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CHAPTER 1About this doumentThis doument integrates leture notes for a one year graduate level ourse with om-puter programs that illustrate and apply the methods that are studied. The immediateavailability of exeutable (and modi�able) example programs when using the PDF versionof the doument is one of the advantages of the system that has been used. On the otherhand, when viewed in printed form, the doument is a somewhat terse approximation to atextbook. These notes are not intended to be a perfet substitute for a printed textbook.If you are a student of mine, please note that last sentene arefully. There are many goodtextbooks available. A few of my favorites are listed in the bibliography.With respet to ontents, the emphasis is on estimation and inferene within the worldof stationary data, with a bias toward miroeonometris. The seond half is somewhatmore polished than the �rst half, sine I have taught that ourse more often. If you takea moment to read the liensing information in the next setion, you'll see that you arefree to opy and modify the doument. If anyone would like to ontribute material thatexpands the ontents, it would be very welome. Error orretions and other additions arealso welome. 1. LiensesAll materials are opyrighted by Mihael Creel with the date that appears above. Theyare provided under the terms of the GNU General Publi Liense, ver. 2, whih forms Se-tion 1 of the notes, or, at your option, under the Creative Commons Attribution-Share Alike 2.5 liense,whih forms Setion 2 of the notes. The main thing you need to know is that you are freeto modify and distribute these materials in any way you like, as long as you share yourontributions in the same way the materials are made available to you. In partiular, youmust make available the soure �les, in editable form, for your modi�ed version of thematerials. 2. Obtaining the materialsThe materials are available on my web page, in a variety of forms inluding PDFand the editable soures, at pareto.uab.es/mreel/Eonometris/. In addition to the �nalprodut, whih you're probably looking at in some form now, you an obtain the editablesoures, whih will allow you to reate your own version, if you like, or send error orretionsand ontributions. The main doument was prepared using LYX (www.lyx.org) and GNUOtave (www.otave.org). LYX is a free1 �what you see is what you mean� word proessor,basially working as a graphial frontend to LATEX. It (with help from other appliations)an export your work in LATEX, HTML, PDF and several other forms. It will run on Linux,Windows, and MaOS systems. Figure 1 shows LYX editing this doument.GNU Otave has been used for the example programs, whih are sattered thoughthe doument. This hoie is motivated by two fators. The �rst is the high quality of1�Free� is used in the sense of �freedom�, but LYX is also free of harge.13

http://creativecommons.org/licenses/by-sa/2.5/
http://pareto.uab.es/mcreel/Econometrics/
http://www.lyx.org
http://www.octave.org


3. AN EASY WAY TO USE LYX AND OCTAVE TODAY 14Figure 1. LYX

the Otave environment for doing applied eonometris. The fundamental tools exist andare implemented in a way that make extending them fairly easy. The example programsinluded here may onvine you of this point. Seondly, Otave's liensing philosophy �tsin with the goals of this projet. Thirdly, it runs on Linux, Windows and MaOS. Figure2 shows an Otave program being edited by NEdit, and the result of running the programin a shell window. 3. An easy way to use LYX and Otave todayThe example programs are available as links to �les on my web page in the PDF version,and here. Support �les needed to run these are available here. The �les won't run properlyfrom your browser, sine there are dependenies between �les - they are only illustrativewhen browsing. To see how to use these �les (edit and run them), you should go to thehome page of this doument, sine you will probably want to download the pdf versiontogether with all the support �les and examples. Then set the base URL of the PDF �leto point to wherever the Otave �les are installed. Then you need to install Otave andotave-forge. All of this may sound a bit ompliated, beause it is. An easier solution isavailable:The ParallelKnoppix distribution of Linux is an ISO image �le that may be burntto CDROM. It ontains a bootable-from-CD Gnu/Linux system that has all of the toolsneeded to edit this doument, run the Otave example programs, et. In partiular, it willallow you to ut out small portions of the notes and edit them, and send them to me asLYX (or TEX) �les for inlusion in future versions. Think error orretions, additions, et.!The CD automatially detets the hardware of your omputer, and will not touh your

http://pareto.uab.es/mcreel/Econometrics/Examples
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles
http://pareto.uab.es/mcreel/Econometrics
http://pareto.uab.es/mcreel/ParallelKnoppix


4. KNOWN BUGS 15Figure 2. Otave

hard disk unless you expliitly tell it to do so. The reason why these notes are integratedinto a Linux distribution for parallel omputing will be apparent if you get to Chapter 20.If you don't get that far and you're not interested in parallel omputing, please just ignorethe stu� on the CD that's not related to eonometris. If you happen to be interested inparallel omputing but not eonometris, just skip ahead to Chapter 20.4. Known BugsThis setion is a reminder to myself to try to �x a few things.
• The PDF version has hyperlinks to �gures that jump to the wrong �gure. Thenumbers are orret, but the links are not. ps2pdf bugs?



CHAPTER 2Introdution: Eonomi and eonometri modelsEonomi theory tells us that an individual's demand funtion for a good is somethinglike:
x = x(p,m, z)

• x is the quantity demanded
• p is G× 1 vetor of pries of the good and its substitutes and omplements
• m is inome
• z is a vetor of other variables suh as individual harateristis that a�et pref-erenesSuppose we have a sample onsisting of one observation on n individuals' demands at timeperiod t (this is a ross setion, where i = 1, 2, ..., n indexes the individuals in the sample).The individual demand funtions are

xi = xi(pi,mi, zi)The model is not estimable as it stands, sine:
• The form of the demand funtion is di�erent for all i.
• Some omponents of zi may not be observable to an outside modeler. For example,people don't eat the same lunh every day, and you an't tell what they will orderjust by looking at them. Suppose we an break zi into the observable omponents
wi and a single unobservable omponent εi.A step toward an estimable eonometri model is to suppose that the model may be writtenas

xi = β1 + p′iβp +miβm + w′
iβw + εiWe have imposed a number of restritions on the theoretial model:

• The funtions xi(·) whih in priniple may di�er for all i have been restrited toall belong to the same parametri family.
• Of all parametri families of funtions, we have restrited the model to the lassof linear in the variables funtions.
• The parameters are onstant aross individuals.
• There is a single unobservable omponent, and we assume it is additive.If we assume nothing about the error term ǫ, we an always write the last equation. But inorder for the β oe�ients to exist in a sense that has eonomi meaning, and in order tobe able to use sample data to make reliable inferenes about their values, we need to makeadditional assumptions. These additional assumptions have no theoretial basis, theyare assumptions on top of those needed to prove the existene of a demand funtion. Thevalidity of any results we obtain using this model will be ontingent on these additionalrestritions being at least approximately orret. For this reason, spei�ation testing willbe needed, to hek that the model seems to be reasonable. Only when we are onvinedthat the model is at least approximately orret should we use it for eonomi analysis.16



2. INTRODUCTION: ECONOMIC AND ECONOMETRIC MODELS 17When testing a hypothesis using an eonometri model, at least three fators an ausea statistial test to rejet the null hypothesis:(1) the hypothesis is false(2) a type I error has oured(3) the eonometri model is not orretly spei�ed so the test does not have theassumed distributionTo be able to make sienti� progress, we would like to ensure that the third reason isnot ontributing in a major way to rejetions, so that rejetion will be most likely dueto either the �rst or seond reasons. Hopefully the above example makes it lear thatthere are many possible soures of misspei�ation of eonometri models. In the next fewsetions we will obtain results supposing that the eonometri model is entirely orretlyspei�ed. Later we will examine the onsequenes of misspei�ation and see some methodsfor determining if a model is orretly spei�ed. Later on, eonometri methods that seekto minimize maintained assumptions are introdued.



CHAPTER 3Ordinary Least Squares1. The Linear ModelConsider approximating a variable y using the variables x1, x2, ..., xk. We an onsidera model that is a linear approximation:Linearity: the model is a linear funtion of the parameter vetor β0 :

y = β0
1x1 + β0

2x2 + ...+ β0
kxk + ǫor, using vetor notation:

y = x′β0 + ǫThe dependent variable y is a salar random variable, x = ( x1 x2 · · · xk)
′ is a k-vetor of explanatory variables, and β0 = ( β0

1 β0
2 · · · β0

k)
′

. The supersript �0� in β0means this is the �true value� of the unknown parameter. It will be de�ned more preiselylater, and usually suppressed when it's not neessary for larity.Suppose that we want to use data to try to determine the best linear approximationto y using the variables x. The data {(yt,xt)} , t = 1, 2, ..., n are obtained by some form ofsampling1. An individual observation is
yt = x′

tβ + εtThe n observations an be written in matrix form as(1) y = Xβ + ε,where y =
(
y1 y2 · · · yn

)′ is n× 1 and X =
(

x1 x2 · · · xn

)′.Linear models are more general than they might �rst appear, sine one an employnonlinear transformations of the variables:
ϕ0(z) =

[
ϕ1(w) ϕ2(w) · · · ϕp(w)

]
β + εwhere the φi() are known funtions. De�ning y = ϕ0(z), x1 = ϕ1(w), et. leads to a modelin the form of equation 3. For example, the Cobb-Douglas model

z = Awβ2

2 wβ3

3 exp(ε)an be transformed logarithmially to obtain
ln z = lnA+ β2 lnw2 + β3 lnw3 + ε.If we de�ne y = ln z, β1 = lnA, et., we an put the model in the form needed. Theapproximation is linear in the parameters, but not neessarily linear in the variables.

1For example, ross-setional data may be obtained by random sampling. Time series data aumulatehistorially. 18



2. ESTIMATION BY LEAST SQUARES 19Figure 1. Typial data, Classial Model
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2. Estimation by least squaresFigure 1, obtained by running TypialData.m shows some data that follows the linearmodel yt = β1 + β2xt2 + ǫt. The green line is the �true� regression line β1 + β2xt2, andthe red rosses are the data points (xt2, yt), where ǫt is a random error that has mean zeroand is independent of xt2. Exatly how the green line is de�ned will beome lear later.In pratie, we only have the data, and we don't know where the green line lies. We needto gain information about the straight line that best �ts the data points.The ordinary least squares (OLS) estimator is de�ned as the value that minimizes thesum of the squared errors:
β̂ = arg min s(β)where

s(β) =
n∑

t=1

(
yt − x′

tβ
)2

= (y − Xβ)′ (y −Xβ)

= y′y − 2y′Xβ + β′X′Xβ

= ‖ y − Xβ ‖2This last expression makes it lear how the OLS estimator is de�ned: it minimizes theEulidean distane between y and Xβ. The �tted OLS oe�ients are those that give thebest linear approximation to y using x as basis funtions, where �best� means minimumEulidean distane. One ould think of other estimators based upon other metris. Forexample, the minimum absolute distane (MAD) minimizes ∑n
t=1 |yt − x′

tβ|. Later, wewill see that whih estimator is best in terms of their statistial properties, rather than interms of the metris that de�ne them, depends upon the properties of ǫ, about whih wehave as yet made no assumptions.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/TypicalData.m


3. GEOMETRIC INTERPRETATION OF LEAST SQUARES ESTIMATION 20
• To minimize the riterion s(β), �nd the derivative with respet to β and set it tozero:

Dβs(β) = −2X′y + 2X′Xβ

Dβs(β̂) = −2X′y + 2X′Xβ̂ ≡ 0so
β̂ = (X′X)−1X′y.

• To verify that this is a minimum, hek the seond order su�ient ondition:
D2
βs(β̂) = 2X′XSine ρ(X) = K, this matrix is positive de�nite, sine it's a quadrati form in ap.d. matrix (identity matrix of order n), so β̂ is in fat a minimizer.

• The �tted values are the vetor ŷ = Xβ̂.

• The residuals are the vetor ε̂ = y − Xβ̂

• Note that
y = Xβ + ε

= Xβ̂ + ε̂

• Also, the �rst order onditions an be written as
X′y − X′Xβ̂ = 0

X′
(
y − Xβ̂

)
= 0

X′ε̂ = 0whih is to say, the OLS residuals are orthogonal to X. Let's look at this morearefully.3. Geometri interpretation of least squares estimation3.1. InX,Y Spae. Figure 2 shows a typial �t to data, along with the true regressionline. Note that the true line and the estimated line are di�erent. This �gure was reated byrunning the Otave program OlsFit.m . You an experiment with hanging the parametervalues to see how this a�ets the �t, and to see how the �tted line will sometimes be loseto the true line, and sometimes rather far away.3.2. In Observation Spae. If we want to plot in observation spae, we'll need touse only two or three observations, or we'll enounter some limitations of the blakboard.If we try to use 3, we'll enounter the limits of my artisti ability, so let's use two. Withonly two observations, we an't have K > 1.

• We an deompose y into two omponents: the orthogonal projetion onto the
K−dimensional spae spanned by X, Xβ̂, and the omponent that is the orthog-onal projetion onto the n − K subpae that is orthogonal to the span of X,
ε̂.

• Sine β̂ is hosen to make ε̂ as short as possible, ε̂ will be orthogonal to the spaespanned by X. Sine X is in this spae, X ′ε̂ = 0. Note that the f.o.. that de�nethe least squares estimator imply that this is so.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/OlsFit.m


3. GEOMETRIC INTERPRETATION OF LEAST SQUARES ESTIMATION 21Figure 2. Example OLS Fit
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Figure 3. The �t in observation spae
Observation 2

Observation 1

x

y

S(x)

x*beta=P_xY

e = M_xY

3.3. Projetion Matries. Xβ̂ is the projetion of y onto the span of X, or
Xβ̂ = X

(
X ′X

)−1
X ′yTherefore, the matrix that projets y onto the span of X is

PX = X(X ′X)−1X ′sine
Xβ̂ = PXy.



4. INFLUENTIAL OBSERVATIONS AND OUTLIERS 22
ε̂ is the projetion of y onto the N −K dimensional spae that is orthogonal to the spanof X. We have that

ε̂ = y −Xβ̂

= y −X(X ′X)−1X ′y

=
[
In −X(X ′X)−1X ′] y.So the matrix that projets y onto the spae orthogonal to the span of X is

MX = In −X(X ′X)−1X ′

= In − PX .We have
ε̂ = MXy.Therefore

y = PXy +MXy

= Xβ̂ + ε̂.These two projetion matries deompose the n dimensional vetor y into two orthogonalomponents - the portion that lies in the K dimensional spae de�ned by X, and theportion that lies in the orthogonal n−K dimensional spae.
• Note that both PX and MX are symmetri and idempotent.� A symmetri matrix A is one suh that A = A′.� An idempotent matrix A is one suh that A = AA.� The only nonsingular idempotent matrix is the identity matrix.4. In�uential observations and outliersThe OLS estimator of the ith element of the vetor β0 is simply

β̂i =
[
(X ′X)−1X ′]

i· y

= c′iyThis is how we de�ne a linear estimator - it's a linear funtion of the dependent variable.Sine it's a linear ombination of the observations on the dependent variable, where theweights are determined by the observations on the regressors, some observations may havemore in�uene than others.To investigate this, let et be an n vetor of zeros with a 1 in the tth position, i.e., it'sthe tth olumn of the matrix In. De�ne
ht = (PX)tt

= e′tPXetso ht is the tth element on the main diagonal of PX . Note that
ht = ‖ PXet ‖2so
ht ≤‖ et ‖2= 1So 0 < ht < 1. Also,

TrPX = K ⇒ h = K/n.



4. INFLUENTIAL OBSERVATIONS AND OUTLIERS 23Figure 4. Detetion of in�uential observations
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So the average of the ht isK/n. The value ht is referred to as the leverage of the observation.If the leverage is muh higher than average, the observation has the potential to a�et theOLS �t importantly. However, an observation may also be in�uential due to the value of
yt, rather than the weight it is multiplied by, whih only depends on the xt's.To aount for this, onsider estimation of β without using the tth observation (des-ignate this estimator as β̂(t)). One an show (see Davidson and MaKinnon, pp. 32-5 forproof) that

β̂(t) = β̂ −
(

1

1 − ht

)
(X ′X)−1X ′

tε̂tso the hange in the tth observations �tted value is
x′
tβ̂ − x′

tβ̂
(t) =

(
ht

1 − ht

)
ε̂tWhile an observation may be in�uential if it doesn't a�et its own �tted value, it ertainlyis in�uential if it does. A fast means of identifying in�uential observations is to plot(

ht

1−ht

)
ε̂t (whih I will refer to as the own in�uene of the observation) as a funtion of t.Figure 4 gives an example plot of data, �t, leverage and in�uene. The Otave programis In�uentialObservation.m . If you re-run the program you will see that the leverage ofthe last observation (an outlying value of x) is always high, and the in�uene is sometimeshigh.After in�uential observations are deteted, one needs to determine why they are in�u-ential. Possible auses inlude:
• data entry error, whih an easily be orreted one deteted. Data entry errorsare very ommon.
• speial eonomi fators that a�et some observations. These would need tobe identi�ed and inorporated in the model. This is the idea behind struturalhange: the parameters may not be onstant aross all observations.
• pure randomness may have aused us to sample a low-probability observation.There exist robust estimation methods that downweight outliers.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/InfluentialObservation.m


5. GOODNESS OF FIT 245. Goodness of �tThe �tted model is
y = Xβ̂ + ε̂Take the inner produt:

y′y = β̂′X ′Xβ̂ + 2β̂′X ′ε̂+ ε̂′ε̂But the middle term of the RHS is zero sine X ′ε̂ = 0, so(2) y′y = β̂′X ′Xβ̂ + ε̂′ε̂The unentered R2
u is de�ned as

R2
u = 1 − ε̂′ε̂

y′y

=
β̂′X ′Xβ̂
y′y

=
‖ PXy ‖2

‖ y ‖2

= cos2(φ),where φ is the angle between y and the span of X .
• The unentered R2 hanges if we add a onstant to y, sine this hanges φ (seeFigure 5, the yellow vetor is a onstant, sine it's on the 45 degree line in ob-servation spae). Another, more ommon de�nition measures the ontributionFigure 5. Unentered R2

of the variables, other than the onstant term, to explaining the variation in y.Thus it measures the ability of the model to explain the variation of y about itsunonditional sample mean.



6. THE CLASSICAL LINEAR REGRESSION MODEL 25Let ι = (1, 1, ..., 1)′ , a n -vetor. So
Mι = In − ι(ι′ι)−1ι′

= In − ιι′/n

Mιy just returns the vetor of deviations from the mean. In terms of deviations from themean, equation 2 beomes
y′Mιy = β̂′X ′MιXβ̂ + ε̂′Mιε̂The entered R2

c is de�ned as
R2
c = 1 − ε̂′ε̂

y′Mιy
= 1 − ESS

TSSwhere ESS = ε̂′ε̂ and TSS = y′Mιy=∑n
t=1(yt − ȳ)2.Supposing that X ontains a olumn of ones (i.e., there is a onstant term),

X ′ε̂ = 0 ⇒
∑

t

ε̂t = 0so Mιε̂ = ε̂. In this ase
y′Mιy = β̂′X ′MιXβ̂ + ε̂′ε̂So

R2
c =

RSS

TSSwhere RSS = β̂′X ′MιXβ̂

• Supposing that a olumn of ones is in the spae spanned by X (PX ι = ι), thenone an show that 0 ≤ R2
c ≤ 1.6. The lassial linear regression modelUp to this point the model is empty of ontent beyond the de�nition of a best linearapproximation to y and some geometrial properties. There is no eonomi ontent to themodel, and the regression parameters have no eonomi interpretation. For example, whatis the partial derivative of y with respet to xj? The linear approximation is

y = β1x1 + β2x2 + ...+ βkxk + ǫThe partial derivative is
∂y

∂xj
= βj +

∂ǫ

∂xjUp to now, there's no guarantee that ∂ǫ
∂xj

=0. For the β to have an eonomi meaning,we need to make additional assumptions. The assumptions that are appropriate to makedepend on the data under onsideration. We'll start with the lassial linear regressionmodel, whih inorporates some assumptions that are learly not realisti for eonomidata. This is to be able to explain some onepts with a minimum of onfusion andnotational lutter. Later we'll adapt the results to what we an get with more realistiassumptions.Linearity: the model is a linear funtion of the parameter vetor β0 :

y = β0
1x1 + β0

2x2 + ...+ β0
kxk + ǫ(3)or, using vetor notation:

y = x′β0 + ǫ



7. SMALL SAMPLE STATISTICAL PROPERTIES OF THE LEAST SQUARES ESTIMATOR 26Nonstohasti linearly independent regressors: X is a �xed matrix of onstants,it has rank K, its number of olumns, and
lim

1

n
X′X = QX(4)where QX is a �nite positive de�nite matrix. This is needed to be able to identify theindividual e�ets of the explanatory variables.Independently and identially distributed errors:(5) ǫ ∼ IID(0, σ2In)

ε is jointly distributed IID. This implies the following two properties:Homosedasti errors:(6) V (εt) = σ2
0,∀tNonautoorrelated errors:(7) E(εtǫs) = 0,∀t 6= sOptionally, we will sometimes assume that the errors are normally distributed.Normally distributed errors:(8) ǫ ∼ N(0, σ2In)7. Small sample statistial properties of the least squares estimatorUp to now, we have only examined numeri properties of the OLS estimator, thatalways hold. Now we will examine statistial properties. The statistial properties dependupon the assumptions we make.7.1. Unbiasedness. We have β̂ = (X ′X)−1X ′y. By linearity,

β̂ = (X ′X)−1X ′ (Xβ + ε)

= β + (X ′X)−1X ′εBy 4 and 5
E(X ′X)−1X ′ε = E(X ′X)−1X ′ε

= (X ′X)−1X ′Eε

= 0so the OLS estimator is unbiased under the assumptions of the lassial model.Figure 6 shows the results of a small Monte Carlo experiment where the OLS estimatorwas alulated for 10000 samples from the lassial model with y = 1+2x+ε, where n = 20,
σ2
ε = 9, and x is �xed aross samples. We an see that the β2 appears to be estimatedwithout bias. The program that generates the plot is Unbiased.m , if you would like toexperiment with this.With time series data, the OLS estimator will often be biased. Figure 7 shows theresults of a small Monte Carlo experiment where the OLS estimator was alulated for1000 samples from the AR(1) model with yt = 0 + 0.9yt−1 + εt, where n = 20 and σ2

ε = 1.In this ase, assumption 4 does not hold: the regressors are stohasti. We an see thatthe bias in the estimation of β2 is about -0.2.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Unbiased.m


7. SMALL SAMPLE STATISTICAL PROPERTIES OF THE LEAST SQUARES ESTIMATOR 27Figure 6. Unbiasedness of OLS under lassial assumptions
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Figure 7. Biasedness of OLS when an assumption fails
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The program that generates the plot is Biased.m , if you would like to experiment withthis.7.2. Normality. With the linearity assumption, we have β̂ = β+ (X ′X)−1X ′ε. Thisis a linear funtion of ε. Adding the assumption of normality (8, whih implies strongexogeneity), then
β̂ ∼ N

(
β, (X ′X)−1σ2

0

)sine a linear funtion of a normal random vetor is also normally distributed. In Figure6 you an see that the estimator appears to be normally distributed. It in fat is normally

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Biased.m


7. SMALL SAMPLE STATISTICAL PROPERTIES OF THE LEAST SQUARES ESTIMATOR 28distributed, sine the DGP (see the Otave program) has normal errors. Even when thedata may be taken to be IID, the assumption of normality is often questionable or simplyuntenable. For example, if the dependent variable is the number of automobile trips perweek, it is a ount variable with a disrete distribution, and is thus not normally distributed.Many variables in eonomis an take on only nonnegative values, whih, stritly speaking,rules out normality.27.3. The variane of the OLS estimator and the Gauss-Markov theorem.Now let's make all the lassial assumptions exept the assumption of normality. We have
β̂ = β + (X ′X)−1X ′ε and we know that E(β̂) = β. So

V ar(β̂) = E

{(
β̂ − β

)(
β̂ − β

)′}

= E
{
(X ′X)−1X ′εε′X(X ′X)−1

}

= (X ′X)−1σ2
0The OLS estimator is a linear estimator , whih means that it is a linear funtion ofthe dependent variable, y.

β̂ =
[
(X ′X)−1X ′] y

= Cywhere C is a funtion of the explanatory variables only, not the dependent variable. Itis also unbiased under the present assumptions, as we proved above. One ould onsiderother weights W that are a funtion of X that de�ne some other linear estimator. We'llstill insist upon unbiasedness. Consider β̃ = Wy, where W = W (X) is some k× n matrixfuntion ofX. Note that sineW is a funtion ofX, it is nonstohasti, too. If the estimatoris unbiased, then we must have WX = IK :
E(Wy) = E(WXβ0 +Wε)

= WXβ0

= β0

⇒
WX = IKThe variane of β̃ is

V (β̃) = WW ′σ2
0 .De�ne

D = W − (X ′X)−1X ′so
W = D + (X ′X)−1X ′Sine WX = IK , DX = 0, so

V (β̃) =
(
D + (X ′X)−1X ′) (D + (X ′X)−1X ′)′ σ2

0

=
(
DD′ +

(
X ′X

)−1
)
σ2

02Normality may be a good model nonetheless, as long as the probability of a negative value ouring isnegligable under the model. This depends upon the mean being large enough in relation to the variane.



7. SMALL SAMPLE STATISTICAL PROPERTIES OF THE LEAST SQUARES ESTIMATOR 29Figure 8. Gauss-Markov Result: The OLS estimator
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So
V (β̃) ≥ V (β̂)The inequality is a shorthand means of expressing, more formally, that V (β̃) − V (β̂) is apositive semi-de�nite matrix. This is a proof of the Gauss-Markov Theorem. The OLSestimator is the �best linear unbiased estimator� (BLUE).

