniform. Thus,

s∞(θ) =
(
α0 − α

)2
+ 2

(
α0 − α

) (
β0 − β

)
E(w) +

(
β0 − β

)2
E
(
w2
)

+ σ2
εA minimizer of this is 
learly α = α0, β = β0.Exer
ise 21. Show that in order for the above solution to be unique it is ne
essary that

E(w2) 6= 0. Dis
uss the relationship between this 
ondition and the problem of 
olinearityof regressors.This example shows that Theorem 19 
an be used to prove strong 
onsisten
y of theOLS estimator. There are easier ways to show this, of 
ourse - this is only an example ofappli
ation of the theorem. 4. Asymptoti
 NormalityA 
onsistent estimator is oftentimes not very useful unless we know how fast it is likelyto be 
onverging to the true value, and the probability that it is far away from the truevalue. Establishment of asymptoti
 normality with a known s
aling fa
tor solves these twoproblems. The following theorem is similar to Amemiya's Theorem 4.1.3 (pg. 111).Theorem 22. [Asymptoti
 normality of e.e.℄ In addition to the assumptions of The-orem 19, assume(a) Jn(θ) ≡ D2
θsn(θ) exists and is 
ontinuous in an open, 
onvex neighborhood of θ0.(b) {Jn(θn)} a.s.→ J∞(θ0), a �nite negative de�nite matrix, for any sequen
e {θn} that
onverges almost surely to θ0.(
) √nDθsn(θ
0)

d→ N
[
0,I∞(θ0)

]
, where I∞(θ0) = limn→∞ V ar

√
nDθsn(θ

0)Then √
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]Proof: By Taylor expansion:
Dθsn(θ̂n) = Dθsn(θ

0) +D2
θsn(θ

∗)
(
θ̂ − θ0

)where θ∗ = λθ̂ + (1 − λ)θ0, 0 ≤ λ ≤ 1.

• Note that θ̂ will be in the neighborhood where D2
θsn(θ) exists with probabilityone as n be
omes large, by 
onsisten
y.

• Now the l.h.s. of this equation is zero, at least asymptoti
ally, sin
e θ̂n is amaximizer and the f.o.
. must hold exa
tly sin
e the limiting obje
tive fun
tionis stri
tly 
on
ave in a neighborhood of θ0.

• Also, sin
e θ∗ is between θ̂n and θ0, and sin
e θ̂n a.s.→ θ0 , assumption (b) gives
D2
θsn(θ

∗)
a.s.→ J∞(θ0)So

0 = Dθsn(θ
0) +

[
J∞(θ0) + op(1)

] (
θ̂ − θ0

)
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0 =

√
nDθsn(θ

0) +
[
J∞(θ0) + op(1)

]√
n
(
θ̂ − θ0

)Now J∞(θ0) is a �nite negative de�nite matrix, so the op(1) term is asymptoti
ally irrele-vant next to J∞(θ0), so we 
an write
0
a
=

√
nDθsn(θ

0) + J∞(θ0)
√
n
(
θ̂ − θ0

)

√
n
(
θ̂ − θ0

)
a
= −J∞(θ0)−1√nDθsn(θ

0)Be
ause of assumption (
), and the formula for the varian
e of a linear 
ombination ofr.v.'s, √
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]

• Assumption (b) is not implied by the Slutsky theorem. The Slutsky theorem saysthat g(xn) a.s.→ g(x) if xn → x and g(·) is 
ontinuous at x. However, the fun
tion
g(·) 
an't depend on n to use this theorem. In our 
ase Jn(θn) is a fun
tion of n.A theorem whi
h applies (Amemiya, Ch. 4) isTheorem 23. If gn(θ) 
onverges uniformly almost surely to a nonsto
hasti
 fun
tion

g∞(θ) uniformly on an open neighborhood of θ0, then gn(θ̂) a.s.→ g∞(θ0) if g∞(θ0) is 
on-tinuous at θ0 and θ̂ a.s.→ θ0.

• To apply this to the se
ond derivatives, su�
ient 
onditions would be that these
ond derivatives be strongly sto
hasti
ally equi
ontinuous on a neighborhoodof θ0, and that an ordinary LLN applies to the derivatives when evaluated at
θ ∈ N(θ0).

• Stronger 
onditions that imply this are as above: 
ontinuous and bounded se
ondderivatives in a neighborhood of θ0.

• Skip this in le
ture. A note on the order of these matri
es: Supposing that
sn(θ) is representable as an average of n terms, whi
h is the 
ase for all estimatorswe 
onsider, D2

θsn(θ) is also an average of n matri
es, the elements of whi
h arenot 
entered (they do not have zero expe
tation). Supposing a SLLN applies, thealmost sure limit of D2
θsn(θ

0), J∞(θ0) = O(1), as we saw in Example 51. On theother hand, assumption (
):√nDθsn(θ
0)

d→ N
[
0,I∞(θ0)

] means that
√
nDθsn(θ

0) = Op()where we use the result of Example 49. If we were to omit the √
n, we'd have

Dθsn(θ
0) = n−

1

2Op(1)

= Op

(
n−

1

2

)where we use the fa
t that Op(nr)Op(nq) = Op(n
r+q). The sequen
e Dθsn(θ

0) is
entered, so we need to s
ale by √
n to avoid 
onvergen
e to zero.5. Examples5.1. Coin �ipping, yet again. Remember that in se
tion 4.1 we saw that the as-ymptoti
 varian
e of the MLE of the parameter of a Bernoulli trial, using i.i.d. data, was

limV ar
√
n (p̂− p) = p (1 − p). Let's verify this using the methods of this Chapter. The



5. EXAMPLES 168log-likelihood fun
tion is
sn(p) =

1

n

n∑

t=1

{yt ln p+ (1 − yt) (1 − ln p)}so
Esn(p) = p0 ln p+

(
1 − p0

)
(1 − ln p)by the fa
t that the observations are i.i.d. Thus, s∞(p) = p0 ln p +

(
1 − p0

)
(1 − ln p). Abit of 
al
ulation shows that

D2
θsn(p)

∣∣
p=p0

≡ Jn(θ) =
−1

p0 (1 − p0)
,whi
h doesn't depend upon n. By results we've seen on MLE, limV ar

√
n
(
p̂− p0

)
=

−J−1
∞ (p0). And in this 
ase, −J−1

∞ (p0) = p0
(
1 − p0

). It's 
omforting to see that this isthe same result we got in se
tion 4.1.5.2. Binary response models. Extending the Bernoulli trial model to binary re-sponse models with 
onditioning variables, su
h models arise in a variety of 
ontexts.We've already seen a logit model. Another simple example is a probit threshold-
rossingmodel. Assume that
y∗ = x′β − ε

y = 1(y∗ > 0)

ε ∼ N(0, 1)Here, y∗ is an unobserved (latent) 
ontinuous variable, and y is a binary variable thatindi
ates whether y∗is negative or positive. Then Pr(y = 1) = Pr(ε < xβ) = Φ(xβ),where
Φ(•) =

∫ xβ

−∞
(2π)−1/2 exp(−ε

2

2
)dεis the standard normal distribution fun
tion.In general, a binary response model will require that the 
hoi
e probability be param-eterized in some form. For a ve
tor of explanatory variables x, the response probabilitywill be parameterized in some manner

Pr(y = 1|x) = p(x, θ)If p(x, θ) = Λ(x′θ), we have a logit model. If p(x, θ) = Φ(x′θ), where Φ(·) is the standardnormal distribution fun
tion, then we have a probit model.Regardless of the parameterization, we are dealing with a Bernoulli density,
fYi

(yi|xi) = p(xi, θ)
yi(1 − p(x, θ))1−yiso as long as the observations are independent, the maximum likelihood (ML) estimator,

θ̂, is the maximizer of
sn(θ) =

1

n

n∑

i=1

(yi ln p(xi, θ) + (1 − yi) ln [1 − p(xi, θ)])

≡ 1

n

n∑

i=1

s(yi, xi, θ).(32)Following the above theoreti
al results, θ̂ tends in probability to the θ0 that maximizes theuniform almost sure limit of sn(θ). Noting that Eyi = p(xi, θ
0), and following a SLLN for
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esses, sn(θ) 
onverges almost surely to the expe
tation of a representative term
s(y, x, θ). First one 
an take the expe
tation 
onditional on x to get
Ey|x {y ln p(x, θ) + (1 − y) ln [1 − p(x, θ)]} = p(x, θ0) ln p(x, θ)+

[
1 − p(x, θ0)

]
ln [1 − p(x, θ)] .Next taking expe
tation over x we get the limiting obje
tive fun
tion(33) s∞(θ) =

∫

X

{
p(x, θ0) ln p(x, θ) +

[
1 − p(x, θ0)

]
ln [1 − p(x, θ)]

}
µ(x)dx,where µ(x) is the (joint - the integral is understood to be multiple, and X is the support of

x) density fun
tion of the explanatory variables x. This is 
learly 
ontinuous in θ, as longas p(x, θ) is 
ontinuous, and if the parameter spa
e is 
ompa
t we therefore have uniformalmost sure 
onvergen
e. Note that p(x, θ) is 
ontinous for the logit and probit models,for example. The maximizing element of s∞(θ), θ∗, solves the �rst order 
onditions
∫

X

{
p(x, θ0)

p(x, θ∗)
∂

∂θ
p(x, θ∗) − 1 − p(x, θ0)

1 − p(x, θ∗)
∂

∂θ
p(x, θ∗)

}
µ(x)dx = 0This is 
learly solved by θ∗ = θ0. Provided the solution is unique, θ̂ is 
onsistent. Question:what's needed to ensure that the solution is unique?The asymptoti
 normality theorem tells us that

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
.In the 
ase of i.i.d. observations I∞(θ0) = limn→∞ V ar

√
nDθsn(θ

0) is simply the expe
-tation of a typi
al element of the outer produ
t of the gradient.
• There's no need to subtra
t the mean, sin
e it's zero, following the f.o.
. in the
onsisten
y proof above and the fa
t that observations are i.i.d.
• The terms in n also drop out by the same argument:

lim
n→∞

V ar
√
nDθsn(θ

0) = lim
n→∞

V ar
√
nDθ

1

n

∑

t

s(θ0)

= lim
n→∞

V ar
1√
n
Dθ

∑

t

s(θ0)

= lim
n→∞

1

n
V ar

∑

t

Dθs(θ
0)

= lim
n→∞

V arDθs(θ
0)

= V arDθs(θ
0)So we get

I∞(θ0) = E
{
∂

∂θ
s(y, x, θ0)

∂

∂θ′
s(y, x, θ0)

}
.Likewise,

J∞(θ0) = E ∂2

∂θ∂θ′
s(y, x, θ0).Expe
tations are jointly over y and x, or equivalently, �rst over y 
onditional on x, thenover x. From above, a typi
al element of the obje
tive fun
tion is

s(y, x, θ0) = y ln p(x, θ0) + (1 − y) ln
[
1 − p(x, θ0)

]
.Now suppose that we are dealing with a 
orre
tly spe
i�ed logit model:

p(x, θ) =
(
1 + exp(−x′θ)

)−1
.
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an simplify the above results in this 
ase. We have that
∂

∂θ
p(x, θ) =

(
1 + exp(−x′θ)

)−2
exp(−x′θ)x

=
(
1 + exp(−x′θ)

)−1 exp(−x′θ)
1 + exp(−x′θ)

x

= p(x, θ) (1 − p(x, θ))x

=
(
p(x, θ) − p(x, θ)2

)
x.So

∂

∂θ
s(y, x, θ0) =

[
y − p(x, θ0)

]
x(34)

∂2

∂θ∂θ′
s(θ0) = −

[
p(x, θ0) − p(x, θ0)2

]
xx′.Taking expe
tations over y then x gives

I∞(θ0) =

∫
EY
[
y2 − 2p(x, θ0)p(x, θ0) + p(x, θ0)2

]
xx′µ(x)dx(35)

=

∫ [
p(x, θ0) − p(x, θ0)2

]
xx′µ(x)dx.(36)where we use the fa
t that EY (y) = EY (y2) = p(x, θ0). Likewise,(37) J∞(θ0) = −

∫ [
p(x, θ0) − p(x, θ0)2

]
xx′µ(x)dx.Note that we arrive at the expe
ted result: the information matrix equality holds (that is,

J∞(θ0) = −I∞(θ0)). With this,
√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]simpli�es to √
n
(
θ̂ − θ0

)
d→ N

[
0,−J∞(θ0)−1

]whi
h 
an also be expressed as
√
n
(
θ̂ − θ0

)
d→ N

[
0,I∞(θ0)−1

]
.On a �nal note, the logit and standard normal CDF's are very similar - the logitdistribution is a bit more fat-tailed. While 
oe�
ients will vary slightly between thetwo models, fun
tions of interest su
h as estimated probabilities p(x, θ̂) will be virtuallyidenti
al for the two models.5.3. Example: Linearization of a nonlinear model. Ref. Gourieroux and Mon-fort, se
tion 8.3.4. White, Intn'l E
on. Rev. 1980 is an earlier referen
e.Suppose we have a nonlinear model

yi = h(xi, θ
0) + εiwhere

εi ∼ iid(0, σ2)The nonlinear least squares estimator solves
θ̂n = arg min

1

n

n∑

i=1

(yi − h(xi, θ))
2



5. EXAMPLES 171We'll study this more later, but for now it is 
lear that the fo
 for minimization will requiresolving a set of nonlinear equations. A 
ommon approa
h to the problem seeks to avoidthis di�
ulty by linearizing the model. A �rst order Taylor's series expansion about thepoint x0 with remainder gives
yi = h(x0, θ0) + (xi − x0)

′ ∂h(x0, θ
0)

∂x
+ νiwhere νi en
ompasses both εi and the Taylor's series remainder. Note that νi is no longera 
lassi
al error - its mean is not zero. We should expe
t problems.De�ne

α∗ = h(x0, θ
0) − x′0

∂h(x0, θ0)

∂x

β∗ =
∂h(x0, θ

0)

∂xGiven this, one might try to estimate α∗ and β∗ by applying OLS to
yi = α+ βxi + νi

• Question, will α̂ and β̂ be 
onsistent for α∗ and β∗?
• The answer is no, as one 
an see by interpreting α̂ and β̂ as extremum estimators.Let γ = (α, β′)′.

γ̂ = arg min sn(γ) =
1

n

n∑

i=1

(yi − α− βxi)
2The obje
tive fun
tion 
onverges to its expe
tation

sn(γ)
u.a.s.→ s∞(γ) = EXEY |X (y − α− βx)2and γ̂ 
onverges a.s. to the γ0 that minimizes s∞(γ):

γ0 = arg min EXEY |X (y − α− βx)2Noting that
EXEY |X

(
y − α− x′β

)2
= EXEY |X

(
h(x, θ0) + ε− α− βx

)2

= σ2 + EX
(
h(x, θ0) − α− βx

)2sin
e 
ross produ
ts involving ε drop out. α0 and β0 
orrespond to the hyperplane that is
losest to the true regression fun
tion h(x, θ0) a

ording to the mean squared error 
rite-rion. This depends on both the shape of h(·) and the density fun
tion of the 
onditioningvariables.
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x_0

α

β

x

x

x

x

x
x x

x

x

x

Tangent line

Fitted line

Inconsistency of the linear approximation, even at 
the approximation point

h(x,θ)

• It is 
lear that the tangent line does not minimize MSE, sin
e, for example, if
h(x, θ0) is 
on
ave, all errors between the tangent line and the true fun
tion arenegative.

• Note that the true underlying parameter θ0 is not estimated 
onsistently, either(it may be of a di�erent dimension than the dimension of the parameter of theapproximating model, whi
h is 2 in this example).
• Se
ond order and higher-order approximations su�er from exa
tly the same prob-lem, though to a less severe degree, of 
ourse. For this reason, translog, Gen-eralized Leontiev and other ��exible fun
tional forms� based upon se
ond-orderapproximations in general su�er from bias and in
onsisten
y. The bias may notbe too important for analysis of 
onditional means, but it 
an be very importantfor analyzing �rst and se
ond derivatives. In produ
tion and 
onsumer analysis,�rst and se
ond derivatives (e.g., elasti
ities of substitution) are often of interest,so in this 
ase, one should be 
autious of unthinking appli
ation of models thatimpose stong restri
tions on se
ond derivatives.
• This sort of linearization about a long run equilibrium is a 
ommon pra
ti
e indynami
 ma
roe
onomi
 models. It is justi�ed for the purposes of theoreti
alanalysis of a model given the model's parameters, but it is not justi�able for theestimation of the parameters of the model using data. The se
tion on simulation-based methods o�ers a means of obtaining 
onsistent estimators of the parametersof dynami
 ma
ro models that are too 
omplex for standard methods of analysis.



5. EXAMPLES 173Chapter Exer
ises(1) Suppose that xi ∼ uniform(0,1), and yi = 1−x2
i +εi, where εi is iid(0,σ2). Supposewe estimate the misspe
i�ed model yi = α + βxi + ηi by OLS. Find the numeri
values of α0 and β0 that are the probability limits of α̂ and β̂(2) Verify your results using O
tave by generating data that follows the above model,and 
al
ulating the OLS estimator. When the sample size is very large the es-timator should be very 
lose to the analyti
al results you obtained in question1.(3) Use the asymptoti
 normality theorem to �nd the asymptoti
 distribution of theML estimator of β0 for the model y = xβ0 + ε, where ε ∼ N(0, 1) and is in-dependent of x. This means �nding ∂2

∂β∂β′ sn(β), J (β0), ∂sn(β)
∂β

∣∣∣ , and I(β0). Theexpressions may involve the unspe
i�ed density of x.(4) Assume a d.g.p. follows the logit model: Pr(y = 1|x) =
(
1 + exp(−β0x)

)−1.(a) Assume that x ∼ uniform(-a,a). Find the asymptoti
 distribution of the MLestimator of β0 (this is a s
alar parameter).(b) Now assume that x ∼ uniform(-2a,2a). Again �nd the asymptoti
 distribu-tion of the ML estimator of β0.(
) Comment on the results



CHAPTER 15Generalized method of moments (GMM)Readings: Hamilton Ch. 14∗; Davidson and Ma
Kinnon, Ch. 17 (see pg. 587 for refs.to appli
ations); Newey and M
Fadden (1994), �Large Sample Estimation and HypothesisTesting,� in Handbook of E
onometri
s, Vol. 4, Ch. 36.
1. De�nitionWe've already seen one example of GMM in the introdu
tion, based upon the χ2distribution. Consider the following example based upon the t-distribution. The densityfun
tion of a t-distributed r.v. Yt is

fYt(yt, θ
0) =

Γ
[(
θ0 + 1

)
/2
]

(πθ0)1/2 Γ (θ0/2)

[
1 +

(
y2
t /θ

0
)]−(θ0+1)/2Given an iid sample of size n, one 
ould estimate θ0 by maximizing the log-likelihoodfun
tion

θ̂ ≡ arg max
Θ

lnLn(θ) =

n∑

t=1

ln fYt(yt, θ)

• This approa
h is attra
tive sin
e ML estimators are asymptoti
ally e�
ient. Thisis be
ause the ML estimator uses all of the available information (e.g., the dis-tribution is fully spe
i�ed up to a parameter). Re
alling that a distribution is
ompletely 
hara
terized by its moments, the ML estimator is interpretable as aGMM estimator that uses all of the moments. The method of moments estimatoruses only K moments to estimate a K− dimensional parameter. Sin
e informa-tion is dis
arded, in general, by the MM estimator, e�
ien
y is lost relative tothe ML estimator.
• Continuing with the example, a t-distributed r.v. with density fYt(yt, θ

0) hasmean zero and varian
e V (yt) = θ0/
(
θ0 − 2

) (for θ0 > 2).

• Using the notation introdu
ed previously, de�ne a moment 
ondition m1t(θ) =

θ/ (θ − 2) − y2
t and m1(θ) = 1/n

∑n
t=1m1t(θ) = θ/ (θ − 2) − 1/n

∑n
t=1 y

2
t . Asbefore, when evaluated at the true parameter value θ0, both Eθ0

[
m1t(θ

0)
]

= 0and Eθ0
[
m1(θ

0)
]

= 0.

• Choosing θ̂ to set m1(θ̂) ≡ 0 yields a MM estimator:(38) θ̂ =
2

1 − nP
i y

2
iThis estimator is based on only one moment of the distribution - it uses less informationthan the ML estimator, so it is intuitively 
lear that the MM estimator will be ine�
ientrelative to the ML estimator. 174
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• An alternative MM estimator 
ould be based upon the fourth moment of thet-distribution. The fourth moment of a t-distributed r.v. is

µ4 ≡ E(y4
t ) =

3
(
θ0
)2

(θ0 − 2) (θ0 − 4)
,provided θ0 > 4. We 
an de�ne a se
ond moment 
ondition

m2(θ) =
3 (θ)2

(θ − 2) (θ − 4)
− 1

n

n∑

t=1

y4
t

• A se
ond, di�erent MM estimator 
hooses θ̂ to set m2(θ̂) ≡ 0. If you solve thisyou'll see that the estimate is di�erent from that in equation 38.This estimator isn't e�
ient either, sin
e it uses only one moment. A GMM estimatorwould use the two moment 
onditions together to estimate the single parameter. TheGMM estimator is overidenti�ed, whi
h leads to an estimator whi
h is e�
ient relative tothe just identi�ed MM estimators (more on e�
ien
y later).
• As before, set mn(θ) = (m1(θ),m2(θ))

′ . The n subs
ript is used to indi
ate thesample size. Note that m(θ0) = Op(n
−1/2), sin
e it is an average of 
enteredrandom variables, whereas m(θ) = Op(1), θ 6= θ0, where expe
tations are takenusing the true distribution with parameter θ0. This is the fundamental reasonthat GMM is 
onsistent.

• A GMM estimator requires de�ning a measure of distan
e, d (m(θ)). A popular
hoi
e (for reasons noted below) is to set d (m(θ)) = m′Wnm, and we minimize
sn(θ) = m(θ)′Wnm(θ). We assume Wn 
onverges to a �nite positive de�nite ma-trix.

• In general, assume we have g moment 
onditions, so m(θ) is a g -ve
tor and Wis a g × g matrix.For the purposes of this 
ourse, the following de�nition of the GMM estimator is su�
ientlygeneral:Definition 24. The GMM estimator of the K -dimensional parameter ve
tor θ0,

θ̂ ≡ arg minΘ sn(θ) ≡ mn(θ)
′Wnmn(θ), where mn(θ) = 1

n

∑n
t=1mt(θ) is a g-ve
tor, g ≥ K,with Eθm(θ) = 0, and Wn 
onverges almost surely to a �nite g × g symmetri
 positivede�nite matrix W∞.What's the reason for using GMM if MLE is asymptoti
ally e�
ient?

• Robustness: GMM is based upon a limited set of moment 
onditions. For 
on-sisten
y, only these moment 
onditions need to be 
orre
tly spe
i�ed, whereasMLE in e�e
t requires 
orre
t spe
i�
ation of every 
on
eivable moment 
ondi-tion. GMM is robust with respe
t to distributional misspe
i�
ation. The pri
e forrobustness is loss of e�
ien
y with respe
t to the MLE estimator. Keep in mindthat the true distribution is not known so if we erroneously spe
ify a distributionand estimate by MLE, the estimator will be in
onsistent in general (not always).� Feasibility: in some 
ases the MLE estimator is not available, be
ause we arenot able to dedu
e the likelihood fun
tion. More on this in the se
tion onsimulation-based estimation. The GMM estimator may still be feasible eventhough MLE is not possible.



3. ASYMPTOTIC NORMALITY 1762. Consisten
yWe simply assume that the assumptions of Theorem 19 hold, so the GMM estimatoris strongly 
onsistent. The only assumption that warrants additional 
omments is thatof identi�
ation. In Theorem 19, the third assumption reads: (
) Identi�
ation: s∞(·)has a unique global maximum at θ0, i.e., s∞(θ0) > s∞(θ), ∀θ 6= θ0. Taking the 
ase of aquadrati
 obje
tive fun
tion sn(θ) = mn(θ)
′Wnmn(θ), �rst 
onsider mn(θ).

• Applying a uniform law of large numbers, we get mn(θ)
a.s.→ m∞(θ).

• Sin
e Eθ′mn(θ
0) = 0 by assumption, m∞(θ0) = 0.

• Sin
e s∞(θ0) = m∞(θ0)′W∞m∞(θ0) = 0, in order for asymptoti
 identi�
ation,we need that m∞(θ) 6= 0 for θ 6= θ0, for at least some element of the ve
tor. Thisand the assumption that Wn
a.s.→ W∞, a �nite positive g × g de�nite g × g matrixguarantee that θ0 is asymptoti
ally identi�ed.

• Note that asymptoti
 identi�
ation does not rule out the possibility of la
k ofidenti�
ation for a given data set - there may be multiple minimizing solutions in�nite samples.
3. Asymptoti
 normalityWe also simply assume that the 
onditions of Theorem 22 hold, so we will have as-ymptoti
 normality. However, we do need to �nd the stru
ture of the asymptoti
 varian
e-
ovarian
e matrix of the estimator. From Theorem 22, we have

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′ sn(θ) and I∞(θ0) = limn→∞ V ar
√
n ∂
∂θsn(θ

0).We need to determine the form of these matri
es given the obje
tive fun
tion sn(θ) =

mn(θ)
′Wnmn(θ).Now using the produ
t rule from the introdu
tion,

∂

∂θ
sn(θ) = 2

[
∂

∂θ
m

′

n (θ)

]
Wnmn (θ)De�ne the K × g matrix

Dn(θ) ≡
∂

∂θ
m′
n (θ) ,so:(39) ∂

∂θ
s(θ) = 2D(θ)Wm (θ) .(Note that sn(θ), Dn(θ), Wn and mn(θ) all depend on the sample size n, but it is omittedto un
lutter the notation).To take se
ond derivatives, let Di be the i− th row of D(θ). Using the produ
t rule,

∂2

∂θ′∂θi
s(θ) =

∂

∂θ′
2Di(θ)Wnm (θ)

= 2DiWD′ + 2m′W

[
∂

∂θ′
D′
i

]When evaluating the term
2m(θ)′W

[
∂

∂θ′
D(θ)′i

]
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∂θ′D(θ)′i satis�es a LLN, so that it 
onverges almost surely to a �nitelimit. In this 
ase, we have

2m(θ0)′W

[
∂

∂θ′
D(θ0)′i

]
a.s.→ 0,sin
e m(θ0) = op(1), W

a.s.→ W∞.Sta
king these results over the K rows of D, we get
lim

∂2

∂θ∂θ′
sn(θ

0) = J∞(θ0) = 2D∞W∞D
′
∞, a.s.,where we de�ne limD = D∞, a.s., and limW = W∞, a.s. (we assume a LLN holds).With regard to I∞(θ0), following equation 39, and noting that the s
ores have meanzero at θ0 (sin
e Em(θ0) = 0 by assumption), we have

I∞(θ0) = lim
n→∞

V ar
√
n
∂

∂θ
sn(θ

0)

= lim
n→∞

E4nDnWnm(θ0)m(θ)′WnD
′
n

= lim
n→∞

E4DnWn

{√
nm(θ0)

}{√
nm(θ)′

}
WnD

′
nNow, given that m(θ0) is an average of 
entered (mean-zero) quantities, it is reasonable toexpe
t a CLT to apply, after multipli
ation by √

n. Assuming this,
√
nm(θ0)

d→ N(0,Ω∞),where
Ω∞ = lim

n→∞
E
[
nm(θ0)m(θ0)′

]
.Using this, and the last equation, we get

I∞(θ0) = 4D∞W∞Ω∞W∞D
′
∞Using these results, the asymptoti
 normality theorem gives us

√
n
(
θ̂ − θ0

)
d→ N

[
0,
(
D∞W∞D

′
∞
)−1

D∞W∞Ω∞W∞D
′
∞
(
D∞W∞D

′
∞
)−1
]
,the asymptoti
 distribution of the GMM estimator for arbitrary weighting matrix Wn.Note that for J∞ to be positive de�nite, D∞ must have full row rank, ρ(D∞) = k.4. Choosing the weighting matrix

W is a weighting matrix, whi
h determines the relative importan
e of violations of theindividual moment 
onditions. For example, if we are mu
h more sure of the �rst moment
ondition, whi
h is based upon the varian
e, than of the se
ond, whi
h is based upon thefourth moment, we 
ould set
W =

[
a 0

0 b

]with a mu
h larger than b. In this 
ase, errors in the se
ond moment 
ondition have lessweight in the obje
tive fun
tion.
• Sin
e moments are not independent, in general, we should expe
t that there be a
orrelation between the moment 
onditions, so it may not be desirable to set theo�-diagonal elements to 0. W may be a random, data dependent matrix.
• We have already seen that the 
hoi
e of W will in�uen
e the asymptoti
 distri-bution of the GMM estimator. Sin
e the GMM estimator is already ine�
ient



4. CHOOSING THE WEIGHTING MATRIX 178w.r.t. MLE, we might like to 
hoose the W matrix to make the GMM estimatore�
ient within the 
lass of GMM estimators de�ned by mn(θ).
• To provide a little intuition, 
onsider the linear model y = x′β + ε, where ε ∼
N(0,Ω). That is, he have heteros
edasti
ity and auto
orrelation.

• Let P be the Cholesky fa
torization of Ω−1, e.g, P ′P = Ω−1.

• Then the model Py = PXβ+Pε satis�es the 
lassi
al assumptions of homos
edas-ti
ity and nonauto
orrelation, sin
e V (Pε) = PV (ε)P ′ = PΩP ′ = P (P ′P )−1P ′ =

PP−1 (P ′)−1 P ′ = In. (Note: we use (AB)−1 = B−1A−1 for A, B both nonsingu-lar). This means that the transformed model is e�
ient.
• The OLS estimator of the model Py = PXβ+Pε minimizes the obje
tive fun
tion

(y−Xβ)′Ω−1(y−Xβ). Interpreting (y − Xβ) = ε(β) as moment 
onditions (notethat they do have zero expe
tation when evaluated at β0), the optimal weightingmatrix is seen to be the inverse of the 
ovarian
e matrix of the moment 
onditions.This result 
arries over to GMM estimation. (Note: this presentation of GLS isnot a GMM estimator, be
ause the number of moment 
onditions here is equal tothe sample size, n. Later we'll see that GLS 
an be put into the GMM frameworkde�ned above).Theorem 25. If θ̂ is a GMM estimator that minimizesmn(θ)
′Wnmn(θ), the asymptoti
varian
e of θ̂ will be minimized by 
hoosing Wn so that Wn

a.s→ W∞ = Ω−1
∞ , where Ω∞ =

limn→∞ E
[
nm(θ0)m(θ0)′

]
.Proof: For W∞ = Ω−1

∞ , the asymptoti
 varian
e
(
D∞W∞D

′
∞
)−1

D∞W∞Ω∞W∞D
′
∞
(
D∞W∞D

′
∞
)−1simpli�es to (D∞Ω−1

∞ D′
∞
)−1

. Now, for any 
hoi
e su
h that W∞ 6= Ω−1
∞ , 
onsider thedi�eren
e of the inverses of the varian
es when W = Ω−1 versus when W is some arbitrarypositive de�nite matrix:

(
D∞Ω−1

∞ D′
∞
)
−
(
D∞W∞D

′
∞
) [
D∞W∞Ω∞W∞D

′
∞
]−1 (

D∞W∞D
′
∞
)

= D∞Ω−1/2
∞

[
I − Ω1/2

∞
(
W∞D

′
∞
) [
D∞W∞Ω∞W∞D

′
∞
]−1

D∞W∞Ω1/2
∞
]
Ω−1/2
∞ D′

∞as 
an be veri�ed by multipli
ation. The term in bra
kets is idempotent, whi
h is also easyto 
he
k by multipli
ation, and is therefore positive semide�nite. A quadrati
 form in apositive semide�nite matrix is also positive semide�nite. The di�eren
e of the inverses ofthe varian
es is positive semide�nite, whi
h implies that the di�eren
e of the varian
es isnegative semide�nite, whi
h proves the theorem.The result(40) √
n
(
θ̂ − θ0

)
d→ N

[
0,
(
D∞Ω−1

∞ D′
∞
)−1
]allows us to treat

θ̂ ≈ N

(
θ0,

(
D∞Ω−1

∞ D′
∞
)−1

n

)
,where the ≈ means �approximately distributed as.� To operationalize this we need estima-tors of D∞ and Ω∞.

• The obvious estimator of D̂∞ is simply ∂
∂θm

′
n

(
θ̂
)
, whi
h is 
onsistent by the
onsisten
y of θ̂, assuming that ∂

∂θm
′
n is 
ontinuous in θ. Sto
hasti
 equi
ontinuity



5. ESTIMATION OF THE VARIANCE-COVARIANCE MATRIX 179results 
an give us this result even if ∂
∂θm

′
n is not 
ontinuous. We now turn toestimation of Ω∞.5. Estimation of the varian
e-
ovarian
e matrix(See Hamilton Ch. 10, pp. 261-2 and 280-84)∗.In the 
ase that we wish to use the optimal weighting matrix, we need an estimateof Ω∞, the limiting varian
e-
ovarian
e matrix of √nmn(θ

0). While one 
ould estimate
Ω∞ parametri
ally, we in general have little information upon whi
h to base a parametri
spe
i�
ation. In general, we expe
t that:

• mt will be auto
orrelated (Γts = E(mtm
′
t−s) 6= 0). Note that this auto
ovarian
ewill not depend on t if the moment 
onditions are 
ovarian
e stationary.

• 
ontemporaneously 
orrelated, sin
e the individual moment 
onditions will not ingeneral be independent of one another (E(mitmjt) 6= 0).
• and have di�erent varian
es (E(m2

it) = σ2
it ).Sin
e we need to estimate so many 
omponents if we are to take the parametri
 approa
h,it is unlikely that we would arrive at a 
orre
t parametri
 spe
i�
ation. For this reason,resear
h has fo
used on 
onsistent nonparametri
 estimators of Ω∞.Hen
eforth we assume that mt is 
ovarian
e stationary (the 
ovarian
e between mt and

mt−s does not depend on t). De�ne the v − th auto
ovarian
e of the moment 
onditions
Γv = E(mtm

′
t−s). Note that E(mtm

′
t+s) = Γ′

v. Re
all that mt and m are fun
tions of θ, sofor now assume that we have some 
onsistent estimator of θ0, so that m̂t = mt(θ̂). Now
Ωn = E

[
nm(θ0)m(θ0)′

]
= E

[
n

(
1/n

n∑

t=1

mt

)(
1/n

n∑

t=1

m′
t

)]

= E
[
1/n

(
n∑

t=1

mt

)(
n∑

t=1

m′
t

)]

= Γ0 +
n− 1

n

(
Γ1 + Γ′

1

)
+
n− 2

n

(
Γ2 + Γ′

2

)
· · · + 1

n

(
Γn−1 + Γ′

n−1

)A natural, 
onsistent estimator of Γv is
Γ̂v = 1/n

n∑

t=v+1

m̂tm̂
′
t−v.(you might use n−v in the denominator instead). So, a natural, but in
onsistent, estimatorof Ω∞ would be

Ω̂ = Γ̂0 +
n− 1

n

(
Γ̂1 + Γ̂′

1

)
+
n− 2

n

(
Γ̂2 + Γ̂′

2

)
+ · · · +

(
Γ̂n−1 + Γ̂′

n−1

)

= Γ̂0 +
n−1∑

v=1

n− v

n

(
Γ̂v + Γ̂′

v

)
.This estimator is in
onsistent in general, sin
e the number of parameters to estimate ismore than the number of observations, and in
reases more rapidly than n, so informationdoes not build up as n→ ∞.On the other hand, supposing that Γv tends to zero su�
iently rapidly as v tends to

∞, a modi�ed estimator
Ω̂ = Γ̂0 +

q(n)∑

v=1

(
Γ̂v + Γ̂′

v

)
,



6. ESTIMATION USING CONDITIONAL MOMENTS 180where q(n)
p→ ∞ as n → ∞ will be 
onsistent, provided q(n) grows su�
iently slowly.The term n−v
n 
an be dropped be
ause q(n) must be op(n). This allows information toa

umulate at a rate that satis�es a LLN. A disadvantage of this estimator is that it maynot be positive de�nite. This 
ould 
ause one to 
al
ulate a negative χ2 statisti
, forexample!