• It is worth emphasizing again that we have not used the normality assumption inany way to prove the Gauss-Markov theorem, so it is valid if the errors are notnormally distributed, as long as the other assumptions hold.To illustrate the Gauss-Markov result, onsider the estimator that results from splittingthe sample into p equally-sized parts, estimating using eah part of the data separatelyby OLS, then averaging the p resulting estimators. You should be able to show that thisestimator is unbiased, but ine�ient with respet to the OLS estimator. The programE�ieny.m illustrates this using a small Monte Carlo experiment, whih ompares theOLS estimator and a 3-way split sample estimator. The data generating proess followsthe lassial model, with n = 21. The true parameter value is β = 2. In Figures 8 and9 we an see that the OLS estimator is more e�ient, sine the tails of its histogram aremore narrow.We have that E(β̂) = β and V ar(β̂) =
(
X

′

X
)−1

σ2
0 , but we still need to estimatethe variane of ǫ, σ2

0, in order to have an idea of the preision of the estimates of β. Aommonly used estimator of σ2
0 is

σ̂2
0 =

1

n−K
ε̂′ε̂This estimator is unbiased:

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Efficiency.m


8. EXAMPLE: THE NERLOVE MODEL 30Figure 9. Gauss-Markov Resul: The split sample estimator
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σ̂2
0 =

1

n−K
ε̂′ε̂

=
1

n−K
ε′Mε

E(σ̂2
0) =

1

n−K
E(Trε′Mε)

=
1

n−K
E(TrMεε′)

=
1

n−K
TrE(Mεε′)

=
1

n−K
σ2

0TrM

=
1

n−K
σ2

0 (n− k)

= σ2
0where we use the fat that Tr(AB) = Tr(BA) when both produts are onformable. Thus,this estimator is also unbiased under these assumptions.8. Example: The Nerlove model8.1. Theoretial bakground. For a �rm that takes input pries w and the outputlevel q as given, the ost minimization problem is to hoose the quantities of inputs x tosolve the problem

min
x
w′xsubjet to the restrition

f(x) = q.



8. EXAMPLE: THE NERLOVE MODEL 31The solution is the vetor of fator demands x(w, q). The ost funtion is obtained bysubstituting the fator demands into the riterion funtion:
Cw, q) = w′x(w, q).

• Monotoniity Inreasing fator pries annot derease ost, so
∂C(w, q)

∂w
≥ 0Remember that these derivatives give the onditional fator demands (Shephard'sLemma).

• Homogeneity The ost funtion is homogeneous of degree 1 in input pries:
C(tw, q) = tC(w, q) where t is a salar onstant. This is beause the fatordemands are homogeneous of degree zero in fator pries - they only depend uponrelative pries.

• Returns to sale The returns to sale parameter γ is de�ned as the inverse ofthe elastiity of ost with respet to output:
γ =

(
∂C(w, q)

∂q

q

C(w, q)

)−1Constant returns to sale is the ase where inreasing prodution q implies thatost inreases in the proportion 1:1. If this is the ase, then γ = 1.8.2. Cobb-Douglas funtional form. The Cobb-Douglas funtional form is linearin the logarithms of the regressors and the dependent variable. For a ost funtion, if thereare g fators, the Cobb-Douglas ost funtion has the form
C = Awβ1

1 ...w
βg
g q

βqeεWhat is the elastiity of C with respet to wj?
eCwj

=

(
∂C

∂WJ

)(wj
C

)

= βjAw
β1

1 .w
βj−1
j ..w

βg
g q

βqeε
wj

Awβ1

1 ...w
βg
g qβqeε

= βjThis is one of the reasons the Cobb-Douglas form is popular - the oe�ients are easyto interpret, sine they are the elastiities of the dependent variable with respet to theexplanatory variable. Not that in this ase,
eCwj

=

(
∂C

∂WJ

)(wj
C

)

= xj(w, q)
wj
C

≡ sj(w, q)the ost share of the jth input. So with a Cobb-Douglas ost funtion, βj = sj(w, q). Theost shares are onstants.Note that after a logarithmi transformation we obtain
lnC = α+ β1 lnw1 + ...+ βg lnwg + βq ln q + ǫwhere α = lnA . So we see that the transformed model is linear in the logs of the data.



8. EXAMPLE: THE NERLOVE MODEL 32One an verify that the property of HOD1 implies that
g∑

i=1

βg = 1In other words, the ost shares add up to 1.The hypothesis that the tehnology exhibits CRTS implies that
γ =

1

βq
= 1so βq = 1. Likewise, monotoniity implies that the oe�ients βi ≥ 0, i = 1, ..., g.8.3. The Nerlove data and OLS. The �le nerlove.data ontains data on 145 eletriutility ompanies' ost of prodution, output and input pries. The data are for the U.S.,and were olleted by M. Nerlove. The observations are by row, and the olumns areCOMPANY, COST (C), OUTPUT (Q), PRICE OF LABOR (PL), PRICE OFFUEL (PF ) and PRICE OF CAPITAL (PK). Note that the data are sorted by outputlevel (the third olumn).We will estimate the Cobb-Douglas model(9) lnC = β1 + β2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ǫusing OLS. To do this yourself, you need the data �le mentioned above, as well as Nerlove.m (the estimation program), and the library of Otave funtions mentioned in the introdution to Otave that formssetion 22 of this doument.3The results are*********************************************************OLS estimation resultsObservations 145R-squared 0.925955Sigma-squared 0.153943Results (Ordinary var-ov estimator)estimate st.err. t-stat. p-valueonstant -3.527 1.774 -1.987 0.049output 0.720 0.017 41.244 0.000labor 0.436 0.291 1.499 0.136fuel 0.427 0.100 4.249 0.000apital -0.220 0.339 -0.648 0.518*********************************************************

• Do the theoretial restritions hold?
• Does the model �t well?
• What do you think about RTS?While we will use Otave programs as examples in this doument, sine following theprogramming statements is a useful way of learning how theory is put into pratie, youmay be interested in a more �user-friendly� environment for doing eonometris. I heartilyreommend Gretl, the Gnu Regression, Eonometris, and Time-Series Library. This is aneasy to use program, available in English, Frenh, and Spanish, and it omes with a lot3If you are running the bootable CD, you have all of this installed and ready to run.

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/nerlove.data
http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Nerlove.m
http://gretl.sourceforge.net


EXERCISES 33of data ready to use. It even has an option to save output as LATEX fragments, so that Ian just inlude the results into this doument, no muss, no fuss. Here the results of theNerlove model from GRETL:Model 2: OLS estimates using the 145 observations 1�145Dependent variable: l_ostVariable Coe�ient Std. Error t-statisti p-valueonst −3.5265 1.77437 −1.9875 0.0488l_output 0.720394 0.0174664 41.2445 0.0000l_labor 0.436341 0.291048 1.4992 0.1361l_fuel 0.426517 0.100369 4.2495 0.0000l_apita −0.219888 0.339429 −0.6478 0.5182Mean of dependent variable 1.72466S.D. of dependent variable 1.42172Sum of squared residuals 21.5520Standard error of residuals (σ̂) 0.392356Unadjusted R2 0.925955Adjusted R̄2 0.923840

F (4, 140) 437.686Akaike information riterion 145.084Shwarz Bayesian riterion 159.967Fortunately, Gretl and my OLS program agree upon the results. Gretl is inluded in thebootable CD mentioned in the introdution. I reommend using GRETL to repeat theexamples that are done using Otave.The previous properties hold for �nite sample sizes. Before onsidering the asymptotiproperties of the OLS estimator it is useful to review the MLE estimator, sine under theassumption of normal errors the two estimators oinide.9. ExerisesExerises(1) Prove that the split sample estimator used to generate �gure 9 is unbiased.(2) Calulate the OLS estimates of the Nerlove model using Otave and GRETL, andprovide printouts of the results. Interpret the results.(3) Do an analysis of whether or not there are in�uential observations for OLS estimationof the Nerlove model. Disuss.(4) Using GRETL, examine the residuals after OLS estimation and tell me whether or notyou believe that the assumption of independent identially distributed normal errorsis warranted. No need to do formal tests, just look at the plots. Print out any thatyou think are relevant, and interpret them.(5) For a random vetor X ∼ N(µx,Σ), what is the distribution of AX + b, where A and
b are onformable matries of onstants?(6) Using Otave, write a little program that veri�es that Tr(AB) = Tr(BA) for A and
B 4x4 matries of random numbers. Note: there is an Otave funtion trae.



EXERCISES 34(7) For the model with a onstant and a single regressor, yt = β1+β2xt+ǫt, whih satis�esthe lassial assumptions, prove that the variane of the OLS estimator delines to zeroas the sample size inreases.



CHAPTER 4Maximum likelihood estimationThe maximum likelihood estimator is important sine it is asymptotially e�ient,as is shown below. For the lassial linear model with normal errors, the ML and OLSestimators of β are the same, so the following theory is presented without examples. Inthe seond half of the ourse, nonlinear models with nonnormal errors are introdued, andexamples may be found there.1. The likelihood funtionSuppose we have a sample of size n of the random vetors y and z. Suppose the jointdensity of Y =
(
y1 . . . yn

) and Z =
(
z1 . . . zn

) is haraterized by a parametervetor ψ0 :

fY Z(Y,Z, ψ0).This is the joint density of the sample. This density an be fatored as
fY Z(Y,Z, ψ0) = fY |Z(Y |Z, θ0)fZ(Z, ρ0)The likelihood funtion is just this density evaluated at other values ψ

L(Y,Z, ψ) = f(Y,Z, ψ), ψ ∈ Ψ,where Ψ is a parameter spae.The maximum likelihood estimator of ψ0 is the value of ψ that maximizes the likelihoodfuntion.Note that if θ0 and ρ0 share no elements, then the maximizer of the onditional likeli-hood funtion fY |Z(Y |Z, θ) with respet to θ is the same as the maximizer of the overalllikelihood funtion fY Z(Y,Z, ψ) = fY |Z(Y |Z, θ)fZ(Z, ρ), for the elements of ψ that orre-spond to θ. In this ase, the variables Z are said to be exogenous for estimation of θ, andwe may more onveniently work with the onditional likelihood funtion fY |Z(Y |Z, θ) forthe purposes of estimating θ0.Definition 1.1. The maximum likelihood estimator of θ0 = arg max fY |Z(Y |Z, θ)

• If the n observations are independent, the likelihood funtion an be written as
L(Y |Z, θ) =

n∏

t=1

f(yt|zt, θ)where the ft are possibly of di�erent form.
• If this is not possible, we an always fator the likelihood into ontributions ofobservations, by using the fat that a joint density an be fatored into the produtof a marginal and onditional (doing this iteratively)
L(Y, θ) = f(y1|z1, θ)f(y2|y1, z2, θ)f(y3|y1, y2, z3, θ) · · · f(yn|y1,y2, . . . yt−n, zn, θ)To simplify notation, de�ne

xt = {y1, y2, ..., yt−1, zt}35



1. THE LIKELIHOOD FUNCTION 36so x1 = z1, x2 = {y1, z2}, et. - it ontains exogenous and predetermined endogeousvariables. Now the likelihood funtion an be written as
L(Y, θ) =

n∏

t=1

f(yt|xt, θ)The riterion funtion an be de�ned as the average log-likelihood funtion:
sn(θ) =

1

n
lnL(Y, θ) =

1

n

n∑

t=1

ln f(yt|xt, θ)The maximum likelihood estimator may thus be de�ned equivalently as
θ̂ = arg max sn(θ),where the set maximized over is de�ned below. Sine ln(·) is a monotoni inreasingfuntion, lnL and L maximize at the same value of θ. Dividing by n has no e�et on θ̂.1.1. Example: Bernoulli trial. Suppose that we are �ipping a oin that may bebiased, so that the probability of a heads may not be 0.5. Maybe we're interested inestimating the probability of a heads. Let y = 1(heads) be a binary variable that indiateswhether or not a heads is observed. The outome of a toss is a Bernoulli random variable:

fY (y, p0) = py0 (1 − p0)
1−y , y ∈ {0, 1}

= 0, y /∈ {0, 1}So a representative term that enters the likelihood funtion is
fY (y, p) = py (1 − p)1−yand

ln fY (y, p) = y ln p+ (1 − y) ln (1 − p)The derivative of this is
∂ ln fY (y, p)

∂p
=

y

p
− (1 − y)

(1 − p)

=
y − p

p (1 − p)Averaging this over a sample of size n gives
∂sn(p)

∂p
=

1

n

n∑

i=1

yi − p

p (1 − p)Setting to zero and solving gives(10) p̂ = ȳSo it's easy to alulate the MLE of p0in this ase.Now imagine that we had a bag full of bent oins, eah bent around a sphere of adi�erent radius (with the head pointing to the outside of the sphere). We might suspetthat the probability of a heads ould depend upon the radius. Suppose that pi ≡ p(xi, β) =

(1 + exp(−x′iβ))−1 where xi =
[

1 ri

]′, so that β is a 2×1 vetor. Now
∂pi(β)

∂β
= pi (1 − pi) xi



2. CONSISTENCY OF MLE 37so
∂ ln fY (y, β)

∂β
=

y − pi
pi (1 − pi)

pi (1 − pi)xi

= (yi − p(xi, β)) xiSo the derivative of the average log lihelihood funtion is now
∂sn(β)

∂β
=

∑n
i=1 (yi − p(xi, β)) xi

nThis is a set of 2 nonlinear equations in the two unknown elements in β. There is noexpliit solution for the two elements that set the equations to zero. This is ommonly thease with ML estimators: they are often nonlinear, and �nding the value of the estimateoften requires use of numeri methods to �nd solutions to the �rst order onditions. Thispossibility is explored further in the seond half of these notes (see setion 5).2. Consisteny of MLETo show onsisteny of the MLE, we need to make expliit some assumptions.Compat parameter spae: θ ∈ Θ, an open bounded subset of ℜK . Maximix-ation is over Θ, whih is ompat.This implies that θ is an interior point of the parameter spae Θ.Uniform onvergene:
sn(θ)

u.a.s→ lim
n→∞

Eθ0sn(θ) ≡ s∞(θ, θ0),∀θ ∈ Θ.We have suppressed Y here for simpliity. This requires that almost sure onvergeneholds for all possible parameter values. For a given parameter value, an ordinary Law ofLarge Numbers will usually imply almost sure onvergene to the limit of the expetation.Convergene for a single element of the parameter spae, ombined with the assumptionof a ompat parameter spae, ensures uniform onvergene.Continuity: sn(θ) is ontinuous in θ, θ ∈ Θ. This implies that s∞(θ, θ0) is on-tinuous in θ.Identi�ation: s∞(θ, θ0) has a unique maximum in its �rst argument.We will use these assumptions to show that θ̂n a.s.→ θ0.First, θ̂n ertainly exists, sine a ontinuous funtion has a maximum on a ompatset. Seond, for any θ 6= θ0

E
(

ln

(
L(θ)

L(θ0)

))
≤ ln

(
E
(
L(θ)

L(θ0)

))by Jensen's inequality ( ln (·) is a onave funtion).Now, the expetation on the RHS is
E
(
L(θ)

L(θ0)

)
=

∫
L(θ)

L(θ0)
L(θ0)dy = 1,sine L(θ0) is the density funtion of the observations, and sine the integral of any densityis 1. Therefore, sine ln(1) = 0,

E
(

ln

(
L(θ)

L(θ0)

))
≤ 0,



3. THE SCORE FUNCTION 38or
E (sn (θ)) − E (sn (θ0)) ≤ 0.Taking limits, this is (by the assumption on uniform onvergene)
s∞(θ, θ0) − s∞(θ0, θ0) ≤ 0exept on a set of zero probability.By the identi�ation assumption there is a unique maximizer, so the inequality is stritif θ 6= θ0:

s∞(θ, θ0) − s∞(θ0, θ0) < 0,∀θ 6= θ0, a.s.Suppose that θ∗ is a limit point of θ̂n (any sequene from a ompat set has at leastone limit point). Sine θ̂n is a maximizer, independent of n, we must have
s∞(θ∗, θ0) − s∞(θ0, θ0) ≥ 0.These last two inequalities imply that

θ∗ = θ0, a.s.Thus there is only one limit point, and it is equal to the true parameter value, withprobability one. In other words,
lim
n→∞

θ̂ = θ0, a.s.This ompletes the proof of strong onsisteny of the MLE. One an use weaker assumptionsto prove weak onsisteny (onvergene in probability to θ0) of the MLE. This is omittedhere. Note that almost sure onvergene implies onvergene in probability.
3. The sore funtionDi�erentiability: Assume that sn(θ) is twie ontinuously di�erentiable in aneighborhood N(θ0) of θ0, at least when n is large enough.To maximize the log-likelihood funtion, take derivatives:

gn(Y, θ) = Dθsn(θ)

=
1

n

n∑

t=1

Dθ ln f(yt|xx, θ)

≡ 1

n

n∑

t=1

gt(θ).This is the sore vetor (with dim K × 1). Note that the sore funtion has Y as anargument, whih implies that it is a random funtion. Y (and any exogeneous variables)will often be suppressed for larity, but one should not forget that they are still there.The ML estimator θ̂ sets the derivatives to zero:
gn(θ̂) =

1

n

n∑

t=1

gt(θ̂) ≡ 0.



4. ASYMPTOTIC NORMALITY OF MLE 39We will show that Eθ [gt(θ)] = 0, ∀t. This is the expetation taken with respet to thedensity f(θ), not neessarily f (θ0) .

Eθ [gt(θ)] =

∫
[Dθ ln f(yt|xt, θ)]f(yt|x, θ)dyt

=

∫
1

f(yt|xt, θ)
[Dθf(yt|xt, θ)] f(yt|xt, θ)dyt

=

∫
Dθf(yt|xt, θ)dyt.Given some regularity onditions on boundedness of Dθf, we an swith the order ofintegration and di�erentiation, by the dominated onvergene theorem. This gives

Eθ [gt(θ)] = Dθ

∫
f(yt|xt, θ)dyt

= Dθ1

= 0where we use the fat that the integral of the density is 1.
• So Eθ(gt(θ) = 0 : the expetation of the sore vetor is zero.
• This hold for all t, so it implies that Eθgn(Y, θ) = 0.4. Asymptoti normality of MLEReall that we assume that sn(θ) is twie ontinuously di�erentiable. Take a �rst orderTaylor's series expansion of g(Y, θ̂) about the true value θ0 :

0 ≡ g(θ̂) = g(θ0) + (Dθ′g(θ
∗))
(
θ̂ − θ0

)or with appropriate de�nitions
H(θ∗)

(
θ̂ − θ0

)
= −g(θ0),where θ∗ = λθ̂ + (1 − λ)θ0, 0 < λ < 1. Assume H(θ∗) is invertible (we'll justify this in aminute). So √

n
(
θ̂ − θ0

)
= −H(θ∗)−1√ng(θ0)Now onsider H(θ∗). This is

H(θ∗) = Dθ′g(θ
∗)

= D2
θsn(θ

∗)

=
1

n

n∑

t=1

D2
θ ln ft(θ

∗)where the notation
D2
θsn(θ) ≡

∂2sn(θ)

∂θ∂θ′
.Given that this is an average of terms, it should usually be the ase that this satis�es astrong law of large numbers (SLLN). Regularity onditions are a set of assumptions thatguarantee that this will happen. There are di�erent sets of assumptions that an be used tojustify appeal to di�erent SLLN's. For example, the D2
θ ln ft(θ

∗) must not be too stronglydependent over time, and their varianes must not beome in�nite. We don't assume anypartiular set here, sine the appropriate assumptions will depend upon the partiularitiesof a given model. However, we assume that a SLLN applies.



4. ASYMPTOTIC NORMALITY OF MLE 40Also, sine we know that θ̂ is onsistent, and sine θ∗ = λθ̂ + (1 − λ)θ0, we have that
θ∗
a.s.→ θ0. Also, by the above di�erentiability assumtion, H(θ) is ontinuous in θ. Giventhis, H(θ∗) onverges to the limit of it's expetation:

H(θ∗)
a.s.→ lim

n→∞
E
(
D2
θsn(θ0)

)
= H∞(θ0) <∞This matrix onverges to a �nite limit.Re-arranging orders of limits and di�erentiation, whih is legitimate given regularityonditions, we get

H∞(θ0) = D2
θ lim
n→∞

E (sn(θ0))

= D2
θs∞(θ0, θ0)We've already seen that

s∞(θ, θ0) < s∞(θ0, θ0)i.e., θ0 maximizes the limiting objetive funtion. Sine there is a unique maximizer, andby the assumption that sn(θ) is twie ontinuously di�erentiable (whih holds in the limit),then H∞(θ0) must be negative de�nite, and therefore of full rank. Therefore the previousinversion is justi�ed, asymptotially, and we have(11) √
n
(
θ̂ − θ0

)
a.s.→ −H∞(θ0)

−1√ng(θ0).Now onsider √ng(θ0). This is
√
ngn(θ0) =

√
nDθsn(θ)

=

√
n

n

n∑

t=1

Dθ ln ft(yt|xt, θ0)

=
1√
n

n∑

t=1

gt(θ0)We've already seen that Eθ [gt(θ)] = 0. As suh, it is reasonable to assume that a CLTapplies.Note that gn(θ0) a.s.→ 0, by onsisteny. To avoid this ollapse to a degenerate r.v. (aonstant vetor) we need to sale by √
n. A generi CLT states that, for Xn a randomvetor that satis�es ertain onditions,

Xn − E(Xn)
d→ N(0, lim V (Xn))The �ertain onditions� that Xn must satisfy depend on the ase at hand. Usually, Xnwill be of the form of an average, saled by √

n:
Xn =

√
n

∑n
t=1Xt

nThis is the ase for √
ng(θ0) for example. Then the properties of Xn depend on theproperties of the Xt. For example, if the Xt have �nite varianes and are not too stronglydependent, then a CLT for dependent proesses will apply. Supposing that a CLT applies,and noting that E(

√
ngn(θ0) = 0, we get

I∞(θ0)
−1/2√ngn(θ0) d→ N [0, IK ]
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I∞(θ0) = lim

n→∞
Eθ0
(
n [gn(θ0)] [gn(θ0)]

′)

= lim
n→∞

Vθ0
(√
ngn(θ0)

)This an also be written as(12) √
ngn(θ0)

d→ N [0,I∞(θ0)]

• I∞(θ0) is known as the information matrix.
• Combining [11℄ and [12℄, we get

√
n
(
θ̂ − θ0

)
a∼ N

[
0,H∞(θ0)

−1I∞(θ0)H∞(θ0)
−1
]
.The MLE estimator is asymptotially normally distributed.Definition 1 (CAN). An estimator θ̂ of a parameter θ0 is √n-onsistent and asymp-totially normally distributed if(13) √

n
(
θ̂ − θ0

)
d→ N (0, V∞)where V∞ is a �nite positive de�nite matrix.There do exist, in speial ases, estimators that are onsistent suh that√n(θ̂ − θ0

)
p→

0. These are known as superonsistent estimators, sine normally, √n is the highest fatorthat we an multiply by and still get onvergene to a stable limiting distribution.Definition 2 (Asymptoti unbiasedness). An estimator θ̂ of a parameter θ0 is asymp-totially unbiased if(14) lim
n→∞

Eθ(θ̂) = θ.Estimators that are CAN are asymptotially unbiased, though not all onsistent esti-mators are asymptotially unbiased. Suh ases are unusual, though. An example is4.1. Coin �ipping, again. In setion 1.1 we saw that the MLE for the parameter ofa Bernoulli trial, with i.i.d. data, is the sample mean: p̂ = ȳ (equation 10). Now let's �ndthe limiting variane of √n (p̂− p).
limV ar

√
n (p̂− p) = limnV ar (p̂− p)

= limnV ar (p̂)

= limnV ar (ȳ)

= limnV ar

(∑
yt
n

)

= lim
1

n

∑
V ar(yt) (by independene of obs.)

= lim
1

n
nV ar(y) (by identially distributed obs.)

= p (1 − p)



5. THE INFORMATION MATRIX EQUALITY 425. The information matrix equalityWe will show that H∞(θ) = −I∞(θ). Let ft(θ) be short for f(yt|xt, θ)

1 =

∫
ft(θ)dy, so

0 =

∫
Dθft(θ)dy

=

∫
(Dθ ln ft(θ)) ft(θ)dyNow di�erentiate again:

0 =

∫ [
D2
θ ln ft(θ)

]
ft(θ)dy +

∫
[Dθ ln ft(θ)]Dθ′ft(θ)dy

= Eθ
[
D2
θ ln ft(θ)

]
+

∫
[Dθ ln ft(θ)] [Dθ′ ln ft(θ)] ft(θ)dy

= Eθ
[
D2
θ ln ft(θ)

]
+ Eθ [Dθ ln ft(θ)] [Dθ′ ln ft(θ)]

= Eθ [Ht(θ)] + Eθ [gt(θ)] [gt(θ)]
′(15)Now sum over n and multiply by 1

n

Eθ
1

n

n∑

t=1

[Ht(θ)] = −Eθ
[

1

n

n∑

t=1

[gt(θ)] [gt(θ)]
′
]The sores gt and gs are unorrelated for t 6= s, sine for t > s, ft(yt|y1, ..., yt−1, θ) hasonditioned on prior information, so what was random in s is �xed in t. (This forms thebasis for a spei�ation test proposed by White: if the sores appear to be orrelated onemay question the spei�ation of the model). This allows us to write

Eθ [H(θ)] = −Eθ
(
n [g(θ)] [g(θ)]′

)sine all ross produts between di�erent periods expet to zero. Finally take limits, weget(16) H∞(θ) = −I∞(θ).This holds for all θ, in partiular, for θ0. Using this,
√
n
(
θ̂ − θ0

)
a.s.→ N

[
0,H∞(θ0)

−1I∞(θ0)H∞(θ0)
−1
]simpli�es to(17) √

n
(
θ̂ − θ0

)
a.s.→ N

[
0,I∞(θ0)

−1
]To estimate the asymptoti variane, we need estimators of H∞(θ0) and I∞(θ0). We anuse

Î∞(θ0) = n

n∑

t=1

gt(θ̂)gt(θ̂)
′

Ĥ∞(θ0) = H(θ̂).Note, one an't use
Î∞(θ0) = n

[
gn(θ̂)

] [
gn(θ̂)

]′to estimate the information matrix. Why not?



6. THE CRAMÉR-RAO LOWER BOUND 43From this we see that there are alternative ways to estimate V∞(θ0) that are all valid.These inlude
V̂∞(θ0) = −Ĥ∞(θ0)

−1

V̂∞(θ0) = Î∞(θ0)
−1

V̂∞(θ0) = Ĥ∞(θ0)
−1

Î∞(θ0)Ĥ∞(θ0)
−1These are known as the inverse Hessian, outer produt of the gradient (OPG) and sandwihestimators, respetively. The sandwih form is the most robust, sine it oinides with theovariane estimator of the quasi-ML estimator.6. The Cramér-Rao lower boundTheorem 3. [Cramer-Rao Lower Bound℄ The limiting variane of a CAN estimatorof θ0, say θ̃, minus the inverse of the information matrix is a positive semide�nite matrix.Proof: Sine the estimator is CAN, it is asymptotially unbiased, so

lim
n→∞

Eθ(θ̃ − θ) = 0Di�erentiate wrt θ′ :

Dθ′ lim
n→∞

Eθ(θ̃ − θ) = lim
n→∞

∫
Dθ′

[
f(Y, θ)

(
θ̃ − θ

)]
dy

= 0 (this is a K ×K matrix of zeros).Noting that Dθ′f(Y, θ) = f(θ)Dθ′ ln f(θ), we an write
lim
n→∞

∫ (
θ̃ − θ

)
f(θ)Dθ′ ln f(θ)dy + lim

n→∞

∫
f(Y, θ)Dθ′

(
θ̃ − θ

)
dy = 0.Now note that Dθ′

(
θ̃ − θ

)
= −IK , and ∫ f(Y, θ)(−IK)dy = −IK . With this we have

lim
n→∞

∫ (
θ̃ − θ

)
f(θ)Dθ′ ln f(θ)dy = IK .Playing with powers of n we get

lim
n→∞

∫ √
n
(
θ̃ − θ

)√
n

1

n
[Dθ′ ln f(θ)]

︸ ︷︷ ︸
f(θ)dy = IKNote that the braketed part is just the transpose of the sore vetor, g(θ), so we an write

lim
n→∞

Eθ
[√

n
(
θ̃ − θ

)√
ng(θ)′

]
= IKThis means that the ovariane of the sore funtion with √

n
(
θ̃ − θ

)
, for θ̃ any CANestimator, is an identity matrix. Using this, suppose the variane of √n(θ̃ − θ

) tends to
V∞(θ̃). Therefore,(18) V∞

[ √
n
(
θ̃ − θ

)

√
ng(θ)

]
=

[
V∞(θ̃) IK

IK I∞(θ)

]
.Sine this is a ovariane matrix, it is positive semi-de�nite. Therefore, for any K -vetor

α,
[
α′ −α′I−1

∞ (θ)
] [ V∞(θ̃) IK

IK I∞(θ)

][
α

−I∞(θ)−1α

]
≥ 0.



EXERCISES 44This simpli�es to
α′
[
V∞(θ̃) − I−1

∞ (θ)
]
α ≥ 0.Sine α is arbitrary, V∞(θ̃) − I−1

∞ (θ) is positive semide�nite. This onludes the proof.This means that I−1
∞ (θ) is a lower bound for the asymptoti variane of a CAN esti-mator.Definition 6.1. (Asymptoti e�ieny) Given two CAN estimators of a parameter

θ0, say θ̃ and θ̂, θ̂ is asymptotially e�ient with respet to θ̃ if V∞(θ̃)−V∞(θ̂) is a positivesemide�nite matrix.A diret proof of asymptoti e�ieny of an estimator is infeasible, but if one an showthat the asymptoti variane is equal to the inverse of the information matrix, then theestimator is asymptotially e�ient. In partiular, the MLE is asymptotially e�ient withrespet to any other CAN estimator.Summary of MLE
• Consistent
• Asymptotially normal (CAN)
• Asymptotially e�ient
• Asymptotially unbiased
• This is for general MLE: we haven't spei�ed the distribution or the linearity/non-linearity of the estimator 7. ExerisesExerises(1) Consider oin tossing with a single possibly biased oin. The density funtion for therandom variable y = 1(heads) is

fY (y, p0) = py0 (1 − p0)
1−y , y ∈ {0, 1}

= 0, y /∈ {0, 1}Suppose that we have a sample of size n. We know from above that the ML estimatoris p̂0 = ȳ. We also know from the theory above that
√
n (ȳ − p0)

a∼ N
[
0,H∞(p0)

−1I∞(p0)H∞(p0)
−1
]a) �nd the analyti expression for gt(θ) and show that Eθ [gt(θ)] = 0b) �nd the analytial expressions for H∞(p0) and I∞(p0) for this problem) verify that the result for limV ar

√
n (p̂− p) found in setion 4.1 is equal toH∞(p0)

−1I∞(p0)H∞(p0)
−1d)Write an Otave program that does a Monte Carlo study that shows that√n (ȳ − p0)is approximately normally distributed when n is large. Please give me histograms thatshow the sampling frequeny of √n (ȳ − p0) for several values of n.(2) Consider the model yt = x′tβ+αǫt where the errors follow the Cauhy (Student-t with1 degree of freedom) density. So

f(ǫt) =
1

π
(
1 + ǫ2t

) ,−∞ < ǫt <∞The Cauhy density has a shape similar to a normal density, but with muh thikertails. Thus, extremely small and large errors our muh more frequently with thisdensity than would happen if the errors were normally distributed. Find the sorefuntion gn(θ) where θ =
(
β′ α

)′.



EXERCISES 45(3) Consider the model lassial linear regression model yt = x′tβ+ǫt where ǫt ∼ IIN(0, σ2).Find the sore funtion gn(θ) where θ =
(
β′ σ

)′.(4) Compare the �rst order onditions that de�ne the ML estimators of problems 2 and 3and interpret the di�erenes. Why are the �rst order onditions that de�ne an e�ientestimator di�erent in the two ases?



CHAPTER 5Asymptoti properties of the least squares estimatorThe OLS estimator under the lassial assumptions is BLUE1, for all sample sizes.Now let's see what happens when the sample size tends to in�nity.1. Consisteny
β̂ = (X ′X)−1X ′y

= (X ′X)−1X ′ (Xβ + ε)

= β0 + (X ′X)−1X ′ε

= β0 +

(
X ′X
n

)−1 X ′ε
nConsider the last two terms. By assumption limn→∞

(
X′X
n

)
= QX ⇒ limn→∞

(
X′X
n

)−1
=

Q−1
X , sine the inverse of a nonsingular matrix is a ontinuous funtion of the elements ofthe matrix. Considering X′ε

n ,

X ′ε
n

=
1

n

n∑

t=1

xtεtEah xtεt has expetation zero, so
E

(
X ′ε
n

)
= 0The variane of eah term is

V (xtǫt) = xtx
′
tσ

2.As long as these are �nite, and given a tehnial ondition2, the Kolmogorov SLLN applies,so
1

n

n∑

t=1

xtεt
a.s.→ 0.This implies that

β̂
a.s.→ β0.This is the property of strong onsisteny: the estimator onverges in almost surely to thetrue value.

• The onsisteny proof does not use the normality assumption.
• Remember that almost sure onvergene implies onvergene in probability.1BLUE ≡ best linear unbiased estimator if I haven't de�ned it before2For appliation of LLN's and CLT's, of whih there are very many to hoose from, I'm going to avoid thetehnialities. Basially, as long as terms that make up an average have �nite varianes and are not toostrongly dependent, one will be able to �nd a LLN or CLT to apply. Whih one it is doesn't matter, weonly need the result. 46



3. ASYMPTOTIC EFFICIENCY 472. Asymptoti normalityWe've seen that the OLS estimator is normally distributed under the assumption ofnormal errors. If the error distribution is unknown, we of ourse don't know the distribu-tion of the estimator. However, we an get asymptoti results. Assuming the distributionof ε is unknown, but the the other lassial assumptions hold:
β̂ = β0 + (X ′X)−1X ′ε

β̂ − β0 = (X ′X)−1X ′ε

√
n
(
β̂ − β0

)
=

(
X ′X
n

)−1 X ′ε√
n

• Now as before, (X′X
n

)−1
→ Q−1

X .

• Considering X′ε√
n
, the limit of the variane is
lim
n→∞

V

(
X ′ε√
n

)
= lim

n→∞
E

(
X ′ǫǫ′X
n

)

= σ2
0QXThe mean is of ourse zero. To get asymptoti normality, we need to apply aCLT. We assume one (for instane, the Lindeberg-Feller CLT) holds, so

X ′ε√
n

d→ N
(
0, σ2

0QX
)Therefore, √

n
(
β̂ − β0

)
d→ N

(
0, σ2

0Q
−1
X

)

• In summary, the OLS estimator is normally distributed in small and large samplesif ε is normally distributed. If ε is not normally distributed, β̂ is asymptotiallynormally distributed when a CLT an be applied.3. Asymptoti e�ienyThe least squares objetive funtion is
s(β) =

n∑

t=1

(
yt − x′tβ

)2Supposing that ε is normally distributed, the model is
y = Xβ0 + ε,

ε ∼ N(0, σ2
0In), so

f(ε) =

n∏

t=1

1√
2πσ2

exp

(
− ε2t

2σ2

)The joint density for y an be onstruted using a hange of variables. We have ε = y−Xβ,so ∂ε
∂y′ = In and | ∂ε∂y′ | = 1, so

f(y) =
n∏

t=1

1√
2πσ2

exp

(
−(yt − x′tβ)2

2σ2

)
.



4. EXERCISES 48Taking logs,
lnL(β, σ) = −n ln

√
2π − n lnσ −

n∑

t=1

(yt − x′tβ)2

2σ2
.It's lear that the fon for the MLE of β0 are the same as the fon for OLS (up to mul-tipliation by a onstant), so the estimators are the same, under the present assumptions.Therefore, their properties are the same. In partiular, under the lassial assumptionswith normality, the OLS estimator β̂ is asymptotially e�ient.As we'll see later, it will be possible to use (iterated) linear estimation methods and stillahieve asymptoti e�ieny even if the assumption that V ar(ε) 6= σ2In, as long as ε is stillnormally distributed. This is not the ase if ε is nonnormal. In general with nonnormalerrors it will be neessary to use nonlinear estimation methods to ahieve asymptotiallye�ient estimation. That possibility is addressed in the seond half of the notes.4. Exerises(1) Write an Otave program that generates a histogram for R Monte Carlo repli-ations of √n(β̂j − βj

), where β̂ is the OLS estimator and βj is one of the kslope parameters. R should be a large number, at least 1000. The model usedto generate data should follow the lassial assumptions, exept that the errorsshould not be normally distributed (try U(−a, a), t(p), χ2(p)− p, et). Generatehistograms for n ∈ {20, 50, 100, 1000}. Do you observe evidene of asymptotinormality? Comment.



CHAPTER 6Restritions and hypothesis tests1. Exat linear restritionsIn many ases, eonomi theory suggests restritions on the parameters of a model.For example, a demand funtion is supposed to be homogeneous of degree zero in priesand inome. If we have a Cobb-Douglas (log-linear) model,
ln q = β0 + β1 ln p1 + β2 ln p2 + β3 lnm+ ε,then we need that

k0 ln q = β0 + β1 ln kp1 + β2 ln kp2 + β3 ln km+ ε,so
β1 ln p1 + β2 ln p2 + β3 lnm = β1 ln kp1 + β2 ln kp2 + β3 ln km

= (ln k) (β1 + β2 + β3) + β1 ln p1 + β2 ln p2 + β3 lnm.The only way to guarantee this for arbitrary k is to set
β1 + β2 + β3 = 0,whih is a parameter restrition. In partiular, this is a linear equality restrition, whihis probably the most ommonly enountered ase.1.1. Imposition. The general formulation of linear equality restritions is the model
y = Xβ + ε

Rβ = rwhere R is a Q×K matrix, Q < K and r is a Q× 1 vetor of onstants.
• We assume R is of rank Q, so that there are no redundant restritions.
• We also assume that ∃β that satis�es the restritions: they aren't infeasible.Let's onsider how to estimate β subjet to the restritions Rβ = r. The most obviousapproah is to set up the Lagrangean

min
β
s(β) =

1

n
(y −Xβ)′ (y −Xβ) + 2λ′(Rβ − r).The Lagrange multipliers are saled by 2, whih makes things less messy. The fon are

Dβs(β̂, λ̂) = −2X ′y + 2X ′Xβ̂R + 2R′λ̂ ≡ 0

Dλs(β̂, λ̂) = Rβ̂R − r ≡ 0,whih an be written as [
X ′X R′

R 0

][
β̂R

λ̂

]
=

[
X ′y

r

]
.49



1. EXACT LINEAR RESTRICTIONS 50We get [
β̂R

λ̂

]
=

[
X ′X R′

R 0

]−1 [
X ′y

r

]
.For the masohists: Stepwise InversionNote that[

(X ′X)−1 0

−R (X ′X)−1 IQ

][
X ′X R′

R 0

]
≡ AB

=

[
IK (X ′X)−1R′

0 −R (X ′X)−1R′

]

≡
[
IK (X ′X)−1R′

0 −P

]

≡ C,and [
IK (X ′X)−1R′P−1

0 −P−1

] [
IK (X ′X)−1R′

0 −P

]
≡ DC

= IK+Q,so
DAB = IK+Q

DA = B−1

B−1 =

[
IK (X ′X)−1R′P−1

0 −P−1

] [
(X ′X)−1 0

−R (X ′X)−1 IQ

]

=

[
(X ′X)−1 − (X ′X)−1R′P−1R (X ′X)−1 (X ′X)−1R′P−1

P−1R (X ′X)−1 −P−1

]
,so (everyone should start paying attention again, and please note that we have made thede�nition P = R (X ′X)−1R′)

[
β̂R

λ̂

]
=

[
(X ′X)−1 − (X ′X)−1R′P−1R (X ′X)−1 (X ′X)−1R′P−1

P−1R (X ′X)−1 −P−1

][
X ′y

r

]

=


 β̂ − (X ′X)−1R′P−1

(
Rβ̂ − r

)

P−1
(
Rβ̂ − r

)



=

[ (
IK − (X ′X)−1R′P−1R

)

P−1R

]
β̂ +

[
(X ′X)−1R′P−1r

−P−1r

]The fat that β̂R and λ̂ are linear funtions of β̂ makes it easy to determine their distribu-tions, sine the distribution of β̂ is already known. Reall that for x a random vetor, andfor A and b a matrix and vetor of onstants, respetively, V ar (Ax+ b) = AV ar(x)A′.Though this is the obvious way to go about �nding the restrited estimator, an easierway, if the number of restritions is small, is to impose them by substitution. Write
y = X1β1 +X2β2 + ε

[
R1 R2

] [ β1

β2

]
= r



1. EXACT LINEAR RESTRICTIONS 51where R1 is Q×Q nonsingular. Supposing the Q restritions are linearly independent, onean always make R1 nonsingular by reorganizing the olumns of X. Then
β1 = R−1

1 r −R−1
1 R2β2.Substitute this into the model

y = X1R
−1
1 r −X1R

−1
1 R2β2 +X2β2 + ε

y −X1R
−1
1 r =

[
X2 −X1R

−1
1 R2

]
β2 + εor with the appropriate de�nitions,

yR = XRβ2 + ε.This model satis�es the lassial assumptions, supposing the restrition is true. One anestimate by OLS. The variane of β̂2 is as before
V (β̂2) =

(
X ′
RXR

)−1
σ2

0and the estimator is
V̂ (β̂2) =

(
X ′
RXR

)−1
σ̂2where one estimates σ2

0 in the normal way, using the restrited model, i.e.,
σ̂2

0 =

(
yR −XRβ̂2

)′ (
yR −XRβ̂2

)

n− (K −Q)To reover β̂1, use the restrition. To �nd the variane of β̂1, use the fat that it is a linearfuntion of β̂2, so
V (β̂1) = R−1

1 R2V (β̂2)R
′
2

(
R−1

1

)′

= R−1
1 R2

(
X ′

2X2

)−1
R′

2

(
R−1

1

)′
σ2

01.2. Properties of the restrited estimator. We have that
β̂R = β̂ − (X ′X)−1R′P−1

(
Rβ̂ − r

)

= β̂ + (X ′X)−1R′P−1r − (X ′X)−1R′P−1R(X ′X)−1X ′y

= β + (X ′X)−1X ′ε+ (X ′X)−1R′P−1 [r −Rβ] − (X ′X)−1R′P−1R(X ′X)−1X ′ε

β̂R − β = (X ′X)−1X ′ε

+ (X ′X)−1R′P−1 [r −Rβ]

− (X ′X)−1R′P−1R(X ′X)−1X ′εMean squared error is
MSE(β̂R) = E(β̂R − β)(β̂R − β)′Noting that the rosses between the seond term and the other terms expet to zero, andthat the ross of the �rst and third has a anellation with the square of the third, weobtain

MSE(β̂R) = (X ′X)−1σ2

+ (X ′X)−1R′P−1 [r −Rβ] [r −Rβ]′ P−1R(X ′X)−1

− (X ′X)−1R′P−1R(X ′X)−1σ2



2. TESTING 52So, the �rst term is the OLS ovariane. The seond term is PSD, and the third term isNSD.
• If the restrition is true, the seond term is 0, so we are better o�. True restritionsimprove e�ieny of estimation.
• If the restrition is false, we may be better or worse o�, in terms of MSE, dependingon the magnitudes of r −Rβ and σ2.2. TestingIn many ases, one wishes to test eonomi theories. If theory suggests parameterrestritions, as in the above homogeneity example, one an test theory by testing parameterrestritions. A number of tests are available.2.1. t-test. Suppose one has the model

y = Xβ + εand one wishes to test the single restrition H0 :Rβ = r vs. HA :Rβ 6= r . Under H0, withnormality of the errors,
Rβ̂ − r ∼ N

(
0, R(X ′X)−1R′σ2

0

)so
Rβ̂ − r√

R(X ′X)−1R′σ2
0

=
Rβ̂ − r

σ0

√
R(X ′X)−1R′ ∼ N (0, 1) .The problem is that σ2

0 is unknown. One ould use the onsistent estimator σ̂2
0 in plae of

σ2
0, but the test would only be valid asymptotially in this ase.Proposition 4.(19) N(0, 1)√

χ2(q)
q

∼ t(q)as long as the N(0, 1) and the χ2(q) are independent.We need a few results on the χ2 distribution.Proposition 5. If x ∼ N(µ, In) is a vetor of n independent r.v.'s., then(20) x′x ∼ χ2(n, λ)where λ =
∑

i µ
2
i = µ′µ is the nonentrality parameter.When a χ2 r.v. has the nonentrality parameter equal to zero, it is referred to asa entral χ2 r.v., and it's distribution is written as χ2(n), suppressing the nonentralityparameter.Proposition 6. If the n dimensional random vetor x ∼ N(0, V ), then x′V −1x ∼

χ2(n).We'll prove this one as an indiation of how the following unproven propositions ouldbe proved.Proof: Fator V −1 as P ′P (this is the Cholesky fatorization, where P is de�ned to beupper triangular). Then onsider y = Px. We have
y ∼ N(0, PV P ′)



2. TESTING 53but
V P ′P = In

PV P ′P = Pso PV P ′ = In and thus y ∼ N(0, In). Thus y′y ∼ χ2(n) but
y′y = x′P ′Px = xV −1xand we get the result we wanted.A more general proposition whih implies this result isProposition 7. If the n dimensional random vetor x ∼ N(0, V ), then(21) x′Bx ∼ χ2(ρ(B))if and only if BV is idempotent.An immediate onsequene isProposition 8. If the random vetor (of dimension n) x ∼ N(0, I), and B is idem-potent with rank r, then(22) x′Bx ∼ χ2(r).Consider the random variablê

ε′ε̂

σ2
0

=
ε′MXε

σ2
0

=

(
ε

σ0

)′
MX

(
ε

σ0

)

∼ χ2(n−K)Proposition 9. If the random vetor (of dimension n) x ∼ N(0, I), then Ax and
x′Bx are independent if AB = 0.Now onsider (remember that we have only one restrition in this ase)

Rβ̂−r
σ0

√
R(X′X)−1R′

√
ε̂′ε̂

(n−K)σ2
0

=
Rβ̂ − r

σ̂0

√
R(X ′X)−1R′This will have the t(n − K) distribution if β̂ and ε̂′ε̂ are independent. But β̂ = β +

(X ′X)−1X ′ε and
(X ′X)−1X ′MX = 0,so

Rβ̂ − r

σ̂0

√
R(X ′X)−1R′ =

Rβ̂ − r

σ̂Rβ̂
∼ t(n−K)In partiular, for the ommonly enountered test of signi�ane of an individual oe�ient,for whih H0 : βi = 0 vs. H0 : βi 6= 0 , the test statisti is

β̂i
σ̂β̂i

∼ t(n−K)

• Note: the t− test is stritly valid only if the errors are atually normally dis-tributed. If one has nonnormal errors, one ould use the above asymptoti resultto justify taking ritial values from the N(0, 1) distribution, sine t(n − K)
d→
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N(0, 1) as n→ ∞. In pratie, a onservative proedure is to take ritial valuesfrom the t distribution if nonnormality is suspeted. This will rejet H0 less oftensine the t distribution is fatter-tailed than is the normal.2.2. F test. The F test allows testing multiple restritions jointly.Proposition 10. If x ∼ χ2(r) and y ∼ χ2(s), then(23) x/r

y/s
∼ F (r, s)provided that x and y are independent.Proposition 11. If the random vetor (of dimension n) x ∼ N(0, I), then x′Ax and

x′Bx are independent if AB = 0.Using these results, and previous results on the χ2 distribution, it is simple to showthat the following statisti has the F distribution:
F =

(
Rβ̂ − r

)′ (
R (X ′X)−1R′

)−1 (
Rβ̂ − r

)

qσ̂2
∼ F (q, n −K).A numerially equivalent expression is

(ESSR − ESSU ) /q

ESSU/(n−K)
∼ F (q, n −K).

• Note: The F test is stritly valid only if the errors are truly normally distributed.The following tests will be appropriate when one annot assume normally dis-tributed errors.2.3. Wald-type tests. The Wald priniple is based on the idea that if a restritionis true, the unrestrited model should �approximately� satisfy the restrition. Given thatthe least squares estimator is asymptotially normally distributed:
√
n
(
β̂ − β0

)
d→ N

(
0, σ2

0Q
−1
X

)then under H0 : Rβ0 = r, we have
√
n
(
Rβ̂ − r

)
d→ N

(
0, σ2

0RQ
−1
X R′)so by Proposition [6℄

n
(
Rβ̂ − r

)′ (
σ2

0RQ
−1
X R′)−1

(
Rβ̂ − r

)
d→ χ2(q)Note that Q−1

X or σ2
0 are not observable. The test statisti we use substitutes the onsistentestimators. Use (X ′X/n)−1 as the onsistent estimator of Q−1

X . With this, there is aanellation of n′s, and the statisti to use is
(
Rβ̂ − r

)′ (
σ̂2

0R(X ′X)−1R′
)−1 (

Rβ̂ − r
)

d→ χ2(q)

• The Wald test is a simple way to test restritions without having to estimate therestrited model.
• Note that this formula is similar to one of the formulae provided for the F test.2.4. Sore-type tests (Rao tests, Lagrange multiplier tests). In some ases,an unrestrited model may be nonlinear in the parameters, but the model is linear in the



2. TESTING 55parameters under the null hypothesis. For example, the model
y = (Xβ)γ + εis nonlinear in β and γ, but is linear in β under H0 : γ = 1. Estimation of nonlinear modelsis a bit more ompliated, so one might prefer to have a test based upon the restrited,linear model. The sore test is useful in this situation.

• Sore-type tests are based upon the general priniple that the gradient vetor ofthe unrestrited model, evaluated at the restrited estimate, should be asymp-totially normally distributed with mean zero, if the restritions are true. Theoriginal development was for ML estimation, but the priniple is valid for a widevariety of estimation methods.We have seen that
λ̂ =

(
R(X ′X)−1R′)−1

(
Rβ̂ − r

)

= P−1
(
Rβ̂ − r

)so √
nP̂λ =

√
n
(
Rβ̂ − r

)Given that √
n
(
Rβ̂ − r

)
d→ N

(
0, σ2

0RQ
−1
X R′)under the null hypothesis, we obtain

√
nP̂λ

d→ N
(
0, σ2

0RQ
−1
X R′)So (√

nP̂λ
)′ (

σ2
0RQ

−1
X R′)−1

(√
nP̂λ

)
d→ χ2(q)Noting that limnP = RQ−1

X R′, we obtain,
λ̂′
(
R(X ′X)−1R′

σ2
0

)
λ̂

d→ χ2(q)sine the powers of n anel. To get a usable test statisti substitute a onsistent estimatorof σ2
0.