• Note: the formula for Ω̂ requires an estimate of m(θ0), whi
h in turn requires anestimate of θ, whi
h is based upon an estimate of Ω! The solution to this 
ir
ularityis to set the weighting matrix W arbitrarily (for example to an identity matrix),obtain a �rst 
onsistent but ine�
ient estimate of θ0, then use this estimate toform Ω̂, then re-estimate θ0. The pro
ess 
an be iterated until neither Ω̂ nor θ̂
hange appre
iably between iterations.5.1. Newey-West 
ovarian
e estimator. The Newey-West estimator (E
onomet-ri
a, 1987) solves the problem of possible nonpositive de�niteness of the above estimator.Their estimator is
Ω̂ = Γ̂0 +

q(n)∑

v=1

[
1 − v

q + 1

](
Γ̂v + Γ̂′

v

)
.This estimator is p.d. by 
onstru
tion. The 
ondition for 
onsisten
y is that n−1/4q → 0.Note that this is a very slow rate of growth for q. This estimator is nonparametri
 - we'vepla
ed no parametri
 restri
tions on the form of Ω. It is an example of a kernel estimator.In a more re
ent paper, Newey and West (Review of E
onomi
 Studies, 1994) usepre-whitening before applying the kernel estimator. The idea is to �t a VAR model to themoment 
onditions. It is expe
ted that the residuals of the VAR model will be more nearlywhite noise, so that the Newey-West 
ovarian
e estimator might perform better with shortlag lengths..The VAR model is

m̂t = Θ1m̂t−1 + · · · + Θpm̂t−p + utThis is estimated, giving the residuals ût. Then the Newey-West 
ovarian
e estimator isapplied to these pre-whitened residuals, and the 
ovarian
e Ω is estimated 
ombining the�tted VAR
̂̂mt = Θ̂1m̂t−1 + · · · + Θ̂pm̂t−pwith the kernel estimate of the 
ovarian
e of the ut. See Newey-West for details.

• I have a program that does this if you're interested.6. Estimation using 
onditional momentsSo far, the moment 
onditions have been presented as un
onditional expe
tations.One 
ommon way of de�ning un
onditional moment 
onditions is based upon 
onditionalmoment 
onditions.Suppose that a random variable Y has zero expe
tation 
onditional on the randomvariable X
EY |XY =

∫
Y f(Y |X)dY = 0Then the un
onditional expe
tation of the produ
t of Y and a fun
tion g(X) of X is alsozero. The un
onditional expe
tation is

EY g(X) =

∫

X

(∫

Y
Y g(X)f(Y,X)dY

)
dX.
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an be fa
tored into a 
onditional expe
tation and an expe
tation w.r.t. the marginaldensity of X :

EY g(X) =

∫

X

(∫

Y
Y g(X)f(Y |X)dY

)
f(X)dX.Sin
e g(X) doesn't depend on Y it 
an be pulled out of the integral

EY g(X) =

∫

X

(∫

Y
Y f(Y |X)dY

)
g(X)f(X)dX.But the term in parentheses on the rhs is zero by assumption, so

EY g(X) = 0as 
laimed.This is important e
onometri
ally, sin
e models often imply restri
tions on 
onditionalmoments. Suppose a model tells us that the fun
tion K(yt, xt) has expe
tation, 
onditionalon the information set It, equal to k(xt, θ),
EθK(yt, xt)|It = k(xt, θ).

• For example, in the 
ontext of the 
lassi
al linear model yt = x′tβ+ εt, we 
an set
K(yt, xt) = yt so that k(xt, θ) = x′tβ.

With this, the fun
tion
ht(θ) = K(yt, xt) − k(xt, θ)has 
onditional expe
tation equal to zero

Eθht(θ)|It = 0.This is a s
alar moment 
ondition, whi
h isn't su�
ient to identify a K -dimensionalparameter θ (K > 1). However, the above result allows us to form various un
onditionalexpe
tations
mt(θ) = Z(wt)ht(θ)where Z(wt) is a g× 1-ve
tor valued fun
tion of wt and wt is a set of variables drawn fromthe information set It. The Z(wt) are instrumental variables. We now have g moment
onditions, so as long as g > K the ne
essary 
ondition for identi�
ation holds.One 
an form the n× g matrix

Zn =




Z1(w1) Z2(w1) · · · Zg(w1)

Z1(w2) Z2(w2) Zg(w2)... ...
Z1(wn) Z2(wn) · · · Zg(wn)




=




Z ′
1

Z ′
2

Z ′
n



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an form the g moment 
onditions
mn(θ) =

1

n
Z ′
n




h1(θ)

h2(θ)...
hn(θ)




=
1

n
Z ′
nhn(θ)

=
1

n

n∑

t=1

Ztht(θ)

=
1

n

n∑

t=1

mt(θ)where Z(t,·) is the tth row of Zn. This �ts the previous treatment. An interesting questionthat arises is how one should 
hoose the instrumental variables Z(wt) to a
hieve maximume�
ien
y.Note that with this 
hoi
e of moment 
onditions, we have that Dn ≡ ∂
∂θm

′(θ) (a K× gmatrix) is
Dn(θ) =

∂

∂θ

1

n

(
Z ′
nhn(θ)

)′

=
1

n

(
∂

∂θ
h′n (θ)

)
Znwhi
h we 
an de�ne to be

Dn(θ) =
1

n
HnZn.where Hn is a K × n matrix that has the derivatives of the individual moment 
onditionsas its 
olumns. Likewise, de�ne the var-
ov. of the moment 
onditions

Ωn = E
[
nmn(θ

0)mn(θ
0)′
]

= E
[

1

n
Z ′
nhn(θ

0)hn(θ
0)′Zn

]

= Z ′
nE
(

1

n
hn(θ

0)hn(θ
0)′
)
Zn

≡ Z ′
n

Φn

n
Znwhere we have de�ned Φn = V arhn(θ

0). Note that the dimension of this matrix is growingwith the sample size, so it is not 
onsistently estimable without additional assumptions.The asymptoti
 normality theorem above says that the GMM estimator using theoptimal weighting matrix is distributed as
√
n
(
θ̂ − θ0

)
d→ N(0, V∞)where(41) V∞ = lim

n→∞

((
HnZn
n

)(
Z ′
nΦnZn
n

)−1(Z ′
nH

′
n

n

))−1

.Using an argument similar to that used to prove that Ω−1
∞ is the e�
ient weighting matrix,we 
an show that putting

Zn = Φ−1
n H ′

n
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auses the above var-
ov matrix to simplify to(42) V∞ = lim
n→∞

(
HnΦ

−1
n H ′

n

n

)−1

.and furthermore, this matrix is smaller that the limiting var-
ov for any other 
hoi
e ofinstrumental variables. (To prove this, examine the di�eren
e of the inverses of the var-
ovmatri
es with the optimal intruments and with non-optimal instruments. As above, you
an show that the di�eren
e is positive semi-de�nite).
• Note that both Hn, whi
h we should write more properly as Hn(θ

0), sin
e itdepends on θ0, and Φ must be 
onsistently estimated to apply this.
• Usually, estimation of Hn is straightforward - one just uses

Ĥ =
∂

∂θ
h′n
(
θ̃
)
,where θ̃ is some initial 
onsistent estimator based on non-optimal instruments.

• Estimation of Φn may not be possible. It is an n × n matrix, so it has moreunique elements than n, the sample size, so without restri
tions on the parametersit 
an't be estimated 
onsistently. Basi
ally, you need to provide a parametri
spe
i�
ation of the 
ovarian
es of the ht(θ) in order to be able to use optimalinstruments. A solution is to approximate this matrix parametri
ally to de�nethe instruments. Note that the simpli�ed var-
ov matrix in equation 42 will notapply if approximately optimal instruments are used - it will be ne
essary to usean estimator based upon equation 41, where the term Z′
nΦnZn

n must be estimated
onsistently apart, for example by the Newey-West pro
edure.7. Estimation using dynami
 moment 
onditionsNote that dynami
 moment 
onditions simplify the var-
ov matrix, but are often harderto formulate. The will be added in future editions. For now, the Hansen appli
ation belowis enough. 8. A spe
i�
ation testThe �rst order 
onditions for minimization, using the an estimate of the optimal weight-ing matrix, are
∂

∂θ
s(θ̂) = 2

[
∂

∂θ
m

′

n

(
θ̂
)]

Ω̂−1mn

(
θ̂
)
≡ 0or

D(θ̂)Ω̂−1mn(θ̂) ≡ 0Consider a Taylor expansion of m(θ̂):(43) m(θ̂) = mn(θ
0) +D′

n(θ
0)
(
θ̂ − θ0

)
+ op(1).Multiplying by D(θ̂)Ω̂−1 we obtain

D(θ̂)Ω̂−1m(θ̂) = D(θ̂)Ω̂−1mn(θ
0) +D(θ̂)Ω̂−1D(θ0)′

(
θ̂ − θ0

)
+ op(1)The lhs is zero, and sin
e θ̂ tends to θ0 and Ω̂ tends to Ω∞, we 
an write

D∞Ω−1
∞ mn(θ

0)
a
= −D∞Ω−1

∞ D′
∞
(
θ̂ − θ0

)
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√
n
(
θ̂ − θ0

)
a
= −

√
n
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1
∞ mn(θ

0)With this, and taking into a

ount the original expansion (equation 43), we get
√
nm(θ̂)

a
=

√
nmn(θ

0) −
√
nD′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1
∞ mn(θ

0).This last 
an be written as
√
nm(θ̂)

a
=

√
n
(
Ω1/2
∞ −D′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
Ω−1/2
∞ mn(θ

0)Or
√
nΩ−1/2

∞ m(θ̂)
a
=

√
n
(
Ig − Ω−1/2

∞ D′
∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
Ω−1/2
∞ mn(θ

0)Now √
nΩ−1/2

∞ mn(θ
0)

d→ N(0, Ig)and one 
an easily verify that
P =

(
Ig − Ω−1/2

∞ D′
∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)is idempotent of rank g −K, (re
all that the rank of an idempotent matrix is equal to itstra
e) so
(√

nΩ−1/2
∞ m(θ̂)

)′ (√
nΩ−1/2

∞ m(θ̂)
)

= nm(θ̂)′Ω−1
∞ m(θ̂)

d→ χ2(g −K)Sin
e Ω̂ 
onverges to Ω∞, we also have
nm(θ̂)′Ω̂−1m(θ̂)

d→ χ2(g −K)or
n · sn(θ̂) d→ χ2(g −K)supposing the model is 
orre
tly spe
i�ed. This is a 
onvenient test sin
e we just multiplythe optimized value of the obje
tive fun
tion by n, and 
ompare with a χ2(g −K) 
riti
alvalue. The test is a general test of whether or not the moments used to estimate are
orre
tly spe
i�ed.

• This won't work when the estimator is just identi�ed. The f.o.
. are
Dθsn(θ) = DΩ̂−1m(θ̂) ≡ 0.But with exa
t identi�
ation, both D and Ω̂ are square and invertible (at leastasymptoti
ally, assuming that asymptoti
 normality hold), so

m(θ̂) ≡ 0.So the moment 
onditions are zero regardless of the weighting matrix used. Assu
h, we might as well use an identity matrix and save trouble. Also sn(θ̂) = 0,so the test breaks down.
• A note: this sort of test often over-reje
ts in �nite samples. One should be 
autiousin reje
ting a model when this test reje
ts.9. Other estimators interpreted as GMM estimators9.1. OLS with heteros
edasti
ity of unknown form.Example 26. White's heteros
edasti
 
onsistent var
ov estimator for OLS.



9. OTHER ESTIMATORS INTERPRETED AS GMM ESTIMATORS 185Suppose y = Xβ0 + ε, where ε ∼ N(0,Σ), Σ a diagonal matrix.
• The typi
al approa
h is to parameterize Σ = Σ(σ), where σ is a �nite dimensionalparameter ve
tor, and to estimate β and σ jointly (feasible GLS). This will workwell if the parameterization of Σ is 
orre
t.
• If we're not 
on�dent about parameterizing Σ, we 
an still estimate β 
onsistentlyby OLS. However, the typi
al 
ovarian
e estimator V (β̂) = (X′X)−1 σ̂2 will bebiased and in
onsistent, and will lead to invalid inferen
es.By exogeneity of the regressors xt (a K × 1 
olumn ve
tor) we have E(xtεt) = 0,whi
hsuggests the moment 
ondition

mt(β) = xt
(
yt − x′

tβ
)
.In this 
ase, we have exa
t identi�
ation ( K parameters and K moment 
onditions). Wehave

m(β) = 1/n
∑

t

mt = 1/n
∑

t

xtyt − 1/n
∑

t

xtx
′
tβ.For any 
hoi
e of W, m(β) will be identi
ally zero at the minimum, due to exa
t iden-ti�
ation. That is, sin
e the number of moment 
onditions is identi
al to the number ofparameters, the fo
 imply that m(β̂) ≡ 0 regardless of W. There is no need to use the �op-timal� weighting matrix in this 
ase, an identity matrix works just as well for the purposeof estimation. Thereforê

β =

(∑

t

xtx
′
t

)−1∑

t

xtyt = (X′X)−1X′y,whi
h is the usual OLS estimator.The GMM estimator of the asymptoti
 var
ov matrix is (D̂∞Ω̂−1D̂∞
′)−1

. Re
all that
D̂∞ is simply ∂

∂θm
′
(
θ̂
)
. In this 
ase

D̂∞ = −1/n
∑

t

xtx
′
t = −X′X/n.Re
all that a possible estimator of Ω is

Ω̂ = Γ̂0 +
n−1∑

v=1

(
Γ̂v + Γ̂′

v

)
.This is in general in
onsistent, but in the present 
ase of nonauto
orrelation, it simpli�esto

Ω̂ = Γ̂0whi
h has a 
onstant number of elements to estimate, so information will a

umulate, and
onsisten
y obtains. In the present 
ase
Ω̂ = Γ̂0 = 1/n

(
n∑

t=1

m̂tm̂
′
t

)

= 1/n

[
n∑

t=1

xtx
′
t

(
yt − x′

tβ̂
)2
]

= 1/n

[
n∑

t=1

xtx
′
tε̂

2
t

]

=
X′ÊX

n



9. OTHER ESTIMATORS INTERPRETED AS GMM ESTIMATORS 186where Ê is an n× n diagonal matrix with ε̂2t in the position t, t.Therefore, the GMM var
ov. estimator, whi
h is 
onsistent, is
V̂
(√

n
(
β̂ − β

))
=

{(
−X′X

n

)(
X′ÊX

n

−1
)(

−X′X
n

)}−1

=

(
X′X
n

)−1
(

X′ÊX

n

)(
X′X
n

)−1This is the var
ov estimator that White (1980) arrived at in an in�uential arti
le. Thisestimator is 
onsistent under heteros
edasti
ity of an unknown form. If there is auto
or-relation, the Newey-West estimator 
an be used to estimate Ω - the rest is the same.9.2. Weighted Least Squares. Consider the previous example of a linear modelwith heteros
edasti
ity of unknown form:
y = Xβ0 + ε

ε ∼ N(0,Σ)where Σ is a diagonal matrix.Now, suppose that the form of Σ is known, so that Σ(θ0) is a 
orre
t parametri
spe
i�
ation (whi
h may also depend upon X). In this 
ase, the GLS estimator is
β̃ =

(
X′Σ−1X

)−1
X′Σ−1y)This estimator 
an be interpreted as the solution to the K moment 
onditions

m(β̃) = 1/n
∑

t

xtyt
σt(θ0)

− 1/n
∑

t

xtx
′
t

σt(θ0)
β̃ ≡ 0.That is, the GLS estimator in this 
ase has an obvious representation as a GMM estima-tor. With auto
orrelation, the representation exists but it is a little more 
ompli
ated.Nevertheless, the idea is the same. There are a few points:

• The (feasible) GLS estimator is known to be asymptoti
ally e�
ient in the 
lassof linear asymptoti
ally unbiased estimators (Gauss-Markov).
• This means that it is more e�
ient than the above example of OLS with White'sheteros
edasti
 
onsistent 
ovarian
e, whi
h is an alternative GMM estimator.
• This means that the 
hoi
e of the moment 
onditions is important to a
hievee�
ien
y.9.3. 2SLS. Consider the linear model

yt = z′tβ + εt,or
y = Zβ + εusing the usual 
onstru
tion, where β is K × 1 and εt is i.i.d. Suppose that this equationis one of a system of simultaneous equations, so that zt 
ontains both endogenous andexogenous variables. Suppose that xt is the ve
tor of all exogenous and predeterminedvariables that are un
orrelated with εt (suppose that xt is r × 1).

• De�ne Ẑ as the ve
tor of predi
tions of Z when regressed upon X, e.g., Ẑ =

X (X′X)−1
X′Z

Ẑ = X
(
X′X

)−1
X′Z
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• Sin
e Ẑ is a linear 
ombination of the exogenous variables x, ẑt must be un-
orrelated with ε. This suggests the K-dimensional moment 
ondition mt(β) =

ẑt (yt − z′tβ) and so
m(β) = 1/n

∑

t

ẑt
(
yt − z′tβ

)
.

• Sin
e we have K parameters and K moment 
onditions, the GMM estimator willset m identi
ally equal to zero, regardless of W, so we have
β̂ =

(∑

t

ẑtz
′
t

)−1∑

t

(ẑtyt) =
(
Ẑ′Z

)−1
Ẑ′yThis is the standard formula for 2SLS. We use the exogenous variables and the redu
edform predi
tions of the endogenous variables as instruments, and apply IV estimation. SeeHamilton pp. 420-21 for the var
ov formula (whi
h is the standard formula for 2SLS), andfor how to deal with εt heterogeneous and dependent (basi
ally, just use the Newey-West orsome other 
onsistent estimator of Ω, and apply the usual formula). Note that εt dependent
auses lagged endogenous variables to loose their status as legitimate instruments.9.4. Nonlinear simultaneous equations. GMM provides a 
onvenient way to es-timate nonlinear systems of simultaneous equations. We have a system of equations of theform

y1t = f1(zt, θ
0
1) + ε1t

y2t = f2(zt, θ
0
2) + ε2t...

yGt = fG(zt, θ
0
G) + εGt,or in 
ompa
t notation

yt = f(zt, θ
0) + εt,where f(·) is a G -ve
tor valued fun
tion, and θ0 = (θ0′

1 , θ
0′
2 , · · · , θ0′

G)′.We need to �nd an Ai × 1 ve
tor of instruments xit, for ea
h equation, that are un-
orrelated with εit. Typi
al instruments would be low order monomials in the exogenousvariables in zt, with their lagged values. Then we 
an de�ne the (∑G
i=1Ai

)
× 1 orthogo-nality 
onditions

mt(θ) =




(y1t − f1(zt, θ1))x1t

(y2t − f2(zt, θ2))x2t...
(yGt − fG(zt, θG))xGt



.

• A note on identi�
ation: sele
tion of instruments that ensure identi�
ation is anon-trivial problem.
• A note on e�
ien
y: the sele
ted set of instruments has important e�e
ts on thee�
ien
y of estimation. Unfortunately there is little theory o�ering guidan
e onwhat is the optimal set. More on this later.9.5. Maximum likelihood. In the introdu
tion we argued that ML will in generalbe more e�
ient than GMM sin
e ML impli
itly uses all of the moments of the distributionwhile GMM uses a limited number of moments. A
tually, a distribution with P parameters
an be uniquely 
hara
terized by P moment 
onditions. However, some sets of P moment
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onditions may 
ontain more information than others, sin
e the moment 
onditions 
ouldbe highly 
orrelated. A GMM estimator that 
hose an optimal set of P moment 
onditionswould be fully e�
ient. Here we'll see that the optimal moment 
onditions are simply thes
ores of the ML estimator.Let yt be a G -ve
tor of variables, and let Yt = (y′1, y
′
2, ..., y

′
t)
′. Then at time t, Yt−1has been observed (refer to it as the information set, sin
e we assume the 
onditioningvariables have been sele
ted to take advantage of all useful information). The likelihoodfun
tion is the joint density of the sample:

L(θ) = f(y1, y2, ..., yn, θ)whi
h 
an be fa
tored as
L(θ) = f(yn|Yn−1, θ) · f(Yn−1, θ)and we 
an repeat this to get

L(θ) = f(yn|Yn−1, θ) · f(yn−1|Yn−2, θ) · ... · f(y1).The log-likelihood fun
tion is therefore
lnL(θ) =

n∑

t=1

ln f(yt|Yt−1, θ).De�ne
mt(Yt, θ) ≡ Dθ ln f(yt|Yt−1, θ)as the s
ore of the tth observation. It 
an be shown that, under the regularity 
onditions,that the s
ores have 
onditional mean zero when evaluated at θ0 (see notes to Introdu
tionto E
onometri
s):

E{mt(Yt, θ
0)|Yt−1} = 0so one 
ould interpret these as moment 
onditions to use to de�ne a just-identi�ed GMMestimator ( if there are K parameters there are K s
ore equations). The GMM estimatorsets

1/n

n∑

t=1

mt(Yt, θ̂) = 1/n

n∑

t=1

Dθ ln f(yt|Yt−1, θ̂) = 0,whi
h are pre
isely the �rst order 
onditions of MLE. Therefore, MLE 
an be interpretedas a GMM estimator. The GMM var
ov formula is V∞ =
(
D∞Ω−1D′

∞
)−1.Consistent estimates of varian
e 
omponents are as follows

• D∞

D̂∞ =
∂

∂θ′
m(Yt, θ̂) = 1/n

n∑

t=1

D2
θ ln f(yt|Yt−1, θ̂)

• Ω It is important to note that mt and mt−s, s > 0 are both 
onditionally andun
onditionally un
orrelated. Conditional un
orrelation follows from the fa
t that
mt−s is a fun
tion of Yt−s, whi
h is in the information set at time t. Un
onditionalun
orrelation follows from the fa
t that 
onditional un
orrelation hold regardlessof the realization of Yt−1, so marginalizing with respe
t to Yt−1 preserves un
or-relation (see the se
tion on ML estimation, above). The fa
t that the s
ores areserially un
orrelated implies that Ω 
an be estimated by the estimator of the 0th
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ovarian
e of the moment 
onditions:
Ω̂ = 1/n

n∑

t=1

mt(Yt, θ̂)mt(Yt, θ̂)
′ = 1/n

n∑

t=1

[
Dθ ln f(yt|Yt−1, θ̂)

] [
Dθ ln f(yt|Yt−1, θ̂)

]′Re
all from study of ML estimation that the information matrix equality (equation ??)states that
E
{[
Dθ ln f(yt|Yt−1, θ

0)
] [
Dθ ln f(yt|Yt−1, θ

0)
]′}

= −E
{
D2
θ ln f(yt|Yt−1, θ

0)
}
.This result implies the well known (and already seeen) result that we 
an estimate V∞ inany of three ways:

• The sandwi
h version:
V̂∞ = n





{∑n
t=1D

2
θ ln f(yt|Yt−1, θ̂)

}
×

{∑n
t=1

[
Dθ ln f(yt|Yt−1, θ̂)

] [
Dθ ln f(yt|Yt−1, θ̂)

]′}−1

×
{∑n

t=1D
2
θ ln f(yt|Yt−1, θ̂)

}





−1

• or the inverse of the negative of the Hessian (sin
e the middle and last term 
an
el,ex
ept for a minus sign):
V̂∞ =

[
−1/n

n∑

t=1

D2
θ ln f(yt|Yt−1, θ̂)

]−1

,

• or the inverse of the outer produ
t of the gradient (sin
e the middle and last
an
el ex
ept for a minus sign, and the �rst term 
onverges to minus the inverseof the middle term, whi
h is still inside the overall inverse)
V̂∞ =

{
1/n

n∑

t=1

[
Dθ ln f(yt|Yt−1, θ̂)

] [
Dθ ln f(yt|Yt−1, θ̂)

]′
}−1

.This simpli�
ation is a spe
ial result for the MLE estimator - it doesn't apply to GMMestimators in general.Asymptoti
ally, if the model is 
orre
tly spe
i�ed, all of these forms 
onverge to thesame limit. In small samples they will di�er. In parti
ular, there is eviden
e that theouter produ
t of the gradient formula does not perform very well in small samples (seeDavidson and Ma
Kinnon, pg. 477). White's Information matrix test (E
onometri
a,1982) is based upon 
omparing the two ways to estimate the information matrix: outerprodu
t of gradient or negative of the Hessian. If they di�er by too mu
h, this is eviden
eof misspe
i�
ation of the model.10. Example: The Hausman TestThis se
tion dis
usses the Hausman test, whi
h was originally presented in Hausman,J.A. (1978), Spe
i�
ation tests in e
onometri
s, E
onometri
a, 46, 1251-71.Consider the simple linear regression model yt = x′tβ+ǫt.We assume that the fun
tionalform and the 
hoi
e of regressors is 
orre
t, but that the some of the regressors may be
orrelated with the error term, whi
h as you know will produ
e in
onsisten
y of β̂. Forexample, this will be a problem if
• if some regressors are endogeneous
• some regressors are measured with error
• lagged values of the dependent variable are used as regressors and ǫt is auto
or-related.
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Figure 2. IV
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To illustrate, the O
tave program biased.m performs a Monte Carlo experiment whereerrors are 
orrelated with regressors, and estimation is by OLS and IV. The true valueof the slope 
oe�
ient used to generate the data is β = 2. Figure 1 shows that the OLSestimator is quite biased, while Figure 2 shows that the IV estimator is on average mu
h
loser to the true value. If you play with the program, in
reasing the sample size, you 
ansee eviden
e that the OLS estimator is asymptoti
ally biased, while the IV estimator is
onsistent.We have seen that in
onsistent and the 
onsistent estimators 
onverge to di�erentprobability limits. This is the idea behind the Hausman test - a pair of 
onsistent estimators
onverge to the same probability limit, while if one is 
onsistent and the other is not they

http://pareto.uab.es/mcreel/Econometrics/Examples/Hausman/biased.m


10. EXAMPLE: THE HAUSMAN TEST 191
onverge to di�erent limits. If we a

ept that one is 
onsistent (e.g., the IV estimator),but we are doubting if the other is 
onsistent (e.g., the OLS estimator), we might try to
he
k if the di�eren
e between the estimators is signi�
antly di�erent from zero.
• If we're doubting about the 
onsisten
y of OLS (or QML, et
.), why should webe interested in testing - why not just use the IV estimator? Be
ause the OLSestimator is more e�
ient when the regressors are exogenous and the other 
las-si
al assumptions (in
luding normality of the errors) hold. When we have a moree�
ient estimator that relies on stronger assumptions (su
h as exogeneity) thanthe IV estimator, we might prefer to use it, unless we have eviden
e that theassumptions are false.So, let's 
onsider the 
ovarian
e between the MLE estimator θ̂ (or any other fully e�
ientestimator) and some other CAN estimator, say θ̃. Now, let's re
all some results from MLE.Equation 11 is:

√
n
(
θ̂ − θ0

)
a.s.→ −H∞(θ0)

−1√ng(θ0).Equation 16 is
H∞(θ) = −I∞(θ).Combining these two equations, we get

√
n
(
θ̂ − θ0

)
a.s.→ I∞(θ0)

−1√ng(θ0).Also, equation 18 tells us that the asymptoti
 
ovarian
e between any CAN estimatorand the MLE s
ore ve
tor is
V∞

[ √
n
(
θ̃ − θ

)

√
ng(θ)

]
=

[
V∞(θ̃) IK

IK I∞(θ)

]
.Now, 
onsider

[
IK 0K

0K I∞(θ)−1

][ √
n
(
θ̃ − θ

)

√
ng(θ)

]
a.s.→




√
n
(
θ̃ − θ

)

√
n
(
θ̂ − θ

)

 .The asymptoti
 
ovarian
e of this is

V∞




√
n
(
θ̃ − θ

)

√
n
(
θ̂ − θ

)

 =

[
IK 0K

0K I∞(θ)−1

] [
V∞(θ̃) IK

IK I∞(θ)

] [
IK 0K

0K I∞(θ)−1

]

=

[
V∞(θ̃) I∞(θ)−1

I∞(θ)−1 I∞(θ)−1

]
,whi
h, for 
larity in what follows, we might write as

V∞




√
n
(
θ̃ − θ

)

√
n
(
θ̂ − θ

)

 =

[
V∞(θ̃) I∞(θ)−1

I∞(θ)−1 V∞(θ̂)

]
.So, the asymptoti
 
ovarian
e between the MLE and any other CAN estimator is equal tothe MLE asymptoti
 varian
e (the inverse of the information matrix).Now, suppose we with to test whether the the two estimators are in fa
t both 
onvergingto θ0, versus the alternative hypothesis that the �MLE� estimator is not in fa
t 
onsistent(the 
onsisten
y of θ̃ is a maintained hypothesis). Under the null hypothesis that they are,
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[
IK −IK

]



√
n
(
θ̃ − θ0

)

√
n
(
θ̂ − θ0

)

 =

√
n
(
θ̃ − θ̂

)
,will be asymptoti
ally normally distributed as

√
n
(
θ̃ − θ̂

)
d→ N

(
0, V∞(θ̃) − V∞(θ̂)

)
.So,

n
(
θ̃ − θ̂

)′ (
V∞(θ̃) − V∞(θ̂)

)−1 (
θ̃ − θ̂

)
d→ χ2(ρ),where ρ is the rank of the di�eren
e of the asymptoti
 varian
es. A statisti
 that has thesame asymptoti
 distribution is

(
θ̃ − θ̂

)′ (
V̂ (θ̃) − V̂ (θ̂)

)−1 (
θ̃ − θ̂

)
d→ χ2(ρ).This is the Hausman test statisti
, in its original form. The reason that this test has powerunder the alternative hypothesis is that in that 
ase the �MLE� estimator will not be
onsistent, and will 
onverge to θA, say, where θA 6= θ0. Then the mean of the asymptoti
distribution of ve
tor √

n
(
θ̃ − θ̂

) will be θ0 − θA, a non-zero ve
tor, so the test statisti
will eventually reje
t, regardless of how small a signi�
an
e level is used.
• Note: if the test is based on a sub-ve
tor of the entire parameter ve
tor of theMLE, it is possible that the in
onsisten
y of the MLE will not show up in theportion of the ve
tor that has been used. If this is the 
ase, the test may nothave power to dete
t the in
onsisten
y. This may o

ur, for example, when the
onsistent but ine�
ient estimator is not identi�ed for all the parameters of themodel.Some things to note:
• The rank, ρ, of the di�eren
e of the asymptoti
 varian
es is often less than thedimension of the matri
es, and it may be di�
ult to determine what the true rankis. If the true rank is lower than what is taken to be true, the test will be biasedagainst reje
tion of the null hypothesis. The 
ontrary holds if we underestimatethe rank.
• A solution to this problem is to use a rank 1 test, by 
omparing only a single
oe�
ient. For example, if a variable is suspe
ted of possibly being endogenous,that variable's 
oe�
ients may be 
ompared.
• This simple formula only holds when the estimator that is being tested for 
onsis-ten
y is fully e�
ient under the null hypothesis. This means that it must be a MLestimator or a fully e�
ient estimator that has the same asymptoti
 distributionas the ML estimator. This is quite restri
tive sin
e modern estimators su
h asGMM and QML are not in general fully e�
ient.Following up on this last point, let's think of two not ne
essarily e�
ient estimators, θ̂1and θ̂2, where one is assumed to be 
onsistent, but the other may not be. We assumefor expositional simpli
ity that both θ̂1 and θ̂2 belong to the same parameter spa
e, andthat they 
an be expressed as generalized method of moments (GMM) estimators. Theestimators are de�ned (suppressing the dependen
e upon data) by

θ̂i = arg min
θi∈Θ

m
i
(θi)

′Wimi(θi)
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tor of moment 
onditions, and Wi is a gi × gi positive de�niteweighting matrix, i = 1, 2. Consider the omnibus GMM estimator(44) (
θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)

′ m2(θ2)
′
] [ W1 0(g1×g2)

0(g2×g1) W2

][
m1(θ1)

m2(θ2)

]
.Suppose that the asymptoti
 
ovarian
e of the omnibus moment ve
tor is

Σ = lim
n→∞

V ar

{
√
n

[
m1(θ1)

m2(θ2)

]}(45)
≡

(
Σ1 Σ12

· Σ2

)
.The standard Hausman test is equivalent to a Wald test of the equality of θ1 and θ2 (orsubve
tors of the two) applied to the omnibus GMM estimator, but with the 
ovarian
e ofthe moment 
onditions estimated as

Σ̂ =

(
Σ̂1 0(g1×g2)

0(g2×g1) Σ̂2

)
.While this is 
learly an in
onsistent estimator in general, the omitted Σ12 term 
an
els outof the test statisti
 when one of the estimators is asymptoti
ally e�
ient, as we have seenabove, and thus it need not be estimated.The general solution when neither of the estimators is e�
ient is 
lear: the entire Σmatrix must be estimated 
onsistently, sin
e the Σ12 term will not 
an
el out. Methodsfor 
onsistently estimating the asymptoti
 
ovarian
e of a ve
tor of moment 
onditionsare well-known, e.g., the Newey-West estimator dis
ussed previously. The Hausman testusing a proper estimator of the overall 
ovarian
e matrix will now have an asymptoti
 χ2distribution when neither estimator is e�
ient. This isHowever, the test su�ers from a loss of power due to the fa
t that the omnibus GMMestimator of equation 44 is de�ned using an ine�
ient weight matrix. A new test 
an bede�ned by using an alternative omnibus GMM estimator(46) (

θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)

′ m2(θ2)
′
] (

Σ̃
)−1

[
m1(θ1)

m2(θ2)

]
,where Σ̃ is a 
onsistent estimator of the overall 
ovarian
e matrix Σ of equation 45. Bystandard arguments, this is a more e�
ient estimator than that de�ned by equation 44, sothe Wald test using this alternative is more powerful. See my arti
le in Applied E
onomi
s,2004, for more details, in
luding simulation results. The O
tave s
ript hausman.m 
al
u-lates the Wald test 
orresponding to the e�
ient joint GMM estimator (the �H2� test inmy paper), for a simple linear model.11. Appli
ation: Nonlinear rational expe
tationsReadings: Hansen and Singleton, 1982∗; Tau
hen, 1986Though GMM estimation has many appli
ations, appli
ation to rational expe
tationsmodels is elegant, sin
e theory dire
tly suggests the moment 
onditions. Hansen and Sin-gleton's 1982 paper is also a 
lassi
 worth studying in itself. Though I strongly re
ommendreading the paper, I'll use a simpli�ed model with similar notation to Hamilton's.We assume a representative 
onsumer maximizes expe
ted dis
ounted utility over anin�nite horizon. Utility is temporally additive, and the expe
ted utility hypothesis holds.

http://pareto.uab.es/mcreel/Econometrics/Examples/Hausman/hausman.m
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onsumption stream is the sto
hasti
 sequen
e {ct}∞t=0 . The obje
tive fun
tionat time t is the dis
ounted expe
ted utility(47) ∞∑

s=0

βsE (u(ct+s)|It) .

• The parameter β is between 0 and 1, and re�e
ts dis
ounting.
• It is the information set at time t, and in
ludes the all realizations of randomvariables indexed t and earlier.
• The 
hoi
e variable is ct - 
urrent 
onsumption, whi
h is 
onstained to be lessthan or equal to 
urrent wealth wt.
• Suppose the 
onsumer 
an invest in a risky asset. A dollar invested in the assetyields a gross return

(1 + rt+1) =
pt+1 + dt+1

ptwhere pt is the pri
e and dt is the dividend in period t. The pri
e of ct is normalizedto 1.

• Current wealth wt = (1 + rt)it−1, where it−1 is investment in period t− 1. So theproblem is to allo
ate 
urrent wealth between 
urrent 
onsumption and investmentto �nan
e future 
onsumption: wt = ct + it.
• Future net rates of return rt+s, s > 0 are not known in period t: the asset is risky.A partial set of ne
essary 
onditions for utility maximization have the form:(48) u′(ct) = βE

{
(1 + rt+1) u

′(ct+1)|It
}
.To see that the 
ondition is ne
essary, suppose that the lhs < rhs. Then by redu
ing
urrent 
onsumption marginally would 
ause equation 47 to drop by u′(ct), sin
e thereis no dis
ounting of the 
urrent period. At the same time, the marginal redu
tion in
onsumption �nan
es investment, whi
h has gross return (1 + rt+1) , whi
h 
ould �nan
e
onsumption in period t + 1. This in
rease in 
onsumption would 
ause the obje
tivefun
tion to in
rease by βE {(1 + rt+1)u

′(ct+1)|It} . Therefore, unless the 
ondition holds,the expe
ted dis
ounted utility fun
tion is not maximized.
• To use this we need to 
hoose the fun
tional form of utility. A 
onstant relativerisk aversion form is

u(ct) =
c1−γt − 1

1 − γwhere γ is the 
oe�
ient of relative risk aversion. With this form,
u′(ct) = c−γtso the fo
 are

c−γt = βE
{
(1 + rt+1) c

−γ
t+1|It

}While it is true that
E
(
c−γt − β

{
(1 + rt+1) c

−γ
t+1

})
|It = 0so that we 
ould use this to de�ne moment 
onditions, it is unlikely that ct is stationary,even though it is in real terms, and our theory requires stationarity. To solve this, dividethough by c−γt

E

(1-β{(1 + rt+1)

(
ct+1

ct

)−γ
})

|It = 0
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an be passed though the 
onditional expe
tation sin
e ct is 
hosen basedonly upon information available in time t).Now 1-β{(1 + rt+1)

(
ct+1

ct

)−γ
}is analogous to ht(θ) de�ned above: it's a s
alar moment 
ondition. To get a ve
tor of mo-ment 
onditions we need some instruments. Suppose that zt is a ve
tor of variables drawnfrom the information set It. We 
an use the ne
essary 
onditions to form the expressions

[
1 − β (1 + rt+1)

(
ct+1

ct

)−γ]
zt ≡ mt(θ)

• θ represents β and γ.
• Therefore, the above expression may be interpreted as a moment 
ondition whi
h
an be used for GMM estimation of the parameters θ0.Note that at time t, mt−s has been observed, and is therefore an element of the informationset. By rational expe
tations, the auto
ovarian
es of the moment 
onditions other than

Γ0 should be zero. The optimal weighting matrix is therefore the inverse of the varian
eof the moment 
onditions:
Ω

∞
= limE

[
nm(θ0)m(θ0)′

]whi
h 
an be 
onsistently estimated by
Ω̂ = 1/n

n∑

t=1

mt(θ̂)mt(θ̂)
′As before, this estimate depends on an initial 
onsistent estimate of θ, whi
h 
an beobtained by setting the weighting matrixW arbitrarily (to an identity matrix, for example).After obtaining θ̂, we then minimize

s(θ) = m(θ)′Ω̂−1m(θ).This pro
ess 
an be iterated, e.g., use the new estimate to re-estimate Ω, use this toestimate θ0, and repeat until the estimates don't 
hange.
• In prin
iple, we 
ould use a very large number of moment 
onditions in estimation,sin
e any 
urrent or lagged variable 
ould be used in xt. Sin
e use of more moment
onditions will lead to a more (asymptoti
ally) e�
ient estimator, one might betempted to use many instrumental variables. We will do a 
omputer lab thatwill show that this may not be a good idea with �nite samples. This issue hasbeen studied using Monte Carlos (Tau
hen, JBES, 1986). The reason for poorperforman
e when using many instruments is that the estimate of Ω be
omes veryimpre
ise.
• Empiri
al papers that use this approa
h often have serious problems in obtainingpre
ise estimates of the parameters. Note that we are basing everything on asingle parial �rst order 
ondition. Probably this f.o.
. is simply not informativeenough. Simulation-based estimation methods (dis
ussed below) are one means oftrying to use more informative moment 
onditions to estimate this sort of model.
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al example: a portfolio modelThe O
tave program portfolio.m performs GMM estimation of a portfolio model, usingthe data �le tau
hen.data. The 
olumns of this data �le are c, p, and d in that order. Thereare 95 observations (sour
e: Tau
hen, JBES, 1986). As instruments we use lags of c and
r, as well as a 
onstant. For a single lag the estimation results areMPITB extensions found******************************************************Example of GMM estimation of rational expe
tations modelGMM Estimation ResultsBFGS 
onvergen
e: Normal 
onvergen
eObje
tive fun
tion value: 0.000014Observations: 94Value df p-valueX^2 test 0.001 1.000 0.971estimate st. err t-stat p-valuebeta 0.915 0.009 97.271 0.000gamma 0.569 0.319 1.783 0.075******************************************************For two lags the estimation results areMPITB extensions found******************************************************Example of GMM estimation of rational expe
tations modelGMM Estimation ResultsBFGS 
onvergen
e: Normal 
onvergen
eObje
tive fun
tion value: 0.037882Observations: 93Value df p-valueX^2 test 3.523 3.000 0.318estimate st. err t-stat p-valuebeta 0.857 0.024 35.636 0.000gamma -2.351 0.315 -7.462 0.000******************************************************

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/portfolio.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/tauchen.data
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learly, the results are sensitive to the 
hoi
e of instruments. Maybe there is someproblem here: poor instruments, or possibly a 
onditional moment that is not very infor-mative. Moment 
onditions formed from Euler 
onditions sometimes do not identify theparameter of a model. See Hansen, Heaton and Yarron, (1996) JBES V14, N3. Is that aproblem here, (I haven't 
he
ked it 
arefully)?
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ises(1) Show how to 
ast the generalized IV estimator presented in se
tion 4 as a GMMestimator. Identify what are the moment 
onditions, mt(θ), what is the formof the the matrix Dn, what is the e�
ient weight matrix, and show that the
ovarian
e matrix formula given previously 
orresponds to the GMM 
ovarian
ematrix formula.(2) Using O
tave, generate data from the logit dgp . Re
all that E(yt|xt) = p(xt, θ) =

[1 + exp(−xt′θ)]−1. Consider the moment 
ondtions (exa
tly identi�ed) mt(θ) =

[yt − p(xt, θ)]xt(a) Estimate by GMM, using these moments.(b) Estimate by MLE.(
) The two estimators should 
oin
ide. Prove analyti
ally that the estimators
oi
ide.(3) Verify the missing steps needed to show that n ·m(θ̂)′Ω̂−1m(θ̂) has a χ2(g −K)distribution. That is, show that the monster matrix is idempotent and has tra
eequal to g −K.(4) For the portfolio example, experiment with the program using lags of 3 and 4periods to de�ne instruments(a) Iterate the estimation of θ = (β, γ) and Ω to 
onvergen
e.(b) Comment on the results. Are the results sensitive to the set of instrumentsused? (Look at Ω̂ as well as θ̂. Are these good instruments? Are the instru-ments highly 
orrelated with one another?



CHAPTER 16Quasi-MLQuasi-ML is the estimator one obtains when a misspe
i�ed probability model is usedto 
al
ulate an �ML� estimator.Given a sample of size n of a random ve
tor y and a ve
tor of 
onditioning variables x,suppose the joint density of Y =
(

y1 . . . yn

) 
onditional on X =
(

x1 . . . xn

) isa member of the parametri
 family pY(Y|X, ρ), ρ ∈ Ξ. The true joint density is asso
iatedwith the ve
tor ρ0 :

pY(Y|X, ρ0).As long as the marginal density of X doesn't depend on ρ0, this 
onditional density fully
hara
terizes the random 
hara
teristi
s of samples: i.e., it fully des
ribes the probabilisti-
ally important features of the d.g.p. The likelihood fun
tion is just this density evaluatedat other values ρ
L(Y|X, ρ) = pY(Y|X, ρ), ρ ∈ Ξ.

• Let Yt−1 =
(

y1 . . . yt−1

), Y0 = 0, and let Xt =
(

x1 . . . xt

) Thelikelihood fun
tion, taking into a

ount possible dependen
e of observations, 
anbe written as
L(Y|X, ρ) =

n∏

t=1

pt(yt|Yt−1,Xt, ρ)

≡
n∏

t=1

pt(ρ)

• The average log-likelihood fun
tion is:
sn(ρ) =

1

n
lnL(Y|X, ρ) =

1

n

n∑

t=1

ln pt(ρ)

• Suppose that we do not have knowledge of the family of densities pt(ρ).Mistakenly,we may assume that the 
onditional density of yt is a member of the family
ft(yt|Yt−1,Xt, θ), θ ∈ Θ, where there is no θ0 su
h that ft(yt|Yt−1,Xt, θ

0) =

pt(yt|Yt−1,Xt, ρ
0),∀t (this is what we mean by �misspe
i�ed�).

• This setup allows for heterogeneous time series data, with dynami
 misspe
i�
a-tion.The QML estimator is the argument that maximizes the misspe
i�ed average log like-lihood, whi
h we refer to as the quasi-log likelihood fun
tion. This obje
tive fun
tionis
sn(θ) =

1

n

n∑

t=1

ln ft(yt|Yt−1,Xt, θ
0)

≡ 1

n

n∑

t=1

ln ft(θ)199



1. CONSISTENT ESTIMATION OF VARIANCE COMPONENTS 200and the QML is
θ̂n = arg max

Θ
sn(θ)A SLLN for dependent sequen
es applies (we assume), so that

sn(θ)
a.s.→ lim

n→∞
E 1

n

n∑

t=1

ln ft(θ) ≡ s∞(θ)We assume that this 
an be strengthened to uniform 
onvergen
e, a.s., following the pre-vious arguments. The �pseudo-true� value of θ is the value that maximizes s̄(θ):
θ0 = arg max

Θ
s∞(θ)Given assumptions so that theorem 19 is appli
able, we obtain

lim
n→∞

θ̂n = θ0, a.s.
• Applying the asymptoti
 normality theorem,

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]where
J∞(θ0) = lim

n→∞
ED2

θsn(θ
0)and

I∞(θ0) = lim
n→∞

V ar
√
nDθsn(θ

0).

• Note that asymptoti
 normality only requires that the additional assumptionsregarding J and I hold in a neighborhood of θ0 for J and at θ0, for I, notthroughout Θ. In this sense, asymptoti
 normality is a lo
al property.
1. Consistent Estimation of Varian
e ComponentsConsistent estimation of J∞(θ0) is straightforward. Assumption (b) of Theorem 22implies that

Jn(θ̂n) =
1

n

n∑

t=1

D2
θ ln ft(θ̂n)

a.s.→ lim
n→∞

E 1

n

n∑

t=1

D2
θ ln ft(θ

0) = J∞(θ0).That is, just 
al
ulate the Hessian using the estimate θ̂n in pla
e of θ0.Consistent estimation of I∞(θ0) is more di�
ult, and may be impossible.
• Notation: Let gt ≡ Dθft(θ

0)We need to estimate
I∞(θ0) = lim

n→∞
V ar

√
nDθsn(θ

0)

= lim
n→∞

V ar
√
n

1

n

n∑

t=1

Dθ ln ft(θ
0)

= lim
n→∞

1

n
V ar

n∑

t=1

gt

= lim
n→∞

1

n
E
{(

n∑

t=1

(gt − Egt)
)(

n∑

t=1

(gt − Egt)
)′}



2. EXAMPLE: THE MEPS DATA 201This is going to 
ontain a term
lim
n→∞

1

n

n∑

t=1

(Egt) (Egt)′whi
h will not tend to zero, in general. This term is not 
onsistently estimable in general,sin
e it requires 
al
ulating an expe
tation using the true density under the d.g.p., whi
his unknown.
• There are important 
ases where I∞(θ0) is 
onsistently estimable. For example,suppose that the data 
ome from a random sample (i.e., they are iid). Thiswould be the 
ase with 
ross se
tional data, for example. (Note: under i.i.d.sampling, the joint distribution of (yt, xt) is identi
al. This does not imply thatthe 
onditional density f(yt|xt) is identi
al).
• With random sampling, the limiting obje
tive fun
tion is simply

s∞(θ0) = EXE0 ln f(y|x, θ0)where E0 means expe
tation of y|x and EX means expe
tation respe
t to themarginal density of x.
• By the requirement that the limiting obje
tive fun
tion be maximized at θ0 wehave

DθEXE0 ln f(y|x, θ0) = Dθs∞(θ0) = 0

• The dominated 
onvergen
e theorem allows swit
hing the order of expe
tationand di�erentiation, so
DθEXE0 ln f(y|x, θ0) = EXE0Dθ ln f(y|x, θ0) = 0The CLT implies that

1√
n

n∑

t=1

Dθ ln f(y|x, θ0)
d→ N(0,I∞(θ0)).That is, it's not ne
essary to subtra
t the individual means, sin
e they are zero.Given this, and due to independent observations, a 
onsistent estimator is

Î =
1

n

n∑

t=1

Dθ ln ft(θ̂)Dθ′ ln ft(θ̂)This is an important 
ase where 
onsistent estimation of the 
ovarian
e matrix is possible.Other 
ases exist, even for dynami
ally misspe
i�ed time series models.2. Example: the MEPS DataTo 
he
k the plausibility of the Poisson model for the MEPS data, we 
an 
ompare thesample un
onditional varian
e with the estimated un
onditional varian
e a

ording to thePoisson model: V̂ (y) =
Pn

t=1
λ̂t

n . Using the program PoissonVarian
e.m, for OBDV andERV, we get We see that even after 
onditioning, the overdispersion is not 
aptured inTable 1. Marginal Varian
es, Sample and Estimated (Poisson)OBDV ERVSample 38.09 0.151Estimated 3.28 0.086either 
ase. There is huge problem with OBDV, and a signi�
ant problem with ERV. In

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/PoissonVariance.m


2. EXAMPLE: THE MEPS DATA 202both 
ases the Poisson model does not appear to be plausible. You 
an 
he
k this for theother use measures if you like.2.1. In�nite mixture models: the negative binomial model. Referen
e: Cameronand Trivedi (1998) Regression analysis of 
ount data, 
hapter 4.The two measures seem to exhibit extra-Poisson variation. To 
apture unobservedheterogeneity, a possibility is the random parameters approa
h. Consider the possibilitythat the 
onstant term in a Poisson model were random:
fY (y|x, ε) =

exp(−θ)θy
y!

θ = exp(x′β + ε)

= exp(x′β) exp(ε)

= λνwhere λ = exp(x′β) and ν = exp(ε). Now ν 
aptures the randomness in the 
onstant.The problem is that we don't observe ν, so we will need to marginalize it to get a usabledensity
fY (y|x) =

∫ ∞

−∞

exp[−θ]θy
y!

fv(z)dzThis density 
an be used dire
tly, perhaps using numeri
al integration to evaluate thelikelihood fun
tion. In some 
ases, though, the integral will have an analyti
 solution. Forexample, if ν follows a 
ertain one parameter gamma density, then(49) fY (y|x, φ) =
Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ ( λ

ψ + λ

)ywhere φ = (λ,ψ). ψ appears sin
e it is the parameter of the gamma density.
• For this density, E(y|x) = λ, whi
h we have parameterized λ = exp(x′β)

• The varian
e depends upon how ψ is parameterized.� If ψ = λ/α, where α > 0, then V (y|x) = λ + αλ. Note that λ is a fun
tionof x, so that the varian
e is too. This is referred to as the NB-I model.� If ψ = 1/α, where α > 0, then V (y|x) = λ+ αλ2. This is referred to as theNB-II model.So both forms of the NB model allow for overdispersion, with the NB-II model allowingfor a more radi
al form.Testing redu
tion of a NB model to a Poisson model 
annot be done by testing α = 0using standard Wald or LR pro
edures. The 
riti
al values need to be adjusted to a

ountfor the fa
t that α = 0 is on the boundary of the parameter spa
e. Without getting intodetails, suppose that the data were in fa
t Poisson, so there is equidispersion and the true
α = 0. Then about half the time the sample data will be underdispersed, and about halfthe time overdispersed. When the data is underdispersed, the MLE of α will be α̂ = 0.Thus, under the null, there will be a probability spike in the asymptoti
 distribution of√
n(α̂− α) =

√
nα̂ at 0, so standard testing methods will not be valid.This program will do estimation using the NB model. Note how modelargs is used tosele
t a NB-I or NB-II density. Here are NB-I estimation results for OBDV:MPITB extensions foundOBDV

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/EstimateNegBin.m


2. EXAMPLE: THE MEPS DATA 203======================================================BFGSMIN final resultsUsed analyti
 gradient------------------------------------------------------STRONG CONVERGENCEFun
tion 
onv 1 Param 
onv 1 Gradient 
onv 1------------------------------------------------------Obje
tive fun
tion value 2.18573Stepsize 0.000717 iterations------------------------------------------------------param gradient 
hange1.0965 0.0000 -0.00000.2551 -0.0000 0.00000.2024 -0.0000 0.00000.2289 0.0000 -0.00000.1969 0.0000 -0.00000.0769 0.0000 -0.00000.0000 -0.0000 0.00001.7146 -0.0000 0.0000******************************************************Negative Binomial model, MEPS 1996 full data setMLE Estimation ResultsBFGS 
onvergen
e: Normal 
onvergen
eAverage Log-L: -2.185730Observations: 4564estimate st. err t-stat p-value
onstant -0.523 0.104 -5.005 0.000pub. ins. 0.765 0.054 14.198 0.000priv. ins. 0.451 0.049 9.196 0.000sex 0.458 0.034 13.512 0.000age 0.016 0.001 11.869 0.000edu 0.027 0.007 3.979 0.000in
 0.000 0.000 0.000 1.000alpha 5.555 0.296 18.752 0.000Information CriteriaCAIC : 20026.7513 Avg. CAIC: 4.3880BIC : 20018.7513 Avg. BIC: 4.3862AIC : 19967.3437 Avg. AIC: 4.3750******************************************************Note that the parameter values of the last BFGS iteration are di�erent that thosereported in the �nal results. This re�e
ts two things - �rst, the data were s
aled beforedoing the BFGS minimization, but the mle_results s
ript takes this into a

ount andreports the results using the original s
aling. But also, the parameterization α = exp(α∗)



2. EXAMPLE: THE MEPS DATA 204is used to enfor
e the restri
tion that α > 0. The unrestri
ted parameter α∗ = logα isused to de�ne the log-likelihood fun
tion, sin
e the BFGS minimization algorithm doesnot do 
ontrained minimization. To get the standard error and t-statisti
 of the estimateof α, we need to use the delta method. This is done inside mle_results, making use ofthe fun
tion parameterize.m .Likewise, here are NB-II results:MPITB extensions foundOBDV======================================================BFGSMIN final resultsUsed analyti
 gradient------------------------------------------------------STRONG CONVERGENCEFun
tion 
onv 1 Param 
onv 1 Gradient 
onv 1------------------------------------------------------Obje
tive fun
tion value 2.18496Stepsize 0.010439413 iterations------------------------------------------------------param gradient 
hange1.0375 0.0000 -0.00000.3673 -0.0000 0.00000.2136 0.0000 -0.00000.2816 0.0000 -0.00000.3027 0.0000 0.00000.0843 -0.0000 0.0000-0.0048 0.0000 -0.00000.4780 -0.0000 0.0000******************************************************Negative Binomial model, MEPS 1996 full data setMLE Estimation ResultsBFGS 
onvergen
e: Normal 
onvergen
eAverage Log-L: -2.184962Observations: 4564estimate st. err t-stat p-value
onstant -1.068 0.161 -6.622 0.000pub. ins. 1.101 0.095 11.611 0.000priv. ins. 0.476 0.081 5.880 0.000sex 0.564 0.050 11.166 0.000age 0.025 0.002 12.240 0.000edu 0.029 0.009 3.106 0.002in
 -0.000 0.000 -0.176 0.861alpha 1.613 0.055 29.099 0.000

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/parameterize.m


2. EXAMPLE: THE MEPS DATA 205Information CriteriaCAIC : 20019.7439 Avg. CAIC: 4.3864BIC : 20011.7439 Avg. BIC: 4.3847AIC : 19960.3362 Avg. AIC: 4.3734******************************************************
• For the OBDV usage measurel, the NB-II model does a slightly better job thanthe NB-I model, in terms of the average log-likelihood and the information 
riteria(more on this last in a moment).
• Note that both versions of the NB model �t mu
h better than does the Poissonmodel (see 4.2).
• The estimated α is highly signi�
ant.To 
he
k the plausibility of the NB-II model, we 
an 
ompare the sample un
onditionalvarian
e with the estimated un
onditional varian
e a

ording to the NB-II model: V̂ (y) =

Pn
t=1

λ̂t+α̂(λ̂t)
2

n . For OBDV and ERV (estimation results not reported), we get For OBDV,Table 2. Marginal Varian
es, Sample and Estimated (NB-II)OBDV ERVSample 38.09 0.151Estimated 30.58 0.182the overdispersion problem is signi�
antly better than in the Poisson 
ase, but there is stillsome that is not 
aptured. For ERV, the negative binomial model seems to 
apture theoverdispersion adequately.2.2. Finite mixture models: the mixed negative binomial model. The �nitemixture approa
h to �tting health 
are demand was introdu
ed by Deb and Trivedi (1997).The mixture approa
h has the intuitive appeal of allowing for subgroups of the populationwith di�erent health status. If individuals are 
lassi�ed as healthy or unhealthy then twosubgroups are de�ned. A �ner 
lassi�
ation s
heme would lead to more subgroups. Manystudies have in
orporated obje
tive and/or subje
tive indi
ators of health status in ane�ort to 
apture this heterogeneity. The available obje
tive measures, su
h as limitationson a
tivity, are not ne
essarily very informative about a person's overall health status.Subje
tive, self-reported measures may su�er from the same problem, and may also not beexogenousFinite mixture models are 
on
eptually simple. The density is
fY (y, φ1, ..., φp, π1, ..., πp−1) =

p−1∑

i=1

πif
(i)
Y (y, φi) + πpf

p
Y (y, φp),where πi > 0, i = 1, 2, ..., p, πp = 1 −∑p−1

i=1 πi, and ∑p
i=1 πi = 1. Identi�
ation requiresthat the πi are ordered in some way, for example, π1 ≥ π2 ≥ · · · ≥ πp and φi 6= φj , i 6= j.This is simple to a

omplish post-estimation by rearrangement and possible elimination ofredundant 
omponent densities.

• The properties of the mixture density follow in a straightforward way from thoseof the 
omponents. In parti
ular, the moment generating fun
tion is the samemixture of the moment generating fun
tions of the 
omponent densities, so, forexample, E(Y |x) =
∑p

i=1 πiµi(x), where µi(x) is the mean of the ith 
omponentdensity.
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• Mixture densities may su�er from overparameterization, sin
e the total number ofparameters grows rapidly with the number of 
omponent densities. It is possibleto 
onstrained parameters a
ross the mixtures.
• Testing for the number of 
omponent densities is a tri
ky issue. For example,testing for p = 1 (a single 
omponent, whi
h is to say, no mixture) versus p = 2(a mixture of two 
omponents) involves the restri
tion π1 = 1, whi
h is on theboundary of the parameter spa
e. Not that when π1 = 1, the parameters of these
ond 
omponent 
an take on any value without a�e
ting the density. Usualmethods su
h as the likelihood ratio test are not appli
able when parametersare on the boundary under the null hypothesis. Information 
riteria means of
hoosing the model (see below) are valid.The following results are for a mixture of 2 NB-II models, for the OBDV data, whi
h you
an repli
ate using this program .OBDV******************************************************Mixed Negative Binomial model, MEPS 1996 full data setMLE Estimation ResultsBFGS 
onvergen
e: Normal 
onvergen
eAverage Log-L: -2.164783Observations: 4564estimate st. err t-stat p-value
onstant 0.127 0.512 0.247 0.805pub. ins. 0.861 0.174 4.962 0.000priv. ins. 0.146 0.193 0.755 0.450sex 0.346 0.115 3.017 0.003age 0.024 0.004 6.117 0.000edu 0.025 0.016 1.590 0.112in
 -0.000 0.000 -0.214 0.831alpha 1.351 0.168 8.061 0.000
onstant 0.525 0.196 2.678 0.007pub. ins. 0.422 0.048 8.752 0.000priv. ins. 0.377 0.087 4.349 0.000sex 0.400 0.059 6.773 0.000age 0.296 0.036 8.178 0.000edu 0.111 0.042 2.634 0.008in
 0.014 0.051 0.274 0.784alpha 1.034 0.187 5.518 0.000Mix 0.257 0.162 1.582 0.114Information CriteriaCAIC : 19920.3807 Avg. CAIC: 4.3647BIC : 19903.3807 Avg. BIC: 4.3610AIC : 19794.1395 Avg. AIC: 4.3370******************************************************

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/EstimateNegBin.m


2. EXAMPLE: THE MEPS DATA 207It is worth noting that the mixture parameter is not signi�
antly di�erent from zero,but also not that the 
oe�
ients of publi
 insuran
e and age, for example, di�er quite abit between the two latent 
lasses.2.3. Information 
riteria. As seen above, a Poisson model 
an't be tested (usingstandard methods) as a restri
tion of a negative binomial model. But it seems, based uponthe values of the likelihood fun
tions and the fa
t that the NB model �ts the varian
emu
h better, that the NB model is more appropriate. How 
an we determine whi
h of aset of 
ompeting models is the best?The information 
riteria approa
h is one possibility. Information 
riteria are fun
tionsof the log-likelihood, with a penalty for the number of parameters used. Three popularinformation 
riteria are the Akaike (AIC), Bayes (BIC) and 
onsistent Akaike (CAIC). Theformulae are
CAIC = −2 lnL(θ̂) + k(lnn+ 1)

BIC = −2 lnL(θ̂) + k lnn

AIC = −2 lnL(θ̂) + 2kIt 
an be shown that the CAIC and BIC will sele
t the 
orre
tly spe
i�ed model froma group of models, asymptoti
ally. This doesn't mean, of 
ourse, that the 
orre
t modelis ne
esarily in the group. The AIC is not 
onsistent, and will asymptoti
ally favor anover-parameterized model over the 
orre
tly spe
i�ed model. Here are information 
riteriavalues for the models we've seen, for OBDV. Pretty 
learly, the NB models are betterTable 3. Information Criteria, OBDVModel AIC BIC CAICPoisson 7.345 7.355 7.357NB-I 4.375 4.386 4.388NB-II 4.373 4.385 4.386MNB-II 4.337 4.361 4.365than the Poisson. The one additional parameter gives a very signi�
ant improvement inthe likelihood fun
tion value. Between the NB-I and NB-II models, the NB-II is slightlyfavored. But one should remember that information 
riteria values are statisti
s, withvarian
es. With another sample, it may well be that the NB-I model would be favored,sin
e the di�eren
es are so small. The MNB-II model is favored over the others, by all 3information 
riteria.Why is all of this in the 
hapter on QML? Let's suppose that the 
orre
t model forOBDV is in fa
t the NB-II model. It turns out in this 
ase that the Poisson model willgive 
onsistent estimates of the slope parameters (if a model is a member of the linear-exponential family and the 
onditional mean is 
orre
tly spe
i�ed, then the parameters ofthe 
onditional mean will be 
onsistently estimated). So the Poisson estimator would bea QML estimator that is 
onsistent for some parameters of the true model. The ordinaryOPG or inverse Hessinan �ML� 
ovarian
e estimators are however biased and in
onsistent,sin
e the information matrix equality does not hold for QML estimators. But for i.i.d. data(whi
h is the 
ase for the MEPS data) the QML asymptoti
 
ovarian
e 
an be 
onsistentlyestimated, as dis
ussed above, using the sandwi
h form for the ML estimator. mle_resultsin fa
t reports sandwi
h results, so the Poisson estimation results would be reliable for
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e even if the true model is the NB-I or NB-II. Not that they are in fa
t similar tothe results for the NB models.However, if we assume that the 
orre
t model is the MNB-II model, as is favored bythe information 
riteria, then both the Poisson and NB-x models will have misspe
i�edmean fun
tions, so the parameters that in�uen
e the means would be estimated with biasand in
onsistently.



EXERCISES 209Exer
isesExer
ises(1) Considering the MEPS data (the des
ription is in Se
tion 4.2), for the OBDV (y)measure, let η be a latent index of health status that has expe
tation equal to unity.1We suspe
t that η and PRIV may be 
orrelated, but we assume that η is un
orrelatedwith the other regressors. We assume that
E(y|PUB,PRIV,AGE,EDUC, INC, η)

= exp(β1 + β2PUB + β3PRIV + β4AGE + β5EDUC + β6INC)η.We use the Poisson QML estimator of the model
y ∼ Poisson(λ)

λ = exp(β1 + β2PUB + β3PRIV +(50)
β4AGE + β5EDUC + β6INC).Sin
e mu
h previous eviden
e indi
ates that health 
are servi
es usage is overdis-persed2, this is almost 
ertainly not an ML estimator, and thus is not e�
ient. However,when η and PRIV are un
orrelated, this estimator is 
onsistent for the βi parameters,sin
e the 
onditional mean is 
orre
tly spe
i�ed in that 
ase. When η and PRIV are
orrelated, Mullahy's (1997) NLIV estimator that uses the residual fun
tion

ε =
y

λ
− 1,where λ is de�ned in equation 50, with appropriate instruments, is 
onsistent. Asinstruments we use all the exogenous regressors, as well as the 
ross produ
ts of PUBwith the variables in Z = {AGE,EDUC, INC}. That is, the full set of instrumentsis

W = {1 PUB Z PUB × Z }.(a) Cal
ulate the Poisson QML estimates.(b) Cal
ulate the generalized IV estimates (do it using a GMM formulation - see theportfolio example for hints how to do this).(
) Cal
ulate the Hausman test statisti
 to test the exogeneity of PRIV.(d) 
omment on the results

1A restri
tion of this sort is ne
essary for identi�
ation.2Overdispersion exists when the 
onditional varian
e is greater than the 
onditional mean. If this is the
ase, the Poisson spe
i�
ation is not 
orre
t.



CHAPTER 17Nonlinear least squares (NLS)Readings: Davidson and Ma
Kinnon, Ch. 2∗ and 5∗; Gallant, Ch. 11. Introdu
tion and de�nitionNonlinear least squares (NLS) is a means of estimating the parameter of the model
yt = f(xt, θ

0) + εt.

• In general, εt will be heteros
edasti
 and auto
orrelated, and possibly nonnor-mally distributed. However, dealing with this is exa
tly as in the 
ase of linearmodels, so we'll just treat the iid 
ase here,
εt ∼ iid(0, σ2)If we sta
k the observations verti
ally, de�ning

y = (y1, y2, ..., yn)
′

f = (f(x1, θ), f(x1, θ), ..., f(x1, θ))
′and

ε = (ε1, ε2, ..., εn)
′we 
an write the n observations as

y = f(θ) + εUsing this notation, the NLS estimator 
an be de�ned as
θ̂ ≡ arg min

Θ
sn(θ) =

1

n
[y − f(θ)]′ [y − f(θ)] =

1

n
‖ y − f(θ) ‖2

• The estimator minimizes the weighted sum of squared errors, whi
h is the sameas minimizing the Eu
lidean distan
e between y and f(θ).The obje
tive fun
tion 
an be written as
sn(θ) =

1

n

[
y′y − 2y′f(θ) + f(θ)′f(θ)

]
,whi
h gives the �rst order 
onditions

−
[
∂

∂θ
f(θ̂)′

]
y +

[
∂

∂θ
f(θ̂)′

]
f(θ̂) ≡ 0.De�ne the n×K matrix(51) F(θ̂) ≡ Dθ′f(θ̂).In shorthand, use F̂ in pla
e of F(θ̂). Using this, the �rst order 
onditions 
an be writtenas

−F̂′y + F̂′f(θ̂) ≡ 0,210



2. IDENTIFICATION 211or(52) F̂′
[
y − f(θ̂)

]
≡ 0.This bears a good deal of similarity to the f.o.
. for the linear model - the derivative ofthe predi
tion is orthogonal to the predi
tion error. If f(θ) = Xθ, then F̂ is simply X, sothe f.o.
. (with spheri
al errors) simplify to

X′y − X′Xβ = 0,the usual 0LS f.o.
.We 
an interpret this geometri
ally: INSERT drawings of geometri
al depi
tion of OLSand NLS (see Davidson and Ma
Kinnon, pgs. 8,13 and 46).
• Note that the nonlinearity of the manifold leads to potential multiple lo
al max-ima, minima and saddlepoints: the obje
tive fun
tion sn(θ) is not ne
essarilywell-behaved and may be di�
ult to minimize.2. Identi�
ationAs before, identi�
ation 
an be 
onsidered 
onditional on the sample, and asymptoti-
ally. The 
ondition for asymptoti
 identi�
ation is that sn(θ) tend to a limiting fun
tion

s∞(θ) su
h that s∞(θ0) < s∞(θ), ∀θ 6= θ0. This will be the 
ase if s∞(θ0) is stri
tly 
onvexat θ0, whi
h requires that D2
θs∞(θ0) be positive de�nite. Consider the obje
tive fun
tion:

sn(θ) =
1

n

n∑

t=1

[yt − f(xt, θ)]
2

=
1

n

n∑

t=1

[
f(xt, θ

0) + εt − ft(xt, θ)
]2

=
1

n

n∑

t=1

[
ft(θ

0) − ft(θ)
]2

+
1

n

n∑

t=1

(εt)
2

− 2

n

n∑

t=1

[
ft(θ

0) − ft(θ)
]
εt

• As in example 3, whi
h illustrated the 
onsisten
y of extremum estimators usingOLS, we 
on
lude that the se
ond term will 
onverge to a 
onstant whi
h doesnot depend upon θ.
• A LLN 
an be applied to the third term to 
on
lude that it 
onverges pointwiseto 0, as long as f(θ) and ε are un
orrelated.
• Next, pointwise 
onvergen
e needs to be stregnthened to uniform almost sure
onvergen
e. There are a number of possible assumptions one 
ould use. Here,we'll just assume it holds.
• Turning to the �rst term, we'll assume a pointwise law of large numbers applies,so(53) 1

n

n∑

t=1

[
ft(θ

0) − ft(θ)
]2 a.s.→

∫ [
f(z, θ0) − f(z, θ)

]2
dµ(z),where µ(x) is the distribution fun
tion of x. In many 
ases, f(x, θ) will be boundedand 
ontinuous, for all θ ∈ Θ, so strengthening to uniform almost sure 
onvergen
eis immediate. For example if f(x, θ) = [1 + exp(−xθ)]−1 , f : ℜK → (0, 1) , abounded range, and the fun
tion is 
ontinuous in θ.