• This makes it lear why the test is sometimes referred to as a Lagrange multipliertest. It may seem that one needs the atual Lagrange multipliers to alulate this.If we impose the restritions by substitution, these are not available. Note thatthe test an be written as
(
R′λ̂

)′
(X ′X)−1R′λ̂

σ2
0

d→ χ2(q)However, we an use the fon for the restrited estimator:
−X ′y +X ′Xβ̂R +R′λ̂to get that
R′λ̂ = X ′(y −Xβ̂R)

= X ′ε̂R



2. TESTING 56Substituting this into the above, we get
ε̂′RX(X ′X)−1X ′ε̂R

σ2
0

d→ χ2(q)but this is simply
ε̂′R
PX
σ2

0

ε̂R
d→ χ2(q).To see why the test is also known as a sore test, note that the fon for restrited leastsquares

−X ′y +X ′Xβ̂R +R′λ̂give us
R′λ̂ = X ′y −X ′Xβ̂Rand the rhs is simply the gradient (sore) of the unrestrited model, evaluated at therestrited estimator. The sores evaluated at the unrestrited estimate are identiallyzero. The logi behind the sore test is that the sores evaluated at the restrited estimateshould be approximately zero, if the restrition is true. The test is also known as a Raotest, sine P. Rao �rst proposed it in 1948.

2.5. Likelihood ratio-type tests. The Wald test an be alulated using the un-restrited model. The sore test an be alulated using only the restrited model. Thelikelihood ratio test, on the other hand, uses both the restrited and the unrestritedestimators. The test statisti is
LR = 2

(
lnL(θ̂) − lnL(θ̃)

)where θ̂ is the unrestrited estimate and θ̃ is the restrited estimate. To show that it isasymptotially χ2, take a seond order Taylor's series expansion of lnL(θ̃) about θ̂ :

lnL(θ̃) ≃ lnL(θ̂) +
n

2

(
θ̃ − θ̂

)′
H(θ̂)

(
θ̃ − θ̂

)(note, the �rst order term drops out sine Dθ lnL(θ̂) ≡ 0 by the fon and we need tomultiply the seond-order term by n sine H(θ) is de�ned in terms of 1
n lnL(θ)) so

LR ≃ −n
(
θ̃ − θ̂

)′
H(θ̂)

(
θ̃ − θ̂

)As n→ ∞,H(θ̂) → H∞(θ0) = −I(θ0), by the information matrix equality. So
LR

a
= n

(
θ̃ − θ̂

)′
I∞(θ0)

(
θ̃ − θ̂

)We also have that, from [??℄ that
√
n
(
θ̂ − θ0

)
a
= I∞(θ0)

−1n1/2g(θ0).An analogous result for the restrited estimator is (this is unproven here, to prove this setup the Lagrangean for MLE subjet to Rβ = r, and manipulate the �rst order onditions): √
n
(
θ̃ − θ0

)
a
= I∞(θ0)

−1
(
In −R′ (RI∞(θ0)

−1R′)−1
RI∞(θ0)

−1
)
n1/2g(θ0).Combining the last two equations

√
n
(
θ̃ − θ̂

)
a
= −n1/2I∞(θ0)

−1R′ (RI∞(θ0)
−1R′)−1

RI∞(θ0)
−1g(θ0)
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LR

a
=
[
n1/2g(θ0)

′I∞(θ0)
−1R′

] [
RI∞(θ0)

−1R′]−1
[
RI∞(θ0)

−1n1/2g(θ0)
]But sine

n1/2g(θ0)
d→ N (0,I∞(θ0))the linear funtion

RI∞(θ0)
−1n1/2g(θ0)

d→ N(0, RI∞(θ0)
−1R′).We an see that LR is a quadrati form of this rv, with the inverse of its variane in themiddle, so

LR
d→ χ2(q).3. The asymptoti equivalene of the LR, Wald and sore testsWe have seen that the three tests all onverge to χ2 random variables. In fat, theyall onverge to the same χ2 rv, under the null hypothesis. We'll show that the Wald andLR tests are asymptotially equivalent. We have seen that the Wald test is asymptotiallyequivalent to

W
a
= n

(
Rβ̂ − r

)′ (
σ2

0RQ
−1
X R′)−1

(
Rβ̂ − r

)
d→ χ2(q)Using

β̂ − β0 = (X ′X)−1X ′εand
Rβ̂ − r = R(β̂ − β0)we get

√
nR(β̂ − β0) =

√
nR(X ′X)−1X ′ε

= R

(
X ′X
n

)−1

n−1/2X ′εSubstitute this into [??℄ to get
W

a
= n−1ε′XQ−1

X R′ (σ2
0RQ

−1
X R′)−1

RQ−1
X X ′ε

a
= ε′X(X ′X)−1R′ (σ2

0R(X ′X)−1R′)−1
R(X ′X)−1X ′ε

a
=

ε′A(A′A)−1A′ε

σ2
0

a
=

ε′PRε

σ2
0where PR is the projetion matrix formed by the matrix X(X ′X)−1R′.

• Note that this matrix is idempotent and has q olumns, so the projetion matrixhas rank q.Now onsider the likelihood ratio statisti
LR

a
= n1/2g(θ0)

′I(θ0)
−1R′ (RI(θ0)

−1R′)−1
RI(θ0)

−1n1/2g(θ0)Under normality, we have seen that the likelihood funtion is
lnL(β, σ) = −n ln

√
2π − n lnσ − 1

2

(y −Xβ)′ (y −Xβ)

σ2
.



3. THE ASYMPTOTIC EQUIVALENCE OF THE LR, WALD AND SCORE TESTS 58Using this,
g(β0) ≡ Dβ

1

n
lnL(β, σ)

=
X ′(y −Xβ0)

nσ2

=
X ′ε
nσ2Also, by the information matrix equality:

I(θ0) = −H∞(θ0)

= lim−Dβ′g(β0)

= lim−Dβ′

X ′(y −Xβ0)

nσ2

= lim
X ′X
nσ2

=
QX
σ2so

I(θ0)
−1 = σ2Q−1

XSubstituting these last expressions into [??℄, we get
LR

a
= ε′X ′(X ′X)−1R′ (σ2

0R(X ′X)−1R′)−1
R(X ′X)−1X ′ε

a
=

ε′PRε

σ2
0

a
= WThis ompletes the proof that the Wald and LR tests are asymptotially equivalent. Sim-ilarly, one an show that, under the null hypothesis,

qF
a
= W

a
= LM

a
= LR

• The proof for the statistis exept for LR does not depend upon normality of theerrors, as an be veri�ed by examining the expressions for the statistis.
• The LR statisti is based upon distributional assumptions, sine one an't writethe likelihood funtion without them.
• However, due to the lose relationship between the statistis qF and LR, sup-posing normality, the qF statisti an be thought of as a pseudo-LR statisti, inthat it's like a LR statisti in that it uses the value of the objetive funtionsof the restrited and unrestrited models, but it doesn't require distributionalassumptions.
• The presentation of the sore and Wald tests has been done in the ontext ofthe linear model. This is readily generalizable to nonlinear models and/or otherestimation methods.

Though the four statistis are asymptotially equivalent, they are numerially di�erent insmall samples. The numeri values of the tests also depend upon how σ2 is estimated, andwe've already seen than there are several ways to do this. For example all of the followingare onsistent for σ2 under H0
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ε̂′ε̂
n−k
ε̂′ε̂
n

ε̂′Rε̂R

n−k+q
ε̂′Rε̂R

nand in general the denominator all be replaed with any quantity a suh that lim a/n = 1.It an be shown, for linear regression models subjet to linear restritions, and if ε̂′ε̂n isused to alulate the Wald test and ε̂′Rε̂R

n is used for the sore test, that
W > LR > LM.For this reason, the Wald test will always rejet if the LR test rejets, and in turn the LRtest rejets if the LM test rejets. This is a bit problemati: there is the possibility that byareful hoie of the statisti used, one an manipulate reported results to favor or disfavora hypothesis. A onservative/honest approah would be to report all three test statistiswhen they are available. In the ase of linear models with normal errors the F test is tobe preferred, sine asymptoti approximations are not an issue.The small sample behavior of the tests an be quite di�erent. The true size (probabilityof rejetion of the null when the null is true) of the Wald test is often dramatially higherthan the nominal size assoiated with the asymptoti distribution. Likewise, the true sizeof the sore test is often smaller than the nominal size.4. Interpretation of test statistisNow that we have a menu of test statistis, we need to know how to use them.5. Con�dene intervalsCon�dene intervals for single oe�ients are generated in the normal manner. Giventhe t statisti
t(β) =

β̂ − β

σ̂β̂a 100 (1 − α) % on�dene interval for β0 is de�ned by the bounds of the set of β suh that
t(β) does not rejet H0 : β0 = β, using a α signi�ane level:

C(α) = {β : −cα/2 <
β̂ − β

σ̂β̂
< cα/2}The set of suh β is the interval

β̂ ± σ̂β̂cα/2A on�dene ellipse for two oe�ients jointly would be, analogously, the set of {β1, β2}suh that the F (or some other test statisti) doesn't rejet at the spei�ed ritial value.This generates an ellipse, if the estimators are orrelated.
• The region is an ellipse, sine the CI for an individual oe�ient de�nes a (in-�nitely long) retangle with total prob. mass 1 − α, sine the other oe�ient ismarginalized (e.g., an take on any value). Sine the ellipse is bounded in bothdimensions but also ontains mass 1 − α, it must extend beyond the bounds ofthe individual CI.
• From the pitue we an see that:



6. BOOTSTRAPPING 60Figure 1. Joint and Individual Con�dene Regions

� Rejetion of hypotheses individually does not imply that the joint test willrejet.� Joint rejetion does not imply individal tests will rejet.6. BootstrappingWhen we rely on asymptoti theory to use the normal distribution-based tests and on-�dene intervals, we're often at serious risk of making important errors. If the sample size is



6. BOOTSTRAPPING 61small and errors are highly nonnormal, the small sample distribution of √n(β̂ − β0

) maybe very di�erent than its large sample distribution. Also, the distributions of test statistismay not resemble their limiting distributions at all. A means of trying to gain informationon the small sample distribution of test statistis and estimators is the bootstrap. We'llonsider a simple example, just to get the main idea.Suppose that
y = Xβ0 + ε

ε ∼ IID(0, σ2
0)

X is nonstohastiGiven that the distribution of ε is unknown, the distribution of β̂ will be unknown in smallsamples. However, sine we have random sampling, we ould generate arti�ial data. Thesteps are:(1) Draw n observations from ε̂ with replaement. Call this vetor ε̃j (it's a n×1).(2) Then generate the data by ỹj = Xβ̂ + ε̃j(3) Now take this and estimatẽ
βj = (X ′X)−1X ′ỹj.(4) Save β̃j(5) Repeat steps 1-4, until we have a large number, J, of β̃j .With this, we an use the repliations to alulate the empirial distribution of β̃j . Oneway to form a 100(1-α)% on�dene interval for β0 would be to order the β̃j from smallestto largest, and drop the �rst and last Jα/2 of the repliations, and use the remainingendpoints as the limits of the CI. Note that this will not give the shortest CI if the empirialdistribution is skewed.

• Suppose one was interested in the distribution of some funtion of β̂, for examplea test statisti. Simple: just alulate the transformation for eah j, and workwith the empirial distribution of the transformation.
• If the assumption of iid errors is too strong (for example if there is heterosedas-tiity or autoorrelation, see below) one an work with a bootstrap de�ned bysampling from (y, x) with replaement.
• How to hoose J : J should be large enough that the results don't hange withrepetition of the entire bootstrap. This is easy to hek. If you �nd the resultshange a lot, inrease J and try again.
• The bootstrap is based fundamentally on the idea that the empirial distributionof the sample data onverges to the atual sampling distribution as n beomeslarge, so statistis based on sampling from the empirial distribution should on-verge in distribution to statistis based on sampling from the atual samplingdistribution.
• In �nite samples, this doesn't hold. At a minimum, the bootstrap is a good wayto hek if asymptoti theory results o�er a deent approximation to the smallsample distribution.
• Bootstrapping an be used to test hypotheses. Basially, use the bootstrap toget an approximation to the empirial distribution of the test statisti underthe alternative hypothesis, and use this to get ritial values. Compare the test



7. TESTING NONLINEAR RESTRICTIONS, AND THE DELTA METHOD 62statisti alulated using the real data, under the null, to the bootstrap ritialvalues. There are many variations on this theme, whih we won't go into here.7. Testing nonlinear restritions, and the Delta MethodTesting nonlinear restritions of a linear model is not muh more di�ult, at least whenthe model is linear. Sine estimation subjet to nonlinear restritions requires nonlinearestimation methods, whih are beyond the sore of this ourse, we'll just onsider the Waldtest for nonlinear restritions on a linear model.Consider the q nonlinear restritions
r(β0) = 0.where r(·) is a q-vetor valued funtion. Write the derivative of the restrition evaluatedat β as

Dβ′r(β)
∣∣
β

= R(β)We suppose that the restritions are not redundant in a neighborhood of β0, so that
ρ(R(β)) = qin a neighborhood of β0. Take a �rst order Taylor's series expansion of r(β̂) about β0:

r(β̂) = r(β0) +R(β∗)(β̂ − β0)where β∗ is a onvex ombination of β̂ and β0. Under the null hypothesis we have
r(β̂) = R(β∗)(β̂ − β0)Due to onsisteny of β̂ we an replae β∗ by β0, asymptotially, so

√
nr(β̂)

a
=

√
nR(β0)(β̂ − β0)We've already seen the distribution of √n(β̂ − β0). Using this we get

√
nr(β̂)

d→ N
(
0, R(β0)Q

−1
X R(β0)

′σ2
0

)
.Considering the quadrati form

nr(β̂)′
(
R(β0)Q

−1
X R(β0)

′)−1
r(β̂)

σ2
0

d→ χ2(q)under the null hypothesis. Substituting onsistent estimators for β0,QX and σ2
0, the re-sulting statisti is

r(β̂)′
(
R(β̂)(X ′X)−1R(β̂)′

)−1
r(β̂)

σ̂2

d→ χ2(q)under the null hypothesis.
• This is known in the literature as the Delta method, or as Klein's approximation.
• Sine this is a Wald test, it will tend to over-rejet in �nite samples. The sore andLR tests are also possibilities, but they require estimation methods for nonlinearmodels, whih aren't in the sope of this ourse.Note that this also gives a onvenient way to estimate nonlinear funtions and assoiatedasymptoti on�dene intervals. If the nonlinear funtion r(β0) is not hypothesized to bezero, we just have

√
n
(
r(β̂) − r(β0)

)
d→ N

(
0, R(β0)Q

−1
X R(β0)

′σ2
0

)



7. TESTING NONLINEAR RESTRICTIONS, AND THE DELTA METHOD 63so an approximation to the distribution of the funtion of the estimator is
r(β̂) ≈ N(r(β0), R(β0)(X

′X)−1R(β0)
′σ2

0)For example, the vetor of elastiities of a funtion f(x) is
η(x) =

∂f(x)

∂x
⊙ x

f(x)where ⊙ means element-by-element multipliation. Suppose we estimate a linear funtion
y = x′β + ε.The elastiities of y w.r.t. x are

η(x) =
β

x′β
⊙ x(note that this is the entire vetor of elastiities). The estimated elastiities are

η̂(x) =
β̂

x′β̂
⊙ xTo alulate the estimated standard errors of all �ve elastiites, use

R(β) =
∂η(x)

∂β′

=




x1 0 · · · 0

0 x2
...... . . . 0

0 · · · 0 xk



x′β −




β1x
2
1 0 · · · 0

0 β2x
2
2

...... . . . 0

0 · · · 0 βkx
2
k




(x′β)2
.To get a onsistent estimator just substitute in β̂. Note that the elastiity and the standarderror are funtions of x. The program ExampleDeltaMethod.m shows how this an be done.In many ases, nonlinear restritions an also involve the data, not just the parameters.For example, onsider a model of expenditure shares. Let x(p,m) be a demand funion,where p is pries and m is inome. An expenditure share system for G goods is

si(p,m) =
pixi(p,m)

m
, i = 1, 2, ..., G.Now demand must be positive, and we assume that expenditures sum to inome, so wehave the restritions

0 ≤ si(p,m) ≤ 1, ∀i
G∑

i=1

si(p,m) = 1Suppose we postulate a linear model for the expenditure shares:
si(p,m) = βi1 + p′βip +mβim + εiIt is fairly easy to write restritions suh that the shares sum to one, but the restritionthat the shares lie in the [0, 1] interval depends on both parameters and the values of pand m. It is impossible to impose the restrition that 0 ≤ si(p,m) ≤ 1 for all possible pand m. In suh ases, one might onsider whether or not a linear model is a reasonablespei�ation.

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/ExampleDeltaMethod.m


8. EXAMPLE: THE NERLOVE DATA 648. Example: the Nerlove dataRemember that we in a previous example (setion 8.3) that the OLS results for theNerlove model are*********************************************************OLS estimation resultsObservations 145R-squared 0.925955Sigma-squared 0.153943Results (Ordinary var-ov estimator)estimate st.err. t-stat. p-valueonstant -3.527 1.774 -1.987 0.049output 0.720 0.017 41.244 0.000labor 0.436 0.291 1.499 0.136fuel 0.427 0.100 4.249 0.000apital -0.220 0.339 -0.648 0.518*********************************************************Note that sK = βK < 0, and that βL + βF + βK 6= 1.Remember that if we have onstant returns to sale, then βQ = 1, and if there ishomogeneity of degree 1 then βL + βF + βK = 1. We an test these hypotheses eitherseparately or jointly. NerloveRestritions.m imposes and tests CRTS and then HOD1.From it we obtain the results that follow:Imposing and testing HOD1*******************************************************Restrited LS estimation resultsObservations 145R-squared 0.925652Sigma-squared 0.155686estimate st.err. t-stat. p-valueonstant -4.691 0.891 -5.263 0.000output 0.721 0.018 41.040 0.000labor 0.593 0.206 2.878 0.005fuel 0.414 0.100 4.159 0.000apital -0.007 0.192 -0.038 0.969*******************************************************Value p-valueF 0.574 0.450Wald 0.594 0.441LR 0.593 0.441Sore 0.592 0.442

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/NerloveRestrictions.m


8. EXAMPLE: THE NERLOVE DATA 65Imposing and testing CRTS*******************************************************Restrited LS estimation resultsObservations 145R-squared 0.790420Sigma-squared 0.438861estimate st.err. t-stat. p-valueonstant -7.530 2.966 -2.539 0.012output 1.000 0.000 Inf 0.000labor 0.020 0.489 0.040 0.968fuel 0.715 0.167 4.289 0.000apital 0.076 0.572 0.132 0.895*******************************************************Value p-valueF 256.262 0.000Wald 265.414 0.000LR 150.863 0.000Sore 93.771 0.000Notie that the input prie oe�ients in fat sum to 1 when HOD1 is imposed. HOD1is not rejeted at usual signi�ane levels (e.g., α = 0.10). Also, R2 does not drop muhwhen the restrition is imposed, ompared to the unrestrited results. For CRTS, youshould note that βQ = 1, so the restrition is satis�ed. Also note that the hypothesis that
βQ = 1 is rejeted by the test statistis at all reasonable signi�ane levels. Note that R2drops quite a bit when imposing CRTS. If you look at the unrestrited estimation results,you an see that a t-test for βQ = 1 also rejets, and that a on�dene interval for βQ doesnot overlap 1.From the point of view of neolassial eonomi theory, these results are not anomalous:HOD1 is an impliation of the theory, but CRTS is not.Exerise 12. Modify the NerloveRestritions.m program to impose and test the re-stritions jointly.The Chow test. Sine CRTS is rejeted, let's examine the possibilities more arefully.Reall that the data is sorted by output (the third olumn). De�ne 5 subsamples of �rms,with the �rst group being the 29 �rms with the lowest output levels, then the next 29 �rms,et. The �ve subsamples an be indexed by j = 1, 2, ..., 5, where j = 1 for t = 1, 2, ...29,
j = 2 for t = 30, 31, ...58, et. De�ne a pieewise linear model(24) lnCt = βj1 + βj2 lnQt + βj3 lnPLt + βj4 lnPFt + βj5 lnPKt + ǫtwhere j is a supersript (not a power) that iniates that the oe�ients may be di�erentaording to the subsample in whih the observation falls. That is, the oe�ients dependupon j whih in turn depends upon t. Note that the �rst olumn of nerlove.data indiates



9. EXERCISES 66Figure 2. RTS as a funtion of �rm size
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this way of breaking up the sample. The new model may be written as(25) 


y1

y2...
y5




=




X1 0 · · · 0

0 X2... X3

X4 0

0 X5







β1

β2

β5




+




ǫ1

ǫ2...
ǫ5


where y1 is 29×1, X1 is 29×5, βj is the 5 × 1 vetor of oe�ient for the jth subsample,and ǫj is the 29 × 1 vetor of errors for the jth subsample.The Otave program Restritions/ChowTest.m estimates the above model. It also teststhe hypothesis that the �ve subsamples share the same parameter vetor, or in other words,that there is oe�ient stability aross the �ve subsamples. The null to test is that theparameter vetors for the separate groups are all the same, that is,

β1 = β2 = β3 = β4 = β5This type of test, that parameters are onstant aross di�erent sets of data, is sometimesreferred to as a Chow test.
• There are 20 restritions. If that's not lear to you, look at the Otave program.
• The restritions are rejeted at all onventional signi�ane levels.Sine the restritions are rejeted, we should probably use the unrestrited model foranalysis. What is the pattern of RTS as a funtion of the output group (small to large)?Figure 2 plots RTS. We an see that there is inreasing RTS for small �rms, but that RTSis approximately onstant for large �rms.9. Exerises(1) Using the Chow test on the Nerlove model, we rejet that there is oe�ientstability aross the 5 groups. But perhaps we ould restrit the input prie oef-�ients to be the same but let the onstant and output oe�ients vary by group

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/ChowTest.m


9. EXERCISES 67size. This new model is(26) lnCi = βj1 + βj2 lnQi + β3 lnPLi + β4 lnPF i + β5 lnPKi + ǫi(a) estimate this model by OLS, giving R, estimated standard errors for o-e�ients, t-statistis for tests of signi�ane, and the assoiated p-values.Interpret the results in detail.(b) Test the restritions implied by this model (relative to the model that lets alloe�ients vary aross groups) using the F, qF, Wald, sore and likelihoodratio tests. Comment on the results.() Estimate this model but imposing the HOD1 restrition, using an OLS esti-mation program. Don't use m_olsr or any other restrited OLS estimationprogram. Give estimated standard errors for all oe�ients.(d) Plot the estimated RTS parameters as a funtion of �rm size. Compare theplot to that given in the notes for the unrestrited model. Comment on theresults.(2) For the simple Nerlove model, estimated returns to sale is R̂TS = 1
cβq

. Applythe delta method to alulate the estimated standard error for estimated RTS.Diretly test H0 : RTS = 1 versus HA : RTS 6= 1 rather than testing H0 : βQ = 1versus HA : βQ 6= 1. Comment on the results.(3) Perform a Monte Carlo study that generates data from the model
y = −2 + 1x2 + 1x3 + ǫwhere the sample size is 30, x2 and x3 are independently uniformly distributedon [0, 1] and ǫ ∼ IIN(0, 1)(a) Compare the means and standard errors of the estimated oe�ients usingOLS and restrited OLS, imposing the restrition that β2 + β3 = 2.(b) Compare the means and standard errors of the estimated oe�ients usingOLS and restrited OLS, imposing the restrition that β2 + β3 = 1.() Disuss the results.



CHAPTER 7Generalized least squaresOne of the assumptions we've made up to now is that
εt ∼ IID(0, σ2),or oasionally
εt ∼ IIN(0, σ2).Now we'll investigate the onsequenes of nonidentially and/or dependently distributederrors. We'll assume �xed regressors for now, relaxing this admittedly unrealisti assump-tion later. The model is
y = Xβ + ε

E(ε) = 0

V (ε) = Σwhere Σ is a general symmetri positive de�nite matrix (we'll write β in plae of β0 tosimplify the typing of these notes).
• The ase where Σ is a diagonal matrix gives unorrelated, nonidentially dis-tributed errors. This is known as heterosedastiity.
• The ase where Σ has the same number on the main diagonal but nonzero elementso� the main diagonal gives identially (assuming higher moments are also thesame) dependently distributed errors. This is known as autoorrelation.
• The general ase ombines heterosedastiity and autoorrelation. This is knownas �nonspherial� disturbanes, though why this term is used, I have no idea.Perhaps it's beause under the lassial assumptions, a joint on�dene region for
ε would be an n− dimensional hypersphere.1. E�ets of nonspherial disturbanes on the OLS estimatorThe least square estimator is

β̂ = (X ′X)−1X ′y

= β + (X ′X)−1X ′ε

• We have unbiasedness, as before.
• The variane of β̂ is

E
[
(β̂ − β)(β̂ − β)′

]
= E

[
(X ′X)−1X ′εε′X(X ′X)−1

]

= (X ′X)−1X ′ΣX(X ′X)−1(27) Due to this, any test statisti that is based upon an estimator of σ2 is invalid, sinethere isn't any σ2, it doesn't exist as a feature of the true d.g.p. In partiular,the formulas for the t, F, χ2 based tests given above do not lead to statistis withthese distributions. 68



2. THE GLS ESTIMATOR 69
• β̂ is still onsistent, following exatly the same argument given before.
• If ε is normally distributed, then

β̂ ∼ N
(
β, (X ′X)−1X ′ΣX(X ′X)−1

)The problem is that Σ is unknown in general, so this distribution won't be usefulfor testing hypotheses.
• Without normality, and unonditional on X we still have

√
n
(
β̂ − β

)
=

√
n(X ′X)−1X ′ε

=

(
X ′X
n

)−1

n−1/2X ′εDe�ne the limiting variane of n−1/2X ′ε (supposing a CLT applies) as
lim
n→∞

E
(
X ′εε′X

n

)
= Ωso we obtain √

n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)Summary: OLS with heterosedastiity and/or autoorrelation is:
• unbiased in the same irumstanes in whih the estimator is unbiased with iiderrors
• has a di�erent variane than before, so the previous test statistis aren't valid
• is onsistent
• is asymptotially normally distributed, but with a di�erent limiting ovarianematrix. Previous test statistis aren't valid in this ase for this reason.
• is ine�ient, as is shown below.2. The GLS estimatorSuppose Σ were known. Then one ould form the Cholesky deomposition

P ′P = Σ−1Here, P is an upper triangular matrix. We have
P ′PΣ = Inso

P ′PΣP ′ = P ′,whih implies that
PΣP ′ = InConsider the model

Py = PXβ + Pε,or, making the obvious de�nitions,
y∗ = X∗β + ε∗.This variane of ε∗ = Pε is

E(Pεε′P ′) = PΣP ′

= In



2. THE GLS ESTIMATOR 70Therefore, the model
y∗ = X∗β + ε∗

E(ε∗) = 0

V (ε∗) = Insatis�es the lassial assumptions. The GLS estimator is simply OLS applied to the trans-formed model:
β̂GLS = (X∗′X∗)−1X∗′y∗

= (X ′P ′PX)−1X ′P ′Py

= (X ′Σ−1X)−1X ′Σ−1yThe GLS estimator is unbiased in the same irumstanes under whih the OLS esti-mator is unbiased. For example, assuming X is nonstohasti
E(β̂GLS) = E

{
(X ′Σ−1X)−1X ′Σ−1y

}

= E
{
(X ′Σ−1X)−1X ′Σ−1(Xβ + ε

}

= β.The variane of the estimator, onditional on X an be alulated using
β̂GLS = (X∗′X∗)−1X∗′y∗

= (X∗′X∗)−1X∗′ (X∗β + ε∗)

= β + (X∗′X∗)−1X∗′ε∗so
E
{(

β̂GLS − β
)(

β̂GLS − β
)′}

= E
{
(X∗′X∗)−1X∗′ε∗ε∗′X∗(X∗′X∗)−1

}

= (X∗′X∗)−1X∗′X∗(X∗′X∗)−1

= (X∗′X∗)−1

= (X ′Σ−1X)−1Either of these last formulas an be used.
• All the previous results regarding the desirable properties of the least squaresestimator hold, when dealing with the transformed model, sine the transformedmodel satis�es the lassial assumptions..
• Tests are valid, using the previous formulas, as long as we substitute X∗ in plaeof X. Furthermore, any test that involves σ2 an set it to 1. This is preferable tore-deriving the appropriate formulas.
• The GLS estimator is more e�ient than the OLS estimator. This is a onsequeneof the Gauss-Markov theorem, sine the GLS estimator is based on a model thatsatis�es the lassial assumptions but the OLS estimator is not. To see thisdiretly, not that (the following needs to be ompleted)

V ar(β̂) − V ar(β̂GLS) = (X ′X)−1X ′ΣX(X ′X)−1 − (X ′Σ−1X)−1

= AΣA
′



3. FEASIBLE GLS 71where A =
[
(X ′X)−1X ′ − (X ′Σ−1X)−1X ′Σ−1

]
. This may not seem obvious, butit is true, as you an verify for yourself. Then noting that AΣA

′ is a quadratiform in a positive de�nite matrix, we onlude that AΣA
′ is positive semi-de�nite,and that GLS is e�ient relative to OLS.

• As one an verify by alulating fon, the GLS estimator is the solution to theminimization problem
β̂GLS = arg min(y −Xβ)′Σ−1(y −Xβ)so the metri Σ−1 is used to weight the residuals.3. Feasible GLSThe problem is that Σ isn't known usually, so this estimator isn't available.

• Consider the dimension of Σ : it's an n × n matrix with (n2 − n
)
/2 + n =(

n2 + n
)
/2 unique elements.

• The number of parameters to estimate is larger than n and inreases faster than
n. There's no way to devise an estimator that satis�es a LLN without addingrestritions.

• The feasible GLS estimator is based upon making su�ient assumptions regardingthe form of Σ so that a onsistent estimator an be devised.Suppose that we parameterize Σ as a funtion of X and θ, where θ may inlude β as wellas other parameters, so that
Σ = Σ(X, θ)where θ is of �xed dimension. If we an onsistently estimate θ, we an onsistentlyestimate Σ, as long as Σ(X, θ) is a ontinuous funtion of θ (by the Slutsky theorem). Inthis ase,

Σ̂ = Σ(X, θ̂)
p→ Σ(X, θ)If we replae Σ in the formulas for the GLS estimator with Σ̂, we obtain the FGLS estima-tor. The FGLS estimator shares the same asymptoti properties as GLS. Theseare (1) Consisteny(2) Asymptoti normality(3) Asymptoti e�ieny if the errors are normally distributed. (Cramer-Rao).(4) Test proedures are asymptotially valid.In pratie, the usual way to proeed is(1) De�ne a onsistent estimator of θ. This is a ase-by-ase proposition, dependingon the parameterization Σ(θ). We'll see examples below.(2) Form Σ̂ = Σ(X, θ̂)(3) Calulate the Cholesky fatorization P̂ = Chol(Σ̂−1).(4) Transform the model using

P̂ ′y = P̂ ′Xβ + P̂ ′ε(5) Estimate using OLS on the transformed model.



4. HETEROSCEDASTICITY 724. HeterosedastiityHeterosedastiity is the ase where
E(εε′) = Σis a diagonal matrix, so that the errors are unorrelated, but have di�erent varianes.Heterosedastiity is usually thought of as assoiated with ross setional data, thoughthere is absolutely no reason why time series data annot also be heterosedasti. Atually,the popular ARCH (autoregressive onditionally heterosedasti) models expliitly assumethat a time series is heterosedasti.Consider a supply funtion

qi = β1 + βpPi + βsSi + εiwhere Pi is prie and Si is some measure of size of the ith �rm. One might suppose thatunobservable fators (e.g., talent of managers, degree of oordination between produtionunits, et.) aount for the error term εi. If there is more variability in these fators forlarge �rms than for small �rms, then εi may have a higher variane when Si is high thanwhen it is low.Another example, individual demand.
qi = β1 + βpPi + βmMi + εiwhere P is prie and M is inome. In this ase, εi an re�et variations in preferenes.There are more possibilities for expression of preferenes when one is rih, so it is possiblethat the variane of εi ould be higher when M is high.Add example of group means.4.1. OLS with heterosedasti onsistent varov estimation. Eiker (1967) andWhite (1980) showed how to modify test statistis to aount for heterosedastiity ofunknown form. The OLS estimator has asymptoti distribution

√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)as we've already seen. Reall that we de�ned
lim
n→∞

E
(
X ′εε′X

n

)
= ΩThis matrix has dimension K × K and an be onsistently estimated, even if we an'testimate Σ onsistently. The onsistent estimator, under heterosedastiity but no auto-orrelation is

Ω̂ =
1

n

n∑

t=1

xtx
′
tε̂

2
tOne an then modify the previous test statistis to obtain tests that are valid when thereis heterosedastiity of unknown form. For example, the Wald test for H0 : Rβ − r = 0would be

n
(
Rβ̂ − r

)′
(
R

(
X ′X
n

)−1

Ω̂

(
X ′X
n

)−1

R′
)−1 (

Rβ̂ − r
)

a∼ χ2(q)4.2. Detetion. There exist many tests for the presene of heterosedastiity. We'lldisuss three methods.



4. HETEROSCEDASTICITY 73Goldfeld-Quandt. The sample is divided in to three parts, with n1, n2 and n3 observa-tions, where n1 + n2 + n3 = n. The model is estimated using the �rst and third parts ofthe sample, separately, so that β̂1 and β̂3 will be independent. Then we have
ε̂1′ε̂1

σ2
=
ε1

′

M1ε1

σ2

d→ χ2(n1 −K)and
ε̂3′ε̂3

σ2
=
ε3

′

M3ε3

σ2

d→ χ2(n3 −K)so
ε̂1′ε̂1/(n1 −K)

ε̂3′ε̂3/(n3 −K)

d→ F (n1 −K,n3 −K).The distributional result is exat if the errors are normally distributed. This test is a two-tailed test. Alternatively, and probably more onventionally, if one has prior ideas about thepossible magnitudes of the varianes of the observations, one ould order the observationsaordingly, from largest to smallest. In this ase, one would use a onventional one-tailedF-test. Draw piture.
• Ordering the observations is an important step if the test is to have any power.
• The motive for dropping the middle observations is to inrease the di�erenebetween the average variane in the subsamples, supposing that there exists het-erosedastiity. This an inrease the power of the test. On the other hand,dropping too many observations will substantially inrease the variane of thestatistis ε̂1′ε̂1 and ε̂3′ε̂3. A rule of thumb, based on Monte Carlo experiments isto drop around 25% of the observations.
• If one doesn't have any ideas about the form of the het. the test will probablyhave low power sine a sensible data ordering isn't available.White's test. When one has little idea if there exists heterosedastiity, and no idea ofits potential form, the White test is a possibility. The idea is that if there is homosedas-tiity, then

E(ε2t |xt) = σ2,∀tso that xt or funtions of xt shouldn't help to explain E(ε2t ). The test works as follows:(1) Sine εt isn't available, use the onsistent estimator ε̂t instead.(2) Regress
ε̂2t = σ2 + z′tγ + vtwhere zt is a P -vetor. zt may inlude some or all of the variables in xt, as wellas other variables. White's original suggestion was to use xt, plus the set of allunique squares and ross produts of variables in xt.(3) Test the hypothesis that γ = 0. The qF statisti in this ase is

qF =
P (ESSR − ESSU ) /P

ESSU/ (n− P − 1)Note that ESSR = TSSU , so dividing both numerator and denominator by thiswe get
qF = (n− P − 1)

R2

1 −R2Note that this is the R2 or the arti�ial regression used to test for heterosedas-tiity, not the R2 of the original model.



4. HETEROSCEDASTICITY 74An asymptotially equivalent statisti, under the null of no heterosedastiity (so that R2should tend to zero), is
nR2 a∼ χ2(P ).This doesn't require normality of the errors, though it does assume that the fourth momentof εt is onstant, under the null. Question: why is this neessary?

• The White test has the disadvantage that it may not be very powerful unless the
zt vetor is hosen well, and this is hard to do without knowledge of the form ofheterosedastiity.

• It also has the problem that spei�ation errors other than heterosedastiity maylead to rejetion.
• Note: the null hypothesis of this test may be interpreted as θ = 0 for the varianemodel V (ε2t ) = h(α + z′tθ), where h(·) is an arbitrary funtion of unknown form.The test is more general than is may appear from the regression that is used.Plotting the residuals. A very simple method is to simply plot the residuals (or theirsquares). Draw pitures here. Like the Goldfeld-Quandt test, this will be more informativeif the observations are ordered aording to the suspeted form of the heterosedastiity.4.3. Corretion. Correting for heterosedastiity requires that a parametri formfor Σ(θ) be supplied, and that a means for estimating θ onsistently be determined. Theestimation method will be spei� to the for supplied for Σ(θ).We'll onsider two examples.Before this, let's onsider the general nature of GLS when there is heterosedastiity.Multipliative heterosedastiitySuppose the model is

yt = x′tβ + εt

σ2
t = E(ε2t ) =

(
z′tγ
)δbut the other lassial assumptions hold. In this ase

ε2t =
(
z′tγ
)δ

+ vtand vt has mean zero. Nonlinear least squares ould be used to estimate γ and δ onsis-tently, were εt observable. The solution is to substitute the squared OLS residuals ε̂2t inplae of ε2t , sine it is onsistent by the Slutsky theorem. One we have γ̂ and δ̂, we anestimate σ2
t onsistently using

σ̂2
t =

(
z′tγ̂
)δ̂ p

→ σ2
t .In the seond step, we transform the model by dividing by the standard deviation:

yt
σ̂t

=
x′tβ
σ̂t

+
εt
σ̂tor

y∗t = x∗′t β + ε∗t .Asymptotially, this model satis�es the lassial assumptions.
• This model is a bit omplex in that NLS is required to estimate the model of thevariane. A simpler version would be

yt = x′tβ + εt

σ2
t = E(ε2t ) = σ2zδt



4. HETEROSCEDASTICITY 75where zt is a single variable. There are still two parameters to be estimated, andthe model of the variane is still nonlinear in the parameters. However, the searhmethod an be used in this ase to redue the estimation problem to repeatedappliations of OLS.
• First, we de�ne an interval of reasonable values for δ, e.g., δ ∈ [0, 3].

• Partition this interval into M equally spaed values, e.g., {0, .1, .2, ..., 2.9, 3}.
• For eah of these values, alulate the variable zδmt .

• The regression
ε̂2t = σ2zδmt + vtis linear in the parameters, onditional on δm, so one an estimate σ2 by OLS.

• Save the pairs (σ2
m, δm), and the orresponding ESSm. Choose the pair with theminimum ESSm as the estimate.

• Next, divide the model by the estimated standard deviations.
• Can re�ne. Draw piture.
• Works well when the parameter to be searhed over is low dimensional, as in thisase.Groupwise heterosedastiityA ommon ase is where we have repeated observations on eah of a number of eonomiagents: e.g., 10 years of maroeonomi data on eah of a set of ountries or regions, ordaily observations of transations of 200 banks. This sort of data is a pooled ross-setiontime-series model. It may be reasonable to presume that the variane is onstant over timewithin the ross-setional units, but that it di�ers aross them (e.g., �rms or ountries ofdi�erent sizes...). The model is

yit = x′itβ + εit

E(ε2it) = σ2
i ,∀twhere i = 1, 2, ..., G are the agents, and t = 1, 2, ..., n are the observations on eah agent.

• The other lassial assumptions are presumed to hold.
• In this ase, the variane σ2

i is spei� to eah agent, but onstant over the nobservations for that agent.
• In this model, we assume that E(εitεis) = 0. This is a strong assumption thatwe'll relax later.To orret for heterosedastiity, just estimate eah σ2

i using the natural estimator:
σ̂2
i =

1

n

n∑

t=1

ε̂2it

• Note that we use 1/n here sine it's possible that there are more than n regressors,so n−K ould be negative. Asymptotially the di�erene is unimportant.
• With eah of these, transform the model as usual:

yit
σ̂i

=
x′itβ
σ̂i

+
εit
σ̂iDo this for eah ross-setional group. This transformed model satis�es the las-sial assumptions, asymptotially.4.4. Example: the Nerlove model (again!) Let's hek the Nerlove data for evi-dene of heterosedastiity. In what follows, we're going to use the model with the onstant



4. HETEROSCEDASTICITY 76Figure 1. Residuals, Nerlove model, sorted by �rm size
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and output oe�ient varying aross 5 groups, but with the input prie oe�ients �xed(see Equation 26 for the rationale behind this). Figure 1, whih is generated by the Otaveprogram GLS/NerloveResiduals.m plots the residuals. We an see pretty learly that theerror variane is larger for small �rms than for larger �rms.Now let's try out some tests to formally hek for heterosedastiity. The Otaveprogram GLS/HetTests.m performs the White and Goldfeld-Quandt tests, using the abovemodel. The results areValue p-valueWhite's test 61.903 0.000Value p-valueGQ test 10.886 0.000All in all, it is very lear that the data are heterosedasti. That means that OLS estimationis not e�ient, and tests of restritions that ignore heterosedastiity are not valid. Theprevious tests (CRTS, HOD1 and the Chow test) were alulated assuming homosedas-tiity. The Otave program GLS/NerloveRestritions-Het.m uses the Wald test to hekfor CRTS and HOD1, but using a heterosedasti-onsistent ovariane estimator.1 Theresults areTesting HOD1 Value p-valueWald test 6.161 0.013Testing CRTS1By the way, notie that GLS/NerloveResiduals.m and GLS/HetTests.m use the restrited LS estimatordiretly to restrit the fully general model with all oe�ients varying to the model with only the onstantand the output oe�ient varying. But GLS/NerloveRestritions-Het.m estimates the model by substitut-ing the restritions into the model. The methods are equivalent, but the seond is more onvenient andeasier to understand.

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveResiduals.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/HetTests.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveRestrictions-Het.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveResiduals.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/HetTests.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveRestrictions-Het.m


4. HETEROSCEDASTICITY 77Value p-valueWald test 20.169 0.001We see that the previous onlusions are altered - both CRTS is and HOD1 are rejeted atthe 5% level. Maybe the rejetion of HOD1 is due to to Wald test's tendeny to over-rejet?From the previous plot, it seems that the variane of ǫ is a dereasing funtion ofoutput. Suppose that the 5 size groups have di�erent error varianes (heterosedastiityby groups):
V ar(ǫi) = σ2

j ,where j = 1 if i = 1, 2, ..., 29, et., as before. The Otave program GLS/NerloveGLS.mestimates the model using GLS (through a transformation of the model so that OLS anbe applied). The estimation results are*********************************************************OLS estimation resultsObservations 145R-squared 0.958822Sigma-squared 0.090800Results (Het. onsistent var-ov estimator)estimate st.err. t-stat. p-valueonstant1 -1.046 1.276 -0.820 0.414onstant2 -1.977 1.364 -1.450 0.149onstant3 -3.616 1.656 -2.184 0.031onstant4 -4.052 1.462 -2.771 0.006onstant5 -5.308 1.586 -3.346 0.001output1 0.391 0.090 4.363 0.000output2 0.649 0.090 7.184 0.000output3 0.897 0.134 6.688 0.000output4 0.962 0.112 8.612 0.000output5 1.101 0.090 12.237 0.000labor 0.007 0.208 0.032 0.975fuel 0.498 0.081 6.149 0.000apital -0.460 0.253 -1.818 0.071******************************************************************************************************************OLS estimation resultsObservations 145R-squared 0.987429Sigma-squared 1.092393Results (Het. onsistent var-ov estimator)estimate st.err. t-stat. p-value

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveGLS.m


5. AUTOCORRELATION 78onstant1 -1.580 0.917 -1.723 0.087onstant2 -2.497 0.988 -2.528 0.013onstant3 -4.108 1.327 -3.097 0.002onstant4 -4.494 1.180 -3.808 0.000onstant5 -5.765 1.274 -4.525 0.000output1 0.392 0.090 4.346 0.000output2 0.648 0.094 6.917 0.000output3 0.892 0.138 6.474 0.000output4 0.951 0.109 8.755 0.000output5 1.093 0.086 12.684 0.000labor 0.103 0.141 0.733 0.465fuel 0.492 0.044 11.294 0.000apital -0.366 0.165 -2.217 0.028*********************************************************Testing HOD1 Value p-valueWald test 9.312 0.002The �rst panel of output are the OLS estimation results, whih are used to onsistentlyestimate the σ2
j . The seond panel of results are the GLS estimation results. Some om-ments:

• The R2 measures are not omparable - the dependent variables are not the same.The measure for the GLS results uses the transformed dependent variable. Oneould alulate a omparable R2 measure, but I have not done so.
• The di�erenes in estimated standard errors (smaller in general for GLS) an beinterpreted as evidene of improved e�ieny of GLS, sine the OLS standarderrors are alulated using the Huber-White estimator. They would not be om-parable if the ordinary (inonsistent) estimator had been used.
• Note that the previously noted pattern in the output oe�ients persists. Thenononstant CRTS result is robust.
• The oe�ient on apital is now negative and signi�ant at the 3% level. Thatseems to indiate some kind of problem with the model or the data, or eonomitheory.
• Note that HOD1 is now rejeted. Problem of Wald test over-rejeting? Spei�a-tion error in model? 5. AutoorrelationAutoorrelation, whih is the serial orrelation of the error term, is a problem thatis usually assoiated with time series data, but also an a�et ross-setional data. Forexample, a shok to oil pries will simultaneously a�et all ountries, so one ould expetontemporaneous orrelation of maroeonomi variables aross ountries.5.1. Causes. Autoorrelation is the existene of orrelation aross the error term:

E(εtεs) 6= 0, t 6= s.



5. AUTOCORRELATION 79Figure 2. Autoorrelation indued by misspei�ation

Why might this our? Plausible explanations inlude(1) Lags in adjustment to shoks. In a model suh as
yt = x′tβ + εt,one ould interpret x′tβ as the equilibrium value. Suppose xt is onstant overa number of observations. One an interpret εt as a shok that moves the sys-tem away from equilibrium. If the time needed to return to equilibrium is longwith respet to the observation frequeny, one ould expet εt+1 to be positive,onditional on εt positive, whih indues a orrelation.(2) Unobserved fators that are orrelated over time. The error term is often assumedto orrespond to unobservable fators. If these fators are orrelated, there willbe autoorrelation.(3) Misspei�ation of the model. Suppose that the DGP is

yt = β0 + β1xt + β2x
2
t + εtbut we estimate

yt = β0 + β1xt + εtThe e�ets are illustrated in Figure 2.5.2. E�ets on the OLS estimator. The variane of the OLS estimator is the sameas in the ase of heterosedastiity - the standard formula does not apply. The orretformula is given in equation 27. Next we disuss two GLS orretions for OLS. These willpotentially indue inonsisteny when the regressors are nonstohasti (see Chapter 8) and



5. AUTOCORRELATION 80should either not be used in that ase (whih is usually the relevant ase) or used withaution. The more reommended proedure is disussed in setion 5.5.5.3. AR(1). There are many types of autoorrelation. We'll onsider two examples.The �rst is the most ommonly enountered ase: autoregressive order 1 (AR(1) errors.The model is
yt = x′tβ + εt

εt = ρεt−1 + ut

ut ∼ iid(0, σ2
u)

E(εtus) = 0, t < sWe assume that the model satis�es the other lassial assumptions.
• We need a stationarity assumption: |ρ| < 1. Otherwise the variane of εt explodesas t inreases, so standard asymptotis will not apply.
• By reursive substitution we obtain

εt = ρεt−1 + ut

= ρ (ρεt−2 + ut−1) + ut

= ρ2εt−2 + ρut−1 + ut

= ρ2 (ρεt−3 + ut−2) + ρut−1 + utIn the limit the lagged ε drops out, sine ρm → 0 as m→ ∞, so we obtain
εt =

∞∑

m=0

ρmut−mWith this, the variane of εt is found as
E(ε2t ) = σ2

u

∞∑

m=0

ρ2m

=
σ2
u

1 − ρ2

• If we had diretly assumed that εt were ovariane stationary, we ould obtainthis using
V (εt) = ρ2E(ε2t−1) + 2ρE(εt−1ut) + E(u2

t )

= ρ2V (εt) + σ2
u,so

V (εt) =
σ2
u

1 − ρ2

• The variane is the 0th order autoovariane: γ0 = V (εt)

• Note that the variane does not depend on tLikewise, the �rst order autoovariane γ1 is
Cov(εt, εt−1) = γs = E((ρεt−1 + ut) εt−1)

= ρV (εt)

=
ρσ2

u

1 − ρ2
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• Using the same method, we �nd that for s < t

Cov(εt, εt−s) = γs =
ρsσ2

u

1 − ρ2

• The autoovarianes don't depend on t: the proess {εt} is ovariane stationaryThe orrelation ( in general, for r.v.'s x and y) is de�ned asorr(x, y) =
ov(x, y)se(x)se(y)but in this ase, the two standard errors are the same, so the s-order autoorrelation ρs is

ρs = ρs

• All this means that the overall matrix Σ has the form
Σ =

σ2
u

1 − ρ2
︸ ︷︷ ︸this is the variane




1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2... . . . .... . . ρ

ρn−1 · · · 1




︸ ︷︷ ︸this is the orrelation matrixSo we have homosedastiity, but elements o� the main diagonal are not zero.All of this depends only on two parameters, ρ and σ2
u. If we an estimate theseonsistently, we an apply FGLS.It turns out that it's easy to estimate these onsistently. The steps are(1) Estimate the model yt = x′tβ + εt by OLS.(2) Take the residuals, and estimate the model

ε̂t = ρε̂t−1 + u∗tSine ε̂t p→ εt, this regression is asymptotially equivalent to the regression
εt = ρεt−1 + utwhih satis�es the lassial assumptions. Therefore, ρ̂ obtained by applying OLSto ε̂t = ρε̂t−1 + u∗t is onsistent. Also, sine u∗t p→ ut, the estimator

σ̂2
u =

1

n

n∑

t=2

(û∗t )
2 p→ σ2

u(3) With the onsistent estimators σ̂2
u and ρ̂, form Σ̂ = Σ(σ̂2

u, ρ̂) using the previousstruture of Σ, and estimate by FGLS. Atually, one an omit the fator σ̂2
u/(1−

ρ2), sine it anels out in the formula
β̂FGLS =

(
X ′Σ̂−1X

)−1
(X ′Σ̂−1y).