4. ASYMPTOTIC NORMALITY 212Given these results, it is 
lear that a minimizer is θ0. When 
onsidering identi�
ation(asymptoti
), the question is whether or not there may be some other minimizer. A lo
al
ondition for identi�
ation is that
∂2

∂θ∂θ′
s∞(θ) =

∂2

∂θ∂θ′

∫ [
f(x, θ0) − f(x, θ)

]2
dµ(x)be positive de�nite at θ0. Evaluating this derivative, we obtain (after a little work)

∂2

∂θ∂θ′

∫ [
f(x, θ0) − f(x, θ)

]2
dµ(x)

∣∣∣∣
θ0

= 2

∫ [
Dθf(z, θ0)′

] [
Dθ′f(z, θ0)

]′
dµ(z)the expe
tation of the outer produ
t of the gradient of the regression fun
tion evaluated at

θ0. (Note: the uniform boundedness we have already assumed allows passing the derivativethrough the integral, by the dominated 
onvergen
e theorem.) This matrix will be positivede�nite (wp1) as long as the gradient ve
tor is of full rank (wp1). The tangent spa
e to theregression manifold must span a K -dimensional spa
e if we are to 
onsistently estimate a
K -dimensional parameter ve
tor. This is analogous to the requirement that there be noperfe
t 
olinearity in a linear model. This is a ne
essary 
ondition for identi�
ation. Notethat the LLN implies that the above expe
tation is equal to

J∞(θ0) = 2 lim EF′F
n3. Consisten
yWe simply assume that the 
onditions of Theorem 19 hold, so the estimator is 
onsis-tent. Given that the strong sto
hasti
 equi
ontinuity 
onditions hold, as dis
ussed above,and given the above identi�
ation 
onditions an a 
ompa
t estimation spa
e (the 
losureof the parameter spa
e Θ), the 
onsisten
y proof's assumptions are satis�ed.4. Asymptoti
 normalityAs in the 
ase of GMM, we also simply assume that the 
onditions for asymptoti
normality as in Theorem 22 hold. The only remaining problem is to determine the formof the asymptoti
 varian
e-
ovarian
e matrix. Re
all that the result of the asymptoti
normality theorem is

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
,where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′ sn(θ) evaluated at θ0, and
I∞(θ0) = limV ar

√
nDθsn(θ

0)The obje
tive fun
tion is
sn(θ) =

1

n

n∑

t=1

[yt − f(xt, θ)]
2So

Dθsn(θ) = − 2

n

n∑

t=1

[yt − f(xt, θ)]Dθf(xt, θ).Evaluating at θ0,

Dθsn(θ
0) = − 2

n

n∑

t=1

εtDθf(xt, θ
0).



5. EXAMPLE: THE POISSON MODEL FOR COUNT DATA 213Note that the expe
tation of this is zero, sin
e ǫt and xt are assumed to be un
orrelated.So to 
al
ulate the varian
e, we 
an simply 
al
ulate the se
ond moment about zero. Alsonote that
n∑

t=1

εtDθf(xt, θ
0) =

∂

∂θ

[
f(θ0)

]′
ε

= F′εWith this we obtain
I∞(θ0) = limV ar

√
nDθsn(θ

0)

= limnE 4

n2
F′εε'F

= 4σ2 lim EF′F
nWe've already seen that

J∞(θ0) = 2 lim EF′F
n
,where the expe
tation is with respe
t to the joint density of x and ε. Combining theseexpressions for J∞(θ0) and I∞(θ0), and the result of the asymptoti
 normality theorem,we get

√
n
(
θ̂ − θ0

)
d→ N

(
0,

(
lim EF′F

n

)−1

σ2

)
.We 
an 
onsistently estimate the varian
e 
ovarian
e matrix using(54) (

F̂′F̂
n

)−1

σ̂2,where F̂ is de�ned as in equation 51 and
σ̂2 =

[
y − f(θ̂)

]′ [
y − f(θ̂)

]

n
,the obvious estimator. Note the 
lose 
orresponden
e to the results for the linear model.5. Example: The Poisson model for 
ount dataSuppose that yt 
onditional on xt is independently distributed Poisson. A Poissonrandom variable is a 
ount data variable, whi
h means it 
an take the values {0,1,2,...}.This sort of model has been used to study visits to do
tors per year, number of patentsregistered by businesses per year, et
.The Poisson density is

f(yt) =
exp(−λt)λyt

t

yt!
, yt ∈ {0, 1, 2, ...}.The mean of yt is λt, as is the varian
e. Note that λt must be positive. Suppose that thetrue mean is

λ0
t = exp(x′

tβ
0),whi
h enfor
es the positivity of λt. Suppose we estimate β0 by nonlinear least squares:

β̂ = arg min sn(β) =
1

T

n∑

t=1

(
yt − exp(x′

tβ)
)2
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an write
sn(β) =

1

T

n∑

t=1

(
exp(x′

tβ
0 + εt − exp(x′

tβ)
)2

=
1

T

n∑

t=1

(
exp(x′

tβ
0 − exp(x′

tβ)
)2

+
1

T

n∑

t=1

ε2t + 2
1

T

n∑

t=1

εt
(
exp(x′

tβ
0 − exp(x′

tβ)
)The last term has expe
tation zero sin
e the assumption that E(yt|xt) = exp(x′

tβ
0) impliesthat E (εt|xt) = 0, whi
h in turn implies that fun
tions of xt are un
orrelated with εt.Applying a strong LLN, and noting that the obje
tive fun
tion is 
ontinuous on a 
ompa
tparameter spa
e, we get

s∞(β) = Ex

(
exp(x′β0 − exp(x′β)

)2
+ Ex exp(x′β0)where the last term 
omes from the fa
t that the 
onditional varian
e of ε is the same asthe varian
e of y. This fun
tion is 
learly minimized at β = β0, so the NLS estimator is
onsistent as long as identi�
ation holds.Exer
ise 27. Determine the limiting distribution of√n(β̂ − β0

)
. This means �ndingthe the spe
i�
 forms of ∂2

∂β∂β′ sn(β), J (β0), ∂sn(β)
∂β

∣∣∣ , and I(β0). Again, use a CLT as needed,no need to verify that it 
an be applied.6. The Gauss-Newton algorithmReadings: Davidson and Ma
Kinnon, Chapter 6, pgs. 201-207∗.The Gauss-Newton optimization te
hnique is spe
i�
ally designed for nonlinear leastsquares. The idea is to linearize the nonlinear model, rather than the obje
tive fun
tion.The model is
y = f(θ0) + ε.At some θ in the parameter spa
e, not equal to θ0, we have
y = f(θ) + νwhere ν is a 
ombination of the fundamental error term ε and the error due to evaluatingthe regression fun
tion at θ rather than the true value θ0. Take a �rst order Taylor's seriesapproximation around a point θ1 :

y = f(θ1) +
[
Dθ′f

(
θ1
)] (

θ − θ1
)

+ ν + approximation error.De�ne z ≡ y − f(θ1) and b ≡ (θ − θ1). Then the last equation 
an be written as
z = F(θ1)b+ ω,where, as above, F(θ1) ≡ Dθ′f(θ

1) is the n × K matrix of derivatives of the regressionfun
tion, evaluated at θ1, and ω is ν plus approximation error from the trun
ated Taylor'sseries.
• Note that F is known, given θ1.

• Note that one 
ould estimate b simply by performing OLS on the above equation.
• Given b̂, we 
al
ulate a new round estimate of θ0 as θ2 = b̂+ θ1.With this, take anew Taylor's series expansion around θ2 and repeat the pro
ess. Stop when b̂ = 0(to within a spe
i�ed toleran
e).



7. APPLICATION: LIMITED DEPENDENT VARIABLES AND SAMPLE SELECTION 215To see why this might work, 
onsider the above approximation, but evaluated at the NLSestimator:
y = f(θ̂) + F(θ̂)

(
θ − θ̂

)
+ ωThe OLS estimate of b ≡ θ − θ̂ is

b̂ =
(
F̂′F̂

)−1
F̂′
[
y − f(θ̂)

]
.This must be zero, sin
e

F̂′
(
θ̂
) [

y − f(θ̂)
]
≡ 0by de�nition of the NLS estimator (these are the normal equations as in equation 52, Sin
e

b̂ ≡ 0 when we evaluate at θ̂, updating would stop.
• The Gauss-Newton method doesn't require se
ond derivatives, as does the Newton-Raphson method, so it's faster.
• The var
ov estimator, as in equation 54 is simple to 
al
ulate, sin
e we have F̂as a by-produ
t of the estimation pro
ess (i.e., it's just the last round �regressormatrix�). In fa
t, a normal OLS program will give the NLS var
ov estimatordire
tly, sin
e it's just the OLS var
ov estimator from the last iteration.
• The method 
an su�er from 
onvergen
e problems sin
e F(θ)′F(θ), may be verynearly singular, even with an asymptoti
ally identi�ed model, espe
ially if θ isvery far from θ̂. Consider the example

y = β1 + β2xtβ
3 + εtWhen evaluated at β2 ≈ 0, β3 has virtually no e�e
t on the NLS obje
tive fun
-tion, so F will have rank that is �essentially� 2, rather than 3. In this 
ase, F′Fwill be nearly singular, so (F′F)−1 will be subje
t to large roundo� errors.7. Appli
ation: Limited dependent variables and sample sele
tionReadings: Davidson and Ma
Kinnon, Ch. 15∗ (a qui
k reading is su�
ient), J.He
kman, �Sample Sele
tion Bias as a Spe
i�
ation Error�, E
onometri
a, 1979 (This is a
lassi
 arti
le, not required for reading, and whi
h is a bit out-dated. Nevertheless it's agood pla
e to start if you en
ounter sample sele
tion problems in your resear
h).Sample sele
tion is a 
ommon problem in applied resear
h. The problem o

urs whenobservations used in estimation are sampled non-randomly, a

ording to some sele
tions
heme.7.1. Example: Labor Supply. Labor supply of a person is a positive number ofhours per unit time supposing the o�er wage is higher than the reservation wage, whi
his the wage at whi
h the person prefers not to work. The model (very simple, with tsubs
ripts suppressed):

• Chara
teristi
s of individual: x

• Latent labor supply: s∗ = x′β + ω

• O�er wage: wo = z′γ + ν

• Reservation wage: wr = q′δ + ηWrite the wage di�erential as
w∗ =

(
z′γ + ν

)
−
(
q′δ + η

)

≡ r′θ + ε
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s∗ = x′β + ω

w∗ = r′θ + ε.Assume that [
ω

ε

]
∼ N

([
0

0

]
,

[
σ2 ρσ

ρσ 1

])
.We assume that the o�er wage and the reservation wage, as well as the latent variable s∗are unobservable. What is observed is

w = 1 [w∗ > 0]

s = ws∗.In other words, we observe whether or not a person is working. If the person is working,we observe labor supply, whi
h is equal to latent labor supply, s∗. Otherwise, s = 0 6= s∗.Note that we are using a simplifying assumption that individuals 
an freely 
hoose theirweekly hours of work.Suppose we estimated the model
s∗ = x′β + residualusing only observations for whi
h s > 0. The problem is that these observations are thosefor whi
h w∗ > 0, or equivalently, −ε < r′θ and
E
[
ω| − ε < r′θ

]
6= 0,sin
e ε and ω are dependent. Furthermore, this expe
tation will in general depend on xsin
e elements of x 
an enter in r. Be
ause of these two fa
ts, least squares estimation isbiased and in
onsistent.Consider more 
arefully E [ω| − ε < r′θ] . Given the joint normality of ω and ε, we 
anwrite (see for example Spanos Statisti
al Foundations of E
onometri
 Modelling, pg. 122)

ω = ρσε+ η,where η has mean zero and is independent of ε. With this we 
an write
s∗ = x′β + ρσε+ η.If we 
ondition this equation on −ε < r′θ we get

s = x′β + ρσE(ε| − ε < r′θ) + ηwhi
h may be written as
s = x′β + ρσE(ε|ε > −r′θ) + η

• A useful result is that for
z ∼ N(0, 1)

E(z|z > z∗) =
φ(z∗)

Φ(−z∗) ,where φ (·) and Φ (·) are the standard normal density and distribution fun
tion,respe
tively. The quantity on the RHS above is known as the inverse Mill's ratio:
IMR(z∗) =

φ(z∗)
Φ(−z∗)
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an write (making use of the fa
t that the standard normal densityis symmetri
 about zero, so that φ(−a) = φ(a)):
s = x′β + ρσ

φ (r′θ)
Φ (r′θ)

+ η(55)
≡

[
x′ φ(r′θ)

Φ(r′θ)

] [ β

ζ

]
+ η.(56)where ζ = ρσ. The error term η has 
onditional mean zero, and is un
orrelated with theregressors x′ φ(r′θ)

Φ(r′θ) . At this point, we 
an estimate the equation by NLS.
• He
kman showed how one 
an estimate this in a two step pro
edure where �rst θ isestimated, then equation 56 is estimated by least squares using the estimated valueof θ to form the regressors. This is ine�
ient and estimation of the 
ovarian
e isa tri
ky issue. It is probably easier (and more e�
ient) just to do MLE.
• The model presented above depends strongly on joint normality. There exist manyalternative models whi
h weaken the maintained assumptions. It is possible toestimate 
onsistently without distributional assumptions. See Ahn and Powell,Journal of E
onometri
s, 1994.



CHAPTER 18Nonparametri
 inferen
e1. Possible pitfalls of parametri
 inferen
e: estimationReadings: H. White (1980) �Using Least Squares to Approximate Unknown Regres-sion Fun
tions,� International E
onomi
 Review, pp. 149-70.In this se
tion we 
onsider a simple example, whi
h illustrates both why nonparametri
methods may in some 
ases be preferred to parametri
 methods.We suppose that data is generated by random sampling of (y, x), where y = f(x) +ε,
x is uniformly distributed on (0, 2π), and ε is a 
lassi
al error. Suppose that

f(x) = 1 +
3x

2π
−
( x

2π

)2The problem of interest is to estimate the elasti
ity of f(x) with respe
t to x, throughoutthe range of x.In general, the fun
tional form of f(x) is unknown. One idea is to take a Taylor'sseries approximation to f(x) about some point x0. Flexible fun
tional forms su
h as thetrans
endental logarithmi
 (usually know as the translog) 
an be interpreted as se
ondorder Taylor's series approximations. We'll work with a �rst order approximation, forsimpli
ity. Approximating about x0:
h(x) = f(x0) +Dxf(x0) (x− x0)If the approximation point is x0 = 0, we 
an write

h(x) = a+ bxThe 
oe�
ient a is the value of the fun
tion at x = 0, and the slope is the value of thederivative at x = 0. These are of 
ourse not known. One might try estimation by ordinaryleast squares. The obje
tive fun
tion is
s(a, b) = 1/n

n∑

t=1

(yt − h(xt))
2 .The limiting obje
tive fun
tion, following the argument we used to get equations 31 and53 is

s∞(a, b) =

∫ 2π

0
(f(x) − h(x))2 dx.The theorem regarding the 
onsisten
y of extremum estimators (Theorem 19) tells us that

â and b̂ will 
onverge almost surely to the values that minimize the limiting obje
tivefun
tion. Solving the �rst order 
onditions1 reveals that s∞(a, b) obtains its minimumat {a0 = 7
6 , b

0 = 1
π

}
. The estimated approximating fun
tion ĥ(x) therefore tends almostsurely to

h∞(x) = 7/6 + x/π1The following results were obtained using the 
ommand maxima -b fff.ma
 You 
an get the sour
e �leat http://pareto.uab.es/m
reel/E
onometri
s/Examples/Nonparametri
/fff.ma
.218

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/fff.mac
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tions
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In Figure 1 we see the true fun
tion and the limit of the approximation to see the asymptoti
bias as a fun
tion of x.(The approximating model is the straight line, the true model has 
urvature.) Notethat the approximating model is in general in
onsistent, even at the approximation point.This shows that ��exible fun
tional forms� based upon Taylor's series approximations donot in general lead to 
onsistent estimation of fun
tions.The approximating model seems to �t the true model fairly well, asymptoti
ally. How-ever, we are interested in the elasti
ity of the fun
tion. Re
all that an elasti
ity is themarginal fun
tion divided by the average fun
tion:
ε(x) = xφ′(x)/φ(x)Good approximation of the elasti
ity over the range of x will require a good approximationof both f(x) and f ′(x) over the range of x. The approximating elasti
ity is
η(x) = xh′(x)/h(x)In Figure 2 we see the true elasti
ity and the elasti
ity obtained from the limiting approx-imating model.The true elasti
ity is the line that has negative slope for large x. Visually we see thatthe elasti
ity is not approximated so well. Root mean squared error in the approximationof the elasti
ity is (∫ 2π

0
(ε(x) − η(x))2 dx

)1/2

= . 31546Now suppose we use the leading terms of a trigonometri
 series as the approximatingmodel. The reason for using a trigonometri
 series as an approximating model is motivatedby the asymptoti
 properties of the Fourier �exible fun
tional form (Gallant, 1981, 1982),whi
h we will study in more detail below. Normally with this type of model the numberof basis fun
tions is an in
reasing fun
tion of the sample size. Here we hold the set ofbasis fun
tion �xed. We will 
onsider the asymptoti
 behavior of a �xed model, whi
h weinterpret as an approximation to the estimator's behavior in �nite samples. Consider theset of basis fun
tions:
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Figure 3. True fun
tion and more �exible approximation
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Z(x) =
[

1 x cos(x) sin(x) cos(2x) sin(2x)
]
.The approximating model is

gK(x) = Z(x)α.Maintaining these basis fun
tions as the sample size in
reases, we �nd that the limitingobje
tive fun
tion is minimized at
{
a1 =

7

6
, a2 =

1

π
, a3 = − 1

π2
, a4 = 0, a5 = − 1

4π2
, a6 = 0

}
.Substituting these values into gK(x) we obtain the almost sure limit of the approximation(57) g∞(x) = 7/6 + x/π + (cos x)

(
− 1

π2

)
+ (sinx) 0 + (cos 2x)

(
− 1

4π2

)
+ (sin 2x) 0In Figure 3 we have the approximation and the true fun
tion: Clearly the trun
atedtrigonometri
 series model o�ers a better approximation, asymptoti
ally, than does thelinear model. In Figure 4 we have the more �exible approximation's elasti
ity and that ofthe true fun
tion: On average, the �t is better, though there is some implausible wavyness
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ity and more �exible approximation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5  6  7

Fun1
Fun2

in the estimate. Root mean squared error in the approximation of the elasti
ity is
(∫ 2π

0

(
ε(x) − g′∞(x)x

g∞(x)

)2

dx

)1/2

= . 16213,about half that of the RMSE when the �rst order approximation is used. If the trigono-metri
 series 
ontained in�nite terms, this error measure would be driven to zero, as weshall see.2. Possible pitfalls of parametri
 inferen
e: hypothesis testingWhat do we mean by the term �nonparametri
 inferen
e�? Simply, this means inferen
esthat are possible without restri
ting the fun
tions of interest to belong to a parametri
family.
• Consider means of testing for the hypothesis that 
onsumers maximize utility. A
onsequen
e of utility maximization is that the Slutsky matrix D2

ph(p, U), where
h(p, U) are the a set of 
ompensated demand fun
tions, must be negative semi-de�nite. One approa
h to testing for utility maximization would estimate a setof normal demand fun
tions x(p,m).

• Estimation of these fun
tions by normal parametri
 methods requires spe
i�
ationof the fun
tional form of demand, for example
x(p,m) = x(p,m, θ0) + ε, θ0 ∈ Θ0,where x(p,m, θ0) is a fun
tion of known form and Θ0 is a �nite dimensionalparameter.

• After estimation, we 
ould use x̂ = x(p,m, θ̂) to 
al
ulate (by solving the inte-grability problem, whi
h is non-trivial) D̂2
ph(p, U). If we 
an statisti
ally reje
tthat the matrix is negative semi-de�nite, we might 
on
lude that 
onsumers don'tmaximize utility.

• The problem with this is that the reason for reje
tion of the theoreti
al propositionmay be that our 
hoi
e of fun
tional form is in
orre
t. In the introdu
tory se
tionwe saw that fun
tional form misspe
i�
ation leads to in
onsistent estimation ofthe fun
tion and its derivatives.
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• Testing using parametri
 models always means we are testing a 
ompound hy-pothesis. The hypothesis that is tested is 1) the e
onomi
 proposition we wish totest, and 2) the model is 
orre
tly spe
i�ed. Failure of either 1) or 2) 
an lead toreje
tion. This is known as the �model-indu
ed augmenting hypothesis.�
• Varian's WARP allows one to test for utility maximization without spe
ifying theform of the demand fun
tions. The only assumptions used in the test are thosedire
tly implied by theory, so reje
tion of the hypothesis 
alls into question thetheory.
• Nonparametri
 inferen
e allows dire
t testing of e
onomi
 propositions, withoutthe �model-indu
ed augmenting hypothesis�.3. The Fourier fun
tional formReadings: Gallant, 1987, �Identi�
ation and 
onsisten
y in semi-nonparametri
 re-gression,� in Advan
es in E
onometri
s, Fifth World Congress, V. 1, Truman Bewley, ed.,Cambridge.
• Suppose we have a multivariate model

y = f(x) + ε,where f(x) is of unknown form and x is a P−dimensional ve
tor. For simpli
ity,assume that ε is a 
lassi
al error. Let us take the estimation of the ve
tor ofelasti
ities with typi
al element
ξxi

=
xi

f(x)

∂f(x)

∂xif(x)
,at an arbitrary point xi.The Fourier form, following Gallant (1982), but with a somewhat di�erent parameteriza-tion, may be written as(58) gK(x | θK) = α+ x′β + 1/2x′Cx +

A∑

α=1

J∑

j=1

(
ujα cos(jk′

αx) − vjα sin(jk′
αx)
)
.where the K-dimensional parameter ve
tor(59) θK = {α, β′, vec∗(C)′, u11, v11, . . . , uJA, vJA}′.

• We assume that the 
onditioning variables x have ea
h been transformed to liein an interval that is shorter than 2π. This is required to avoid periodi
 behaviorof the approximation, whi
h is desirable sin
e e
onomi
 fun
tions aren't periodi
.For example, subtra
t sample means, divide by the maxima of the 
onditioningvariables, and multiply by 2π − eps, where eps is some positive number less than
2π in value.

• The kα are �elementary multi-indi
es� whi
h are simply P− ve
tors formed ofintegers (negative, positive and zero). The kα, α = 1, 2, ..., A are required to belinearly independent, and we follow the 
onvention that the �rst non-zero elementbe positive. For example
[

0 1 −1 0 1
]′
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[

0 −1 −1 0 1
]′is not sin
e its �rst nonzero element is negative. Nor is

[
0 2 −2 0 2

]′a multi-index we would use, sin
e it is a s
alar multiple of the original multi-index.
• We parameterize the matrix C di�erently than does Gallant be
ause it simpli�esthings in pra
ti
e. The 
ost of this is that we are no longer able to test a quadrati
spe
i�
ation using nested testing.The ve
tor of �rst partial derivatives is(60) DxgK(x | θK) = β + Cx +

A∑

α=1

J∑

j=1

[(
−ujα sin(jk′

αx) − vjα cos(jk′
αx)
)
jkα

]and the matrix of se
ond partial derivatives is(61) D2
xgK(x|θK) = C +

A∑

α=1

J∑

j=1

[(
−ujα cos(jk′

αx) + vjα sin(jk′
αx)
)
j2kαk

′
α

]To de�ne a 
ompa
t notation for partial derivatives, let λ be an N -dimensional multi-index with no negative elements. De�ne | λ |∗ as the sum of the elements of λ. If we have
N arguments x of the (arbitrary) fun
tion h(x), use Dλh(x) to indi
ate a 
ertain partialderivative:

Dλh(x) ≡ ∂|λ|
∗

∂xλ1

1 ∂xλ2

2 · · · ∂xλN

N

h(x)When λ is the zero ve
tor, Dλh(x) ≡ h(x). Taking this de�nition and the last few equationsinto a

ount, we see that it is possible to de�ne (1 ×K) ve
tor Zλ(x) so that(62) DλgK(x|θK) = zλ(x)′θK .

• Both the approximating model and the derivatives of the approximating modelare linear in the parameters.
• For the approximating model to the fun
tion (not derivatives), write gK(x|θK) =

z′θK for simpli
ity.The following theorem 
an be used to prove the 
onsisten
y of the Fourier form.Theorem 28. [Gallant and Ny
hka, 1987℄ Suppose that ĥn is obtained by maximizinga sample obje
tive fun
tion sn(h) over HKn where HK is a subset of some fun
tion spa
e
H on whi
h is de�ned a norm ‖ h ‖. Consider the following 
onditions:(a) Compa
tness: The 
losure of H with respe
t to ‖ h ‖ is 
ompa
t in the relativetopology de�ned by ‖ h ‖.(b) Denseness: ∪KHK , K = 1, 2, 3, ... is a dense subset of the 
losure of H with respe
tto ‖ h ‖ and HK ⊂ HK+1.(
) Uniform 
onvergen
e: There is a point h∗ in H and there is a fun
tion s∞(h, h∗)that is 
ontinuous in h with respe
t to ‖ h ‖ su
h that

lim
n→∞

sup
H

| sn(h) − s∞(h, h∗) |= 0



3. THE FOURIER FUNCTIONAL FORM 224almost surely.(d) Identi�
ation: Any point h in the 
losure of H with s∞(h, h∗) ≥ s∞(h∗, h∗) musthave ‖ h− h∗ ‖= 0.Under these 
onditions limn→∞ ‖ h∗−ĥn ‖= 0 almost surely, provided that limn→∞Kn =

∞ almost surely.The modi�
ation of the original statement of the theorem that has been made is to setthe parameter spa
e Θ in Gallant and Ny
hka's (1987) Theorem 0 to a single point and tostate the theorem in terms of maximization rather than minimization.This theorem is very similar in form to Theorem 19. The main di�eren
es are:(1) A generi
 norm ‖ h ‖ is used in pla
e of the Eu
lidean norm. This norm maybe stronger than the Eu
lidean norm, so that 
onvergen
e with respe
t to ‖ h ‖implies 
onvergen
e w.r.t the Eu
lidean norm. Typi
ally we will want to makesure that the norm is strong enough to imply 
onvergen
e of all fun
tions ofinterest.(2) The �estimation spa
e� H is a fun
tion spa
e. It plays the role of the parameterspa
e Θ in our dis
ussion of parametri
 estimators. There is no restri
tion to aparametri
 family, only a restri
tion to a spa
e of fun
tions that satisfy 
ertain
onditions. This formulation is mu
h less restri
tive than the restri
tion to aparametri
 family.(3) There is a denseness assumption that was not present in the other theorem.We will not prove this theorem (the proof is quite similar to the proof of theorem [19℄, seeGallant, 1987) but we will dis
uss its assumptions, in relation to the Fourier form as theapproximating model.3.1. Sobolev norm. Sin
e all of the assumptions involve the norm ‖ h ‖ , we needto make expli
it what norm we wish to use. We need a norm that guarantees that theerrors in approximation of the fun
tions we are interested in are a

ounted for. Sin
e weare interested in �rst-order elasti
ities in the present 
ase, we need 
lose approximation ofboth the fun
tion f(x) and its �rst derivative f ′(x), throughout the range of x. Let X bean open set that 
ontains all values of x that we're interested in. The Sobolev norm isappropriate in this 
ase. It is de�ned, making use of our notation for partial derivatives,as:
‖ h ‖m,X= max

|λ∗|≤m
sup
X

∣∣∣Dλh(x)
∣∣∣To see whether or not the fun
tion f(x) is well approximated by an approximating model

gK(x | θK), we would evaluate
‖ f(x) − gK(x | θK) ‖m,X .We see that this norm takes into a

ount errors in approximating the fun
tion and partialderivatives up to order m. If we want to estimate �rst order elasti
ities, as is the 
ase inthis example, the relevant m would be m = 1. Furthermore, sin
e we examine the supover X , 
onvergen
e w.r.t. the Sobolev means uniform 
onvergen
e, so that we obtain
onsistent estimates for all values of x.3.2. Compa
tness. Verifying 
ompa
tness with respe
t to this norm is quite te
hni-
al and unenlightening. It is proven by Elbadawi, Gallant and Souza, E
onometri
a, 1983.The basi
 requirement is that if we need 
onsisten
y w.r.t. ‖ h ‖m,X , then the fun
tions
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e whi
h takes into a

ount derivatives of order
m+ 1. A Sobolev spa
e is the set of fun
tions

Wm,X (D) = {h(x) :‖ h(x) ‖m,X< D},where D is a �nite 
onstant. In plain words, the fun
tions must have bounded partialderivatives of one order higher than the derivatives we seek to estimate.3.3. The estimation spa
e and the estimation subspa
e. Sin
e in our 
ase we'reinterested in 
onsistent estimation of �rst-order elasti
ities, we'll de�ne the estimation spa
eas follows:Definition 29. [Estimation spa
e℄ The estimation spa
e H = W2,X (D). The estima-tion spa
e is an open set, and we presume that h∗ ∈ H.So we are assuming that the fun
tion to be estimated has bounded se
ond derivativesthroughout X .With seminonparametri
 estimators, we don't a
tually optimize over the estimationspa
e. Rather, we optimize over a subspa
e, HKn , de�ned as:Definition 30. [Estimation subspa
e℄ The estimation subspa
e HK is de�ned as
HK = {gK(x|θK) : gK(x|θK) ∈ W2,Z(D), θK ∈ ℜK},where gK(x, θK) is the Fourier form approximation as de�ned in Equation 58.3.4. Denseness. The important point here is that HK is a spa
e of fun
tions that isindexed by a �nite dimensional parameter (θK has K elements, as in equation 59). With

n observations, n > K, this parameter is estimable. Note that the true fun
tion h∗ isnot ne
essarily an element of HK , so optimization over HK may not lead to a 
onsistentestimator. In order for optimization over HK to be equivalent to optimization over H, atleast asymptoti
ally, we need that:(1) The dimension of the parameter ve
tor, dim θKn → ∞ as n→ ∞. This is a
hievedby making A and J in equation 58 in
reasing fun
tions of n, the sample size. Itis 
lear that K will have to grow more slowly than n. The se
ond requirement is:(2) We need that the HK be dense subsets of H.The estimation subspa
e HK , de�ned above, is a subset of the 
losure of the estimationspa
e, H . A set of subsets Aa of a set A is �dense� if the 
losure of the 
ountable unionof the subsets is equal to the 
losure of A:
∪∞
a=1Aa = AUse a pi
ture here. The rest of the dis
ussion of denseness is provided just for 
ompleteness:there's no need to study it in detail. To show that HK is a dense subset of H with respe
tto ‖ h ‖1,X , it is useful to apply Theorem 1 of Gallant (1982), who in turn 
ites Edmundsand Mos
atelli (1977). We reprodu
e the theorem as presented by Gallant, with minornotational 
hanges, for 
onvenien
e of referen
e:Theorem 31. [Edmunds and Mos
atelli, 1977℄ Let the real-valued fun
tion h∗(x) be
ontinuously di�erentiable up to order m on an open set 
ontaining the 
losure of X . Thenit is possible to 
hoose a triangular array of 
oe�
ients θ1, θ2, . . . θK , . . . , su
h that forevery q with 0 ≤ q < m, and every ε > 0, ‖ h∗(x) − hK(x|θK) ‖q,X= o(K−m+q+ε) as

K → ∞.
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ation, q = 1, and m = 2. By de�nition of the estimation spa
e, theelements of H are on
e 
ontinuously di�erentiable on X , whi
h is open and 
ontains the
losure of X , so the theorem is appli
able. Closely following Gallant and Ny
hka (1987),
∪∞HK is the 
ountable union of the HK . The impli
ation of Theorem 31 is that there isa sequen
e of {hK} from ∪∞HK su
h that

lim
K→∞

‖ h∗ − hK ‖1,X= 0,for all h∗ ∈ H. Therefore,
H ⊂ ∪∞HK .However,
∪∞HK ⊂ H,so
∪∞HK ⊂ H.Therefore
H = ∪∞HK ,so ∪∞HK is a dense subset of H, with respe
t to the norm ‖ h ‖1,X .3.5. Uniform 
onvergen
e. We now turn to the limiting obje
tive fun
tion. Weestimate by OLS. The sample obje
tive fun
tion stated in terms of maximization is

sn(θK) = − 1

n

n∑

t=1

(yt − gK(xt | θK))2With random sampling, as in the 
ase of Equations 31 and 53, the limiting obje
tivefun
tion is(63) s∞ (g, f) = −
∫

X
(f(x) − g(x))2 dµx− σ2

ε .where the true fun
tion f(x) takes the pla
e of the generi
 fun
tion h∗ in the presentationof the theorem. Both g(x) and f(x) are elements of ∪∞HK .The pointwise 
onvergen
e of the obje
tive fun
tion needs to be strengthened to uni-form 
onvergen
e. We will simply assume that this holds, sin
e the way to verify thisdepends upon the spe
i�
 appli
ation. We also have 
ontinuity of the obje
tive fun
tionin g, with respe
t to the norm ‖ h ‖1,X sin
e
lim

‖g1−g0‖1,X→0

{
s∞
(
g1, f)

)
− s∞

(
g0, f)

)}

= lim
‖g1−g0‖1,X→0

∫

X

[(
g1(x) − f(x)

)2 −
(
g0(x) − f(x)

)2]
dµx.By the dominated 
onvergen
e theorem (whi
h applies sin
e the �nite bound D used tode�ne W2,Z(D) is dominated by an integrable fun
tion), the limit and the integral 
an beinter
hanged, so by inspe
tion, the limit is zero.3.6. Identi�
ation. The identi�
ation 
ondition requires that for any point (g, f) in

H×H, s∞(g, f) ≥ s∞(f, f) ⇒ ‖ g−f ‖1,X= 0. This 
ondition is 
learly satis�ed given that
g and f are on
e 
ontinuously di�erentiable (by the assumption that de�nes the estimationspa
e).
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on
epts. For the example of estimation of �rst-order elasti
ities,the relevant 
on
epts are:
• Estimation spa
e H = W2,X (D): the fun
tion spa
e in the 
losure of whi
h thetrue fun
tion must lie.
• Consisten
y norm ‖ h ‖1,X . The 
losure of H is 
ompa
t with respe
t to thisnorm.
• Estimation subspa
e HK . The estimation subspa
e is the subset of H that isrepresentable by a Fourier form with parameter θK . These are dense subsets of
H.

• Sample obje
tive fun
tion sn(θK), the negative of the sum of squares. By standardarguments this 
onverges uniformly to the
• Limiting obje
tive fun
tion s∞( g, f), whi
h is 
ontinuous in g and has a globalmaximum in its �rst argument, over the 
losure of the in�nite union of the esti-mation subpa
es, at g = f.

• As a result of this, �rst order elasti
ities
xi

f(x)

∂f(x)

∂xif(x)are 
onsistently estimated for all x ∈ X .3.8. Dis
ussion. Consisten
y requires that the number of parameters used in theexpansion in
rease with the sample size, tending to in�nity. If parameters are added at ahigh rate, the bias tends relatively rapidly to zero. A basi
 problem is that a high rate ofin
lusion of additional parameters 
auses the varian
e to tend more slowly to zero. Theissue of how to 
hose the rate at whi
h parameters are added and whi
h to add �rst isfairly 
omplex. A problem is that the allowable rates for asymptoti
 normality to obtain(Andrews 1991; Gallant and Souza, 1991) are very stri
t. Supposing we sti
k to theserates, our approximating model is:
gK(x|θK) = z′θK .

• De�ne ZK as the n ×K matrix of regressors obtained by sta
king observations.The LS estimator is
θ̂K =

(
Z′
KZK

)+
Z′
Ky,where (·)+ is the Moore-Penrose generalized inverse.� This is used sin
e Z′

KZK may be singular, as would be the 
ase for K(n)large enough when some dummy variables are in
luded.
• . The predi
tion, z′θ̂K , of the unknown fun
tion f(x) is asymptoti
ally normallydistributed: √

n
(
z′θ̂K − f(x)

)
d→ N(0, AV ),where

AV = lim
n→∞

E

[
z′
(

Z′
KZK

n

)+

zσ̂2

]
.Formally, this is exa
tly the same as if we were dealing with a parametri
 linearmodel. I emphasize, though, that this is only valid if K grows very slowly as

n grows. If we 
an't sti
k to a

eptable rates, we should probably use someother method of approximating the small sample distribution. Bootstrapping isa possibility. We'll dis
uss this in the se
tion on simulation.



4. KERNEL REGRESSION ESTIMATORS 2284. Kernel regression estimatorsReadings: Bierens, 1987, �Kernel estimators of regression fun
tions,� in Advan
es inE
onometri
s, Fifth World Congress, V. 1, Truman Bewley, ed., Cambridge.An alternative method to the semi-nonparametri
 method is a fully nonparametri
method of estimation. Kernel regression estimation is an example (others are splines,nearest neighbor, et
.). We'll 
onsider the Nadaraya-Watson kernel regression estimatorin a simple 
ase.
• Suppose we have an iid sample from the joint density f(x, y), where x is k -dimensional. The model is

yt = g(xt) + εt,where
E(εt|xt) = 0.

• The 
onditional expe
tation of y given x is g(x). By de�nition of the 
onditionalexpe
tation, we have
g(x) =

∫
y
f(x, y)

h(x)
dy

=
1

h(x)

∫
yf(x, y)dy,where h(x) is the marginal density of x :

h(x) =

∫
f(x, y)dy.

• This suggests that we 
ould estimate g(x) by estimating h(x) and ∫ yf(x, y)dy.4.1. Estimation of the denominator. A kernel estimator for h(x) has the form
ĥ(x) =

1

n

n∑

t=1

K [(x− xt) /γn]

γkn
,where n is the sample size and k is the dimension of x.

• The fun
tion K(·) (the kernel) is absolutely integrable:
∫

|K(x)|dx <∞,and K(·) integrates to 1 :
∫
K(x)dx = 1.In this respe
t, K(·) is like a density fun
tion, but we do not ne
essarily restri
t

K(·) to be nonnegative.
• The window width parameter, γn is a sequen
e of positive numbers that satis�es

lim
n→∞

γn = 0

lim
n→∞

nγkn = ∞So, the window width must tend to zero, but not too qui
kly.
• To show pointwise 
onsisten
y of ĥ(x) for h(x), �rst 
onsider the expe
tationof the estimator (sin
e the estimator is an average of iid terms we only need to
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onsider the expe
tation of a representative term):
E
[
ĥ(x)

]
=

∫
γ−kn K [(x− z) /γn]h(z)dz.Change variables as z∗ = (x− z)/γn, so z = x− γnz

∗ and | dzdz∗′ | = γkn, we obtain
E
[
ĥ(x)

]
=

∫
γ−kn K (z∗)h(x− γnz

∗)γkndz
∗

=

∫
K (z∗)h(x− γnz

∗)dz∗.Now, asymptoti
ally,
lim
n→∞

E
[
ĥ(x)

]
= lim

n→∞

∫
K (z∗)h(x− γnz

∗)dz∗

=

∫
lim
n→∞

K (z∗)h(x− γnz
∗)dz∗

=

∫
K (z∗)h(x)dz∗

= h(x)

∫
K (z∗) dz∗

= h(x),sin
e γn → 0 and ∫ K (z∗) dz∗ = 1 by assumption. (Note: that we 
an pass thelimit through the integral is a result of the dominated 
onvergen
e theorem.. Forthis to hold we need that h(·) be dominated by an absolutely integrable fun
tion.
• Next, 
onsidering the varian
e of ĥ(x), we have, due to the iid assumption

nγknV
[
ĥ(x)

]
= nγkn

1

n2

n∑

t=1

V

{
K [(x− xt) /γn]

γkn

}

= γ−kn
1

n

n∑

t=1

V {K [(x− xt) /γn]}

• By the representative term argument, this is
nγknV

[
ĥ(x)

]
= γ−kn V {K [(x− z) /γn]}

• Also, sin
e V (x) = E(x2) −E(x)2 we have
nγknV

[
ĥ(x)

]
= γ−kn E

{
(K [(x− z) /γn])

2
}
− γ−kn {E (K [(x− z) /γn])}2

=

∫
γ−kn K [(x− z) /γn]

2 h(z)dz − γkn

{∫
γ−kn K [(x− z) /γn] h(z)dz

}2

=

∫
γ−kn K [(x− z) /γn]

2 h(z)dz − γknE
[
ĥ(x)

]2The se
ond term 
onverges to zero:
γknE

[
ĥ(x)

]2
→ 0,by the previous result regarding the expe
tation and the fa
t that γn → 0. There-fore,

lim
n→∞

nγknV
[
ĥ(x)

]
= lim

n→∞

∫
γ−kn K [(x− z) /γn]

2 h(z)dz.
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tly the same 
hange of variables as before, this 
an be shown to be
lim
n→∞

nγknV
[
ĥ(x)

]
= h(x)

∫
[K(z∗)]2 dz∗.Sin
e both ∫ [K(z∗)]2 dz∗ and h(x) are bounded, this is bounded, and sin
e nγkn →

∞ by assumption, we have that
V
[
ĥ(x)

]
→ 0.

• Sin
e the bias and the varian
e both go to zero, we have pointwise 
onsisten
y(
onvergen
e in quadrati
 mean implies 
onvergen
e in probability).4.2. Estimation of the numerator. To estimate ∫ yf(x, y)dy, we need an estimatorof f(x, y). The estimator has the same form as the estimator for h(x), only with onedimension more:
f̂(x, y) =

1

n

n∑

t=1

K∗ [(y − yt) /γn, (x− xt) /γn]

γk+1
nThe kernel K∗ (·) is required to have mean zero:

∫
yK∗ (y, x) dy = 0and to marginalize to the previous kernel for h(x) :

∫
K∗ (y, x) dy = K(x).With this kernel, we have

∫
yf̂(y, x)dy =

1

n

n∑

t=1

yt
K [(x− xt) /γn]

γknby marginalization of the kernel, so we obtain
ĝ(x) =

1

ĥ(x)

∫
yf̂(y, x)dy

=

1
n

∑n
t=1 yt

K[(x−xt)/γn]
γk

n

1
n

∑n
t=1

K[(x−xt)/γn]
γk

n

=

∑n
t=1 ytK [(x− xt) /γn]∑n
t=1K [(x− xt) /γn]

.This is the Nadaraya-Watson kernel regression estimator.4.3. Dis
ussion.
• The kernel regression estimator for g(xt) is a weighted average of the yj, j =

1, 2, ..., n, where higher weights are asso
iated with points that are 
loser to xt.The weights sum to 1.
• The window width parameter γn imposes smoothness. The estimator is in
reas-ingly �at as γn → ∞, sin
e in this 
ase ea
h weight tends to 1/n.

• A large window width redu
es the varian
e (strong imposition of �atness), butin
reases the bias.
• A small window width redu
es the bias, but makes very little use of informa-tion ex
ept points that are in a small neighborhood of xt. Sin
e relatively littleinformation is used, the varian
e is large when the window width is small.



6. SEMI-NONPARAMETRIC MAXIMUM LIKELIHOOD 231
• The standard normal density is a popular 
hoi
e for K(.) and K∗(y, x), thoughthere are possibly better alternatives.4.4. Choi
e of the window width: Cross-validation. The sele
tion of an appro-priate window width is important. One popular method is 
ross validation. This 
onsistsof splitting the sample into two parts (e.g., 50%-50%). The �rst part is the �in sample�data, whi
h is used for estimation, and the se
ond part is the �out of sample� data, usedfor evaluation of the �t though RMSE or some other 
riterion. The steps are:(1) Split the data. The out of sample data is yout and xout.(2) Choose a window width γ.(3) With the in sample data, �t ŷoutt 
orresponding to ea
h xoutt . This �tted value isa fun
tion of the in sample data, as well as the evaluation point xoutt , but it doesnot involve youtt .(4) Repeat for all out of sample points.(5) Cal
ulate RMSE(γ)(6) Go to step 2, or to the next step if enough window widths have been tried.(7) Sele
t the γ that minimizes RMSE(γ) (Verify that a minimum has been found,for example by plotting RMSE as a fun
tion of γ).(8) Re-estimate using the best γ and all of the data.This same prin
iple 
an be used to 
hoose A and J in a Fourier form model.5. Kernel density estimationThe previous dis
ussion suggests that a kernel density estimator may easily be 
on-stru
ted. We have already seen how joint densities may be estimated. If were interestedin a 
onditional density, for example of y 
onditional on x, then the kernel estimate of the
onditional density is simply

f̂y|x =
f̂(x, y)

ĥ(x)

=

1
n

∑n
t=1

K∗[(y−yt)/γn,(x−xt)/γn]

γk+1
n

1
n

∑n
t=1

K[(x−xt)/γn]
γk

n

=
1

γn

∑n
t=1K∗ [(y − yt) /γn, (x− xt) /γn]∑n

t=1K [(x− xt) /γn]where we obtain the expressions for the joint and marginal densities from the se
tion onkernel regression. 6. Semi-nonparametri
 maximum likelihoodReadings: Gallant and Ny
hka, E
onometri
a, 1987. For a Fortran program to dothis and a useful dis
ussion in the user's guide, seethis link . See also Cameron and Johansson, Journal of Applied E
onometri
s, V. 12,1997.MLE is the estimation method of 
hoi
e when we are 
on�dent about spe
ifying thedensity. Is is possible to obtain the bene�ts of MLE when we're not so 
on�dent about thespe
i�
ation? In part, yes.Suppose we're interested in the density of y 
onditional on x (both may be ve
tors).Suppose that the density f(y|x, φ) is a reasonable starting approximation to the true

http://www.econ.duke.edu/~get/snp.html


6. SEMI-NONPARAMETRIC MAXIMUM LIKELIHOOD 232density. This density 
an be reshaped by multiplying it by a squared polynomial. The newdensity is
gp(y|x, φ, γ) =

h2
p(y|γ)f(y|x, φ)

ηp(x, φ, γ)where
hp(y|γ) =

p∑

k=0

γky
kand ηp(x, φ, γ) is a normalizing fa
tor to make the density integrate (sum) to one. Be
ause

h2
p(y|γ)/ηp(x, φ, γ) is a homogenous fun
tion of θ it is ne
essary to impose a normalization:
γ0 is set to 1. The normalization fa
tor ηp(φ, γ) is 
al
ulated (following Cameron andJohansson) using

E(Y r) =
∞∑

y=0

yrfY (y|φ, γ)

=

∞∑

y=0

yr
[hp (y|γ)]2
ηp(φ, γ)

fY (y|φ)

=

∞∑

y=0

p∑

k=0

p∑

l=0

yrfY (y|φ)γkγly
kyl/ηp(φ, γ)

=

p∑

k=0

p∑

l=0

γkγl





∞∑

y=0

yr+k+lfY (y|φ)



 /ηp(φ, γ)

=

p∑

k=0

p∑

l=0

γkγlmk+l+r/ηp(φ, γ).By setting r = 0 we get that the normalizing fa
tor is64(64) ηp(φ, γ) =

p∑

k=0

p∑

l=0

γkγlmk+lRe
all that γ0 is set to 1 to a
hieve identi�
ation. The mr in equation 64 are the rawmoments of the baseline density. Gallant and Ny
hka (1987) give 
onditions under whi
hsu
h a density may be treated as 
orre
tly spe
i�ed, asymptoti
ally. Basi
ally, the order ofthe polynomial must in
rease as the sample size in
reases. However, there are te
hni
alities.Similarly to Cameron and Johannson (1997), we may develop a negative binomialpolynomial (NBP) density for 
ount data. The negative binomial baseline density may bewritten (see equation as
fY (y|φ) =

Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ ( λ

ψ + λ

)ywhere φ = {λ,ψ}, λ > 0 and ψ > 0. The usual means of in
orporating 
onditioningvariables x is the parameterization λ = ex
′β. When ψ = λ/α we have the negativebinomial-I model (NB-I). When ψ = 1/α we have the negative binomial-II (NP-II) model.For the NB-I density, V (Y ) = λ + αλ. In the 
ase of the NB-II model, we have V (Y ) =

λ+ αλ2. For both forms, E(Y ) = λ.The reshaped density, with normalization to sum to one, is(65) fY (y|φ, γ) =
[hp (y|γ)]2
ηp(φ, γ)

Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ ( λ

ψ + λ

)y
.
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To get the normalization fa
tor, we need the moment generating fun
tion:(66) MY (t) = ψψ
(
λ− etλ+ ψ

)−ψ
.To illustrate, Figure 5 shows 
al
ulation of the �rst four raw moments of the NB density,
al
ulated using MuPAD, whi
h is a Computer Algebra System that (use to be?) free forpersonal use. These are the moments you would need to use a se
ond order polynomial

(p = 2). MuPAD will output these results in the form of C 
ode, whi
h is relatively easy toedit to write the likelihood fun
tion for the model. This has been done in NegBinSNP.

,whi
h is a C++ version of this model that 
an be 
ompiled to use with o
tave using themko
tfile 
ommand. Note the impressive length of the expressions when the degree ofthe expansion is 4 or 5! This is an example of a model that would be di�
ult to formulatewithout the help of a program like MuPAD.It is possible that there is 
onditional heterogeneity su
h that the appropriate reshapingshould be more lo
al. This 
an be a

omodated by allowing the γk parameters to dependupon the 
onditioning variables, for example using polynomials.Gallant and Ny
hka, E
onometri
a, 1987 prove that this sort of density 
an approxi-mate a wide variety of densities arbitrarily well as the degree of the polynomial in
reaseswith the sample size. This approa
h is not without its drawba
ks: the sample obje
tivefun
tion 
an have an extremely large number of lo
al maxima that 
an lead to numeri
di�
ulties. If someone 
ould �gure out how to do in a way su
h that the sample obje
tivefun
tion was ni
e and smooth, they would probably get the paper published in a goodjournal. Any ideas?Here's a plot of true and the limiting SNP approximations (with the order of thepolynomial �xed) to four di�erent 
ount data densities, whi
h variously exhibit over andunderdispersion, as well as ex
ess zeros. The baseline model is a negative binomial density.

http://www.mupad.org
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/NegBinSNP.cc


7. EXAMPLES 234

0 5 10 15 20

.1

.2

.3

.4

.5

Case 1

0 5 10 15 20 25

.05

.1

Case 2

1 2 3 4 5 6 7

.05

.1

.15

.2

.25

Case 3

2.5 5 7.5 10 12.5 15

.05

.1

.15

.2

Case 4

7. ExamplesWe'll use the MEPS OBDV data to illustrate kernel regression and semi-nonparametri
maximum likelihood.7.1. Kernel regression estimation. Let's try a kernel regression �t for the OBDVdata. The program OBDVkernel.m loads the MEPS OBDV data, s
ans over a rangeof window widths and 
al
ulates leave-one-out CV s
ores, and plots the �tted OBDVusage versus AGE, using the best window width. The plot is in Figure 6. Note thatusage in
reases with age, just as we've seen with the parametri
 models. On
e 
ould usebootstrapping to generate a 
on�den
e interval to the �t.7.2. Seminonparametri
 ML estimation and the MEPS data. Now let's esti-mate a seminonparametri
 density for the OBDV data. We'll reshape a negative binomialdensity, as dis
ussed above. The program EstimateNBSNP.m loads the MEPS OBDVdata and estimates the model, using a NB-I baseline density and a 2nd order polynomialexpansion. The output is:OBDV======================================================BFGSMIN final resultsUsed numeri
 gradient------------------------------------------------------STRONG CONVERGENCEFun
tion 
onv 1 Param 
onv 1 Gradient 
onv 1

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/OBDVkernel.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/EstimateNBSNP.m
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------------------------------------------------------Obje
tive fun
tion value 2.17061Stepsize 0.006524 iterations------------------------------------------------------param gradient 
hange1.3826 0.0000 -0.00000.2317 -0.0000 0.00000.1839 0.0000 0.00000.2214 0.0000 -0.00000.1898 0.0000 -0.00000.0722 0.0000 -0.0000-0.0002 0.0000 -0.00001.7853 -0.0000 -0.0000-0.4358 0.0000 -0.00000.1129 0.0000 0.0000******************************************************NegBin SNP model, MEPS full data setMLE Estimation ResultsBFGS 
onvergen
e: Normal 
onvergen
eAverage Log-L: -2.170614Observations: 4564estimate st. err t-stat p-value
onstant -0.147 0.126 -1.173 0.241pub. ins. 0.695 0.050 13.936 0.000priv. ins. 0.409 0.046 8.833 0.000sex 0.443 0.034 13.148 0.000age 0.016 0.001 11.880 0.000



7. EXAMPLES 236edu 0.025 0.006 3.903 0.000in
 -0.000 0.000 -0.011 0.991gam1 1.785 0.141 12.629 0.000gam2 -0.436 0.029 -14.786 0.000lnalpha 0.113 0.027 4.166 0.000Information CriteriaCAIC : 19907.6244 Avg. CAIC: 4.3619BIC : 19897.6244 Avg. BIC: 4.3597AIC : 19833.3649 Avg. AIC: 4.3456******************************************************Note that the CAIC and BIC are lower for this model than for the models presented inTable 3. This model �ts well, still being parsimonious. You 
an play around trying otheruse measures, using a NP-II baseline density, and using other orders of expansions. Densityfun
tions formed in this way may have MANY lo
al maxima, so you need to be 
arefulbefore a

epting the results of a 
asual run. To guard against having 
onverged to a lo
almaximum, one 
an try using multiple starting values, or one 
ould try simulated annealingas an optimization method. If you un
omment the relevant lines in the program, you 
anuse SA to do the minimization. This will take a lot of time, 
ompared to the default BFGSminimization. The 
hapter on parallel 
omputations might be interesting to read beforetrying this.



CHAPTER 19Simulation-based estimationReadings: In addition to the book mentioned previously, arti
les in
lude Gallant andTau
hen (1996), �Whi
h Moments to Mat
h?�, ECONOMETRIC THEORY, Vol. 12, 1996,pages 657-681;  Gourieroux, Monfort and Renault (1993), �Indire
t Inferen
e,� J. Apl.E
onometri
s; Pakes and Pollard (1989) E
onometri
a; M
Fadden (1989) E
onometri
a.1. MotivationSimulation methods are of interest when the DGP is fully 
hara
terized by a parameterve
tor, but the likelihood fun
tion is not 
al
ulable. If it were available, we would simplyestimate by MLE, whi
h is asymptoti
ally fully e�
ient.1.1. Example: Multinomial and/or dynami
 dis
rete response models. Let
y∗i be a latent random ve
tor of dimension m. Suppose that

y∗i = Xiβ + εiwhere Xi is m×K. Suppose that(67) εi ∼ N(0,Ω)Hen
eforth drop the i subs
ript when it is not needed for 
larity.
• y∗ is not observed. Rather, we observe a many-to-one mapping

y = τ(y∗)This mapping is su
h that ea
h element of y is either zero or one (in some 
asesonly one element will be one).
• De�ne

Ai = A(yi) = {y∗|yi = τ(y∗)}Suppose random sampling of (yi,Xi). In this 
ase the elements of yi may not beindependent of one another (and 
learly are not if Ω is not diagonal). However,
yi is independent of yj, i 6= j.

• Let θ = (β′, (vec∗Ω)′)′ be the ve
tor of parameters of the model. The 
ontributionof the ith observation to the likelihood fun
tion is
pi(θ) =

∫

Ai

n(y∗i −Xiβ,Ω)dy∗iwhere
n(ε,Ω) = (2π)−M/2 |Ω|−1/2 exp

[−ε′Ω−1ε

2

]is the multivariate normal density of an M -dimensional random ve
tor. Thelog-likelihood fun
tion is
lnL(θ) =

1

n

n∑

i=1

ln pi(θ)237



1. MOTIVATION 238and the MLE θ̂ solves the s
ore equations
1

n

n∑

i=1

gi(θ̂) =
1

n

n∑

i=1

Dθpi(θ̂)

pi(θ̂)
≡ 0.

• The problem is that evaluation of Li(θ) and its derivative w.r.t. θ by standardmethods of numeri
 integration su
h as quadrature is 
omputationally infeasiblewhen m (the dimension of y) is higher than 3 or 4 (as long as there are norestri
tions on Ω).

• The mapping τ(y∗) has not been made spe
i�
 so far. This setup is quite general:for di�erent 
hoi
es of τ(y∗) it nests the 
ase of dynami
 binary dis
rete 
hoi
emodels as well as the 
ase of multinomial dis
rete 
hoi
e (the 
hoi
e of one out ofa �nite set of alternatives).� Multinomial dis
rete 
hoi
e is illustrated by a (very simple) job sear
h model.We have 
ross se
tional data on individuals' mat
hing to a set of m jobs thatare available (one of whi
h is unemployment). The utility of alternative j is
uj = Xjβ + εjUtilities of jobs, sta
ked in the ve
tor ui are not observed. Rather, we observethe ve
tor formed of elements

yj = 1 [uj > uk,∀k ∈ m,k 6= j]Only one of these elements is di�erent than zero.� Dynami
 dis
rete 
hoi
e is illustrated by repeated 
hoi
es over time betweentwo alternatives. Let alternative j have utility
ujt = Wjtβ − εjt,

j ∈ {1, 2}
t ∈ {1, 2, ...,m}Then

y∗ = u2 − u1

= (W2 −W1)β + ε2 − ε1

≡ Xβ + εNow the mapping is (element-by-element)
y = 1 [y∗ > 0] ,that is yit = 1 if individual i 
hooses the se
ond alternative in period t, zerootherwise.1.2. Example: Marginalization of latent variables. E
onomi
 data often presentssubstantial heterogeneity that may be di�
ult to model. A possibility is to introdu
e la-tent random variables. This 
an 
ause the problem that there may be no known 
losedform for the distribution of observable variables after marginalizing out the unobservablelatent variables. For example, 
ount data (that takes values 0, 1, 2, 3, ...) is often modeledusing the Poisson distribution

Pr(y = i) =
exp(−λ)λi

i!



1. MOTIVATION 239The mean and varian
e of the Poisson distribution are both equal to λ :

E(y) = V (y) = λ.Often, one parameterizes the 
onditional mean as
λi = exp(Xiβ).This ensures that the mean is positive (as it must be). Estimation by ML is straightforward.Often, 
ount data exhibits �overdispersion� whi
h simply means that
V (y) > E(y).If this is the 
ase, a solution is to use the negative binomial distribution rather than thePoisson. An alternative is to introdu
e a latent variable that re�e
ts heterogeneity intothe spe
i�
ation:

λi = exp(Xiβ + ηi)where ηi has some spe
i�ed density with support S (this density may depend on additionalparameters). Let dµ(ηi) be the density of ηi. In some 
ases, the marginal density of y
Pr(y = yi) =

∫

S

exp [− exp(Xiβ + ηi)] [exp(Xiβ + ηi)]
yi

yi!
dµ(ηi)will have a 
losed-form solution (one 
an derive the negative binomial distribution in theway if η has an exponential distribution), but often this will not be possible. In this 
ase,simulation is a means of 
al
ulating Pr(y = i), whi
h is then used to do ML estimation.This would be an example of the Simulated Maximum Likelihood (SML) estimation.

• In this 
ase, sin
e there is only one latent variable, quadrature is probably abetter 
hoi
e. However, a more �exible model with heterogeneity would allow allparameters (not just the 
onstant) to vary. For example
Pr(y = yi) =

∫

S

exp [− exp(Xiβi)] [exp(Xiβi)]
yi

yi!
dµ(βi)entails a K = dimβi-dimensional integral, whi
h will not be evaluable by quad-rature when K gets large.1.3. Estimation of models spe
i�ed in terms of sto
hasti
 di�erential equa-tions. It is often 
onvenient to formulate models in terms of 
ontinuous time using dif-ferential equations. A realisti
 model should a

ount for exogenous sho
ks to the system,whi
h 
an be done by assuming a random 
omponent. This leads to a model that isexpressed as a system of sto
hasti
 di�erential equations. Consider the pro
ess

dyt = g(θ, yt)dt + h(θ, yt)dWtwhi
h is assumed to be stationary. {Wt} is a standard Brownian motion (Weiner pro
ess),su
h that
W (T ) =

∫ T

0
dWt ∼ N(0, T )Brownian motion is a 
ontinuous-time sto
hasti
 pro
ess su
h that

• W (0) = 0

• [W (s) −W (t)] ∼ N(0, s − t)

• [W (s) −W (t)] and [W (j) −W (k)] are independent for s > t > j > k. That is,non-overlapping segments are independent.
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an think of Brownian motion the a

umulation of independent normally distributedsho
ks with in�nitesimal varian
e.
• The fun
tion g(θ, yt) is the deterministi
 part.
• h(θ, yt) determines the varian
e of the sho
ks.To estimate a model of this sort, we typi
ally have data that are assumed to be observationsof yt in dis
rete points y1, y2, ...yT . That is, though yt is a 
ontinuous pro
ess it is observedin dis
rete time.To perform inferen
e on θ, dire
t ML or GMM estimation is not usually feasible,be
ause one 
annot, in general, dedu
e the transition density f(yt|yt−1, θ). This density isne
essary to evaluate the likelihood fun
tion or to evaluate moment 
onditions (whi
h arebased upon expe
tations with respe
t to this density).
• A typi
al solution is to �dis
retize� the model, by whi
h we mean to �nd a dis
retetime approximation to the model. The dis
retized version of the model is

yt − yt−1 = g(φ, yt−1) + h(φ, yt−1)εt

εt ∼ N(0, 1)The dis
retization indu
es a new parameter, φ (that is, the φ0 whi
h de�nesthe best approximation of the dis
retization to the a
tual (unknown) dis
retetime version of the model is not equal to θ0 whi
h is the true parameter value).This is an approximation, and as su
h �ML� estimation of φ (whi
h is a
tuallyquasi-maximum likelihood, QML) based upon this equation is in general biasedand in
onsistent for the original parameter, θ. Nevertheless, the approximationshouldn't be too bad, whi
h will be useful, as we will see.
• The important point about these three examples is that 
omputational di�
ultiesprevent dire
t appli
ation of ML, GMM, et
. Nevertheless the model is fullyspe
i�ed in probabilisti
 terms up to a parameter ve
tor. This means that themodel is simulable, 
onditional on the parameter ve
tor.

2. Simulated maximum likelihood (SML)For simpli
ity, 
onsider 
ross-se
tional data. An ML estimator solves
θ̂ML = arg max sn(θ) =

1

n

n∑

t=1

ln p(yt|Xt, θ)where p(yt|Xt, θ) is the density fun
tion of the tth observation. When p(yt|Xt, θ) does nothave a known 
losed form, θ̂ML is an infeasible estimator. However, it may be possible tode�ne a random fun
tion su
h that
Eνf(ν, yt,Xt, θ) = p(yt|Xt, θ)where the density of ν is known. If this is the 
ase, the simulator

p̃ (yt,Xt, θ) =
1

H

H∑

s=1

f(νts, yt,Xt, θ)is unbiased for p(yt|Xt, θ).
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• The SML simply substitutes p̃ (yt,Xt, θ) in pla
e of p(yt|Xt, θ) in the log-likelihoodfun
tion, that is

θ̂SML = arg max sn(θ) =
1

n

n∑

i=1

ln p̃ (yt,Xt, θ)2.1. Example: multinomial probit. Re
all that the utility of alternative j is
uj = Xjβ + εjand the ve
tor y is formed of elements

yj = 1 [uj > uk, k ∈ m,k 6= j]The problem is that Pr(yj = 1|θ) 
an't be 
al
ulated whenm is larger than 4 or 5. However,it is easy to simulate this probability.
• Draw ε̃i from the distribution N(0,Ω)

• Cal
ulate ũi = Xiβ + ε̃i (where Xi is the matrix formed by sta
king the Xij)

• De�ne ỹij = 1 [uij > uik,∀k ∈ m,k 6= j]

• Repeat this H times and de�ne
π̃ij =

∑H
h=1 ỹijh
H

• De�ne π̃i as the m-ve
tor formed of the π̃ij. Ea
h element of π̃i is between 0 and1, and the elements sum to one.
• Now p̃ (yi,Xi, θ) = y′iπ̃i
• The SML multinomial probit log-likelihood fun
tion is

lnL(β,Ω) =
1

n

n∑

i=1

y′i ln p̃ (yi,Xi, θ)This is to be maximized w.r.t. β and Ω.Notes:
• TheH draws of ε̃i are draw only on
e and are used repeatedly during the iterationsused to �nd β̂ and Ω̂. The draws are di�erent for ea
h i. If the ε̃i are re-drawn atevery iteration the estimator will not 
onverge.
• The log-likelihood fun
tion with this simulator is a dis
ontinuous fun
tion of βand Ω. This does not 
ause problems from a theoreti
al point of view sin
e it 
anbe shown that lnL(β,Ω) is sto
hasti
ally equi
ontinuous. However, it does 
auseproblems if one attempts to use a gradient-based optimization method su
h asNewton-Raphson.
• It may be the 
ase, parti
ularly if few simulations, H, are used, that some elementsof π̃i are zero. If the 
orresponding element of yi is equal to 1, there will be a

log(0) problem.
• Solutions to dis
ontinuity:� 1) use an estimation method that doesn't require a 
ontinuous and di�eren-tiable obje
tive fun
tion, for example, simulated annealing. This is 
ompu-tationally 
ostly.� 2) Smooth the simulated probabilities so that they are 
ontinuous fun
tionsof the parameters. For example, apply a kernel transformation su
h as

ỹij = Φ

(
A×

[
uij −

m
max
k=1

uik

])
+ .5 × 1

[
uij =

m
max
k=1

uik

]



3. METHOD OF SIMULATED MOMENTS (MSM) 242where A is a large positive number. This approximates a step fun
tion su
hthat ỹij is very 
lose to zero if uij is not the maximum, and uij = 1 if itis the maximum. This makes ỹij a 
ontinuous fun
tion of β and Ω, so that
p̃ij and therefore lnL(β,Ω) will be 
ontinuous and di�erentiable. Consis-ten
y requires that A(n)

p→ ∞, so that the approximation to a step fun
tionbe
omes arbitrarily 
lose as the sample size in
reases. There are alterna-tive methods (e.g., Gibbs sampling) that may work better, but this is toote
hni
al to dis
uss here.
• To solve to log(0) problem, one possibility is to sear
h the web for the slog fun
tion.Also, in
rease H if this is a serious problem.2.2. Properties. The properties of the SML estimator depend on how H is set. Thefollowing is taken from Lee (1995) �Asymptoti
 Bias in Simulated Maximum LikelihoodEstimation of Dis
rete Choi
e Models,� E
onometri
 Theory, 11, pp. 437-83.Theorem 32. [Lee℄ 1) if limn→∞ n1/2/H = 0, then

√
n
(
θ̂SML − θ0

)
d→ N(0,I−1(θ0))2) if limn→∞ n1/2/H = λ, λ a �nite 
onstant, then

√
n
(
θ̂SML − θ0

)
d→ N(B,I−1(θ0))where B is a �nite ve
tor of 
onstants.

• This means that the SML estimator is asymptoti
ally biased if H doesn't growfaster than n1/2.

• The var
ov is the typi
al inverse of the information matrix, so that as long as Hgrows fast enough the estimator is 
onsistent and fully asymptoti
ally e�
ient.3. Method of simulated moments (MSM)Suppose we have a DGP(y|x, θ) whi
h is simulable given θ, but is su
h that the densityof y is not 
al
ulable.On
e 
ould, in prin
iple, base a GMM estimator upon the moment 
onditions
mt(θ) = [K(yt, xt) − k(xt, θ)] ztwhere
k(xt, θ) =

∫
K(yt, xt)p(y|xt, θ)dy,

zt is a ve
tor of instruments in the information set and p(y|xt, θ) is the density of y
onditional on xt. The problem is that this density is not available.
• However k(xt, θ) is readily simulated using

k̃ (xt, θ) =
1

H

H∑

h=1

K(ỹht , xt)

• By the law of large numbers, k̃ (xt, θ)
a.s.→ k (xt, θ) , as H → ∞, whi
h provides a
lear intuitive basis for the estimator, though in fa
t we obtain 
onsisten
y evenforH �nite, sin
e a law of large numbers is also operating a
ross the n observationsof real data, so errors introdu
ed by simulation 
an
el themselves out.
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• This allows us to form the moment 
onditions(68) m̃t(θ) =

[
K(yt, xt) − k̃ (xt, θ)

]
ztwhere zt is drawn from the information set. As before, form

m̃(θ) =
1

n

n∑

i=1

m̃t(θ)

=
1

n

n∑

i=1

[
K(yt, xt) −

1

H

H∑

h=1

k(ỹht , xt)

]
zt(69) with whi
h we form the GMM 
riterion and estimate as usual. Note that theunbiased simulator k(ỹht , xt) appears linearly within the sums.3.1. Properties. Suppose that the optimal weighting matrix is used. M
Fadden (ref.above) and Pakes and Pollard (refs. above) show that the asymptoti
 distribution of theMSM estimator is very similar to that of the infeasible GMM estimator. In parti
ular,assuming that the optimal weighting matrix is used, and for H �nite,(70) √

n
(
θ̂MSM − θ0

)
d→ N

[
0,

(
1 +

1

H

)(
D∞Ω−1D′

∞
)−1
]where (D∞Ω−1D′

∞
)−1 is the asymptoti
 varian
e of the infeasible GMM estimator.

• That is, the asymptoti
 varian
e is in�ated by a fa
tor 1 + 1/H. For this reasonthe MSM estimator is not fully asymptoti
ally e�
ient relative to the infeasibleGMM estimator, for H �nite, but the e�
ien
y loss is small and 
ontrollable, bysetting H reasonably large.
• The estimator is asymptoti
ally unbiased even for H = 1. This is an advantagerelative to SML.
• If one doesn't use the optimal weighting matrix, the asymptoti
 var
ov is just theordinary GMM var
ov, in�ated by 1 + 1/H.