• One an iterate the proess, by taking the �rst FGLS estimator of β, re-estimating
ρ and σ2

u, et. If one iterates to onvergenes it's equivalent to MLE (supposingnormal errors).
• An asymptotially equivalent approah is to simply estimate the transformedmodel

yt − ρ̂yt−1 = (xt − ρ̂xt−1)
′β + u∗t



5. AUTOCORRELATION 82using n− 1 observations (sine y0 and x0 aren't available). This is the method ofCohrane and Orutt. Dropping the �rst observation is asymptotially irrelevant,but it an be very important in small samples. One an reuperate the �rstobservation by putting
y∗1 = y1

√
1 − ρ̂2

x∗1 = x1

√
1 − ρ̂2This somewhat odd-looking result is related to the Cholesky fatorization of Σ−1.See Davidson and MaKinnon, pg. 348-49 for more disussion. Note that thevariane of y∗1 is σ2

u, asymptotially, so we see that the transformed model willbe homosedasti (and nonautoorrelated, sine the u′s are unorrelated with the
y′s, in di�erent time periods.

5.4. MA(1). The linear regression model with moving average order 1 errors is
yt = x′tβ + εt

εt = ut + φut−1

ut ∼ iid(0, σ2
u)

E(εtus) = 0, t < sIn this ase,
V (εt) = γ0 = E

[
(ut + φut−1)

2
]

= σ2
u + φ2σ2

u

= σ2
u(1 + φ2)Similarly

γ1 = E [(ut + φut−1) (ut−1 + φut−2)]

= φσ2
uand

γ2 = [(ut + φut−1) (ut−2 + φut−3)]

= 0so in this ase
Σ = σ2

u




1 + φ2 φ 0 · · · 0

φ 1 + φ2 φ

0 φ
. . . ...... . . . φ

0 · · · φ 1 + φ2


Note that the �rst order autoorrelation is

ρ1 = φσ2
u

σ2
u(1+φ2) =

γ1

γ0

=
φ

(1 + φ2)
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• This ahieves a maximum at φ = 1 and a minimum at φ = −1, and the maximaland minimal autoorrelations are 1/2 and -1/2. Therefore, series that are morestrongly autoorrelated an't be MA(1) proesses.Again the ovariane matrix has a simple struture that depends on only two parameters.The problem in this ase is that one an't estimate φ using OLS on

ε̂t = ut + φut−1beause the ut are unobservable and they an't be estimated onsistently. However, thereis a simple way to estimate the parameters.
• Sine the model is homosedasti, we an estimate

V (εt) = σ2
ε = σ2

u(1 + φ2)using the typial estimator:
σ̂2
ε = ̂σ2

u(1 + φ2) =
1

n

n∑

t=1

ε̂2t

• By the Slutsky theorem, we an interpret this as de�ning an (unidenti�ed) esti-mator of both σ2
u and φ, e.g., use this as

σ̂2
u(1 + φ̂2) =

1

n

n∑

t=1

ε̂2tHowever, this isn't su�ient to de�ne onsistent estimators of the parameters,sine it's unidenti�ed.
• To solve this problem, estimate the ovariane of εt and εt−1 using

Ĉov(εt, εt−1) = φ̂σ2
u =

1

n

n∑

t=2

ε̂tε̂t−1This is a onsistent estimator, following a LLN (and given that the epsilon hatsare onsistent for the epsilons). As above, this an be interpreted as de�ning anunidenti�ed estimator:
φ̂σ̂2

u =
1

n

n∑

t=2

ε̂tε̂t−1

• Now solve these two equations to obtain identi�ed (and therefore onsistent) es-timators of both φ and σ2
u. De�ne the onsistent estimator

Σ̂ = Σ(φ̂, σ̂2
u)following the form we've seen above, and transform the model using the Choleskydeomposition. The transformed model satis�es the lassial assumptions asymp-totially.5.5. Asymptotially valid inferenes with autoorrelation of unknown form.See Hamilton Ch. 10, pp. 261-2 and 280-84.When the form of autoorrelation is unknown, one may deide to use the OLS estima-tor, without orretion. We've seen that this estimator has the limiting distribution

√
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)



5. AUTOCORRELATION 84where, as before, Ω is
Ω = lim

n→∞
E
(
X ′εε′X

n

)We need a onsistent estimate of Ω. De�ne mt = xtεt (reall that xt is de�ned as a K × 1vetor). Note that
X ′ε =

[
x1 x2 · · · xn

]




ε1

ε2...
εn




=

n∑

t=1

xtεt

=

n∑

t=1

mtso that
Ω = lim

n→∞
1

n
E
[(

n∑

t=1

mt

)(
n∑

t=1

m′
t

)]We assume that mt is ovariane stationary (so that the ovariane between mt and mt−sdoes not depend on t).De�ne the v − th autoovariane of mt as
Γv = E(mtm

′
t−v).Note that E(mtm

′
t+v) = Γ′

v. (show this with an example). In general, we expet that:
• mt will be autoorrelated, sine εt is potentially autoorrelated:

Γv = E(mtm
′
t−v) 6= 0Note that this autoovariane does not depend on t, due to ovariane stationarity.

• ontemporaneously orrelated ( E(mitmjt) 6= 0 ), sine the regressors in xt will ingeneral be orrelated (more on this later).
• and heterosedasti (E(m2

it) = σ2
i , whih depends upon i ), again sine theregressors will have di�erent varianes.While one ould estimate Ω parametrially, we in general have little information upon whihto base a parametri spei�ation. Reent researh has foused on onsistent nonparametriestimators of Ω.Now de�ne

Ωn = E 1

n

[(
n∑

t=1

mt

)(
n∑

t=1

m′
t

)]We have (show that the following is true, by expanding sum and shifting rows to left)
Ωn = Γ0 +

n− 1

n

(
Γ1 + Γ′

1

)
+
n− 2

n

(
Γ2 + Γ′

2

)
· · · + 1

n

(
Γn−1 + Γ′

n−1

)The natural, onsistent estimator of Γv is
Γ̂v =

1

n

n∑

t=v+1

m̂tm̂
′
t−v.where

m̂t = xtε̂t



5. AUTOCORRELATION 85(note: one ould put 1/(n − v) instead of 1/n here). So, a natural, but inonsistent,estimator of Ωn would be
Ω̂n = Γ̂0 +

n− 1

n

(
Γ̂1 + Γ̂′

1

)
+
n− 2

n

(
Γ̂2 + Γ̂′

2

)
+ · · · + 1

n

(
Γ̂n−1 + Γ̂′

n−1

)

= Γ̂0 +

n−1∑

v=1

n− v

n

(
Γ̂v + Γ̂′

v

)
.This estimator is inonsistent in general, sine the number of parameters to estimate ismore than the number of observations, and inreases more rapidly than n, so informationdoes not build up as n→ ∞.On the other hand, supposing that Γv tends to zero su�iently rapidly as v tends to

∞, a modi�ed estimator
Ω̂n = Γ̂0 +

q(n)∑

v=1

(
Γ̂v + Γ̂′

v

)
,where q(n)

p→ ∞ as n→ ∞ will be onsistent, provided q(n) grows su�iently slowly.
• The assumption that autoorrelations die o� is reasonable in many ases. Forexample, the AR(1) model with |ρ| < 1 has autoorrelations that die o�.
• The term n−v

n an be dropped beause it tends to one for v < q(n), given that
q(n) inreases slowly relative to n.

• A disadvantage of this estimator is that is may not be positive de�nite. Thisould ause one to alulate a negative χ2 statisti, for example!
• Newey and West proposed and estimator (Eonometria, 1987) that solves theproblem of possible nonpositive de�niteness of the above estimator. Their esti-mator is

Ω̂n = Γ̂0 +

q(n)∑

v=1

[
1 − v

q + 1

] (
Γ̂v + Γ̂′

v

)
.This estimator is p.d. by onstrution. The ondition for onsisteny is that

n−1/4q(n) → 0. Note that this is a very slow rate of growth for q. This estimatoris nonparametri - we've plaed no parametri restritions on the form of Ω. It isan example of a kernel estimator.Finally, sine Ωn has Ω as its limit, Ω̂n
p→ Ω.We an now use Ω̂n and Q̂X = 1

nX
′X to on-sistently estimate the limiting distribution of the OLS estimator under heterosedastiityand autoorrelation of unknown form. With this, asymptotially valid tests are onstrutedin the usual way.5.6. Testing for autoorrelation. Durbin-Watson testThe Durbin-Watson test statisti is

DW =

∑n
t=2 (ε̂t − ε̂t−1)

2

∑n
t=1 ε̂

2
t

=

∑n
t=2

(
ε̂2t − 2ε̂tε̂t−1 + ε̂2t−1

)
∑n

t=1 ε̂
2
t

• The null hypothesis is that the �rst order autoorrelation of the errors is zero:
H0 : ρ1 = 0. The alternative is of ourse HA : ρ1 6= 0. Note that the alternative isnot that the errors are AR(1), sine many general patterns of autoorrelation willhave the �rst order autoorrelation di�erent than zero. For this reason the test isuseful for deteting autoorrelation in general. For the same reason, one shouldn't



5. AUTOCORRELATION 86Figure 3. Durbin-Watson ritial values

just assume that an AR(1) model is appropriate when the DW test rejets thenull.
• Under the null, the middle term tends to zero, and the other two tend to one, so
DW

p→ 2.

• Supposing that we had an AR(1) error proess with ρ = 1. In this ase the middleterm tends to −2, so DW p→ 0

• Supposing that we had an AR(1) error proess with ρ = −1. In this ase themiddle term tends to 2, so DW p→ 4

• These are the extremes: DW always lies between 0 and 4.
• The distribution of the test statisti depends on the matrix of regressors, X, sotables an't give exat ritial values. The give upper and lower bounds, whihorrespond to the extremes that are possible. See Figure 3. There are means ofdetermining exat ritial values onditional on X.
• Note that DW an be used to test for nonlinearity (add disussion).
• The DW test is based upon the assumption that the matrix X is �xed in repeatedsamples. This is often unreasonable in the ontext of eonomi time series, whihis preisely the ontext where the test would have appliation. It is possible torelate the DW test to other test statistis whih are valid without strit exogeneity.Breush-Godfrey testThis test uses an auxiliary regression, as does the White test for heterosedastiity.The regression is

ε̂t = x′tδ + γ1ε̂t−1 + γ2ε̂t−2 + · · · + γP ε̂t−P + vtand the test statisti is the nR2 statisti, just as in the White test. There are P restritions,so the test statisti is asymptotially distributed as a χ2(P ).
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• The intuition is that the lagged errors shouldn't ontribute to explaining theurrent error if there is no autoorrelation.
• xt is inluded as a regressor to aount for the fat that the ε̂t are not independenteven if the εt are. This is a tehniality that we won't go into here.
• This test is valid even if the regressors are stohasti and ontain lagged dependentvariables, so it is onsiderably more useful than the DW test for typial time seriesdata.
• The alternative is not that the model is an AR(P), following the argument above.The alternative is simply that some or all of the �rst P autoorrelations are dif-ferent from zero. This is ompatible with many spei� forms of autoorrelation.5.7. Lagged dependent variables and autoorrelation. We've seen that the OLSestimator is onsistent under autoorrelation, as long as plimX′ε

n = 0. This will be the asewhen E(X ′ε) = 0, following a LLN. An important exeption is the ase where X ontainslagged y′s and the errors are autoorrelated. A simple example is the ase of a single lagof the dependent variable with AR(1) errors. The model is
yt = x′tβ + yt−1γ + εt

εt = ρεt−1 + utNow we an write
E(yt−1εt) = E

{
(x′t−1β + yt−2γ + εt−1)(ρεt−1 + ut)

}

6= 0sine one of the terms is E(ρε2t−1) whih is learly nonzero. In this ase E(X ′ε) 6= 0, andtherefore plimX′ε
n 6= 0. Sine

plimβ̂ = β + plim
X ′ε
nthe OLS estimator is inonsistent in this ase. One needs to estimate by instrumentalvariables (IV), whih we'll get to later.5.8. Examples.Nerlove model, yet again. The Nerlove model uses ross-setional data, so one maynot think of performing tests for autoorrelation. However, spei�ation error an indueautoorrelated errors. Consider the simple Nerlove model

lnC = β1 + β2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ǫand the extended Nerlove model
lnC = βj1 + βj2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ǫ.We have seen evidene that the extended model is preferred. So if it is in fat the propermodel, the simple model is misspei�ed. Let's hek if this misspei�ation might indueautoorrelated errors.The Otave program GLS/NerloveAR.m estimates the simple Nerlove model, and plotsthe residuals as a funtion of lnQ, and it alulates a Breush-Godfrey test statisti. Theresidual plot is in Figure 4 , and the test results are:Value p-valueBreush-Godfrey test 34.930 0.000

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveAR.m
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Clearly, there is a problem of autoorrelated residuals.Exerise 6. Repeat the autoorrelation tests using the extended Nerlove model (Equa-tion ??) to see the problem is solved.Klein model. Klein's Model I is a simple maroeonometri model. One of the equationsin the model explains onsumption (C) as a funtion of pro�ts (P ), both urrent and lagged,as well as the sum of wages in the private setor (W p) and wages in the government setor(W g). Have a look at the README �le for this data set. This gives the variable namesand other information.Consider the model
Ct = α0 + α1Pt + α2Pt−1 + α3(W

p
t +W g

t ) + ǫ1tThe Otave program GLS/Klein.m estimates this model by OLS, plots the residuals, andperforms the Breush-Godfrey test, using 1 lag of the residuals. The estimation and testresults are:*********************************************************OLS estimation resultsObservations 21R-squared 0.981008Sigma-squared 1.051732Results (Ordinary var-ov estimator)estimate st.err. t-stat. p-valueConstant 16.237 1.303 12.464 0.000Profits 0.193 0.091 2.115 0.049

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/klein_readme.txt
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/Klein.m
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Lagged Profits 0.090 0.091 0.992 0.335Wages 0.796 0.040 19.933 0.000*********************************************************Value p-valueBreush-Godfrey test 1.539 0.215and the residual plot is in Figure 5. The test does not rejet the null of nonautoorrelatetderrors, but we should remember that we have only 21 observations, so power is likely to befairly low. The residual plot leads me to suspet that there may be autoorrelation - thereare some signi�ant runs below and above the x-axis. Your opinion may di�er.Sine it seems that there may be autoorrelation, lets's try an AR(1) orretion. TheOtave program GLS/KleinAR1.m estimates the Klein onsumption equation assumingthat the errors follow the AR(1) pattern. The results, with the Breush-Godfrey test forremaining autoorrelation are:*********************************************************OLS estimation resultsObservations 21R-squared 0.967090Sigma-squared 0.983171Results (Ordinary var-ov estimator)estimate st.err. t-stat. p-valueConstant 16.992 1.492 11.388 0.000Profits 0.215 0.096 2.232 0.039Lagged Profits 0.076 0.094 0.806 0.431

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/KleinAR1.m


EXERCISES 90Wages 0.774 0.048 16.234 0.000*********************************************************Value p-valueBreush-Godfrey test 2.129 0.345
• The test is farther away from the rejetion region than before, and the residualplot is a bit more favorable for the hypothesis of nonautoorrelated residuals,IMHO. For this reason, it seems that the AR(1) orretion might have improvedthe estimation.
• Nevertheless, there has not been muh of an e�et on the estimated oe�ientsnor on their estimated standard errors. This is probably beause the estimatedAR(1) oe�ient is not very large (around 0.2)
• The existene or not of autoorrelation in this model will be important later, inthe setion on simultaneous equations.7. ExerisesExerises(1) Comparing the varianes of the OLS and GLS estimators, I laimed that the followingholds:

V ar(β̂) − V ar(β̂GLS) = AΣA
′Verify that this is true.(2) Show that the GLS estimator an be de�ned as

β̂GLS = arg min(y −Xβ)′Σ−1(y −Xβ)(3) The limiting distribution of the OLS estimator with heterosedastiity of unknownform is √
n
(
β̂ − β

)
d→ N

(
0, Q−1

X ΩQ−1
X

)
,where

lim
n→∞

E
(
X ′εε′X

n

)
= ΩExplain why

Ω̂ =
1

n

n∑

t=1

xtx
′
tε̂

2
tis a onsistent estimator of this matrix.(4) De�ne the v−th autoovariane of a ovariane stationary proessmt, where E(mt = 0)as

Γv = E(mtm
′
t−v).Show that E(mtm

′
t+v) = Γ′

v.(5) For the Nerlove model
lnC = βj1 + βj2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ǫassume that V (ǫt|xt) = σ2

j , j = 1, 2, ..., 5. That is, the variane depends upon whih ofthe 5 �rm size groups the observation belongs to.a) Apply White's test using the OLS residuals, to test for homosedastiity



EXERCISES 91b) Calulate the FGLS estimator and interpret the estimation results.) Test the transformed model to hek whether it appears to satisfy homosedastiity.



CHAPTER 8Stohasti regressorsUp to now we have treated the regressors as �xed, whih is learly unrealisti. Now wewill assume they are random. There are several ways to think of the problem. First, if weare interested in an analysis onditional on the explanatory variables, then it is irrelevantif they are stohasti or not, sine onditional on the values of they regressors take on,they are nonstohasti, whih is the ase already onsidered.
• In ross-setional analysis it is usually reasonable to make the analysis onditionalon the regressors.
• In dynami models, where yt may depend on yt−1, a onditional analysis is notsu�iently general, sine we may want to predit into the future many periodsout, so we need to onsider the behavior of β̂ and the relevant test statistisunonditional on X.The model we'll deal will involve a ombination of the following assumptionsLinearity: the model is a linear funtion of the parameter vetor β0 :

yt = x′tβ0 + εt,or in matrix form,
y = Xβ0 + ε,where y is n × 1, X =

(
x1 x2 · · · xn

)′
, where xt is K × 1, and β0 and ε are on-formable.Stohasti, linearly independent regressors

X has rank K with probability 1
X is stohasti
limn→∞ Pr

(
1
nX

′X = QX
)

= 1, where QX is a �nite positive de�nite matrix.Central limit theorem
n−1/2X ′ε

d→ N(0, QXσ
2
0)Normality (Optional): ε|X ∼ N(0, σ2In): ǫ is normally distributedStrongly exogenous regressors:

E(εt|X) = 0,∀t(28)Weakly exogenous regressors:
E(εt|xt) = 0,∀t(29)In both ases, x′

tβ is the onditional mean of yt given xt: E(yt|xt) = x′
tβ1. Case 1Normality of ε, strongly exogenous regressorsIn this ase,

β̂ = β0 + (X ′X)−1X ′ε92
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E(β̂|X) = β0 + (X ′X)−1X ′E(ε|X)

= β0and sine this holds for all X, E(β̂) = β, unonditional on X. Likewise,
β̂|X ∼ N

(
β, (X ′X)−1σ2

0

)

• If the density of X is dµ(X), the marginal density of β̂ is obtained by multiplyingthe onditional density by dµ(X) and integrating over X. Doing this leads to anonnormal density for β̂, in small samples.
• However, onditional on X, the usual test statistis have the t, F and χ2 distribu-tions. Importantly, these distributions don't depend on X, so when marginalizingto obtain the unonditional distribution, nothing hanges. The tests are valid insmall samples.
• Summary: When X is stohasti but strongly exogenous and ε is normally dis-tributed:(1) β̂ is unbiased(2) β̂ is nonnormally distributed(3) The usual test statistis have the same distribution as with nonstohasti X.(4) The Gauss-Markov theorem still holds, sine it holds onditionally on X, andthis is true for all X.(5) Asymptoti properties are treated in the next setion.2. Case 2

ε nonnormally distributed, strongly exogenous regressorsThe unbiasedness of β̂ arries through as before. However, the argument regarding teststatistis doesn't hold, due to nonnormality of ε. Still, we have
β̂ = β0 + (X ′X)−1X ′ε

= β0 +

(
X ′X
n

)−1 X ′ε
nNow (

X ′X
n

)−1
p→ Q−1

Xby assumption, and
X ′ε
n

=
n−1/2X ′ε√

n

p→ 0sine the numerator onverges to a N(0, QXσ
2) r.v. and the denominator still goes to in-�nity. We have unbiasedness and the variane disappearing, so, the estimator is onsistent :

β̂
p→ β0.Considering the asymptoti distribution

√
n
(
β̂ − β0

)
=

√
n

(
X ′X
n

)−1 X ′ε
n

=

(
X ′X
n

)−1

n−1/2X ′εso √
n
(
β̂ − β0

)
d→ N(0, Q−1

X σ2
0)



4. WHEN ARE THE ASSUMPTIONS REASONABLE? 94diretly following the assumptions. Asymptoti normality of the estimator still holds. Sinethe asymptoti results on all test statistis only require this, all the previous asymptotiresults on test statistis are also valid in this ase.
• Summary: Under strongly exogenous regressors, with ε normal or nonnormal, β̂has the properties:(1) Unbiasedness(2) Consisteny(3) Gauss-Markov theorem holds, sine it holds in the previous ase and doesn'tdepend on normality.(4) Asymptoti normality(5) Tests are asymptotially valid(6) Tests are not valid in small samples if the error is normally distributed3. Case 3Weakly exogenous regressorsAn important lass of models are dynami models, where lagged dependent variableshave an impat on the urrent value. A simple version of these models that aptures theimportant points is

yt = z′tα+

p∑

s=1

γsyt−s + εt

= x′tβ + εtwhere now xt ontains lagged dependent variables. Clearly, even with E(ǫt|xt) = 0, X and
ε are not unorrelated, so one an't show unbiasedness. For example,

E(εt−1xt) 6= 0sine xt ontains yt−1 (whih is a funtion of εt−1) as an element.
• This fat implies that all of the small sample properties suh as unbiasedness,Gauss-Markov theorem, and small sample validity of test statistis do not hold inthis ase. Reall Figure 7. This is a ase of weakly exogenous regressors, and wesee that the OLS estimator is biased in this ase.
• Nevertheless, under the above assumptions, all asymptoti properties ontinue tohold, using the same arguments as before.4. When are the assumptions reasonable?The two assumptions we've added are(1) limn→∞ Pr

(
1
nX

′X = QX
)

= 1, a QX �nite positive de�nite matrix.(2) n−1/2X ′ε
d→ N(0, QXσ

2
0)The most ompliated ase is that of dynami models, sine the other ases an be treatedas nested in this ase. There exist a number of entral limit theorems for dependentproesses, many of whih are fairly tehnial. We won't enter into details (see Hamilton,Chapter 7 if you're interested). A main requirement for use of standard asymptotis for adependent sequene

{st} = { 1

n

n∑

t=1

zt}to onverge in probability to a �nite limit is that zt be stationary, in some sense.
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• Strong stationarity requires that the joint distribution of the set

{zt, zt+s, zt−q, ...}not depend on t.
• Covariane (weak) stationarity requires that the �rst and seond moments of thisset not depend on t.
• An example of a sequene that doesn't satisfy this is an AR(1) proess with aunit root (a random walk):

xt = xt−1 + εt

εt ∼ IIN(0, σ2)One an show that the variane of xt depends upon t in this ase, so it's notweakly stationary.
• The series sin t + ǫt has a �rst moment that depends upon t, so it's not weaklystationary either.Stationarity prevents the proess from trending o� to plus or minus in�nity, and preventsylial behavior whih would allow orrelations between far removed zt znd zs to be high.Draw a piture here.
• In summary, the assumptions are reasonable when the stohasti onditioningvariables have varianes that are �nite, and are not too strongly dependent. TheAR(1) model with unit root is an example of a ase where the dependene is toostrong for standard asymptotis to apply.
• The eonometris of nonstationary proesses has been an ative area of researhin the last two deades. The standard asymptotis don't apply in this ase. Thisisn't in the sope of this ourse.5. ExerisesExerises(1) Show that for two random variables A and B, if E(A|B) = 0, then E (Af(B)) = 0.How is this used in the proof of the Gauss-Markov theorem?(2) Is it possible for an AR(1) model for time series data, e.g., yt = 0+0.9yt−1 + εt satisfyweak exogeneity? Strong exogeneity? Disuss.



CHAPTER 9Data problemsIn this setion well onsider problems assoiated with the regressor matrix: ollinearity,missing observation and measurement error.1. CollinearityCollinearity is the existene of linear relationships amongst the regressors. We analways write
λ1x1 + λ2x2 + · · · + λKxK + v = 0where xi is the ith olumn of the regressor matrix X, and v is an n × 1 vetor. In thease that there exists ollinearity, the variation in v is relatively small, so that there is anapproximately exat linear relation between the regressors.