• The above presentation is in terms of a spe
i�
 moment 
ondition based upon the
onditional mean. Simulated GMM 
an be applied to moment 
onditions of anyform.3.2. Comments. Why is SML in
onsistent ifH is �nite, while MSM is? The reason isthat SML is based upon an average of logarithms of an unbiased simulator (the densitiesof the observations). To use the multinomial probit model as an example, the log-likelihoodfun
tion is
lnL(β,Ω) =

1

n

n∑

i=1

y′i ln pi(β,Ω)The SML version is
lnL(β,Ω) =

1

n

n∑

i=1

y′i ln p̃i(β,Ω)The problem is that
E ln(p̃i(β,Ω)) 6= ln(E p̃i(β,Ω))in spite of the fa
t that

E p̃i(β,Ω) = pi(β,Ω)due to the fa
t that ln(·) is a nonlinear transformation. The only way for the two to beequal (in the limit) is if H tends to in�nite so that p̃ (·) tends to p (·).
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ase the unbiasedsimulator appears linearly within every sum of terms, and it appears within a sum over
n (see equation [69℄). Therefore the SLLN applies to 
an
el out simulation errors, fromwhi
h we get 
onsisten
y. That is, using simple notation for the random sampling 
ase,the moment 
onditions

m̃(θ) =
1

n

n∑

i=1

[
K(yt, xt) −

1

H

H∑

h=1

k(ỹht , xt)

]
zt(71)

=
1

n

n∑

i=1

[
k(xt, θ

0) + εt −
1

H

H∑

h=1

[k(xt, θ) + ε̃ht]

]
zt(72)
onverge almost surely tõ

m∞(θ) =

∫ [
k(x, θ0) − k(x, θ)

]
z(x)dµ(x).(note: zt is assume to be made up of fun
tions of xt). The obje
tive fun
tion 
onverges to

s∞(θ) = m̃∞(θ)′Ω−1
∞ m̃∞(θ)whi
h obviously has a minimum at θ0, hen
eforth 
onsisten
y.

• If you look at equation 72 a bit, you will see why the varian
e in�ation fa
tor is
(1 + 1

H ). 4. E�
ient method of moments (EMM)The 
hoi
e of whi
h moments upon whi
h to base a GMM estimator 
an have verypronoun
ed e�e
ts upon the e�
ien
y of the estimator.
• A poor 
hoi
e of moment 
onditions may lead to very ine�
ient estimators, and
an even 
ause identi�
ation problems (as we've seen with the GMM problemset).
• The drawba
k of the above approa
h MSM is that the moment 
onditions usedin estimation are sele
ted arbitrarily. The asymptoti
 e�
ien
y of the estimatormay be low.
• The asymptoti
ally optimal 
hoi
e of moments would be the s
ore ve
tor of thelikelihood fun
tion,

mt(θ) = Dθ ln pt(θ | It)As before, this 
hoi
e is unavailable.The e�
ient method of moments (EMM) (see Gallant and Tau
hen (1996), �Whi
h Mo-ments to Mat
h?�, ECONOMETRIC THEORY, Vol. 12, 1996, pages 657-681) seeks toprovide moment 
onditions that 
losely mimi
 the s
ore ve
tor. If the approximation isvery good, the resulting estimator will be very nearly fully e�
ient.The DGP is 
hara
terized by random sampling from the density
p(yt|xt, θ0) ≡ pt(θ

0)We 
an de�ne an auxiliary model, 
alled the �s
ore generator�, whi
h simply providesa (misspe
i�ed) parametri
 density
f(y|xt, λ) ≡ ft(λ)
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• This density is known up to a parameter λ. We assume that this density fun
tionis 
al
ulable. Therefore quasi-ML estimation is possible. Spe
i�
ally,

λ̂ = arg max
Λ

sn(λ) =
1

n

n∑

t=1

ln ft(λ).

• After determining λ̂ we 
an 
al
ulate the s
ore fun
tions Dλ ln f(yt|xt, λ̂).
• The important point is that even if the density is misspe
i�ed, there is a pseudo-true λ0 for whi
h the true expe
tation, taken with respe
t to the true but unknowndensity of y, p(y|xt, θ0), and then marginalized over x is zero:

∃λ0 : EXEY |X
[
Dλ ln f(y|x, λ0)

]
=

∫

X

∫

Y |X
Dλ ln f(y|x, λ0)p(y|x, θ0)dydµ(x) = 0

• We have seen in the se
tion on QML that λ̂ p→ λ0; this suggests using the moment
onditions(73) mn(θ, λ̂) =
1

n

n∑

t=1

∫
Dλ ln ft(λ̂)pt(θ)dy

• These moment 
onditions are not 
al
ulable, sin
e pt(θ) is not available, but theyare simulable using̃
mn(θ, λ̂) =

1

n

n∑

t=1

1

H

H∑

h=1

Dλ ln f(ỹht |xt, λ̂)where ỹht is a draw from DGP (θ), holding xt �xed. By the LLN and the fa
t that
λ̂ 
onverges to λ0,

m̃∞(θ0, λ0) = 0.This is not the 
ase for other values of θ, assuming that λ0 is identi�ed.
• The advantage of this pro
edure is that if f(yt|xt, λ) 
losely approximates p(y|xt, θ),then m̃n(θ, λ̂) will 
losely approximate the optimal moment 
onditions whi
h 
har-a
terize maximum likelihood estimation, whi
h is fully e�
ient.
• If one has prior information that a 
ertain density approximates the data well, itwould be a good 
hoi
e for f(·).
• If one has no density in mind, there exist good ways of approximating unknowndistributions parametri
ally: Philips' ERA's (E
onometri
a, 1983) and Gallantand Ny
hka's (E
onometri
a, 1987) SNP density estimator whi
h we saw before.Sin
e the SNP density is 
onsistent, the e�
ien
y of the indire
t estimator is thesame as the infeasible ML estimator.4.1. Optimal weighting matrix. I will present the theory for H �nite, and possiblysmall. This is done be
ause it is sometimes impra
ti
al to estimate with H very large.Gallant and Tau
hen give the theory for the 
ase of H so large that it may be treated asin�nite (the di�eren
e being irrelevant given the numeri
al pre
ision of a 
omputer). Thetheory for the 
ase of H in�nite follows dire
tly from the results presented here.The moment 
ondition m̃(θ, λ̂) depends on the pseudo-ML estimate λ̂. We 
an applyTheorem 22 to 
on
lude that(74) √

n
(
λ̂− λ0

)
d→ N

[
0,J (λ0)−1I(λ0)J (λ0)−1

]If the density f(yt|xt, λ̂) were in fa
t the true density p(y|xt, θ), then λ̂ would be themaximum likelihood estimator, and J (λ0)−1I(λ0) would be an identity matrix, due to the
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ase we assume that f(yt|xt, λ̂) isonly an approximation to p(y|xt, θ), so there is no 
an
ellation.Re
all that J (λ0) ≡ p lim
(

∂2

∂λ∂λ′ sn(λ
0)
)
. Comparing the de�nition of sn(λ) with thede�nition of the moment 
ondition in Equation 73, we see that

J (λ0) = Dλ′m(θ0, λ0).As in Theorem 22,
I(λ0) = lim

n→∞
E
[
n
∂sn(λ)

∂λ

∣∣∣∣
λ0

∂sn(λ)

∂λ′

∣∣∣∣
λ0

]
.In this 
ase, this is simply the asymptoti
 varian
e 
ovarian
e matrix of the moment
onditions, Ω. Now take a �rst order Taylor's series approximation to √

nmn(θ
0, λ̂) about

λ0 :
√
nm̃n(θ

0, λ̂) =
√
nm̃n(θ

0, λ0) +
√
nDλ′m̃(θ0, λ0)

(
λ̂− λ0

)
+ op(1)First 
onsider √nm̃n(θ

0, λ0). It is straightforward but somewhat tedious to show thatthe asymptoti
 varian
e of this term is 1
H I∞(λ0).Next 
onsider the se
ond term √

nDλ′m̃(θ0, λ0)
(
λ̂− λ0

). Note that Dλ′m̃n(θ
0, λ0)

a.s.→
J (λ0), so we have

√
nDλ′m̃(θ0, λ0)

(
λ̂− λ0

)
=

√
nJ (λ0)

(
λ̂− λ0

)
, a.s.But noting equation 74

√
nJ (λ0)

(
λ̂− λ0

)
a∼ N

[
0,I(λ0)

]Now, 
ombining the results for the �rst and se
ond terms,
√
nm̃n(θ

0, λ̂)
a∼ N

[
0,

(
1 +

1

H

)
I(λ0)

]Suppose that Î(λ0) is a 
onsistent estimator of the asymptoti
 varian
e-
ovarian
e matrixof the moment 
onditions. This may be 
ompli
ated if the s
ore generator is a poorapproximator, sin
e the individual s
ore 
ontributions may not have mean zero in this 
ase(see the se
tion on QML) . Even if this is the 
ase, the individuals means 
an be 
al
ulatedby simulation, so it is always possible to 
onsistently estimate I(λ0) when the model issimulable. On the other hand, if the s
ore generator is taken to be 
orre
tly spe
i�ed, theordinary estimator of the information matrix is 
onsistent. Combining this with the resulton the e�
ient GMM weighting matrix in Theorem 25, we see that de�ning θ̂ as
θ̂ = arg min

Θ
mn(θ, λ̂)′

[(
1 +

1

H

)
Î(λ0)

]−1

mn(θ, λ̂)is the GMM estimator with the e�
ient 
hoi
e of weighting matrix.
• If one has used the Gallant-Ny
hka ML estimator as the auxiliary model, theappropriate weighting matrix is simply the information matrix of the auxiliarymodel, sin
e the s
ores are un
orrelated. (e.g., it really is ML estimation asymp-toti
ally, sin
e the s
ore generator 
an approximate the unknown density arbi-trarily well).



5. EXAMPLES 2474.2. Asymptoti
 distribution. Sin
e we use the optimal weighting matrix, the as-ymptoti
 distribution is as in Equation 40, so we have (using the result in Equation 74):
√
n
(
θ̂ − θ0

)
d→ N


0,

(
D∞

[(
1 +

1

H

)
I(λ0)

]−1

D′
∞

)−1

 ,where

D∞ = lim
n→∞

E
[
Dθm

′
n(θ

0, λ0)
]
.This 
an be 
onsistently estimated using

D̂ = Dθm
′
n(θ̂, λ̂)4.3. Diagnoti
 testing. The fa
t that

√
nmn(θ

0, λ̂)
a∼ N

[
0,

(
1 +

1

H

)
I(λ0)

]implies that
nmn(θ̂, λ̂)′

[(
1 +

1

H

)
I(λ̂)

]−1

mn(θ̂, λ̂)
a∼ χ2(q)where q is dim(λ) − dim(θ), sin
e without dim(θ) moment 
onditions the model is notidenti�ed, so testing is impossible. One test of the model is simply based on this statisti
: ifit ex
eeds the χ2(q) 
riti
al point, something may be wrong (the small sample performan
eof this sort of test would be a topi
 worth investigating).

• Information about what is wrong 
an be gotten from the pseudo-t-statisti
s:
(diag [(1 +

1

H

)
I(λ̂)

]1/2
)−1 √

nmn(θ̂, λ̂)
an be used to test whi
h moments are not well modeled. Sin
e these momentsare related to parameters of the s
ore generator, whi
h are usually related to
ertain features of the model, this information 
an be used to revise the model.These aren't a
tually distributed as N(0, 1), sin
e √
nmn(θ

0, λ̂) and √
nmn(θ̂, λ̂)have di�erent distributions (that of √nmn(θ̂, λ̂) is somewhat more 
ompli
ated).It 
an be shown that the pseudo-t statisti
s are biased toward nonreje
tion. SeeGourieroux et. al. or Gallant and Long, 1995, for more details.5. Examples5.1. Estimation of sto
hasti
 di�erential equations. It is often 
onvenient toformulate theoreti
al models in terms of di�erential equations, and when the observationfrequen
y is high (e.g., weekly, daily, hourly or real-time) it may be more natural to adoptthis framework for e
onometri
 models of time series.The most 
ommon approa
h to estimation of sto
hasti
 di�erential equations is to�dis
retize� the model, as above, and estimate using the dis
retized version. However, sin
ethe dis
retization is only an approximation to the true dis
rete-time version of the model(whi
h is not 
al
ulable), the resulting estimator is in general biased and in
onsistent.An alternative is to use indire
t inferen
e: The dis
retized model is used as the s
oregenerator. That is, one estimates by QML to obtain the s
ores of the dis
retized approxi-mation:
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yt − yt−1 = g(φ, yt−1) + h(φ, yt−1)εt

εt ∼ N(0, 1)Indi
ate these s
ores by mn(θ, φ̂). Then the system of sto
hasti
 di�erential equations
dyt = g(θ, yt)dt + h(θ, yt)dWtis simulated over θ, and the s
ores are 
al
ulated and averaged over the simulations
m̃n(θ, φ̂) =

1

N

N∑

i=1

min(θ, φ̂)

θ̂ is 
hosen to set the simulated s
ores to zero
m̃n(θ̂, φ̂) ≡ 0(sin
e θ and φ are of the same dimension).This method requires simulating the sto
hasti
 di�erential equation. There are manyways of doing this. Basi
ally, they involve doing very �ne dis
retizations:

yt+τ = yt + g(θ, yt) + h(θ, yt)ηt

ηt ∼ N(0, τ)By setting τ very small, the sequen
e of ηt approximates a Brownian motion fairly well.This is only one method of using indire
t inferen
e for estimation of di�erential equa-tions. There are others (see Gallant and Long, 1995 and Gourieroux et. al.). Use of a seriesapproximation to the transitional density as in Gallant and Long is an interesting possi-bility sin
e the s
ore generator may have a higher dimensional parameter than the model,whi
h allows for diagnosti
 testing. In the method des
ribed above the s
ore generator'sparameter φ is of the same dimension as is θ, so diagnosti
 testing is not possible.5.2. EMM estimation of a dis
rete 
hoi
e model. In this se
tion 
onsider EMMestimation. There is a sophisti
ated pa
kage by Gallant and Tau
hen for this, but herewe'll look at some simple, but hopefully dida
ti
 
ode. The �le probitdgp.m generatesdata that follows the probit model. The �le emm_moments.m de�nes EMM moment
onditions, where the DGP and s
ore generator 
an be passed as arguments. Thus, it is ageneral purpose moment 
ondition for EMM estimation. This �le is interesting enough towarrant some dis
ussion. A listing appears in Listing 19.1. Line 3 de�nes the DGP, andthe arguments needed to evaluate it are de�ned in line 4. The s
ore generator is de�ned inline 5, and its arguments are de�ned in line 6. The QML estimate of the parameter of thes
ore generator is read in line 7. Note in line 10 how the random draws needed to simulatedata are passed with the data, and are thus �xed during estimation, to avoid �
hattering�.The simulated data is generated in line 16, and the derivative of the s
ore generator usingthe simulated data is 
al
ulated in line 18. In line 20 we average the s
ores of the s
oregenerator, whi
h are the moment 
onditions that the fun
tion returns.1 fun
tion s
ores = emm_moments(theta, data, momentargs)2 k = momentargs{1};3 dgp = momentargs{2}; # the data generating pro
ess (DGP)4 dgpargs = momentargs{3}; # its arguments (
ell array)5 sg = momentargs{4}; # the s
ore generator (SG)

http://www.econ.duke.edu/~get/emm.html
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/ProbitDGP.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/gmm/emm_moments.m


5. EXAMPLES 2496 sgargs = momentargs{5}; # SG arguments (
ell array)7 phi = momentargs{6}; # QML estimate of SG parameter8 y = data(:,1);9 x = data(:,2:k+1);10 rand_draws = data(:,k+2:
olumns(data)); # passed with data to ensure fixeda
ross iterations11 n = rows(y);12 s
ores = zeros(n,rows(phi)); # 
ontainer for moment 
ontributions13 reps = 
olumns(rand_draws); # how many simulations?14 for i = 1:reps15 e = rand_draws(:,i);16 y = feval(dgp, theta, x, e, dgpargs); # simulated data17 sgdata = [y x℄; # simulated data for SG18 s
ores = s
ores + numgradient(sg, {phi, sgdata, sgargs}); # gradient of SG19 endfor20 s
ores = s
ores / reps; # average over number of simulations21 endfun
tion Listing 19.1The �le emm_example.m performs EMM estimation of the probit model, using a logitmodel as the s
ore generator. The results we obtain areS
ore generator results:=====================================================BFGSMIN final resultsUsed analyti
 gradient------------------------------------------------------STRONG CONVERGENCEFun
tion 
onv 1 Param 
onv 1 Gradient 
onv 1------------------------------------------------------Obje
tive fun
tion value 0.281571Stepsize 0.027915 iterations------------------------------------------------------param gradient 
hange1.8979 0.0000 0.00001.6648 -0.0000 0.00001.9125 -0.0000 0.00001.8875 -0.0000 0.00001.7433 -0.0000 0.0000======================================================Model results:******************************************************EMM exampleGMM Estimation ResultsBFGS 
onvergen
e: Normal 
onvergen
e

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/gmm/emm_example.m
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tive fun
tion value: 0.000000Observations: 1000Exa
tly identified, no spe
. testestimate st. err t-stat p-valuep1 1.069 0.022 47.618 0.000p2 0.935 0.022 42.240 0.000p3 1.085 0.022 49.630 0.000p4 1.080 0.022 49.047 0.000p5 0.978 0.023 41.643 0.000******************************************************It might be interesting to 
ompare the standard errors with those obtained from MLestimation, to 
he
k e�
ien
y of the EMM estimator. One 
ould even do a Monte Carlostudy.
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ises(1) Do SML estimation of the probit model.(2) Do a little Monte Carlo study to 
ompare ML, SML and EMM estimation of theprobit model. Investigate how the number of simulations a�e
t the two simulation-based estimators.



CHAPTER 20Parallel programming for e
onometri
sThe following borrows heavily from Creel (2005).Parallel 
omputing 
an o�er an important redu
tion in the time to 
omplete 
ompu-tations. This is well-known, but it bears emphasis sin
e it is the main reason that parallel
omputing may be attra
tive to users. To illustrate, the Intel Pentium IV (Willamette)pro
essor, running at 1.5GHz, was introdu
ed in November of 2000. The Pentium IV(Northwood-HT) pro
essor, running at 3.06GHz, was introdu
ed in November of 2002. Anapproximate doubling of the performan
e of a 
ommodity CPU took pla
e in two years.Extrapolating this admittedly rough snapshot of the evolution of the performan
e of 
om-modity pro
essors, one would need to wait more than 6.6 years and then pur
hase a new
omputer to obtain a 10-fold improvement in 
omputational performan
e. The examples inthis 
hapter show that a 10-fold improvement in performan
e 
an be a
hieved immediately,using distributed parallel 
omputing on available 
omputers.Re
ent (this is written in 2005) developments that may make parallel 
omputing at-tra
tive to a broader spe
trum of resear
hers who do 
omputations. The �rst is the fa
tthat setting up a 
luster of 
omputers for distributed parallel 
omputing is not di�
ult. Ifyou are using the ParallelKnoppix bootable CD that a

ompanies these notes, you are lessthan 10 minutes away from 
reating a 
luster, supposing you have a se
ond 
omputer athand and a 
rossover ethernet 
able. See the ParallelKnoppix tutorial. A se
ond develop-ment is the existen
e of extensions to some of the high-level matrix programming (HLMP)languages1 that allow the in
orporation of parallelism into programs written in these lan-guages. A third is the spread of dual and quad-
ore CPUs, so that an ordinary desktop orlaptop 
omputer 
an be made into a mini-
luster. Those 
ores won't work together on asingle problem unless they are told how to.Following are examples of parallel implementations of several mainstream problemsin e
onometri
s. A fo
us of the examples is on the possibility of hiding parallelizationfrom end users of programs. If programs that run in parallel have an interfa
e that isnearly identi
al to the interfa
e of equivalent serial versions, end users will �nd it easy totake advantage of parallel 
omputing's performan
e. We 
ontinue to use O
tave, takingadvantage of the MPI Toolbox (MPITB) for O
tave, by by Fernández Baldomero et al.(2004). There are also parallel pa
kages for Ox, R, and Python whi
h may be of interestto e
onometri
ians, but as of this writing, the following examples are the most a

essibleintrodu
tion to parallel programming for e
onometri
ians.1. Example problemsThis se
tion introdu
es example problems from e
onometri
s, and shows how they 
anbe parallelized in a natural way.1By �high-level matrix programming language� I mean languages su
h as MATLAB (TM the Mathworks,In
.), Ox (TM OxMetri
s Te
hnologies, Ltd.), and GNU O
tave (www.o
tave.org), for example.252
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1. EXAMPLE PROBLEMS 2531.1. Monte Carlo. A Monte Carlo study involves repeating a random experimentmany times under identi
al 
onditions. Several authors have noted that Monte Carlostudies are obvious 
andidates for parallelization (Doornik et al. 2002; Bru
he, 2003) sin
eblo
ks of repli
ations 
an be done independently on di�erent 
omputers. To illustrate theparallelization of a Monte Carlo study, we use same tra
e test example as do Doornik, et.al. (2002). tra
etest.m is a fun
tion that 
al
ulates the tra
e test statisti
 for the la
k of
ointegration of integrated time series. This fun
tion is illustrative of the format that weadopt for Monte Carlo simulation of a fun
tion: it re
eives a single argument of 
ell type,and it returns a row ve
tor that holds the results of one random simulation. The singleargument in this 
ase is a 
ell array that holds the length of the series in its �rst position,and the number of series in the se
ond position. It generates a random result though apro
ess that is internal to the fun
tion, and it reports some output in a row ve
tor (in this
ase the result is a s
alar).m
_example1.m is an O
tave s
ript that exe
utes a Monte Carlo study of the tra
etest by repeatedly evaluating the tra
etest.m fun
tion. The main thing to noti
e aboutthis s
ript is that lines 7 and 10 
all the fun
tion monte
arlo.m. When 
alled with 3arguments, as in line 7, monte
arlo.m exe
utes serially on the 
omputer it is 
alled from.In line 10, there is a fourth argument. When 
alled with four arguments, the last argumentis the number of slave hosts to use. We see that running the Monte Carlo study on oneor more pro
essors is transparent to the user - he or she must only indi
ate the number ofslave 
omputers to be used.1.2. ML. For a sample {(yt, xt)}n of n observations of a set of dependent and ex-planatory variables, the maximum likelihood estimator of the parameter θ 
an be de�nedas
θ̂ = arg max sn(θ)where

sn(θ) =
1

n

n∑

t=1

ln f(yt|xt, θ)Here, yt may be a ve
tor of random variables, and the model may be dynami
 sin
e xt may
ontain lags of yt. As Swann (2002) points out, this 
an be broken into sums over blo
ksof observations, for example two blo
ks:
sn(θ) =

1

n

{(
n1∑

t=1

ln f(yt|xt, θ)
)

+

(
n∑

t=n1+1

ln f(yt|xt, θ)
)}Analogously, we 
an de�ne up to n blo
ks. Again following Swann, parallelization 
an bedone by 
al
ulating ea
h blo
k on separate 
omputers.mle_example1.m is an O
tave s
ript that 
al
ulates the maximum likelihood estimatorof the parameter ve
tor of a model that assumes that the dependent variable is distributedas a Poisson random variable, 
onditional on some explanatory variables. In lines 1-3 thedata is read, the name of the density fun
tion is provided in the variable model, and theinitial value of the parameter ve
tor is set. In line 5, the fun
tion mle_estimate performsordinary serial 
al
ulation of the ML estimator, while in line 7 the same fun
tion is 
alledwith 6 arguments. The fourth and �fth arguments are empty pla
eholders where optionsto mle_estimate may be set, while the sixth argument is the number of slave 
omputers touse for parallel exe
ution, 1 in this 
ase. A person who runs the program sees no parallelprogramming 
ode - the parallelization is transparent to the end user, beyond having to

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/montecarlo/tracetest.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/montecarlo/mc_example1.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/mle/mle_example1.m


1. EXAMPLE PROBLEMS 254sele
t the number of slave 
omputers. When exe
uted, this s
ript prints out the estimatestheta_s and theta_p, whi
h are identi
al.It is worth noting that a di�erent likelihood fun
tion may be used by making the modelvariable point to a di�erent fun
tion. The likelihood fun
tion itself is an ordinary O
tavefun
tion that is not parallelized. The mle_estimate fun
tion is a generi
 fun
tion that 
an
all any likelihood fun
tion that has the appropriate input/output syntax for evaluationeither serially or in parallel. Users need only learn how to write the likelihood fun
tionusing the O
tave language.1.3. GMM. For a sample as above, the GMM estimator of the parameter θ 
an bede�ned as
θ̂ ≡ arg min

Θ
sn(θ)where

sn(θ) = mn(θ)
′Wnmn(θ)and

mn(θ) =
1

n

n∑

t=1

mt(yt|xt, θ)Sin
e mn(θ) is an average, it 
an obviously be 
omputed blo
kwise, using for example 2blo
ks:(75) mn(θ) =
1

n

{(
n1∑

t=1

mt(yt|xt, θ)
)

+

(
n∑

t=n1+1

mt(yt|xt, θ)
)}Likewise, we may de�ne up to n blo
ks, ea
h of whi
h 
ould potentially be 
omputed on adi�erent ma
hine.gmm_example1.m is a s
ript that illustrates how GMM estimation may be done seriallyor in parallel. When this is run, theta_s and theta_p are identi
al up to the toleran
e for
onvergen
e of the minimization routine. The point to noti
e here is that an end user 
anperform the estimation in parallel in virtually the same way as it is done serially. Again,gmm_estimate, used in lines 8 and 10, is a generi
 fun
tion that will estimate any modelspe
i�ed by the moments variable - a di�erent model 
an be estimated by 
hanging thevalue of the moments variable. The fun
tion that moments points to is an ordinary O
tavefun
tion that uses no parallel programming, so users 
an write their models using thesimple and intuitive HLMP syntax of O
tave. Whether estimation is done in parallel orserially depends only the seventh argument to gmm_estimate - when it is missing or zero,estimation is by default done serially with one pro
essor. When it is positive, it spe
i�esthe number of slave nodes to use.1.4. Kernel regression. The Nadaraya-Watson kernel regression estimator of a fun
-tion g(x) at a point x is

ĝ(x) =

∑n
t=1 ytK [(x− xt) /γn]∑n
t=1K [(x− xt) /γn]

≡
n∑

t=1

wtyyWe see that the weight depends upon every data point in the sample. To 
al
ulate the �tat every point in a sample of size n, on the order of n2k 
al
ulations must be done, where kis the dimension of the ve
tor of explanatory variables, x. Ra
ine (2002) demonstrates thatMPI parallelization 
an be used to speed up 
al
ulation of the kernel regression estimator

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/gmm/gmm_example1.m


1. EXAMPLE PROBLEMS 255Figure 1. Speedups from parallelization

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2  4  6  8  10  12

nodes

MONTECARLO
BOOTSTRAP

MLE
GMM

KERNEL

by 
al
ulating the �ts for portions of the sample on di�erent 
omputers. We follow thisimplementation here. kernel_example1.m is a s
ript for serial and parallel kernel regres-sion. Serial exe
ution is obtained by setting the number of slaves equal to zero, in line 15.In line 17, a single slave is spe
i�ed, so exe
ution is in parallel on the master and slavenodes.The example programs show that parallelization may be mostly hidden from end users.Users 
an bene�t from parallelization without having to write or understand parallel 
ode.The speedups one 
an obtain are highly dependent upon the spe
i�
 problem at hand, aswell as the size of the 
luster, the e�
ien
y of the network, et
. Some examples of speedupsare presented in Creel (2005). Figure 1 reprodu
es speedups for some e
onometri
 problemson a 
luster of 12 desktop 
omputers. The speedup for k nodes is the time to �nish theproblem on a single node divided by the time to �nish the problem on k nodes. Note thatyou 
an get 10X speedups, as 
laimed in the introdu
tion. It's pretty obvious that mu
hgreater speedups 
ould be obtained using a larger 
luster, for the �embarrassingly parallel�problems.

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/kernel/kernel_example1.m
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CHAPTER 21Final proje
t: e
onometri
 estimation of a RBC modelTHIS IS NOT FINISHED - IGNORE IT FOR NOWIn this last 
hapter we'll go through a worked example that 
ombines a number of thetopi
s we've seen. We'll do simulated method of moments estimation of a real business
y
le model, similar to what Valderrama (2002) does.1. DataWe'll develop a model for private 
onsumption and real gross private investment. Thedata are obtained from the US Bureau of E
onomi
 Analysis (BEA) National In
ome andProdu
t A

ounts (NIPA), Table 11.1.5, Lines 2 and 6 (you 
an download quarterly datafrom 1947-I to the present). The data we use are in the �le rb
_data.m. This data is real(
onstant dollars).The program plots.m will make a few plots, in
luding Figures 1 though 3. First lookingat the plot for levels, we 
an see that real 
onsumption and investment are 
learly nonsta-tionary (surprise, surprise). There appears to be somewhat of a stru
tural 
hange in themid-1970's.Looking at growth rates, the series for 
onsumption has an extended period of high growthin the 1970's, be
oming more moderate in the 90's. The volatility of growth of 
onsumptionhas de
lined somewhat, over time. Looking at investment, there are some notable periodsof high volatility in the mid-1970's and early 1980's, for example. Sin
e 1990 or so, volatilityseems to have de
lined.E
onomi
 models for growth often imply that there is no long term growth (!) - thedata that the models generate is stationary and ergodi
. Or, the data that the modelsFigure 1. Consumption and Investment, LevelsExamples/RBC/levels.eps
Figure 2. Consumption and Investment, Growth RatesExamples/RBC/growth.eps
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3. A REDUCED FORM MODEL 258Figure 3. Consumption and Investment, Bandpass FilteredExamples/RBC/filtered.eps
generate needs to be passed through the inverse of a �lter. We'll follow this, and generatestationary business 
y
le data by applying the bandpass �lter of Christiano and Fitzgerald(1999). The �ltered data is in Figure 3. We'll try to spe
ify an e
onomi
 model that 
angenerate similar data. To get data that look like the levels for 
onsumption and investment,we'd need to apply the inverse of the bandpass �lter.2. An RBC ModelConsider a very simple sto
hasti
 growth model (the same used by Maliar and Maliar(2003), with minor notational di�eren
e):

max{ct,kt}∞t=0
E0
∑∞

t=0 β
tU(ct)

ct + kt = (1 − δ) kt−1 + φtk
α
t−1

log φt = ρ log φt−1 + ǫt

ǫt ∼ IIN(0, σ2
ǫ )Assume that the utility fun
tion is

U(ct) =
c1−γt − 1

1 − γ

• β is the dis
ount rate
• δ is the depre
iation rate of 
apital
• α is the elasti
ity of output with respe
t to 
apital
• φ is a te
hnology sho
k that is positive. φt is observed in period t.
• γ is the 
oe�
ient of relative risk aversion. When γ = 1, the utility fun
tion islogarithmi
.
• gross investment, it, is the 
hange in the 
apital sto
k:

it = kt − (1 − δ) kt−1

• we assume that the initial 
ondition (k0, θ0) is given.We would like to estimate the parameters θ =
(
β, γ, δ, α, ρ, σ2

ǫ

)′ using the data that we haveon 
onsumption and investment. This problem is very similar to the GMM estimation ofthe portfolio model dis
ussed in Se
tions 11 and 12. On
e 
an derive the Euler 
onditionin the same way we did there, and use it to de�ne a GMM estimator. That approa
h wasnot very su

essful, re
all. Now we'll try to use some more informative moment 
onditionsto see if we get better results. 3. A redu
ed form modelMa
roe
onomi
 time series data are often modeled using ve
tor autoregressions. Ave
tor autogression is just the ve
tor version of an autoregressive model. Let yt be a
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G-ve
tor of jointly dependent variables. A VAR(p) model is

yt = c+A1yt−1 +A2yt−2 + ...+Apyt−p + vtwhere c is a G-ve
tor of parameters, and Aj, j=1,2,...,p, are G×G matri
es of parameters.Let vt = Rtηt, where ηt ∼ IIN(0, I2), and Rt is upper triangular. So V (vt|yt−1, ...yt−p) =

RtR
′

t. You 
an think of a VAR model as the redu
ed form of a dynami
 linear simultaneousequations model where all of the variables are treated as endogenous. Clearly, if all of thevariables are endogenous, one would need some form of additional information to identifya stru
tural model. But we already have a stru
tural model, and we're only going to usethe VAR to help us estimate the parameters. A well-�tting redu
ed form model will beadequate for the purpose.We're seen that our data seems to have episodes where the varian
e of growth ratesand �ltered data is non-
onstant. This brings us to the general area of sto
hasti
 volatility.Without going into details, we'll just 
onsider the exponential GARCH model of Nelson(1991) as presented in Hamilton (1994, pg. 668-669).De�ne ht = vec∗(Rt), the ve
tor of elements in the upper triangle of Rt (in our 
asethis is a 3 × 1 ve
tor). We assume that the elements follow
log hjt = κj + P(j,.)

{
|vt−1| −

√
2/π + ℵ(j,.)vt−1

}
+ G(j,.) log ht−1The varian
e of the VAR error depends upon its own past, as well as upon the pastrealizations of the sho
ks.

• This is an EGARCH(1,1) spe
i�
ation. The obvious generalization is the EGARCH(r,m)spe
i�
ation, with longer lags (r for lags of v, m for lags of h).
• The advantage of the EGARCH formulation is that the varian
e is assuredlypositive without parameter restri
tions
• The matrix P has dimension 3 × 2.
• The matrix G has dimension 3 × 3.
• The matrix ℵ (reminder to self: this is an �aleph�) has dimension 2 × 2.
• The parameter matrix ℵ allows for leverage, so that positive and negative sho
ks
an have asymmetri
 e�e
ts upon volatility.
• We will probably want to restri
t these parameter matri
es in some way. Forinstan
e, G 
ould plausibly be diagonal.With the above spe
i�
ation, we have

ηt ∼ IIN (0, I2)

ηt = R−1
t vtand we know how to 
al
ulate Rt and vt, given the data and the parameters. Thus, it isstraighforward to do estimation by maximum likelihood. This will be the s
ore generator.4. Results (I): The s
ore generator5. Solving the stru
tural modelThe �rst order 
ondition for the stru
tural model is

c−γt = βEt

(
c−γt+1

(
1 − δ + αφt+1k

α−1
t

))
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ct =

{
βEt

[
c−γt+1

(
1 − δ + αφt+1k

α−1
t

)]}−1

γThe problem is that we 
annot solve for ct sin
e we do not know the solution for theexpe
tation in the previous equation.The parameterized expe
tations algorithm (PEA: den Haan and Mar
et, 1990), is ameans of solving the problem. The expe
tations term is repla
ed by a parametri
 fun
tion.As long as the parametri
 fun
tion is a �exible enough fun
tion of variables that have beenrealized in period t, there exist parameter values that make the approximation as 
lose tothe true expe
tation as is desired. We will write the approximation
Et

[
c−γt+1

(
1 − δ + αφt+1k

α−1
t

)]
≃ exp (ρ0 + ρ1 log φt + ρ2 log kt−1)For given values of the parameters of this approximating fun
tion, we 
an solve for ct, andthen for kt using the restri
tion that

ct + kt = (1 − δ) kt−1 + φtk
α
t−1This allows us to generate a series {(ct, kt)}. Then the expe
tations approximation isupdated by �tting

c−γt+1

(
1 − δ + αφt+1k

α−1
t

)
= exp (ρ0 + ρ1 log φt + ρ2 log kt−1) + ηtby nonlinear least squares. The 2 step pro
edure of generating data and updating theparameters of the approximation to expe
tations is iterated until the parameters no longer
hange. When this is the 
ase, the expe
tations fun
tion is the best �t to the generateddata. As long it is a ri
h enough parametri
 model to en
ompass the true expe
tationsfun
tion, it 
an be made to be equal to the true expe
tations fun
tion by using a longenough simulation.Thus, given the parameters of the stru
tural model, θ =

(
β, γ, δ, α, ρ, σ2

ǫ

)′, we 
angenerate data {(ct, kt)} using the PEA. From this we 
an get the series {(ct, it)} using
it = kt − (1 − δ) kt−1. This 
an be used to do EMM estimation using the s
ores of theredu
ed form model to de�ne moments, using the simulated data from the stru
tural model.
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CHAPTER 22Introdu
tion to O
taveWhy is O
tave being used here, sin
e it's not that well-known by e
onometri
ians?Well, be
ause it is a high quality environment that is easily extensible, uses well-testedand high performan
e numeri
al libraries, it is li
ensed under the GNU GPL, so you 
anget it for free and modify it if you like, and it runs on both GNU/Linux, Ma
 OSX andWindows systems. It's also quite easy to learn.1. Getting startedGet the ParallelKnoppix CD, as was des
ribed in Se
tion 3. Then burn the image,and boot your 
omputer with it. This will give you this same PDF �le, but with all ofthe example programs ready to run. The editor is 
on�gure with a ma
ro to exe
ute theprograms using O
tave, whi
h is of 
ourse installed. From this point, I assume you arerunning the CD (or sitting in the 
omputer room a
ross the hall from my o�
e), or thatyou have 
on�gured your 
omputer to be able to run the *.m �les mentioned below.2. A short introdu
tionThe obje
tive of this introdu
tion is to learn just the basi
s of O
tave. There are otherways to use O
tave, whi
h I en
ourage you to explore. These are just some rudiments.After this, you 
an look at the example programs s
attered throughout the do
ument (andedit them, and run them) to learn more about how O
tave 
an be used to do e
onometri
s.Students of mine: your problem sets will in
lude exer
ises that 
an be done by modifyingthe example programs in relatively minor ways. So study the examples!O
tave 
an be used intera
tively, or it 
an be used to run programs that are written us-ing a text editor. We'll use this se
ond method, preparing programs with NEdit, and 
allingO
tave from within the editor. The program �rst.m gets us started. To run this, open it upwith NEdit (by �nding the 
orre
t �le inside the /home/knoppix/Desktop/E
onometri
sfolder and 
li
king on the i
on) and then type CTRL-ALT-o, or use the O
tave item inthe Shell menu (see Figure 1).Note that the output is not formatted in a pleasing way. That's be
ause printf()doesn't automati
ally start a new line. Edit first.m so that the 8th line reads �printf(�helloworld\n�);� and re-run the program.We need to know how to load and save data. The program se
ond.m shows how. On
eyou have run this, you will �nd the �le �x� in the dire
tory E
onometri
s/Examples/O
taveIntro/You might have a look at it with NEdit to see O
tave's default format for saving data.Basi
ally, if you have data in an ASCII text �le, named for example �myfile.data�, formedof numbers separated by spa
es, just use the 
ommand �load myfile.data�. After havingdone so, the matrix �myfile� (without extension) will 
ontain the data.Please have a look at CommonOperations.m for examples of how to do some basi
things in O
tave. Now that we're done with the basi
s, have a look at the O
tave programsthat are in
luded as examples. If you are looking at the browsable PDF version of this262
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3. IF YOU'RE RUNNING A LINUX INSTALLATION... 263Figure 1. Running an O
tave program

do
ument, then you should be able to 
li
k on links to open them. If not, the exampleprograms are available here and the support �les needed to run these are available here.Those pages will allow you to examine individual �les, out of 
ontext. To a
tually usethese �les (edit and run them), you should go to the home page of this do
ument, sin
eyou will probably want to download the pdf version together with all the support �les andexamples. Or get the bootable CD.There are some other resour
es for doing e
onometri
s with O
tave. You might like to
he
k the arti
le E
onometri
s with O
tave and the E
onometri
s Toolbox , whi
h is forMatlab, but mu
h of whi
h 
ould be easily used with O
tave.3. If you're running a Linux installation...Then to get the same behavior as found on the CD, you need to:
• Get the 
olle
tion of support programs and the examples, from the do
umenthome page.
• Put them somewhere, and tell O
tave how to �nd them, e.g., by putting a link tothe MyO
taveFiles dire
tory in /usr/lo
al/share/o
tave/site-m
• Make sure nedit is installed and 
on�gured to run O
tave and use syntax high-lighting. Copy the �le /home/e
onometri
s/.nedit from the CD to do this. Or,get the �le NeditCon�guration and save it in your $HOME dire
tory with thename �.nedit�. Not to put too �ne a point on it, please note that there is aperiod in that name.
• Asso
iate *.m �les with NEdit so that they open up in the editor when you 
li
kon them. That should do it.
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CHAPTER 23Notation and Review
• All ve
tors will be 
olumn ve
tors, unless they have a transpose symbol (or I forgetto apply this rule - your help 
at
hing typos and er0rors is mu
h appre
iated).For example, if xt is a p×1 ve
tor, x′t is a 1×p ve
tor. When I refer to a p-ve
tor,I mean a 
olumn ve
tor.1. Notation for di�erentiation of ve
tors and matri
es[3, Chapter 1℄Let s(·) : ℜp → ℜ be a real valued fun
tion of the p-ve
tor θ. Then ∂s(θ)

∂θ is organizedas a p-ve
tor,
∂s(θ)

∂θ
=




∂s(θ)
∂θ1
∂s(θ)
∂θ2...
∂s(θ)
∂θp


Following this 
onvention,∂s(θ)∂θ′ is a 1 × p ve
tor, and ∂2s(θ)
∂θ∂θ′ is a p× p matrix. Also,

∂2s(θ)

∂θ∂θ′
=

∂

∂θ

(
∂s(θ)

∂θ′

)
=

∂

∂θ′

(
∂s(θ)

∂θ

)
.Exer
ise 33. For a and x both p-ve
tors, show that ∂a′x

∂x = a.Let f(θ):ℜp → ℜn be a n-ve
tor valued fun
tion of the p-ve
tor θ. Let f(θ)′ be the
1 × n valued transpose of f . Then ( ∂∂θf(θ)′

)′
= ∂

∂θ′ f(θ).

• Produ
t rule: Let f(θ):ℜp → ℜn and h(θ):ℜp → ℜn be n-ve
tor valued fun
tionsof the p-ve
tor θ. Then
∂

∂θ′
h(θ)′f(θ) = h′

(
∂

∂θ′
f

)
+ f ′

(
∂

∂θ′
h

)has dimension 1 × p. Applying the transposition rule we get
∂

∂θ
h(θ)′f(θ) =

(
∂

∂θ
f ′
)
h+

(
∂

∂θ
h′
)
fwhi
h has dimension p× 1.Exer
ise 34. For A a p× p matrix and x a p× 1 ve
tor, show that ∂x′Ax

∂x = A+A′.
• Chain rule: Let f(·):ℜp → ℜn a n-ve
tor valued fun
tion of a p-ve
tor argument,and let g():ℜr → ℜp be a p-ve
tor valued fun
tion of an r-ve
tor valued argument
ρ. Then

∂

∂ρ′
f [g (ρ)] =

∂

∂θ′
f(θ)

∣∣∣∣
θ=g(ρ)

∂

∂ρ′
g(ρ)has dimension n× r.Exer
ise 35. For x and β both p× 1 ve
tors, show that ∂ exp(x′β)

∂β = exp(x′β)x.264



2. CONVERGENGE MODES 2652. Convergenge modesReadings: [1, Chapter 4℄;[4, Chapter 4℄.We will 
onsider several modes of 
onvergen
e. The �rst three modes dis
ussed aresimply for ba
kground. The sto
hasti
 modes are those whi
h will be used later in the
ourse.Definition 36. A sequen
e is a mapping from the natural numbers {1, 2, ...} =

{n}∞n=1 = {n} to some other set, so that the set is ordered a

ording to the naturalnumbers asso
iated with its elements.Real-valued sequen
es:Definition 37. [Convergen
e℄ A real-valued sequen
e of ve
tors {an} 
onverges to theve
tor a if for any ε > 0 there exists an integer Nε su
h that for all n > Nε, ‖ an − a ‖< ε. a is the limit of an, written an → a.Deterministi
 real-valued fun
tions. Consider a sequen
e of fun
tions {fn(ω)}where
fn : Ω → T ⊆ ℜ.

Ω may be an arbitrary set.Definition 38. [Pointwise 
onvergen
e℄ A sequen
e of fun
tions {fn(ω)} 
onvergespointwise on Ω to the fun
tion f(ω) if for all ε > 0 and ω ∈ Ω there exists an integer Nεωsu
h that
|fn(ω) − f(ω)| < ε,∀n > Nεω.It's important to note that Nεω depends upon ω, so that 
onverge may be mu
h morerapid for 
ertain ω than for others. Uniform 
onvergen
e requires a similar rate of 
onver-gen
e throughout Ω.Definition 39. [Uniform 
onvergen
e℄ A sequen
e of fun
tions {fn(ω)} 
onvergesuniformly on Ω to the fun
tion f(ω) if for any ε > 0 there exists an integer N su
h that

sup
ω∈Ω

|fn(ω) − f(ω)| < ε,∀n > N.(insert a diagram here showing the envelope around f(ω) in whi
h fn(ω) must lie)Sto
hasti
 sequen
es. In e
onometri
s, we typi
ally deal with sto
hasti
 sequen
es.Given a probability spa
e (Ω,F , P ) , re
all that a random variable maps the sample spa
eto the real line, i.e., X(ω) : Ω → ℜ. A sequen
e of random variables {Xn(ω)} is a 
olle
tionof su
h mappings, i.e., ea
h Xn(ω) is a random variable with respe
t to the probabilityspa
e (Ω,F , P ) . For example, given the model Y = Xβ0 + ε, the OLS estimator β̂n =

(X ′X)−1X ′Y, where n is the sample size, 
an be used to form a sequen
e of random ve
tors
{β̂n}. A number of modes of 
onvergen
e are in use when dealing with sequen
es of randomvariables. Several su
h modes of 
onvergen
e should already be familiar:Definition 40. [Convergen
e in probability℄ Let Xn(ω) be a sequen
e of random vari-ables, and let X(ω) be a random variable. Let An = {ω : |Xn(ω) − X(ω)| > ε}. Then
{Xn(ω)} 
onverges in probability to X(ω) if

lim
n→∞

P (An) = 0,∀ε > 0.



2. CONVERGENGE MODES 266Convergen
e in probability is written as Xn
p→ X, or plim Xn = X.Definition 41. [Almost sure 
onvergen
e℄ Let Xn(ω) be a sequen
e of random vari-ables, and let X(ω) be a random variable. Let A = {ω : limn→∞Xn(ω) = X(ω)}. Then

{Xn(ω)} 
onverges almost surely to X(ω) if
P (A) = 1.In other words, Xn(ω) → X(ω) (ordinary 
onvergen
e of the two fun
tions) ex
ept on aset C = Ω − A su
h that P (C) = 0. Almost sure 
onvergen
e is written as Xn

a.s.→ X, or
Xn → X,a.s. One 
an show that

Xn
a.s.→ X ⇒ Xn

p→ X.Definition 42. [Convergen
e in distribution℄ Let the r.v. Xn have distribution fun
-tion Fn and the r.v. Xn have distribution fun
tion F. If Fn → F at every 
ontinuity pointof F, then Xn 
onverges in distribution to X.Convergen
e in distribution is written as Xn
d→ X. It 
an be shown that 
onvergen
e inprobability implies 
onvergen
e in distribution.Sto
hasti
 fun
tions. Simple laws of large numbers (LLN's) allow us to dire
tly
on
lude that β̂n a.s.→ β0 in the OLS example, sin
e

β̂n = β0 +

(
X ′X
n

)−1(X ′ε
n

)
,and X′ε

n

a.s.
→ 0 by a SLLN. Note that this term is not a fun
tion of the parameter β. Thiseasy proof is a result of the linearity of the model, whi
h allows us to express the estimatorin a way that separates parameters from random fun
tions. In general, this is not possible.We often deal with the more 
ompli
ated situation where the sto
hasti
 sequen
e dependson parameters in a manner that is not redu
ible to a simple sequen
e of random variables.In this 
ase, we have a sequen
e of random fun
tions that depend on θ: {Xn(ω, θ)}, whereea
h Xn(ω, θ) is a random variable with respe
t to a probability spa
e (Ω,F , P ) and theparameter θ belongs to a parameter spa
e θ ∈ Θ.Definition 43. [Uniform almost sure 
onvergen
e℄ {Xn(ω, θ)} 
onverges uniformlyalmost surely in Θ to X(ω, θ) if

lim
n→∞

sup
θ∈Θ

|Xn(ω, θ) −X(ω, θ)| = 0, (a.s.)Impli
it is the assumption that all Xn(ω, θ) and X(ω, θ) are random variables w.r.t.
(Ω,F , P ) for all θ ∈ Θ.We'll indi
ate uniform almost sure 
onvergen
e by u.a.s.→ and uniform
onvergen
e in probability by u.p.→ .

• An equivalent de�nition, based on the fa
t that �almost sure� means �with prob-ability one� is
Pr

(
lim
n→∞

sup
θ∈Θ

|Xn(ω, θ) −X(ω, θ)| = 0

)
= 1This has a form similar to that of the de�nition of a.s. 
onvergen
e - the essentialdi�eren
e is the addition of the sup.



3. RATES OF CONVERGENCE AND ASYMPTOTIC EQUALITY 2673. Rates of 
onvergen
e and asymptoti
 equalityIt's often useful to have notation for the relative magnitudes of quantities. Quantitiesthat are small relative to others 
an often be ignored, whi
h simpli�es analysis.Definition 44. [Little-o℄ Let f(n) and g(n) be two real-valued fun
tions. The notation
f(n) = o(g(n)) means limn→∞

f(n)
g(n) = 0.Definition 45. [Big-O℄ Let f(n) and g(n) be two real-valued fun
tions. The notation

f(n) = O(g(n)) means there exists some N su
h that for n > N,
∣∣∣ f(n)
g(n)

∣∣∣ < K, where K is a�nite 
onstant.This de�nition doesn't require that f(n)
g(n) have a limit (it may �u
tuate boundedly).If {fn} and {gn} are sequen
es of random variables analogous de�nitions areDefinition 46. The notation f(n) = op(g(n)) means f(n)

g(n)

p→ 0.Example 47. The least squares estimator θ̂ = (X ′X)−1X ′Y = (X ′X)−1X ′ (Xθ0 + ε
)

=

θ0 + (X ′X)−1X ′ε. Sin
e plim (X′X)−1X′ε
1 = 0, we 
an write (X ′X)−1X ′ε = op(1) and

θ̂ = θ0 + op(1). Asymptoti
ally, the term op(1) is negligible. This is just a way of indi
at-ing that the LS estimator is 
onsistent.Definition 48. The notation f(n) = Op(g(n)) means there exists some Nε su
h thatfor ε > 0 and all n > Nε,

P

(∣∣∣∣
f(n)

g(n)

∣∣∣∣ < Kε

)
> 1 − ε,where Kε is a �nite 
onstant.Example 49. If Xn ∼ N(0, 1) then Xn = Op(1), sin
e, given ε, there is always some

Kε su
h that P (|Xn| < Kε) > 1 − ε.Useful rules:
• Op(n

p)Op(n
q) = Op(n

p+q)

• op(n
p)op(n

q) = op(n
p+q)Example 50. Consider a random sample of iid r.v.'s with mean 0 and varian
e σ2.The estimator of the mean θ̂ = 1/n

∑n
i=1 xi is asymptoti
ally normally distributed, e.g.,

n1/2θ̂
A∼ N(0, σ2). So n1/2θ̂ = Op(1), so θ̂ = Op(n

−1/2). Before we had θ̂ = op(1), now wehave have the stronger result that relates the rate of 
onvergen
e to the sample size.Example 51. Now 
onsider a random sample of iid r.v.'s with mean µ and varian
e σ2.The estimator of the mean θ̂ = 1/n
∑n

i=1 xi is asymptoti
ally normally distributed, e.g.,
n1/2

(
θ̂ − µ

)
A∼ N(0, σ2). So n1/2

(
θ̂ − µ

)
= Op(1), so θ̂ − µ = Op(n

−1/2), so θ̂ = Op(1).These two examples show that averages of 
entered (mean zero) quantities typi
allyhave plim 0, while averages of un
entered quantities have �nite nonzero plims. Note thatthe de�nition of Op does not mean that f(n) and g(n) are of the same order. Asymptoti
equality ensures that this is the 
ase.Definition 52. Two sequen
es of random variables {fn} and {gn} are asymptoti
allyequal (written fn a
= gn) if

plim

(
f(n)

g(n)

)
= 1Finally, analogous almost sure versions of op and Op are de�ned in the obvious way.



EXERCISES 268Exer
ises(1) For a and x both p× 1 ve
tors, show that Dxa
′x = a.(2) For A a p× p matrix and x a p× 1 ve
tor, show that D2

xx
′Ax = A+A′.(3) For x and β both p× 1 ve
tors, show that Dβ expx′β = exp(x′β)x.(4) For x and β both p× 1 ve
tors, �nd the analyti
 expression for D2

β expx′β.(5) Write an O
tave program that veri�es ea
h of the previous results by taking numeri
derivatives. For a hint, type help numgradient and help numhessian inside o
tave.



CHAPTER 24Li
ensesThis do
ument and the asso
iated examples and materials are 
opyright Mi
hael Creel,under the terms of the GNU General Publi
 Li
ense, ver. 2., or at your option, under theCreative Commons Attribution-Share Alike Li
ense, Version 2.5. The li
enses follow.1. The GPLGNU GENERAL PUBLIC LICENSEVersion 2, June 1991Copyright (C) 1989, 1991 Free Software Foundation, In
.59 Temple Pla
e, Suite 330, Boston, MA 02111-1307 USAEveryone is permitted to 
opy and distribute verbatim 
opiesof this li
ense do
ument, but 
hanging it is not allowed.PreambleThe li
enses for most software are designed to take away yourfreedom to share and 
hange it. By 
ontrast, the GNU General Publi
Li
ense is intended to guarantee your freedom to share and 
hange freesoftware--to make sure the software is free for all its users. ThisGeneral Publi
 Li
ense applies to most of the Free SoftwareFoundation's software and to any other program whose authors 
ommit tousing it. (Some other Free Software Foundation software is 
overed bythe GNU Library General Publi
 Li
ense instead.) You 
an apply it toyour programs, too.When we speak of free software, we are referring to freedom, notpri
e. Our General Publi
 Li
enses are designed to make sure that youhave the freedom to distribute 
opies of free software (and 
harge forthis servi
e if you wish), that you re
eive sour
e 
ode or 
an get itif you want it, that you 
an 
hange the software or use pie
es of itin new free programs; and that you know you 
an do these things.To prote
t your rights, we need to make restri
tions that forbidanyone to deny you these rights or to ask you to surrender the rights.These restri
tions translate to 
ertain responsibilities for you if youdistribute 
opies of the software, or if you modify it.For example, if you distribute 
opies of su
h a program, whethergratis or for a fee, you must give the re
ipients all the rights that269



1. THE GPL 270you have. You must make sure that they, too, re
eive or 
an get thesour
e 
ode. And you must show them these terms so they know theirrights.We prote
t your rights with two steps: (1) 
opyright the software, and(2) offer you this li
ense whi
h gives you legal permission to 
opy,distribute and/or modify the software.Also, for ea
h author's prote
tion and ours, we want to make 
ertainthat everyone understands that there is no warranty for this freesoftware. If the software is modified by someone else and passed on, wewant its re
ipients to know that what they have is not the original, sothat any problems introdu
ed by others will not refle
t on the originalauthors' reputations.Finally, any free program is threatened 
onstantly by softwarepatents. We wish to avoid the danger that redistributors of a freeprogram will individually obtain patent li
enses, in effe
t making theprogram proprietary. To prevent this, we have made it 
lear that anypatent must be li
ensed for everyone's free use or not li
ensed at all.The pre
ise terms and 
onditions for 
opying, distribution andmodifi
ation follow.
GNU GENERAL PUBLIC LICENSETERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION0. This Li
ense applies to any program or other work whi
h 
ontainsa noti
e pla
ed by the 
opyright holder saying it may be distributedunder the terms of this General Publi
 Li
ense. The "Program", below,refers to any su
h program or work, and a "work based on the Program"means either the Program or any derivative work under 
opyright law:that is to say, a work 
ontaining the Program or a portion of it,either verbatim or with modifi
ations and/or translated into anotherlanguage. (Hereinafter, translation is in
luded without limitation inthe term "modifi
ation".) Ea
h li
ensee is addressed as "you".A
tivities other than 
opying, distribution and modifi
ation are not
overed by this Li
ense; they are outside its s
ope. The a
t ofrunning the Program is not restri
ted, and the output from the Programis 
overed only if its 
ontents 
onstitute a work based on theProgram (independent of having been made by running the Program).



1. THE GPL 271Whether that is true depends on what the Program does.1. You may 
opy and distribute verbatim 
opies of the Program'ssour
e 
ode as you re
eive it, in any medium, provided that you
onspi
uously and appropriately publish on ea
h 
opy an appropriate
opyright noti
e and dis
laimer of warranty; keep inta
t all thenoti
es that refer to this Li
ense and to the absen
e of any warranty;and give any other re
ipients of the Program a 
opy of this Li
ensealong with the Program.You may 
harge a fee for the physi
al a
t of transferring a 
opy, andyou may at your option offer warranty prote
tion in ex
hange for a fee.2. You may modify your 
opy or 
opies of the Program or any portionof it, thus forming a work based on the Program, and 
opy anddistribute su
h modifi
ations or work under the terms of Se
tion 1above, provided that you also meet all of these 
onditions:a) You must 
ause the modified files to 
arry prominent noti
esstating that you 
hanged the files and the date of any 
hange.b) You must 
ause any work that you distribute or publish, that inwhole or in part 
ontains or is derived from the Program or anypart thereof, to be li
ensed as a whole at no 
harge to all thirdparties under the terms of this Li
ense.
) If the modified program normally reads 
ommands intera
tivelywhen run, you must 
ause it, when started running for su
hintera
tive use in the most ordinary way, to print or display anannoun
ement in
luding an appropriate 
opyright noti
e and anoti
e that there is no warranty (or else, saying that you providea warranty) and that users may redistribute the program underthese 
onditions, and telling the user how to view a 
opy of thisLi
ense. (Ex
eption: if the Program itself is intera
tive butdoes not normally print su
h an announ
ement, your work based onthe Program is not required to print an announ
ement.)
These requirements apply to the modified work as a whole. Ifidentifiable se
tions of that work are not derived from the Program,and 
an be reasonably 
onsidered independent and separate works inthemselves, then this Li
ense, and its terms, do not apply to thosese
tions when you distribute them as separate works. But when you



1. THE GPL 272distribute the same se
tions as part of a whole whi
h is a work basedon the Program, the distribution of the whole must be on the terms ofthis Li
ense, whose permissions for other li
ensees extend to theentire whole, and thus to ea
h and every part regardless of who wrote it.Thus, it is not the intent of this se
tion to 
laim rights or 
ontestyour rights to work written entirely by you; rather, the intent is toexer
ise the right to 
ontrol the distribution of derivative or
olle
tive works based on the Program.In addition, mere aggregation of another work not based on the Programwith the Program (or with a work based on the Program) on a volume ofa storage or distribution medium does not bring the other work underthe s
ope of this Li
ense.3. You may 
opy and distribute the Program (or a work based on it,under Se
tion 2) in obje
t 
ode or exe
utable form under the terms ofSe
tions 1 and 2 above provided that you also do one of the following:a) A

ompany it with the 
omplete 
orresponding ma
hine-readablesour
e 
ode, whi
h must be distributed under the terms of Se
tions1 and 2 above on a medium 
ustomarily used for software inter
hange; or,b) A

ompany it with a written offer, valid for at least threeyears, to give any third party, for a 
harge no more than your
ost of physi
ally performing sour
e distribution, a 
ompletema
hine-readable 
opy of the 
orresponding sour
e 
ode, to bedistributed under the terms of Se
tions 1 and 2 above on a medium
ustomarily used for software inter
hange; or,
) A

ompany it with the information you re
eived as to the offerto distribute 
orresponding sour
e 
ode. (This alternative isallowed only for non
ommer
ial distribution and only if youre
eived the program in obje
t 
ode or exe
utable form with su
han offer, in a

ord with Subse
tion b above.)The sour
e 
ode for a work means the preferred form of the work formaking modifi
ations to it. For an exe
utable work, 
omplete sour
e
ode means all the sour
e 
ode for all modules it 
ontains, plus anyasso
iated interfa
e definition files, plus the s
ripts used to
ontrol 
ompilation and installation of the exe
utable. However, as aspe
ial ex
eption, the sour
e 
ode distributed need not in
ludeanything that is normally distributed (in either sour
e or binaryform) with the major 
omponents (
ompiler, kernel, and so on) of theoperating system on whi
h the exe
utable runs, unless that 
omponentitself a

ompanies the exe
utable.



1. THE GPL 273If distribution of exe
utable or obje
t 
ode is made by offeringa

ess to 
opy from a designated pla
e, then offering equivalenta

ess to 
opy the sour
e 
ode from the same pla
e 
ounts asdistribution of the sour
e 
ode, even though third parties are not
ompelled to 
opy the sour
e along with the obje
t 
ode.
4. You may not 
opy, modify, subli
ense, or distribute the Programex
ept as expressly provided under this Li
ense. Any attemptotherwise to 
opy, modify, subli
ense or distribute the Program isvoid, and will automati
ally terminate your rights under this Li
ense.However, parties who have re
eived 
opies, or rights, from you underthis Li
ense will not have their li
enses terminated so long as su
hparties remain in full 
omplian
e.5. You are not required to a

ept this Li
ense, sin
e you have notsigned it. However, nothing else grants you permission to modify ordistribute the Program or its derivative works. These a
tions areprohibited by law if you do not a

ept this Li
ense. Therefore, bymodifying or distributing the Program (or any work based on theProgram), you indi
ate your a

eptan
e of this Li
ense to do so, andall its terms and 
onditions for 
opying, distributing or modifyingthe Program or works based on it.6. Ea
h time you redistribute the Program (or any work based on theProgram), the re
ipient automati
ally re
eives a li
ense from theoriginal li
ensor to 
opy, distribute or modify the Program subje
t tothese terms and 
onditions. You may not impose any furtherrestri
tions on the re
ipients' exer
ise of the rights granted herein.You are not responsible for enfor
ing 
omplian
e by third parties tothis Li
ense.7. If, as a 
onsequen
e of a 
ourt judgment or allegation of patentinfringement or for any other reason (not limited to patent issues),
onditions are imposed on you (whether by 
ourt order, agreement orotherwise) that 
ontradi
t the 
onditions of this Li
ense, they do notex
use you from the 
onditions of this Li
ense. If you 
annotdistribute so as to satisfy simultaneously your obligations under thisLi
ense and any other pertinent obligations, then as a 
onsequen
e youmay not distribute the Program at all. For example, if a patentli
ense would not permit royalty-free redistribution of the Program byall those who re
eive 
opies dire
tly or indire
tly through you, then



1. THE GPL 274the only way you 
ould satisfy both it and this Li
ense would be torefrain entirely from distribution of the Program.If any portion of this se
tion is held invalid or unenfor
eable underany parti
ular 
ir
umstan
e, the balan
e of the se
tion is intended toapply and the se
tion as a whole is intended to apply in other
ir
umstan
es.It is not the purpose of this se
tion to indu
e you to infringe anypatents or other property right 
laims or to 
ontest validity of anysu
h 
laims; this se
tion has the sole purpose of prote
ting theintegrity of the free software distribution system, whi
h isimplemented by publi
 li
ense pra
ti
es. Many people have madegenerous 
ontributions to the wide range of software distributedthrough that system in relian
e on 
onsistent appli
ation of thatsystem; it is up to the author/donor to de
ide if he or she is willingto distribute software through any other system and a li
ensee 
annotimpose that 
hoi
e.This se
tion is intended to make thoroughly 
lear what is believed tobe a 
onsequen
e of the rest of this Li
ense.
8. If the distribution and/or use of the Program is restri
ted in
ertain 
ountries either by patents or by 
opyrighted interfa
es, theoriginal 
opyright holder who pla
es the Program under this Li
ensemay add an expli
it geographi
al distribution limitation ex
ludingthose 
ountries, so that distribution is permitted only in or among
ountries not thus ex
luded. In su
h 
ase, this Li
ense in
orporatesthe limitation as if written in the body of this Li
ense.9. The Free Software Foundation may publish revised and/or new versionsof the General Publi
 Li
ense from time to time. Su
h new versions willbe similar in spirit to the present version, but may differ in detail toaddress new problems or 
on
erns.Ea
h version is given a distinguishing version number. If the Programspe
ifies a version number of this Li
ense whi
h applies to it and "anylater version", you have the option of following the terms and 
onditionseither of that version or of any later version published by the FreeSoftware Foundation. If the Program does not spe
ify a version number ofthis Li
ense, you may 
hoose any version ever published by the Free SoftwareFoundation.



1. THE GPL 27510. If you wish to in
orporate parts of the Program into other freeprograms whose distribution 
onditions are different, write to the authorto ask for permission. For software whi
h is 
opyrighted by the FreeSoftware Foundation, write to the Free Software Foundation; we sometimesmake ex
eptions for this. Our de
ision will be guided by the two goalsof preserving the free status of all derivatives of our free software andof promoting the sharing and reuse of software generally.NO WARRANTY11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTYFOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHENOTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIESPROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSEDOR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OFMERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK ASTO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THEPROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,REPAIR OR CORRECTION.12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITINGWILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/ORREDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISINGOUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITEDTO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BYYOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHERPROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THEPOSSIBILITY OF SUCH DAMAGES.END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New ProgramsIf you develop a new program, and you want it to be of the greatestpossible use to the publi
, the best way to a
hieve this is to make itfree software whi
h everyone 
an redistribute and 
hange under these terms.To do so, atta
h the following noti
es to the program. It is safestto atta
h them to the start of ea
h sour
e file to most effe
tively
onvey the ex
lusion of warranty; and ea
h file should have at least



1. THE GPL 276the "
opyright" line and a pointer to where the full noti
e is found.<one line to give the program's name and a brief idea of what it does.>Copyright (C) <year> <name of author>This program is free software; you 
an redistribute it and/or modifyit under the terms of the GNU General Publi
 Li
ense as published bythe Free Software Foundation; either version 2 of the Li
ense, or(at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See theGNU General Publi
 Li
ense for more details.You should have re
eived a 
opy of the GNU General Publi
 Li
ensealong with this program; if not, write to the Free SoftwareFoundation, In
., 59 Temple Pla
e, Suite 330, Boston, MA 02111-1307 USAAlso add information on how to 
onta
t you by ele
troni
 and paper mail.If the program is intera
tive, make it output a short noti
e like thiswhen it starts in an intera
tive mode:Gnomovision version 69, Copyright (C) year name of authorGnomovision 
omes with ABSOLUTELY NO WARRANTY; for details type `show w'.This is free software, and you are wel
ome to redistribute itunder 
ertain 
onditions; type `show 
' for details.The hypotheti
al 
ommands `show w' and `show 
' should show the appropriateparts of the General Publi
 Li
ense. Of 
ourse, the 
ommands you use maybe 
alled something other than `show w' and `show 
'; they 
ould even bemouse-
li
ks or menu items--whatever suits your program.You should also get your employer (if you work as a programmer) or yours
hool, if any, to sign a "
opyright dis
laimer" for the program, ifne
essary. Here is a sample; alter the names:Yoyodyne, In
., hereby dis
laims all 
opyright interest in the program`Gnomovision' (whi
h makes passes at 
ompilers) written by James Ha
ker.<signature of Ty Coon>, 1 April 1989Ty Coon, President of Vi
eThis General Publi
 Li
ense does not permit in
orporating your program into



2. CREATIVE COMMONS 277proprietary programs. If your program is a subroutine library, you may
onsider it more useful to permit linking proprietary appli
ations with thelibrary. If this is what you want to do, use the GNU Library GeneralPubli
 Li
ense instead of this Li
ense.2. Creative CommonsLegal CodeAttribution-ShareAlike 2.5CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOTPROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CRE-ATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDESTHIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NOWARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMSLIABILITY FOR DAMAGES RESULTING FROM ITS USE.Li
enseTHE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OFTHIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THEWORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW.ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSEOR COPYRIGHT LAW IS PROHIBITED.BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU AC-CEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LI-CENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATIONOF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.1. De�nitions1. "Colle
tive Work" means a work, su
h as a periodi
al issue, anthology or en
y
lo-pedia, in whi
h the Work in its entirety in unmodi�ed form, along with a number of other
ontributions, 
onstituting separate and independent works in themselves, are assembledinto a 
olle
tive whole. A work that 
onstitutes a Colle
tive Work will not be 
onsidereda Derivative Work (as de�ned below) for the purposes of this Li
ense.2. "Derivative Work" means a work based upon the Work or upon the Work and otherpre-existing works, su
h as a translation, musi
al arrangement, dramatization, �
tionaliza-tion, motion pi
ture version, sound re
ording, art reprodu
tion, abridgment, 
ondensation,or any other form in whi
h the Work may be re
ast, transformed, or adapted, ex
ept thata work that 
onstitutes a Colle
tive Work will not be 
onsidered a Derivative Work forthe purpose of this Li
ense. For the avoidan
e of doubt, where the Work is a musi
al
omposition or sound re
ording, the syn
hronization of the Work in timed-relation with amoving image ("syn
hing") will be 
onsidered a Derivative Work for the purpose of thisLi
ense.3. "Li
ensor" means the individual or entity that o�ers the Work under the terms ofthis Li
ense.4. "Original Author" means the individual or entity who 
reated the Work.5. "Work" means the 
opyrightable work of authorship o�ered under the terms of thisLi
ense.6. "You" means an individual or entity exer
ising rights under this Li
ense who hasnot previously violated the terms of this Li
ense with respe
t to the Work, or who has



2. CREATIVE COMMONS 278re
eived express permission from the Li
ensor to exer
ise rights under this Li
ense despitea previous violation.7. "Li
ense Elements" means the following high-level li
ense attributes as sele
ted byLi
ensor and indi
ated in the title of this Li
ense: Attribution, ShareAlike.2. Fair Use Rights. Nothing in this li
ense is intended to redu
e, limit, or restri
t anyrights arising from fair use, �rst sale or other limitations on the ex
lusive rights of the
opyright owner under 
opyright law or other appli
able laws.3. Li
ense Grant. Subje
t to the terms and 
onditions of this Li
ense, Li
ensor herebygrants You a worldwide, royalty-free, non-ex
lusive, perpetual (for the duration of theappli
able 
opyright) li
ense to exer
ise the rights in the Work as stated below:1. to reprodu
e the Work, to in
orporate the Work into one or more Colle
tive Works,and to reprodu
e the Work as in
orporated in the Colle
tive Works;2. to 
reate and reprodu
e Derivative Works;3. to distribute 
opies or phonore
ords of, display publi
ly, perform publi
ly, and per-form publi
ly by means of a digital audio transmission the Work in
luding as in
orporatedin Colle
tive Works;4. to distribute 
opies or phonore
ords of, display publi
ly, perform publi
ly, andperform publi
ly by means of a digital audio transmission Derivative Works.5.For the avoidan
e of doubt, where the work is a musi
al 
omposition:1. Performan
e Royalties Under Blanket Li
enses. Li
ensor waives the ex
lusive rightto 
olle
t, whether individually or via a performan
e rights so
iety (e.g. ASCAP, BMI,SESAC), royalties for the publi
 performan
e or publi
 digital performan
e (e.g. web
ast)of the Work.2. Me
hani
al Rights and Statutory Royalties. Li
ensor waives the ex
lusive right to
olle
t, whether individually or via a musi
 rights so
iety or designated agent (e.g. HarryFox Agen
y), royalties for any phonore
ord You 
reate from the Work ("
over version")and distribute, subje
t to the 
ompulsory li
ense 
reated by 17 USC Se
tion 115 of the USCopyright A
t (or the equivalent in other jurisdi
tions).6. Web
asting Rights and Statutory Royalties. For the avoidan
e of doubt, where theWork is a sound re
ording, Li
ensor waives the ex
lusive right to 
olle
t, whether individ-ually or via a performan
e-rights so
iety (e.g. SoundEx
hange), royalties for the publi
digital performan
e (e.g. web
ast) of the Work, subje
t to the 
ompulsory li
ense 
reatedby 17 USC Se
tion 114 of the US Copyright A
t (or the equivalent in other jurisdi
tions).The above rights may be exer
ised in all media and formats whether now known orhereafter devised. The above rights in
lude the right to make su
h modi�
ations as arete
hni
ally ne
essary to exer
ise the rights in other media and formats. All rights notexpressly granted by Li
ensor are hereby reserved.4. Restri
tions.The li
ense granted in Se
tion 3 above is expressly made subje
t to andlimited by the following restri
tions:1. You may distribute, publi
ly display, publi
ly perform, or publi
ly digitally performthe Work only under the terms of this Li
ense, and You must in
lude a 
opy of, or theUniform Resour
e Identi�er for, this Li
ense with every 
opy or phonore
ord of the WorkYou distribute, publi
ly display, publi
ly perform, or publi
ly digitally perform. You maynot o�er or impose any terms on the Work that alter or restri
t the terms of this Li
enseor the re
ipients' exer
ise of the rights granted hereunder. You may not subli
ense the