• �relative� and �approximate� are impreise, so it's di�ult to de�ne when ollineariltyexists.In the extreme, if there are exat linear relationships (every element of v equal) then
ρ(X) < K, so ρ(X ′X) < K, so X ′X is not invertible and the OLS estimator is notuniquely de�ned. For example, if the model is

yt = β1 + β2x2t + β3x3t + εt

x2t = α1 + α2x3tthen we an write
yt = β1 + β2 (α1 + α2x3t) + β3x3t + εt

= β1 + β2α1 + β2α2x3t + β3x3t + εt

= (β1 + β2α1) + (β2α2 + β3) x3t

= γ1 + γ2x3t + εt

• The γ′s an be onsistently estimated, but sine the γ′s de�ne two equations inthree β′s, the β′s an't be onsistently estimated (there are multiple values of βthat solve the fon). The β′s are unidenti�ed in the ase of perfet ollinearity.
• Perfet ollinearity is unusual, exept in the ase of an error in onstrution ofthe regressor matrix, suh as inluding the same regressor twie.Another ase where perfet ollinearity may be enountered is with models with dummyvariables, if one is not areful. Consider a model of rental prie (yi) of an apartment. Thisould depend fators suh as size, quality et., olleted in xi, as well as on the loationof the apartment. Let Bi = 1 if the ith apartment is in Barelona, Bi = 0 otherwise.Similarly, de�ne Gi, Ti and Li for Girona, Tarragona and Lleida. One ould use a modelsuh as

yi = β1 + β2Bi + β3Gi + β4Ti + β5Li + x′iγ + εi96



1. COLLINEARITY 97Figure 1. s(β) when there is no ollinearity
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In this model, Bi + Gi + Ti + Li = 1, ∀i, so there is an exat relationship between thesevariables and the olumn of ones orresponding to the onstant. One must either drop theonstant, or one of the qualitative variables.1.1. A brief aside on dummy variables. Introdue a brief disussion of dummyvariables here.1.2. Bak to ollinearity. The more ommon ase, if one doesn't make mistakessuh as these, is the existene of inexat linear relationships, i.e., orrelations between theregressors that are less than one in absolute value, but not zero. The basi problem isthat when two (or more) variables move together, it is di�ult to determine their separatein�uenes. This is re�eted in impreise estimates, i.e., estimates with high varianes.With eonomi data, ollinearity is ommonly enountered, and is often a severe problem.When there is ollinearity, the minimizing point of the objetive funtion that de�nesthe OLS estimator (s(β), the sum of squared errors) is relatively poorly de�ned. This isseen in Figures 1 and 2.To see the e�et of ollinearity on varianes, partition the regressor matrix as
X =

[
x W

]where x is the �rst olumn of X (note: we an interhange the olumns of X isf we like,so there's no loss of generality in onsidering the �rst olumn). Now, the variane of β̂,under the lassial assumptions, is
V (β̂) =

(
X ′X

)−1
σ2Using the partition,

X ′X =

[
x′x x′W

W ′x W ′W

]



1. COLLINEARITY 98Figure 2. s(β) when there is ollinearity
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and following a rule for partitioned inversion,
(
X ′X

)−1

1,1
=

(
x′x− x′W (W ′W )−1W ′x

)−1

=
(
x′
(
In −W (W ′W )

′1W ′
)

x
)−1

=
(
ESSx|W

)−1where by ESSx|W we mean the error sum of squares obtained from the regression
x = Wλ+ v.Sine

R2 = 1 −ESS/TSS,we have
ESS = TSS(1 −R2)so the variane of the oe�ient orresponding to x is

V (β̂x) =
σ2

TSSx(1 −R2
x|W )We see three fators in�uene the variane of this oe�ient. It will be high if(1) σ2 is large(2) There is little variation in x. Draw a piture here.(3) There is a strong linear relationship between x and the other regressors, so that

W an explain the movement in x well. In this ase, R2
x|W will be lose to 1. As

R2
x|W → 1, V (β̂x) → ∞.The last of these ases is ollinearity.Intuitively, when there are strong linear relations between the regressors, it is di�ultto determine the separate in�uene of the regressors on the dependent variable. This anbe seen by omparing the OLS objetive funtion in the ase of no orrelation between



1. COLLINEARITY 99regressors with the objetive funtion with orrelation between the regressors. See the�gures noollin.ps (no orrelation) and ollin.ps (orrelation), available on the web site.1.3. Detetion of ollinearity. The best way is simply to regress eah explanatoryvariable in turn on the remaining regressors. If any of these auxiliary regressions has ahigh R2, there is a problem of ollinearity. Furthermore, this proedure identi�es whihparameters are a�eted.
• Sometimes, we're only interested in ertain parameters. Collinearity isn't a prob-lem if it doesn't a�et what we're interested in estimating.An alternative is to examine the matrix of orrelations between the regressors. Highorrelations are su�ient but not neessary for severe ollinearity.Also indiative of ollinearity is that the model �ts well (high R2), but none of thevariables is signi�antly di�erent from zero (e.g., their separate in�uenes aren't well de-termined).In summary, the arti�ial regressions are the best approah if one wants to be areful.1.4. Dealing with ollinearity. More informationCollinearity is a problem of an uninformative sample. The �rst question is: is all theavailable information being used? Is more data available? Are there oe�ient restritionsthat have been negleted? Piture illustrating how a restrition an solve problem of perfetollinearity.Stohasti restritions and ridge regressionSupposing that there is no more data or negleted restritions, one possibility is tohange perspetives, to Bayesian eonometris. One an express prior beliefs regarding theoe�ients using stohasti restritions. A stohasti linear restrition would be somethingof the form

Rβ = r + vwhere R and r are as in the ase of exat linear restritions, but v is a random vetor. Forexample, the model ould be
y = Xβ + ε

Rβ = r + v(
ε

v

)
∼ N

(
0

0

)
,

(
σ2
εIn 0n×q

0q×n σ2
vIq

)This sort of model isn't in line with the lassial interpretation of parameters as onstants:aording to this interpretation the left hand side of Rβ = r + v is onstant but the rightis random. This model does �t the Bayesian perspetive: we ombine information omingfrom the model and the data, summarized in
y = Xβ + ε

ε ∼ N(0, σ2
εIn)with prior beliefs regarding the distribution of the parameter, summarized in

Rβ ∼ N(r, σ2
vIq)Sine the sample is random it is reasonable to suppose that E(εv′) = 0, whih is the lastpiee of information in the spei�ation. How an you estimate using this model? The



1. COLLINEARITY 100solution is to treat the restritions as arti�ial data. Write[
y

r

]
=

[
X

R

]
β +

[
ε

v

]This model is heterosedasti, sine σ2
ε 6= σ2

v . De�ne the prior preision k = σε/σv . Thisexpresses the degree of belief in the restrition relative to the variability of the data.Supposing that we speify k, then the model
[
y

kr

]
=

[
X

kR

]
β +

[
ε

kv

]is homosedasti and an be estimated by OLS. Note that this estimator is biased. It isonsistent, however, given that k is a �xed onstant, even if the restrition is false (thisis in ontrast to the ase of false exat restritions). To see this, note that there are Qrestritions, where Q is the number of rows of R. As n→ ∞, these Q arti�ial observationshave no weight in the objetive funtion, so the estimator has the same limiting objetivefuntion as the OLS estimator, and is therefore onsistent.To motivate the use of stohasti restritions, onsider the expetation of the squaredlength of β̂:
E(β̂′β̂) = E

{(
β +

(
X ′X

)−1
X ′ε

)′ (
β +

(
X ′X

)−1
X ′ε

)}

= β′β + E
(
ε′X(X ′X)−1(X ′X)−1X ′ε

)

= β′β + Tr
(
X ′X

)−1
σ2

= β′β + σ2
K∑

i=1

λi(the trae is the sum of eigenvalues)
> β′β + λmax(X′X−1)σ

2(the eigenvalues are all positive, sineX ′X is p.d.so
E(β̂′β̂) > β′β +

σ2

λmin(X′X)where λmin(X′X) is the minimum eigenvalue of X ′X (whih is the inverse of the maximumeigenvalue of (X ′X)−1). As ollinearity beomes worse and worse, X ′X beomes morenearly singular, so λmin(X′X) tends to zero (reall that the determinant is the produt ofthe eigenvalues) and E(β̂′β̂) tends to in�nite. On the other hand, β′β is �nite.Now onsidering the restrition IKβ = 0 + v. With this restrition the model beomes
[
y

0

]
=

[
X

kIK

]
β +

[
ε

kv

]and the estimator is
β̂ridge =

([
X ′ kIK

] [ X

kIK

])−1 [
X ′ IK

] [ y

0

]

=
(
X ′X + k2IK

)−1
X ′yThis is the ordinary ridge regression estimator. The ridge regression estimator an be seento add k2IK , whih is nonsingular, to X ′X, whih is more and more nearly singular asollinearity beomes worse and worse. As k → ∞, the restritions tend to β = 0, that is,



2. MEASUREMENT ERROR 101the oe�ients are shrunken toward zero. Also, the estimator tends to
β̂ridge =

(
X ′X + k2IK

)−1
X ′y →

(
k2IK

)−1
X ′y =

X ′y
k2

→ 0so β̂′ridgeβ̂ridge → 0. This is learly a false restrition in the limit, if our original model isat al sensible.There should be some amount of shrinkage that is in fat a true restrition. The prob-lem is to determine the k suh that the restrition is orret. The interest in ridge regressionenters on the fat that it an be shown that there exists a k suh that MSE(β̂ridge) <

β̂OLS. The problem is that this k depends on β and σ2, whih are unknown.The ridge trae method plots β̂′ridgeβ̂ridge as a funtion of k, and hooses the value of kthat �artistially� seems appropriate (e.g., where the e�et of inreasing k dies o�). Drawpiture here. This means of hoosing k is obviously subjetive. This is not a problem fromthe Bayesian perspetive: the hoie of k re�ets prior beliefs about the length of β.In summary, the ridge estimator o�ers some hope, but it is impossible to guaranteethat it will outperform the OLS estimator. Collinearity is a fat of life in eonometris,and there is no lear solution to the problem.2. Measurement errorMeasurement error is exatly what it says, either the dependent variable or the re-gressors are measured with error. Thinking about the way eonomi data are reported,measurement error is probably quite prevalent. For example, estimates of growth of GDP,in�ation, et. are ommonly revised several times. Why should the last revision neessarilybe orret?2.1. Error of measurement of the dependent variable. Measurement errors inthe dependent variable and the regressors have important di�erenes. First onsider errorin measurement of the dependent variable. The data generating proess is presumed to be
y∗ = Xβ + ε

y = y∗ + v

vt ∼ iid(0, σ2
v )where y∗ is the unobservable true dependent variable, and y is what is observed. We assumethat ε and v are independent and that y∗ = Xβ + ε satis�es the lassial assumptions.Given this, we have

y + v = Xβ + εso
y = Xβ + ε− v

= Xβ + ω

ωt ∼ iid(0, σ2
ε + σ2

v)

• As long as v is unorrelated with X, this model satis�es the lassial assumptionsand an be estimated by OLS. This type of measurement error isn't a problem,then.



2. MEASUREMENT ERROR 1022.2. Error of measurement of the regressors. The situation isn't so good in thisase. The DGP is
yt = x∗′t β + εt

xt = x∗t + vt

vt ∼ iid(0,Σv)where Σv is a K ×K matrix. Now X∗ ontains the true, unobserved regressors, and X iswhat is observed. Again assume that v is independent of ε, and that the model y = X∗β+εsatis�es the lassial assumptions. Now we have
yt = (xt − vt)

′ β + εt

= x′tβ − v′tβ + εt

= x′tβ + ωtThe problem is that now there is a orrelation between xt and ωt, sine
E(xtωt) = E

(
(x∗t + vt)

(
−v′tβ + εt

))

= −Σvβwhere
Σv = E

(
vtv

′
t

)
.Beause of this orrelation, the OLS estimator is biased and inonsistent, just as in thease of autoorrelated errors with lagged dependent variables. In matrix notation, writethe estimated model as

y = Xβ + ωWe have that
β̂ =

(
X ′X
n

)−1(X ′y
n

)and
plim

(
X ′X
n

)−1

= plim
(X∗′ + V ′) (X∗ + V )

n

= (QX∗ + Σv)
−1sine X∗ and V are independent, and

plim
V ′V
n

= lim E 1

n

n∑

t=1

vtv
′
t

= ΣvLikewise,
plim

(
X ′y
n

)
= plim

(X∗′ + V ′) (X∗β + ε)

n

= QX∗βso
plimβ̂ = (QX∗ + Σv)

−1QX∗βSo we see that the least squares estimator is inonsistent when the regressors are measuredwith error.



3. MISSING OBSERVATIONS 103
• A potential solution to this problem is the instrumental variables (IV) estimator,whih we'll disuss shortly.3. Missing observationsMissing observations our quite frequently: time series data may not be gathered ina ertain year, or respondents to a survey may not answer all questions. We'll onsidertwo ases: missing observations on the dependent variable and missing observations on theregressors.3.1. Missing observations on the dependent variable. In this ase, we have

y = Xβ + εor [
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]where y2 is not observed. Otherwise, we assume the lassial assumptions hold.
• A lear alternative is to simply estimate using the ompete observations

y1 = X1β + ε1Sine these observations satisfy the lassial assumptions, one ould estimate byOLS.
• The question remains whether or not one ould somehow replae the unobserved
y2 by a preditor, and improve over OLS in some sense. Let ŷ2 be the preditorof y2. Now

β̂ =

{[
X1

X2

]′ [
X1

X2

]}−1 [
X1

X2

]′ [
y1

ŷ2

]

=
[
X ′

1X1 +X ′
2X2

]−1 [
X ′

1y1 +X ′
2ŷ2

]Reall that the OLS fon are
X ′Xβ̂ = X ′yso if we regressed using only the �rst (omplete) observations, we would have

X ′
1X1β̂1 = X ′

1y1.Likewise, an OLS regression using only the seond (�lled in) observations would give
X ′

2X2β̂2 = X ′
2ŷ2.Substituting these into the equation for the overall ombined estimator gives

β̂ =
[
X ′

1X1 +X ′
2X2

]−1
[
X ′

1X1β̂1 +X ′
2X2β̂2

]

=
[
X ′

1X1 +X ′
2X2

]−1
X ′

1X1β̂1 +
[
X ′

1X1 +X ′
2X2

]−1
X ′

2X2β̂2

≡ Aβ̂1 + (IK −A)β̂2where
A ≡

[
X ′

1X1 +X ′
2X2

]−1
X ′

1X1



3. MISSING OBSERVATIONS 104and we use
[
X ′

1X1 +X ′
2X2

]−1
X ′

2X2 =
[
X ′

1X1 +X ′
2X2

]−1 [(
X ′

1X1 +X ′
2X2

)
−X ′

1X1

]

= IK −
[
X ′

1X1 +X ′
2X2

]−1
X ′

1X1

= IK −A.Now,
E(β̂) = Aβ + (IK −A)E

(
β̂2

)and this will be unbiased only if E (β̂2

)
= β.

• The onlusion is the this �lled in observations alone would need to de�ne anunbiased estimator. This will be the ase only if
ŷ2 = X2β + ε̂2where ε̂2 has mean zero. Clearly, it is di�ult to satisfy this ondition withoutknowledge of β.

• Note that putting ŷ2 = ȳ1 does not satisfy the ondition and therefore leads to abiased estimator.Exerise 13. Formally prove this last statement.
• One possibility that has been suggested (see Greene, page 275) is to estimate βusing a �rst round estimation using only the omplete observations

β̂1 = (X ′
1X1)

−1X ′
1y1then use this estimate, β̂1,to predit y2 :

ŷ2 = X2β̂1

= X2(X
′
1X1)

−1X ′
1y1Now, the overall estimate is a weighted average of β̂1 and β̂2, just as above, butwe have

β̂2 = (X ′
2X2)

−1X ′
2ŷ2

= (X ′
2X2)

−1X ′
2X2β̂1

= β̂1This shows that this suggestion is ompletely empty of ontent: the �nal estimatoris the same as the OLS estimator using only the omplete observations.3.2. The sample seletion problem. In the above disussion we assumed that themissing observations are random. The sample seletion problem is a ase where the missingobservations are not random. Consider the model
y∗t = x′tβ + εtwhih is assumed to satisfy the lassial assumptions. However, y∗t is not always observed.What is observed is yt de�ned as

yt = y∗t if y∗t ≥ 0Or, in other words, y∗t is missing when it is less than zero.



3. MISSING OBSERVATIONS 105Figure 3. Sample seletion bias
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The di�erene in this ase is that the missing values are not random: they are orrelatedwith the xt. Consider the ase
y∗ = x+ εwith V (ε) = 25, but using only the observations for whih y∗ > 0 to estimate. Figure 3illustrates the bias. The Otave program is sampsel.m3.3. Missing observations on the regressors. Again the model is

[
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]but we assume now that eah row of X2 has an unobserved omponent(s). Again, one ouldjust estimate using the omplete observations, but it may seem frustrating to have to dropobservations simply beause of a single missing variable. In general, if the unobserved
X2 is replaed by some predition, X∗

2 , then we are in the ase of errors of observation.As before, this means that the OLS estimator is biased when X∗
2 is used instead of X2.Consisteny is salvaged, however, as long as the number of missing observations doesn'tinrease with n.

• Inluding observations that have missing values replaed by ad ho values an beinterpreted as introduing false stohasti restritions. In general, this introduesbias. It is di�ult to determine whether MSE inreases or dereases. Monte Carlostudies suggest that it is dangerous to simply substitute the mean, for example.
• In the ase that there is only one regressor other than the onstant, subtitutionof x̄ for the missing xt does not lead to bias. This is a speial ase that doesn'thold for K > 2.Exerise 14. Prove this last statement.
• In summary, if one is strongly onerned with bias, it is best to drop observationsthat have missing omponents. There is potential for redution of MSE through

http://pareto.uab.es/mcreel/Econometrics/Examples/Figures/sampsel.m


EXERCISES 106�lling in missing elements with intelligent guesses, but this ould also inreaseMSE. 4. ExerisesExerises(1) Consider the Nerlove model
lnC = βj1 + βj2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ǫWhen this model is estimated by OLS, some oe�ients are not signi�ant. This maybe due to ollinearity.Exerises(a) Calulate the orrelation matrix of the regressors.(b) Perform arti�ial regressions to see if ollinearity is a problem.() Apply the ridge regression estimator.Exerises(i) Plot the ridge trae diagram(ii) Chek what happens as k goes to zero, and as k beomes very large.



CHAPTER 10Funtional form and nonnested testsThough theory often suggests whih onditioning variables should be inluded, and sug-gests the signs of ertain derivatives, it is usually silent regarding the funtional form of therelationship between the dependent variable and the regressors. For example, onsideringa ost funtion, one ould have a Cobb-Douglas model
c = Awβ1

1 wβ2

2 qβqeεThis model, after taking logarithms, gives
ln c = β0 + β1 lnw1 + β2 lnw2 + βq ln q + εwhere β0 = lnA. Theory suggests that A > 0, β1 > 0, β2 > 0, β3 > 0. This model isn'tompatible with a �xed ost of prodution sine c = 0 when q = 0. Homogeneity of degreeone in input pries suggests that β1+β2 = 1, while onstant returns to sale implies βq = 1.While this model may be reasonable in some ases, an alternative
√
c = β0 + β1

√
w1 + β2

√
w2 + βq

√
q + εmay be just as plausible. Note that √

x and ln(x) look quite alike, for ertain values ofthe regressors, and up to a linear transformation, so it may be di�ult to hoose betweenthese models.The basi point is that many funtional forms are ompatible with the linear-in-parameters model, sine this model an inorporate a wide variety of nonlinear trans-formations of the dependent variable and the regressors. For example, suppose that g(·) isa real valued funtion and that x(·) is a K− vetor-valued funtion. The following modelis linear in the parameters but nonlinear in the variables:
xt = x(zt)

yt = x′tβ + εtThere may be P fundamental onditioning variables zt, but there may be K regressors,where K may be smaller than, equal to or larger than P. For example, xt ould inludesquares and ross produts of the onditioning variables in zt.1. Flexible funtional formsGiven that the funtional form of the relationship between the dependent variable andthe regressors is in general unknown, one might wonder if there exist parametri mod-els that an losely approximate a wide variety of funtional relationships. A �Diewert-Flexible� funtional form is de�ned as one suh that the funtion, the vetor of �rst deriva-tives and the matrix of seond derivatives an take on an arbitrary value at a single datapoint. Flexibility in this sense learly requires that there be at least
K = 1 + P +

(
P 2 − P

)
/2 + Pfree parameters: one for eah independent e�et that we wish to model.107



1. FLEXIBLE FUNCTIONAL FORMS 108Suppose that the model is
y = g(x) + εA seond-order Taylor's series expansion (with remainder term) of the funtion g(x) aboutthe point x = 0 is

g(x) = g(0) + x′Dxg(0) +
x′D2

xg(0)x

2
+RUse the approximation, whih simply drops the remainder term, as an approximation to

g(x) :

g(x) ≃ gK(x) = g(0) + x′Dxg(0) +
x′D2

xg(0)x

2As x → 0, the approximation beomes more and more exat, in the sense that gK(x) →
g(x), DxgK(x) → Dxg(x) and D2

xgK(x) → D2
xg(x). For x = 0, the approximation is exat,up to the seond order. The idea behind many �exible funtional forms is to note that g(0),

Dxg(0) and D2
xg(0) are all onstants. If we treat them as parameters, the approximationwill have exatly enough free parameters to approximate the funtion g(x), whih is ofunknown form, exatly, up to seond order, at the point x = 0. The model is

gK(x) = α+ x′β + 1/2x′Γxso the regression model to �t is
y = α+ x′β + 1/2x′Γx+ ε

• While the regression model has enough free parameters to be Diewert-�exible, thequestion remains: is plimα̂ = g(0)? Is plimβ̂ = Dxg(0)? Is plimΓ̂ = D2
xg(0)?

• The answer is no, in general. The reason is that if we treat the true values of theparameters as these derivatives, then ε is fored to play the part of the remainderterm, whih is a funtion of x, so that x and ε are orrelated in this ase. Asbefore, the estimator is biased in this ase.
• A simpler example would be to onsider a �rst-order T.S. approximation to aquadrati funtion. Draw piture.
• The onlusion is that ��exible funtional forms� aren't really �exible in a usefulstatistial sense, in that neither the funtion itself nor its derivatives are on-sistently estimated, unless the funtion belongs to the parametri family of thespei�ed funtional form. In order to lead to onsistent inferenes, the regressionmodel must be orretly spei�ed.1.1. The translog form. In spite of the fat that FFF's aren't really �exible for thepurposes of eonometri estimation and inferene, they are useful, and they are ertainlysubjet to less bias due to misspei�ation of the funtional form than are many popularforms, suh as the Cobb-Douglas or the simple linear in the variables model. The translogmodel is probably the most widely used FFF. This model is as above, exept that thevariables are subjeted to a logarithmi tranformation. Also, the expansion point is usuallytaken to be the sample mean of the data, after the logarithmi transformation. The modelis de�ned by

y = ln(c)

x = ln
(z
z̄

)

= ln(z) − ln(z̄)

y = α+ x′β + 1/2x′Γx+ ε



1. FLEXIBLE FUNCTIONAL FORMS 109In this presentation, the t subsript that distinguishes observations is suppressed for sim-pliity. Note that
∂y

∂x
= β + Γx

=
∂ ln(c)

∂ ln(z)
(the other part of x is onstant)

=
∂c

∂z

z

cwhih is the elastiity of c with respet to z. This is a onvenient feature of the translogmodel. Note that at the means of the onditioning variables, z̄, x = 0, so
∂y

∂x

∣∣∣∣
z=z̄

= βso the β are the �rst-order elastiities, at the means of the data.To illustrate, onsider that y is ost of prodution:
y = c(w, q)where w is a vetor of input pries and q is output. We ould add other variables byextending q in the obvious manner, but this is supressed for simpliity. By Shephard'slemma, the onditional fator demands are
x =

∂c(w, q)

∂wand the ost shares of the fators are therefore
s =

wx

c
=
∂c(w, q)

∂w

w

cwhih is simply the vetor of elastiities of ost with respet to input pries. If the ostfuntion is modeled using a translog funtion, we have
ln(c) = α+ x′β + z′δ + 1/2

[
x′ z

] [ Γ11 Γ12

Γ′
12 Γ22

][
x

z

]

= α+ x′β + z′δ + 1/2x′Γ11x+ x′Γ12z + 1/2z2γ22where x = ln(w/w̄) (element-by-element division) and z = ln(q/q̄), and
Γ11 =

[
γ11 γ12

γ12 γ22

]

Γ12 =

[
γ13

γ23

]

Γ22 = γ33.Note that symmetry of the seond derivatives has been imposed.Then the share equations are just
s = β +

[
Γ11 Γ12

] [ x

z

]Therefore, the share equations and the ost equation have parameters in ommon. Bypooling the equations together and imposing the (true) restrition that the parameters ofthe equations be the same, we an gain e�ieny.



1. FLEXIBLE FUNCTIONAL FORMS 110To illustrate in more detail, onsider the ase of two inputs, so
x =

[
x1

x2

]
.In this ase the translog model of the logarithmi ost funtion is

ln c = α+ β1x1 + β2x2 + δz +
γ11

2
x2

1 +
γ22

2
x2

2 +
γ33

2
z2 + γ12x1x2 + γ13x1z + γ23x2zThe two ost shares of the inputs are the derivatives of ln c with respet to x1 and x2:

s1 = β1 + γ11x1 + γ12x2 + γ13z

s2 = β2 + γ12x1 + γ22x2 + γ13zNote that the share equations and the ost equation have parameters in ommon. Onean do a pooled estimation of the three equations at one, imposing that the parametersare the same. In this way we're using more observations and therefore more information,whih will lead to imporved e�ieny. Note that this does assume that the ost equationis orretly spei�ed (i.e., not an approximation), sine otherwise the derivatives wouldnot be the true derivatives of the log ost funtion, and would then be misspei�ed for theshares. To pool the equations, write the model in matrix form (adding in error terms)



ln c

s1

s2


 =




1 x1 x2 z
x2
1

2
x2
2

2
z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0

0 0 1 0 0 x2 0 x1 0 z







α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23




+



ε1

ε2

ε3




This is one observation on the three equations. With the appropriate notation, a singleobservation an be written as
yt = Xtθ + εtThe overall model would stak n observations on the three equations for a total of 3nobservations: 



y1

y2...
yn




=




X1

X2...
Xn



θ +




ε1

ε2...
εn


Next we need to onsider the errors. For observation t the errors an be plaed in a vetor

εt =



ε1t

ε2t

ε3t


First onsider the ovariane matrix of this vetor: the shares are ertainly orrelatedsine they must sum to one. (In fat, with 2 shares the varianes are equal and theovariane is -1 times the variane. General notation is used to allow easy extension to thease of more than 2 inputs). Also, it's likely that the shares and the ost equation have



1. FLEXIBLE FUNCTIONAL FORMS 111di�erent varianes. Supposing that the model is ovariane stationary, the variane of εtwon′t depend upon t:
V arεt = Σ0 =



σ11 σ12 σ13

· σ22 σ23

· · σ33


Note that this matrix is singular, sine the shares sum to 1. Assuming that there isno autoorrelation, the overall ovariane matrix has the seemingly unrelated regressions(SUR) struture.