2. CREATIVE COMMONS 279Work. You must keep inta
t all noti
es that refer to this Li
ense and to the dis
laimer ofwarranties. You may not distribute, publi
ly display, publi
ly perform, or publi
ly digitallyperform the Work with any te
hnologi
al measures that 
ontrol a

ess or use of the Work ina manner in
onsistent with the terms of this Li
ense Agreement. The above applies to theWork as in
orporated in a Colle
tive Work, but this does not require the Colle
tive Workapart from the Work itself to be made subje
t to the terms of this Li
ense. If You 
reatea Colle
tive Work, upon noti
e from any Li
ensor You must, to the extent pra
ti
able,remove from the Colle
tive Work any 
redit as required by 
lause 4(
), as requested. IfYou 
reate a Derivative Work, upon noti
e from any Li
ensor You must, to the extentpra
ti
able, remove from the Derivative Work any 
redit as required by 
lause 4(
), asrequested.2. You may distribute, publi
ly display, publi
ly perform, or publi
ly digitally performa Derivative Work only under the terms of this Li
ense, a later version of this Li
ensewith the same Li
ense Elements as this Li
ense, or a Creative Commons iCommons li
ensethat 
ontains the same Li
ense Elements as this Li
ense (e.g. Attribution-ShareAlike 2.5Japan). You must in
lude a 
opy of, or the Uniform Resour
e Identi�er for, this Li
enseor other li
ense spe
i�ed in the previous senten
e with every 
opy or phonore
ord of ea
hDerivative Work You distribute, publi
ly display, publi
ly perform, or publi
ly digitallyperform. You may not o�er or impose any terms on the Derivative Works that alter orrestri
t the terms of this Li
ense or the re
ipients' exer
ise of the rights granted hereunder,and You must keep inta
t all noti
es that refer to this Li
ense and to the dis
laimer ofwarranties. You may not distribute, publi
ly display, publi
ly perform, or publi
ly digitallyperform the Derivative Work with any te
hnologi
al measures that 
ontrol a

ess or use ofthe Work in a manner in
onsistent with the terms of this Li
ense Agreement. The aboveapplies to the Derivative Work as in
orporated in a Colle
tive Work, but this does notrequire the Colle
tive Work apart from the Derivative Work itself to be made subje
t tothe terms of this Li
ense.3. If you distribute, publi
ly display, publi
ly perform, or publi
ly digitally performthe Work or any Derivative Works or Colle
tive Works, You must keep inta
t all 
opyrightnoti
es for the Work and provide, reasonable to the medium or means You are utilizing:(i) the name of the Original Author (or pseudonym, if appli
able) if supplied, and/or (ii)if the Original Author and/or Li
ensor designate another party or parties (e.g. a sponsorinstitute, publishing entity, journal) for attribution in Li
ensor's 
opyright noti
e, termsof servi
e or by other reasonable means, the name of su
h party or parties; the title of theWork if supplied; to the extent reasonably pra
ti
able, the Uniform Resour
e Identi�er,if any, that Li
ensor spe
i�es to be asso
iated with the Work, unless su
h URI does notrefer to the 
opyright noti
e or li
ensing information for the Work; and in the 
ase of aDerivative Work, a 
redit identifying the use of the Work in the Derivative Work (e.g.,"Fren
h translation of the Work by Original Author," or "S
reenplay based on originalWork by Original Author"). Su
h 
redit may be implemented in any reasonable manner;provided, however, that in the 
ase of a Derivative Work or Colle
tive Work, at a minimumsu
h 
redit will appear where any other 
omparable authorship 
redit appears and in amanner at least as prominent as su
h other 
omparable authorship 
redit.5. Representations, Warranties and Dis
laimer



2. CREATIVE COMMONS 280UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICEN-SOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND CONCERNING THE MATERIALS, EXPRESS, IMPLIED,STATUTORY OROTHERWISE, INCLUDING,WITHOUT LIMITATION, WARRANTIESOF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCU-RACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DIS-COVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IM-PLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICA-BLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGALTHEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OREXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THEWORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCHDAMAGES.7. Termination1. This Li
ense and the rights granted hereunder will terminate automati
ally uponany brea
h by You of the terms of this Li
ense. Individuals or entities who have re
eivedDerivative Works or Colle
tive Works from You under this Li
ense, however, will not havetheir li
enses terminated provided su
h individuals or entities remain in full 
omplian
ewith those li
enses. Se
tions 1, 2, 5, 6, 7, and 8 will survive any termination of this Li
ense.2. Subje
t to the above terms and 
onditions, the li
ense granted here is perpetual(for the duration of the appli
able 
opyright in the Work). Notwithstanding the above,Li
ensor reserves the right to release the Work under di�erent li
ense terms or to stopdistributing the Work at any time; provided, however that any su
h ele
tion will not serveto withdraw this Li
ense (or any other li
ense that has been, or is required to be, grantedunder the terms of this Li
ense), and this Li
ense will 
ontinue in full for
e and e�e
tunless terminated as stated above.8. Mis
ellaneous1. Ea
h time You distribute or publi
ly digitally perform the Work or a Colle
tiveWork, the Li
ensor o�ers to the re
ipient a li
ense to the Work on the same terms and
onditions as the li
ense granted to You under this Li
ense.2. Ea
h time You distribute or publi
ly digitally perform a Derivative Work, Li
ensoro�ers to the re
ipient a li
ense to the original Work on the same terms and 
onditions asthe li
ense granted to You under this Li
ense.3. If any provision of this Li
ense is invalid or unenfor
eable under appli
able law,it shall not a�e
t the validity or enfor
eability of the remainder of the terms of this Li-
ense, and without further a
tion by the parties to this agreement, su
h provision shall bereformed to the minimum extent ne
essary to make su
h provision valid and enfor
eable.4. No term or provision of this Li
ense shall be deemed waived and no brea
h 
onsentedto unless su
h waiver or 
onsent shall be in writing and signed by the party to be 
hargedwith su
h waiver or 
onsent.5. This Li
ense 
onstitutes the entire agreement between the parties with respe
t tothe Work li
ensed here. There are no understandings, agreements or representations withrespe
t to the Work not spe
i�ed here. Li
ensor shall not be bound by any additional



2. CREATIVE COMMONS 281provisions that may appear in any 
ommuni
ation from You. This Li
ense may not bemodi�ed without the mutual written agreement of the Li
ensor and You.Creative Commons is not a party to this Li
ense, and makes no warranty whatsoever in
onne
tion with the Work. Creative Commons will not be liable to You or any party on anylegal theory for any damages whatsoever, in
luding without limitation any general, spe
ial,in
idental or 
onsequential damages arising in 
onne
tion to this li
ense. Notwithstandingthe foregoing two (2) senten
es, if Creative Commons has expressly identi�ed itself as theLi
ensor hereunder, it shall have all rights and obligations of Li
ensor.Ex
ept for the limited purpose of indi
ating to the publi
 that the Work is li
ensedunder the CCPL, neither party will use the trademark "Creative Commons" or any relatedtrademark or logo of Creative Commons without the prior written 
onsent of CreativeCommons. Any permitted use will be in 
omplian
e with Creative Commons' then-
urrenttrademark usage guidelines, as may be published on its website or otherwise made availableupon request from time to time.Creative Commons may be 
onta
ted at http://
reative
ommons.org/.



CHAPTER 25The atti
This holds material that is not really ready to be in
orporated into the main body,but that I don't want to lose. Basi
ally, ignore it, unless you'd like to help get it ready forin
lusion.
1. Hurdle modelsReturning to the Poisson model, lets look at a
tual and �tted 
ount probabilities.A
tual relative frequen
ies are f(y = j) =

∑
i 1(yi = j)/n and �tted frequen
ies are

f̂(y = j) =
∑n

i=1 fY (j|xi, θ̂)/n We see that for the OBDV measure, there are many moreTable 1. A
tual and Poisson �tted frequen
iesCount OBDV ERVCount A
tual Fitted A
tual Fitted0 0.32 0.06 0.86 0.831 0.18 0.15 0.10 0.142 0.11 0.19 0.02 0.023 0.10 0.18 0.004 0.0024 0.052 0.15 0.002 0.00025 0.032 0.10 0 2.4e-5a
tual zeros than predi
ted. For ERV, there are somewhat more a
tual zeros than �tted,but the di�eren
e is not too important.Why might OBDV not �t the zeros well? What if people made the de
ision to 
onta
tthe do
tor for a �rst visit, they are si
k, then the do
tor de
ides on whether or not follow-upvisits are needed. This is a prin
ipal/agent type situation, where the total number of visitsdepends upon the de
ision of both the patient and the do
tor. Sin
e di�erent parametersmay govern the two de
ision-makers 
hoi
es, we might expe
t that di�erent parametersgovern the probability of zeros versus the other 
ounts. Let λp be the parameters of thepatient's demand for visits, and let λd be the paramter of the do
tor's �demand� for visits.The patient will initiate visits a

ording to a dis
rete 
hoi
e model, for example, a logitmodel:
Pr(Y = 0) = fY (0, λp) = 1 − 1/ [1 + exp(−λp)]
Pr(Y > 0) = 1/ [1 + exp(−λp)] ,The above probabilities are used to estimate the binary 0/1 hurdle pro
ess. Then, forthe observations where visits are positive, a trun
ated Poisson density is estimated. This282



1. HURDLE MODELS 283density is
fY (y, λd|y > 0) =

fY (y, λd)

Pr(y > 0)

=
fY (y, λd)

1 − exp(−λd)sin
e a

ording to the Poisson model with the do
tor's paramaters,
Pr(y = 0) =

exp(−λd)λ0
d

0!
.Sin
e the hurdle and trun
ated 
omponents of the overall density for Y share no parameters,they may be estimated separately, whi
h is 
omputationally more e�
ient than estimatingthe overall model. (Re
all that the BFGS algorithm, for example, will have to invert theapproximated Hessian. The 
omputational overhead is of order K2 where K is the numberof parameters to be estimated) . The expe
tation of Y is

E(Y |x) = Pr(Y > 0|x)E(Y |Y > 0, x)

=

(
1

1 + exp(−λp)

)(
λd

1 − exp(−λd)

)



1. HURDLE MODELS 284Here are hurdle Poisson estimation results for OBDV, obtained from this estimation program**************************************************************************MEPS data, OBDVlogit resultsStrong 
onvergen
eObservations = 500Fun
tion value -0.58939t-Stats params t(OPG) t(Sand.) t(Hess)
onstant -1.5502 -2.5709 -2.5269 -2.5560pub_ins 1.0519 3.0520 3.0027 3.0384priv_ins 0.45867 1.7289 1.6924 1.7166sex 0.63570 3.0873 3.1677 3.1366age 0.018614 2.1547 2.1969 2.1807edu
 0.039606 1.0467 0.98710 1.0222in
 0.077446 1.7655 2.1672 1.9601Information CriteriaConsistent Akaike639.89S
hwartz632.89Hannan-Quinn614.96Akaike 603.39**************************************************************************

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/estimate_hpoisson.ox


1. HURDLE MODELS 285The results for the trun
ated part:**************************************************************************MEPS data, OBDVtpoisson resultsStrong 
onvergen
eObservations = 500Fun
tion value -2.7042t-Stats params t(OPG) t(Sand.) t(Hess)
onstant 0.54254 7.4291 1.1747 3.2323pub_ins 0.31001 6.5708 1.7573 3.7183priv_ins 0.014382 0.29433 0.10438 0.18112sex 0.19075 10.293 1.1890 3.6942age 0.016683 16.148 3.5262 7.9814edu
 0.016286 4.2144 0.56547 1.6353in
 -0.0079016 -2.3186 -0.35309 -0.96078Information CriteriaConsistent Akaike2754.7S
hwartz2747.7Hannan-Quinn2729.8Akaike 2718.2**************************************************************************



1. HURDLE MODELS 286Fitted and a
tual probabilites (NB-II �ts are provided as well) are:Table 2. A
tual and Hurdle Poisson �tted frequen
iesCount OBDV ERVCount A
tual Fitted HP Fitted NB-II A
tual Fitted HP Fitted NB-II0 0.32 0.32 0.34 0.86 0.86 0.861 0.18 0.035 0.16 0.10 0.10 0.102 0.11 0.071 0.11 0.02 0.02 0.023 0.10 0.10 0.08 0.004 0.006 0.0064 0.052 0.11 0.06 0.002 0.002 0.0025 0.032 0.10 0.05 0 0.0005 0.001For the Hurdle Poisson models, the ERV �t is very a

urate. The OBDV �t is notso good. Zeros are exa
t, but 1's and 2's are underestimated, and higher 
ounts areoverestimated. For the NB-II �ts, performan
e is at least as good as the hurdle Poissonmodel, and one should re
all that many fewer parameters are used. Hurdle version of thenegative binomial model are also widely used.1.1. Finite mixture models. The following are results for a mixture of 2 negative bi-nomial (NB-I) models, for the OBDV data, whi
h you 
an repli
ate using this estimation program

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/estimate_mixnegbin.ox


1. HURDLE MODELS 287**************************************************************************MEPS data, OBDVmixnegbin resultsStrong 
onvergen
eObservations = 500Fun
tion value -2.2312t-Stats params t(OPG) t(Sand.) t(Hess)
onstant 0.64852 1.3851 1.3226 1.4358pub_ins -0.062139 -0.23188 -0.13802 -0.18729priv_ins 0.093396 0.46948 0.33046 0.40854sex 0.39785 2.6121 2.2148 2.4882age 0.015969 2.5173 2.5475 2.7151edu
 -0.049175 -1.8013 -1.7061 -1.8036in
 0.015880 0.58386 0.76782 0.73281ln_alpha 0.69961 2.3456 2.0396 2.4029
onstant -3.6130 -1.6126 -1.7365 -1.8411pub_ins 2.3456 1.7527 3.7677 2.6519priv_ins 0.77431 0.73854 1.1366 0.97338sex 0.34886 0.80035 0.74016 0.81892age 0.021425 1.1354 1.3032 1.3387edu
 0.22461 2.0922 1.7826 2.1470in
 0.019227 0.20453 0.40854 0.36313ln_alpha 2.8419 6.2497 6.8702 7.6182logit_inv_mix 0.85186 1.7096 1.4827 1.7883Information CriteriaConsistent Akaike2353.8S
hwartz2336.8Hannan-Quinn2293.3Akaike 2265.2**************************************************************************Delta method for mix parameter st. err.mix se_mix0.70096 0.12043
• The 95% 
on�den
e interval for the mix parameter is perilously 
lose to 1, whi
hsuggests that there may really be only one 
omponent density, rather than amixture. Again, this is not the way to test this - it is merely suggestive.
• Edu
ation is interesting. For the subpopulation that is �healthy�, i.e., that makesrelatively few visits, edu
ation seems to have a positive e�e
t on visits. For the�unhealthy� group, edu
ation has a negative e�e
t on visits. The other results aremore mixed. A larger sample 
ould help 
larify things.



1. HURDLE MODELS 288The following are results for a 2 
omponent 
onstrained mixture negative binomial modelwhere all the slope parameters in λj = exβj are the same a
ross the two 
omponents.The 
onstants and the overdispersion parameters αj are allowed to di�er for the two
omponents.



2. MODELS FOR TIME SERIES DATA 289**************************************************************************MEPS data, OBDV
mixnegbin resultsStrong 
onvergen
eObservations = 500Fun
tion value -2.2441t-Stats params t(OPG) t(Sand.) t(Hess)
onstant -0.34153 -0.94203 -0.91456 -0.97943pub_ins 0.45320 2.6206 2.5088 2.7067priv_ins 0.20663 1.4258 1.3105 1.3895sex 0.37714 3.1948 3.4929 3.5319age 0.015822 3.1212 3.7806 3.7042edu
 0.011784 0.65887 0.50362 0.58331in
 0.014088 0.69088 0.96831 0.83408ln_alpha 1.1798 4.6140 7.2462 6.4293
onst_2 1.2621 0.47525 2.5219 1.5060lnalpha_2 2.7769 1.5539 6.4918 4.2243logit_inv_mix 2.4888 0.60073 3.7224 1.9693Information CriteriaConsistent Akaike2323.5S
hwartz2312.5Hannan-Quinn2284.3Akaike 2266.1**************************************************************************Delta method for mix parameter st. err.mix se_mix0.92335 0.047318
• Now the mixture parameter is even 
loser to 1.
• The slope parameter estimates are pretty 
lose to what we got with the NB-Imodel. 2. Models for time series dataThis se
tion 
an be ignored in its present form. Just left in to form a basis for 
om-pletion (by someone else ?!) at some point.Hamilton, Time Series Analysis is a good referen
e for this se
tion. This is veryin
omplete and 
ontributions would be very wel
ome.Up to now we've 
onsidered the behavior of the dependent variable yt as a fun
tionof other variables xt. These variables 
an of 
ourse 
ontain lagged dependent variables,e.g., xt = (wt, yt−1, ..., yt−j). Pure time series methods 
onsider the behavior of yt as afun
tion only of its own lagged values, un
onditional on other observable variables. One
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an think of this as modeling the behavior of yt after marginalizing out all other variables.While it's not immediately 
lear why a model that has other explanatory variables shouldmarginalize to a linear in the parameters time series model, most time series work is donewith linear models, though nonlinear time series is also a large and growing �eld. We'llsti
k with linear time series models.2.1. Basi
 
on
epts.Definition 53 (Sto
hasti
 pro
ess). A sto
hasti
 pro
ess is a sequen
e of randomvariables, indexed by time:(76) {Yt}∞t=−∞Definition 54 (Time series). A time series is one observation of a sto
hasti
 pro
ess,over a spe
i�
 interval:(77) {yt}nt=1So a time series is a sample of size n from a sto
hasti
 pro
ess. It's important to keepin mind that 
on
eptually, one 
ould draw another sample, and that the values would bedi�erent.Definition 55 (Auto
ovarian
e). The jth auto
ovarian
e of a sto
hasti
 pro
ess is(78) γjt = E(yt − µt)(yt−j − µt−j)where µt = E (yt) .Definition 56 (Covarian
e (weak) stationarity). A sto
hasti
 pro
ess is 
ovarian
estationary if it has time 
onstant mean and auto
ovarian
es of all orders:
µt = µ,∀t
γjt = γj ,∀tAs we've seen, this implies that γj = γ−j : the auto
ovarian
es depend only one theinterval between observations, but not the time of the observations.Definition 57 (Strong stationarity). A sto
hasti
 pro
ess is strongly stationary if thejoint distribution of an arbitrary 
olle
tion of the {Yt} doesn't depend on t.Sin
e moments are determined by the distribution, strong stationarity⇒weak station-arity.What is the mean of Yt? The time series is one sample from the sto
hasti
 pro
ess.One 
ould think of M repeated samples from the sto
h. pro
., e.g., {ymt } By a LLN, wewould expe
t that

lim
M→∞

1

M

M∑

m=1

ytm
p→ E(Yt)The problem is, we have only one sample to work with, sin
e we 
an't go ba
k in timeand 
olle
t another. How 
an E(Yt) be estimated then? It turns out that ergodi
ity is theneeded property.Definition 58 (Ergodi
ity). A stationary sto
hasti
 pro
ess is ergodi
 (for the mean)if the time average 
onverges to the mean(79) 1

n

n∑

t=1

yt
p→ µ
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ient 
ondition for ergodi
ity is that the auto
ovarian
es be absolutely summable:
∞∑

j=0

|γj | <∞This implies that the auto
ovarian
es die o�, so that the yt are not so strongly dependentthat they don't satisfy a LLN.Definition 59 (Auto
orrelation). The jth auto
orrelation, ρj is just the jth auto
o-varian
e divided by the varian
e:(80) ρj =
γj
γ0Definition 60 (White noise). White noise is just the time series literature term for a
lassi
al error. ǫt is white noise if i) E(ǫt) = 0,∀t, ii) V (ǫt) = σ2, ∀t, and iii) ǫt and ǫs areindependent, t 6= s. Gaussian white noise just adds a normality assumption.2.2. ARMA models. With these 
on
epts, we 
an dis
uss ARMA models. Theseare 
losely related to the AR and MA error pro
esses that we've already dis
ussed. Themain di�eren
e is that the lhs variable is observed dire
tly now.MA(q) pro
esses. A qth order moving average (MA) pro
ess is

yt = µ+ εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−qwhere εt is white noise. The varian
e is
γ0 = E (yt − µ)2

= E (εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q)
2

= σ2
(
1 + θ2

1 + θ2
2 + · · · + θ2

q

)Similarly, the auto
ovarian
es are
γj = θj + θj+1θ1 + θj+2θ2 + · · · + θqθq−j, j ≤ q

= 0, j > qTherefore an MA(q) pro
ess is ne
essarily 
ovarian
e stationary and ergodi
, as long as σ2and all of the θj are �nite.AR(p) pro
esses. An AR(p) pro
ess 
an be represented as
yt = c+ φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εtThe dynami
 behavior of an AR(p) pro
ess 
an be studied by writing this pth order di�er-en
e equation as a ve
tor �rst order di�eren
e equation:




yt

yt−1...
yt−p+1




=




c

0...
0







φ1 φ2 · · · φp

1 0 0 0

0 1 0
. . . 0... . . . . . . . . . 0 · · ·

0 · · · 0 1 0







yt−1

yt−2...
yt−p




+




εt

0...
0


or

Yt = C + FYt−1 +Et
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an re
ursively work forward in time:
Yt+1 = C + FYt + Et+1

= C + F (C + FYt−1 + Et) + Et+1

= C + FC + F 2Yt−1 + FEt + Et+1and
Yt+2 = C + FYt+1 + Et+2

= C + F
(
C + FC + F 2Yt−1 + FEt + Et+1

)
+ Et+2

= C + FC + F 2C + F 3Yt−1 + F 2Et + FEt+1 + Et+2or in general
Yt+j = C + FC + · · · + F jC + F j+1Yt−1 + F jEt + F j−1Et+1 + · · · + FEt+j−1 + Et+jConsider the impa
t of a sho
k in period t on yt+j . This is simply

∂Yt+j
∂E′

t (1,1)

= F j(1,1)If the system is to be stationary, then as we move forward in time this impa
t must die o�.Otherwise a sho
k 
auses a permanent 
hange in the mean of yt. Therefore, stationarityrequires that
lim
j→∞

F j(1,1) = 0

• Save this result, we'll need it in a minute.
Consider the eigenvalues of the matrix F. These are the for λ su
h that

|F − λIP | = 0The determinant here 
an be expressed as a polynomial. for example, for p = 1, the matrix
F is simply

F = φ1so
|φ1 − λ| = 0
an be written as
φ1 − λ = 0When p = 2, the matrix F is

F =

[
φ1 φ2

1 0

]so
F − λIP =

[
φ1 − λ φ2

1 −λ

]and
|F − λIP | = λ2 − λφ1 − φ2So the eigenvalues are the roots of the polynomial

λ2 − λφ1 − φ2
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h 
an be found using the quadrati
 equation. This generalizes. For a pth order ARpro
ess, the eigenvalues are the roots of
λp − λp−1φ1 − λp−2φ2 − · · · − λφp−1 − φp = 0Supposing that all of the roots of this polynomial are distin
t, then the matrix F 
an befa
tored as

F = TΛT−1where T is the matrix whi
h has as its 
olumns the eigenve
tors of F, and Λ is a diagonalmatrix with the eigenvalues on the main diagonal. Using this de
omposition, we 
an write
F j =

(
TΛT−1

) (
TΛT−1

)
· · ·
(
TΛT−1

)where TΛT−1 is repeated j times. This gives
F j = TΛjT−1and

Λj =




λj1 0 0

0 λj2 . . .
0 λjp


Supposing that the λi i = 1, 2, ..., p are all real valued, it is 
lear that

lim
j→∞

F j(1,1) = 0requires that
|λi| < 1, i = 1, 2, ..., pe.g., the eigenvalues must be less than one in absolute value.

• It may be the 
ase that some eigenvalues are 
omplex-valued. The previous resultgeneralizes to the requirement that the eigenvalues be less than one in modulus,where the modulus of a 
omplex number a+ bi is
mod(a+ bi) =

√
a2 + b2This leads to the famous statement that �stationarity requires the roots of thedeterminantal polynomial to lie inside the 
omplex unit 
ir
le.� draw pi
turehere.

• When there are roots on the unit 
ir
le (unit roots) or outside the unit 
ir
le, weleave the world of stationary pro
esses.
• Dynami
 multipliers: ∂yt+j/∂εt = F j(1,1) is a dynami
 multiplier or an impulse-response fun
tion. Real eigenvalues lead to steady movements, whereas 
omlpexeigenvalue lead to o
illatory behavior. Of 
ourse, when there are multiple eigen-values the overall e�e
t 
an be a mixture. pi
turesInvertibility of AR pro
essTo begin with, de�ne the lag operator L

Lyt = yt−1
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 quantity, e.g.,
L2yt = L(Lyt)

= Lyt−1

= yt−2or
(1 − L)(1 + L)yt = 1 − Lyt + Lyt − L2yt

= 1 − yt−2A mean-zero AR(p) pro
ess 
an be written as
yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p = εtor
yt(1 − φ1L− φ2L

2 − · · · − φpL
p) = εtFa
tor this polynomial as

1 − φ1L− φ2L
2 − · · · − φpL

p = (1 − λ1L)(1 − λ2L) · · · (1 − λpL)For the moment, just assume that the λi are 
oe�
ients to be determined. Sin
e L isde�ned to operate as an algebrai
 quantitiy, determination of the λi is the same as deter-mination of the λi su
h that the following two expressions are the same for all z :

1 − φ1z − φ2z
2 − · · · − φpz

p = (1 − λ1z)(1 − λ2z) · · · (1 − λpz)Multiply both sides by z−p
z−p − φ1z

1−p − φ2z
2−p − · · ·φp−1z

−1 − φp = (z−1 − λ1)(z
−1 − λ2) · · · (z−1 − λp)and now de�ne λ = z−1 so we get

λp − φ1λ
p−1 − φ2λ

p−2 − · · · − φp−1λ− φp = (λ− λ1)(λ− λ2) · · · (λ− λp)The LHS is pre
isely the determinantal polynomial that gives the eigenvalues of F. There-fore, the λi that are the 
oe�
ients of the fa
torization are simply the eigenvalues of thematrix F.Now 
onsider a di�erent stationary pro
ess
(1 − φL)yt = εt

• Stationarity, as above, implies that |φ| < 1.Multiply both sides by 1 + φL+ φ2L2 + ...+ φjLj to get
(
1 + φL+ φ2L2 + ...+ φjLj

)
(1 − φL)yt =

(
1 + φL+ φ2L2 + ...+ φjLj

)
εtor, multiplying the polynomials on th LHS, we get

(
1 + φL+ φ2L2 + ...+ φjLj − φL− φ2L2 − ...− φjLj − φj+1Lj+1

)
yt

==
(
1 + φL+ φ2L2 + ...+ φjLj

)
εtand with 
an
ellations we have

(
1 − φj+1Lj+1

)
yt =

(
1 + φL+ φ2L2 + ...+ φjLj

)
εtso

yt = φj+1Lj+1yt +
(
1 + φL+ φ2L2 + ...+ φjLj

)
εt
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e |φ| < 1, so
yt ∼=

(
1 + φL+ φ2L2 + ...+ φjLj

)
εtand the approximation be
omes better and better as j in
reases. However, we started with

(1 − φL)yt = εtSubstituting this into the above equation we have
yt ∼=

(
1 + φL+ φ2L2 + ...+ φjLj

)
(1 − φL)ytso (

1 + φL+ φ2L2 + ...+ φjLj
)
(1 − φL) ∼= 1and the approximation be
omes arbitrarily good as j in
reases arbitrarily. Therefore, for

|φ| < 1, de�ne
(1 − φL)−1 =

∞∑

j=0

φjLjRe
all that our mean zero AR(p) pro
ess
yt(1 − φ1L− φ2L

2 − · · · − φpL
p) = εt
an be written using the fa
torization

yt(1 − λ1L)(1 − λ2L) · · · (1 − λpL) = εtwhere the λ are the eigenvalues of F, and given stationarity, all the |λi| < 1. Therefore, we
an invert ea
h �rst order polynomial on the LHS to get
yt =




∞∑

j=0

λj1L
j






∞∑

j=0

λj2L
j


 · · ·




∞∑

j=0

λjpL
j


 εtThe RHS is a produ
t of in�nite-order polynomials in L, whi
h 
an be represented as

yt = (1 + ψ1L+ ψ2L
2 + · · · )εtwhere the ψi are real-valued and absolutely summable.

• The ψi are formed of produ
ts of powers of the λi, whi
h are in turn fun
tions ofthe φi.
• The ψi are real-valued be
ause any 
omplex-valued λi always o

ur in 
onjugatepairs. This means that if a + bi is an eigenvalue of F, then so is a − bi. Inmultipli
ation

(a+ bi) (a− bi) = a2 − abi+ abi− b2i2

= a2 + b2whi
h is real-valued.
• This shows that an AR(p) pro
ess is representable as an in�nite-order MA(q)pro
ess.
• Re
all before that by re
ursive substitution, an AR(p) pro
ess 
an be written as

Yt+j = C + FC + · · · + F jC + F j+1Yt−1 + F jEt + F j−1Et+1 + · · · + FEt+j−1 + Et+j
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ess is mean zero, then everything with a C drops out. Take this andlag it by j periods to get
Yt = F j+1Yt−j−1 + F jEt−j + F j−1Et−j+1 + · · · + FEt−1 + EtAs j → ∞, the lagged Y on the RHS drops out. The Et−s are ve
tors of zerosex
ept for their �rst element, so we see that the �rst equation here, in the limit,is just

yt =

∞∑

j=0

(
F j
)
1,1
εt−jwhi
h makes expli
it the relationship between the ψi and the φi (and the λi aswell, re
alling the previous fa
torization of F j).Moments of AR(p) pro
ess. The AR(p) pro
ess is

yt = c+ φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εtAssuming stationarity, E(yt) = µ,∀t, so
µ = c+ φ1µ+ φ2µ+ ...+ φpµso
µ =

c

1 − φ1 − φ2 − ...− φpand
c = µ− φ1µ− ...− φpµso

yt − µ = µ− φ1µ− ...− φpµ+ φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt − µ

= φ1(yt−1 − µ) + φ2(yt−2 − µ) + ...+ φp(yt−p − µ) + εtWith this, the se
ond moments are easy to �nd: The varian
e is
γ0 = φ1γ1 + φ2γ2 + ...+ φpγp + σ2The auto
ovarian
es of orders j ≥ 1 follow the rule

γj = E [(yt − µ) (yt−j − µ))]

= E [(φ1(yt−1 − µ) + φ2(yt−2 − µ) + ...+ φp(yt−p − µ) + εt) (yt−j − µ)]

= φ1γj−1 + φ2γj−2 + ...+ φpγj−pUsing the fa
t that γ−j = γj , one 
an take the p + 1 equations for j = 0, 1, ..., p, whi
hhave p+ 1 unknowns (σ2, γ0, γ1, ..., γp) and solve for the unknowns. With these, the γj for
j > p 
an be solved for re
ursively.Invertibility of MA(q) pro
ess. An MA(q) 
an be written as

yt − µ = (1 + θ1L+ ...+ θqL
q)εtAs before, the polynomial on the RHS 
an be fa
tored as

(1 + θ1L+ ...+ θqL
q) = (1 − η1L)(1 − η2L)...(1 − ηqL)and ea
h of the (1 − ηiL) 
an be inverted as long as |ηi| < 1. If this is the 
ase, then we
an write

(1 + θ1L+ ...+ θqL
q)−1(yt − µ) = εt
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(1 + θ1L+ ...+ θqL

q)−1will be an in�nite-order polynomial in L, so we get
∞∑

j=0

−δjLj(yt−j − µ) = εtwith δ0 = −1, or
(yt − µ) − δ1(yt−1 − µ) − δ2(yt−2 − µ) + ... = εtor

yt = c+ δ1yt−1 + δ2yt−2 + ...+ εtwhere
c = µ+ δ1µ+ δ2µ+ ...So we see that an MA(q) has an in�nite AR representation, as long as the |ηi| < 1,

i = 1, 2, ..., q.

• It turns out that one 
an always manipulate the parameters of an MA(q) pro
essto �nd an invertible representation. For example, the two MA(1) pro
esses
yt − µ = (1 − θL)εtand
y∗t − µ = (1 − θ−1L)ε∗thave exa
tly the same moments if

σ2
ε∗ = σ2

εθ
2For example, we've seen that

γ0 = σ2(1 + θ2).Given the above relationships amongst the parameters,
γ∗0 = σ2

εθ
2(1 + θ−2) = σ2(1 + θ2)so the varian
es are the same. It turns out that all the auto
ovarian
es will be thesame, as is easily 
he
ked. This means that the two MA pro
esses are observation-ally equivalent. As before, it's impossible to distinguish between observationallyequivalent pro
esses on the basis of data.

• For a given MA(q) pro
ess, it's always possible to manipulate the parameters to�nd an invertible representation (whi
h is unique).
• It's important to �nd an invertible representation, sin
e it's the only representa-tion that allows one to represent εt as a fun
tion of past y′s. The other represen-tations express
• Why is invertibility important? The most important reason is that it provides ajusti�
ation for the use of parsimonious models. Sin
e an AR(1) pro
ess has anMA(∞) representation, one 
an reverse the argument and note that at least someMA(∞) pro
esses have an AR(1) representation. At the time of estimation, it's alot easier to estimate the single AR(1) 
oe�
ient rather than the in�nite numberof 
oe�
ients asso
iated with the MA representation.
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• This is the reason that ARMA models are popular. Combining low-order AR andMA models 
an usually o�er a satisfa
tory representation of univariate time seriesdata with a reasonable number of parameters.
• Stationarity and invertibility of ARMA models is similar to what we've seen - wewon't go into the details. Likewise, 
al
ulating moments is similar.Exer
ise 61. Cal
ulate the auto
ovarian
es of an ARMA(1,1) model: (1 + φL)yt =

c+ (1 + θL)ǫt
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