V ar




ε1

ε2...
εn




= Σ

=




Σ0 0 · · · 0

0 Σ0
. . . ...... . . . 0

0 · · · 0 Σ0




= In ⊗ Σ0where the symbol ⊗ indiates the Kroneker produt. The Kroneker produt of twomatries A and B is
A⊗B =




a11B a12B · · · a1qB

a21B
. . . ......

apqB · · · apqB



.

1.2. FGLS estimation of a translog model. So, this model has heterosedastiityand autoorrelation, so OLS won't be e�ient. The next question is: how do we estimatee�iently using FGLS? FGLS is based upon inverting the estimated error ovariane Σ̂.So we need to estimate Σ.An asymptotially e�ient proedure is (supposing normality of the errors)(1) Estimate eah equation by OLS(2) Estimate Σ0 using
Σ̂0 =

1

n

n∑

t=1

ε̂tε̂
′
t(3) Next we need to aount for the singularity of Σ0. It an be shown that Σ̂0 willbe singular when the shares sum to one, so FGLS won't work. The solution is to



1. FLEXIBLE FUNCTIONAL FORMS 112drop one of the share equations, for example the seond. The model beomes
[

ln c

s1

]
=

[
1 x1 x2 z

x2
1

2
x2
2

2
z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0

]




α

β1

β2

δ

γ11

γ22

γ33

γ12

γ13

γ23




+

[
ε1

ε2

]

or in matrix notation for the observation:
y∗t = X∗

t θ + ε∗tand in staked notation for all observations we have the 2n observations:



y∗1
y∗2...
y∗n




=




X∗
1

X∗
2...

X∗
n



θ +




ε∗1
ε∗2...
ε∗n


or, �nally in matrix notation for all observations:

y∗ = X∗θ + ε∗Considering the error ovariane, we an de�ne
Σ∗

0 = V ar

[
ε1

ε2

]

Σ∗ = In ⊗ Σ∗
0De�ne Σ̂∗

0 as the leading 2 × 2 blok of Σ̂0 , and form
Σ̂∗ = In ⊗ Σ̂∗

0.This is a onsistent estimator, following the onsisteny of OLS and applying aLLN.(4) Next ompute the Cholesky fatorization
P̂0 = Chol

(
Σ̂∗

0

)−1(I am assuming this is de�ned as an upper triangular matrix, whih is onsis-tent with the way Otave does it) and the Cholesky fatorization of the overallovariane matrix of the 2 equation model, whih an be alulated as
P̂ = CholΣ̂∗ = In ⊗ P̂0(5) Finally the FGLS estimator an be alulated by applying OLS to the transformedmodel
P̂ ′y∗ = P̂ ′X∗θ +

ˆ̂ ′
Pε∗



2. TESTING NONNESTED HYPOTHESES 113or by diretly using the GLS formula
θ̂FGLS =

(
X∗′

(
Σ̂∗

0

)−1
X∗
)−1

X∗′
(
Σ̂∗

0

)−1
y∗It is equivalent to transform eah observation individually:

P̂ ′
0y

∗
y = P̂ ′

0X
∗
t θ + P̂ ′

0ε
∗and then apply OLS. This is probably the simplest approah.A few last omments.(1) We have assumed no autoorrelation aross time. This is learly restritive. It isrelatively simple to relax this, but we won't go into it here.(2) Also, we have only imposed symmetry of the seond derivatives. Another restri-tion that the model should satisfy is that the estimated shares should sum to 1.This an be aomplished by imposing

β1 + β2 = 1
3∑

i=1

γij = 0, j = 1, 2, 3.These are linear parameter restritions, so they are easy to impose and will im-prove e�ieny if they are true.(3) The estimation proedure outlined above an be iterated. That is, estimate θ̂FGLSas above, then re-estimate Σ∗
0 using errors alulated as
ε̂ = y −Xθ̂FGLSThese might be expeted to lead to a better estimate than the estimator basedon θ̂OLS, sine FGLS is asymptotially more e�ient. Then re-estimate θ using thenew estimated error ovariane. It an be shown that if this is repeated until theestimates don't hange (i.e., iterated to onvergene) then the resulting estimatoris the MLE. At any rate, the asymptoti properties of the iterated and uniteratedestimators are the same, sine both are based upon a onsistent estimator of theerror ovariane. 2. Testing nonnested hypothesesGiven that the hoie of funtional form isn't perfetly lear, in that many possibilitiesexist, how an one hoose between forms? When one form is a parametri restrition ofanother, the previously studied tests suh as Wald, LR, sore or qF are all possibilities.For example, the Cobb-Douglas model is a parametri restrition of the translog: Thetranslog is

yt = α+ x′tβ + 1/2x′tΓxt + εwhere the variables are in logarithms, while the Cobb-Douglas is
yt = α+ x′tβ + εso a test of the Cobb-Douglas versus the translog is simply a test that Γ = 0.The situation is more ompliated when we want to test non-nested hypotheses. If thetwo funtional forms are linear in the parameters, and use the same transformation of the



2. TESTING NONNESTED HYPOTHESES 114dependent variable, then they may be written as
M1 : y = Xβ + ε

εt ∼ iid(0, σ2
ε )

M2 : y = Zγ + η

η ∼ iid(0, σ2
η)We wish to test hypotheses of the form: H0 : Mi is orretly spei�ed versus HA : Mi ismisspei�ed, for i = 1, 2.

• One ould aount for non-iid errors, but we'll suppress this for simpliity.
• There are a number of ways to proeed. We'll onsider the J test, proposed byDavidson and MaKinnon, Eonometria (1981). The idea is to arti�ially nestthe two models, e.g.,

y = (1 − α)Xβ + α(Zγ) + ωIf the �rst model is orretly spei�ed, then the true value of α is zero. On theother hand, if the seond model is orretly spei�ed then α = 1.� The problem is that this model is not identi�ed in general. For example, ifthe models share some regressors, as in
M1 : yt = β1 + β2x2t + β3x3t + εt

M2 : yt = γ1 + γ2x2t + γ3x4t + ηtthen the omposite model is
yt = (1 − α)β1 + (1 − α)β2x2t + (1 − α)β3x3t + αγ1 + αγ2x2t + αγ3x4t + ωtCombining terms we get

yt = ((1 − α)β1 + αγ1) + ((1 − α)β2 + αγ2)x2t + (1 − α)β3x3t + αγ3x4t + ωt

= δ1 + δ2x2t + δ3x3t + δ4x4t + ωtThe four δ′s are onsistently estimable, but α is not, sine we have four equations in 7unknowns, so one an't test the hypothesis that α = 0.The idea of the J test is to substitute γ̂ in plae of γ. This is a onsistent estimatorsupposing that the seond model is orretly spei�ed. It will tend to a �nite probabilitylimit even if the seond model is misspei�ed. Then estimate the model
y = (1 − α)Xβ + α(Zγ̂) + ω

= Xθ + αŷ + ωwhere ŷ = Z(Z ′Z)−1Z ′y = PZy. In this model, α is onsistently estimable, and one anshow that, under the hypothesis that the �rst model is orret, α p→ 0 and that the ordinary
t -statisti for α = 0 is asymptotially normal:

t =
α̂

σ̂α̂

a∼ N(0, 1)

• If the seond model is orretly spei�ed, then t p→ ∞, sine α̂ tends in probabilityto 1, while it's estimated standard error tends to zero. Thus the test will alwaysrejet the false null model, asymptotially, sine the statisti will eventually exeedany ritial value with probability one.
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• We an reverse the roles of the models, testing the seond against the �rst.
• It may be the ase that neither model is orretly spei�ed. In this ase, the testwill still rejet the null hypothesis, asymptotially, if we use ritial values fromthe N(0, 1) distribution, sine as long as α̂ tends to something di�erent from zero,
|t| p→ ∞. Of ourse, when we swith the roles of the models the other will also berejeted asymptotially.

• In summary, there are 4 possible outomes when we test two models, eah againstthe other. Both may be rejeted, neither may be rejeted, or one of the two maybe rejeted.
• There are other tests available for non-nested models. The J− test is simple toapply when both models are linear in the parameters. The P -test is similar, buteasier to apply when M1 is nonlinear.
• The above presentation assumes that the same transformation of the dependentvariable is used by both models. MaKinnon, White and Davidson, Journal ofEonometris, (1983) shows how to deal with the ase of di�erent transformations.
• Monte-Carlo evidene shows that these tests often over-rejet a orretly spei�edmodel. Can use bootstrap ritial values to get better-performing tests.



CHAPTER 11Exogeneity and simultaneitySeveral times we've enountered ases where orrelation between regressors and theerror term lead to biasedness and inonsisteny of the OLS estimator. Cases inludeautoorrelation with lagged dependent variables and measurement error in the regressors.Another important ase is that of simultaneous equations. The ause is di�erent, but thee�et is the same. 1. Simultaneous equationsUp until now our model is
y = Xβ + εwhere, for purposes of estimation we an treatX as �xed. This means that when estimating

β we ondition on X.When analyzing dynami models, we're not interested in onditioningon X, as we saw in the setion on stohasti regressors. Nevertheless, the OLS estimatorobtained by treating X as �xed ontinues to have desirable asymptoti properties even inthat ase.Simultaneous equations is a di�erent prospet. An example of a simultaneous equationsystem is a simple supply-demand system:Demand: qt = α1 + α2pt + α3yt + ε1tSupply: qt = β1 + β2pt + ε2t

E
([

ε1t

ε2t

] [
ε1t ε2t

])
=

[
σ11 σ12

· σ22

]

≡ Σ,∀tThe presumption is that qt and pt are jointly determined at the same time by the inter-setion of these equations. We'll assume that yt is determined by some unrelated proess.It's easy to see that we have orrelation between regressors and errors. Solving for pt :
α1 + α2pt + α3yt + ε1t = β1 + β2pt + ε2t

β2pt − α2pt = α1 − β1 + α3yt + ε1t − ε2t

pt =
α1 − β1

β2 − α2
+

α3yt
β2 − α2

+
ε1t − ε2t
β2 − α2Now onsider whether pt is unorrelated with ε1t :

E(ptε1t) = E
{(

α1 − β1

β2 − α2
+

α3yt
β2 − α2

+
ε1t − ε2t
β2 − α2

)
ε1t

}

=
σ11 − σ12

β2 − α2Beause of this orrelation, OLS estimation of the demand equation will be biased andinonsistent. The same applies to the supply equation, for the same reason.In this model, qt and pt are the endogenous varibles (endogs), that are determinedwithin the system. yt is an exogenous variable (exogs). These onepts are a bit triky,116



2. EXOGENEITY 117and we'll return to it in a minute. First, some notation. Suppose we group together urrentendogs in the vetor Yt. If there are G endogs, Yt is G×1. Group urrent and lagged exogs,as well as lagged endogs in the vetor Xt , whih is K × 1. Stak the errors of the Gequations into the error vetor Et. The model, with additional assumtions, an be writtenas
Y ′
t Γ = X ′

tB + E′
t

Et ∼ N(0,Σ),∀t
E(EtE

′
s) = 0, t 6= sWe an stak all n observations and write the model as
Y Γ = XB + E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)where
Y =




Y ′
1

Y ′
2...
Y ′
n



,X =




X ′
1

X ′
2...

X ′
n



, E =




E′
1

E′
2...

E′
n




Y is n×G, X is n×K, and E is n×G.

• This system is omplete, in that there are as many equations as endogs.
• There is a normality assumption. This isn't neessary, but allows us to onsiderthe relationship between least squares and ML estimators.
• Sine there is no autoorrelation of the Et 's, and sine the olumns of E areindividually homosedasti, then

Ψ =




σ11In σ12In · · · σ1GIn

σ22In
.... . . ...

· σGGIn




= In ⊗ Σ

• X may ontain lagged endogenous and exogenous variables. These variables arepredetermined.
• We need to de�ne what is meant by �endogenous� and �exogenous� when lassi-fying the urrent period variables.2. ExogeneityThe model de�nes a data generating proess. The model involves two sets of variables,

Yt and Xt, as well as a parameter vetor
θ =

[
vec(Γ)′ vec(B)′ vec∗(Σ)′

]′

• In general, without additional restritions, θ is a G2 + GK +
(
G2 −G

)
/2 + Gdimensional vetor. This is the parameter vetor that were interested in estimat-ing.
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• In priniple, there exists a joint density funtion for Yt and Xt, whih depends ona parameter vetor φ. Write this density as

ft(Yt,Xt|φ,It)where It is the information set in period t. This inludes lagged Y ′
t s and lagged

Xt 's of ourse. This an be fatored into the density of Yt onditional on Xttimes the marginal density of Xt :
ft(Yt,Xt|φ,It) = ft(Yt|Xt, φ,It)ft(Xt|φ,It)This is a general fatorization, but is may very well be the ase that not allparameters in φ a�et both fators. So use φ1 to indiate elements of φ thatenter into the onditional density and write φ2 for parameters that enter into themarginal. In general, φ1 and φ2 may share elements, of ourse. We have
ft(Yt,Xt|φ,It) = ft(Yt|Xt, φ1,It)ft(Xt|φ2,It)

• Reall that the model is
Y ′
t Γ = X ′

tB + E′
t

Et ∼ N(0,Σ),∀t
E(EtE

′
s) = 0, t 6= sNormality and lak of orrelation over time imply that the observations are independentof one another, so we an write the log-likelihood funtion as the sum of likelihood ontri-butions of eah observation:

lnL(Y |θ,It) =
n∑

t=1

ln ft(Yt,Xt|φ,It)

=

n∑

t=1

ln (ft(Yt|Xt, φ1,It)ft(Xt|φ2,It))

=

n∑

t=1

ln ft(Yt|Xt, φ1,It) +

n∑

t=1

ln ft(Xt|φ2,It) =Definition 15 (Weak Exogeneity). Xt is weakly exogeneous for θ (the original pa-rameter vetor) if there is a mapping from φ to θ that is invariant to φ2. More formally,for an arbitrary (φ1, φ2), θ(φ) = θ(φ1).This implies that φ1 and φ2 annot share elements if Xt is weakly exogenous, sine
φ1 would hange as φ2 hanges, whih prevents onsideration of arbitrary ombinations of
(φ1, φ2).Supposing that Xt is weakly exogenous, then the MLE of φ1 using the joint density isthe same as the MLE using only the onditional density

lnL(Y |X, θ,It) =

n∑

t=1

ln ft(Yt|Xt, φ1,It)sine the onditional likelihood doesn't depend on φ2. In other words, the joint and ondi-tional log-likelihoods maximize at the same value of φ1.

• With weak exogeneity, knowledge of the DGP of Xt is irrelevant for inferene on
φ1, and knowledge of φ1 is su�ient to reover the parameter of interest, θ. Sinethe DGP of Xt is irrelevant, we an treat Xt as �xed in inferene.
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• By the invariane property of MLE, the MLE of θ is θ(φ̂1),and this mapping isassumed to exist in the de�nition of weak exogeneity.
• Of ourse, we'll need to �gure out just what this mapping is to reover θ̂ from φ̂1.This is the famous identi�ation problem.
• With lak of weak exogeneity, the joint and onditional likelihood funtions max-imize in di�erent plaes. For this reason, we an't treat Xt as �xed in inferene.The joint MLE is valid, but the onditional MLE is not.
• In resume, we require the variables in Xt to be weakly exogenous if we are to beable to treat them as �xed in estimation. Lagged Yt satisfy the de�nition, sinethey are in the onditioning information set, e.g., Yt−1 ∈ It. Lagged Yt aren'texogenous in the normal usage of the word, sine their values are determinedwithin the model, just earlier on. Weakly exogenous variables inlude exogenous(in the normal sense) variables as well as all predetermined variables.

3. Redued formReall that the model is
Y ′
t Γ = X ′

tB + E′
t

V (Et) = ΣThis is the model in strutural form.Definition 16 (Strutural form). An equation is in strutural form when more thanone urrent period endogenous variable is inluded.The solution for the urrent period endogs is easy to �nd. It is
Y ′
t = X ′

tBΓ−1 + E′
tΓ

−1

= X ′
tΠ + V ′

t =Now only one urrent period endog appears in eah equation. This is the redued form.Definition 17 (Redued form). An equation is in redued form if only one urrentperiod endog is inluded.An example is our supply/demand system. The redued form for quantity is obtainedby solving the supply equation for prie and substituting into demand:
qt = α1 + α2

(
qt − β1 − ε2t

β2

)
+ α3yt + ε1t

β2qt − α2qt = β2α1 − α2 (β1 + ε2t) + β2α3yt + β2ε1t

qt =
β2α1 − α2β1

β2 − α2
+

β2α3yt
β2 − α2

+
β2ε1t − α2ε2t
β2 − α2

= π11 + π21yt + V1t



4. IV ESTIMATION 120Similarly, the rf for prie is
β1 + β2pt + ε2t = α1 + α2pt + α3yt + ε1t

β2pt − α2pt = α1 − β1 + α3yt + ε1t − ε2t

pt =
α1 − β1

β2 − α2
+

α3yt
β2 − α2

+
ε1t − ε2t
β2 − α2

= π12 + π22yt + V2tThe interesting thing about the rf is that the equations individually satisfy the lassi-al assumptions, sine yt is unorrelated with ε1t and ε2t by assumption, and therefore
E(ytVit) = 0, i=1,2, ∀t. The errors of the rf are

[
V1t

V2t

]
=

[
β2ε1t−α2ε2t

β2−α2

ε1t−ε2t

β2−α2

]The variane of V1t is
V (V1t) = E

[(
β2ε1t − α2ε2t
β2 − α2

)(
β2ε1t − α2ε2t
β2 − α2

)]

=
β2

2σ11 − 2β2α2σ12 + α2σ22

(β2 − α2)
2

• This is onstant over time, so the �rst rf equation is homosedasti.
• Likewise, sine the εt are independent over time, so are the Vt.The variane of the seond rf error is

V (V2t) = E
[(

ε1t − ε2t
β2 − α2

)(
ε1t − ε2t
β2 − α2

)]

=
σ11 − 2σ12 + σ22

(β2 − α2)
2and the ontemporaneous ovariane of the errors aross equations is

E(V1tV2t) = E
[(

β2ε1t − α2ε2t
β2 − α2

)(
ε1t − ε2t
β2 − α2

)]

=
β2σ11 − (β2 + α2) σ12 + σ22

(β2 − α2)
2

• In summary the rf equations individually satisfy the lassial assumptions, underthe assumtions we've made, but they are ontemporaneously orrelated.The general form of the rf is
Y ′
t = X ′

tBΓ−1 + E′
tΓ

−1

= X ′
tΠ + V ′

tso we have that
Vt =

(
Γ−1

)′
Et ∼ N

(
0,
(
Γ−1

)′
ΣΓ−1

)
,∀tand that the Vt are timewise independent (note that this wouldn't be the ase if the Etwere autoorrelated). 4. IV estimationThe IV estimator may appear a bit unusual at �rst, but it will grow on you over time.The simultaneous equations model is

Y Γ = XB + E



4. IV ESTIMATION 121Considering the �rst equation (this is without loss of generality, sine we an always reorderthe equations) we an partition the Y matrix as
Y =

[
y Y1 Y2

]

• y is the �rst olumn
• Y1 are the other endogenous variables that enter the �rst equation
• Y2 are endogs that are exluded from this equationSimilarly, partition X as

X =
[
X1 X2

]

• X1 are the inluded exogs, and X2 are the exluded exogs.Finally, partition the error matrix as
E =

[
ε E12

]Assume that Γ has ones on the main diagonal. These are normalization restritionsthat simply sale the remaining oe�ients on eah equation, and whih sale the varianesof the error terms.Given this saling and our partitioning, the oe�ient matries an be written as
Γ =




1 Γ12

−γ1 Γ22

0 Γ32




B =

[
β1 B12

0 B22

]With this, the �rst equation an be written as
y = Y1γ1 +X1β1 + ε

= Zδ + εThe problem, as we've seen is that Z is orrelated with ε, sine Y1 is formed of endogs.Now, let's onsider the general problem of a linear regression model with orrelationbetween regressors and the error term:
y = Xβ + ε

ε ∼ iid(0, Inσ
2)

E(X ′ε) 6= 0.The present ase of a strutural equation from a system of equations �ts into this notation,but so do other problems, suh as measurement error or lagged dependent variables withautoorrelated errors. Consider some matrix W whih is formed of variables unorrelatedwith ε. This matrix de�nes a projetion matrix
PW = W (W ′W )−1W ′so that anything that is projeted onto the spae spanned by W will be unorrelated with

ε, by the de�nition of W. Transforming the model with this projetion matrix we get
PW y = PWXβ + PW εor

y∗ = X∗β + ε∗



4. IV ESTIMATION 122Now we have that ε∗ and X∗ are unorrelated, sine this is simply
E(X∗′ε∗) = E(X ′P ′

WPW ε)

= E(X ′PW ε)and
PWX = W (W ′W )−1W ′Xis the �tted value from a regression of X on W. This is a linear ombination of the olumnsof W, so it must be unorrelated with ε. This implies that applying OLS to the model

y∗ = X∗β + ε∗will lead to a onsistent estimator, given a few more assumptions. This is the generalizedinstrumental variables estimator. W is known as the matrix of instruments. The estimatoris
β̂IV = (X ′PWX)−1X ′PW yfrom whih we obtain

β̂IV = (X ′PWX)−1X ′PW (Xβ + ε)

= β + (X ′PWX)−1X ′PW εso
β̂IV − β = (X ′PWX)−1X ′PW ε

=
(
X ′W (W ′W )−1W ′X

)−1
X ′W (W ′W )−1W ′εNow we an introdue fators of n to get

β̂IV − β =

((
X ′W
n

)(
W ′W
n

−1
)(

W ′X
n

))−1(
X ′W
n

)(
W ′W
n

)−1(W ′ε
n

)Assuming that eah of the terms with a n in the denominator satis�es a LLN, so that
• W ′W

n

p→ QWW , a �nite pd matrix
• X′W

n

p→ QXW , a �nite matrix with rank K (= ols(X) )
• W ′ε

n

p→ 0then the plim of the rhs is zero. This last term has plim 0 sine we assume that W and εare unorrelated, e.g.,
E(W ′

tεt) = 0,Given these assumtions the IV estimator is onsistent
β̂IV

p→ β.Furthermore, saling by √
n, we have

√
n
(
β̂IV − β

)
=

((
X ′W
n

)(
W ′W
n

)−1(W ′X
n

))−1(
X ′W
n

)(
W ′W
n

)−1(W ′ε√
n

)Assuming that the far right term sati�es a CLT, so that
• W ′ε√

n

d→ N(0, QWWσ
2)then we get √

n
(
β̂IV − β

)
d→ N

(
0, (QXWQ

−1
WWQ

′
XW )−1σ2

)



5. IDENTIFICATION BY EXCLUSION RESTRICTIONS 123The estimators for QXW and QWW are the obvious ones. An estimator for σ2 is
σ̂2
IV =

1

n

(
y −Xβ̂IV

)′ (
y −Xβ̂IV

)
.This estimator is onsistent following the proof of onsisteny of the OLS estimator of σ2,when the lassial assumptions hold.The formula used to estimate the variane of β̂IV is

V̂ (β̂IV ) =
((
X ′W

) (
W ′W

)−1 (
W ′X

))−1
σ̂2
IVThe IV estimator is(1) Consistent(2) Asymptotially normally distributed(3) Biased in general, sine even though E(X ′PW ε) = 0, E(X ′PWX)−1X ′PW ε maynot be zero, sine (X ′PWX)−1 and X ′PW ε are not independent.An important point is that the asymptoti distribution of β̂IV depends upon QXW and

QWW , and these depend upon the hoie of W. The hoie of instruments in�uenes thee�ieny of the estimator.
• When we have two sets of instruments, W1 and W2 suh that W1 ⊂W2, then theIV estimator using W2 is at least as e�iently asymptotially as the estimatorthat usedW1.More instruments leads to more asymptotially e�ient estimation,in general.
• There are speial ases where there is no gain (simultaneous equations is an ex-ample of this, as we'll see).
• The penalty for indisriminant use of instruments is that the small sample bias ofthe IV estimator rises as the number of instruments inreases. The reason for thisis that PWX beomes loser and loser to X itself as the number of instrumentsinreases.
• IV estimation an learly be used in the ase of simultaneous equations. The onlyissue is whih instruments to use.5. Identi�ation by exlusion restritionsThe identi�ation problem in simultaneous equations is in fat of the same nature asthe identi�ation problem in any estimation setting: does the limiting objetive funtionhave the proper urvature so that there is a unique global minimum or maximum at thetrue parameter value? In the ontext of IV estimation, this is the ase if the limitingovariane of the IV estimator is positive de�nite and plim 1

nW
′ε = 0. This matrix is

V∞(β̂IV ) = (QXWQ
−1
WWQ

′
XW )−1σ2

• The neessary and su�ient ondition for identi�ation is simply that this matrixbe positive de�nite, and that the instruments be (asymptotially) unorrelatedwith ε.
• For this matrix to be positive de�nite, we need that the onditions noted abovehold: QWW must be positive de�nite and QXW must be of full rank ( K ).
• These identi�ation onditions are not that intuitive nor is it very obvious howto hek them.



5. IDENTIFICATION BY EXCLUSION RESTRICTIONS 1245.1. Neessary onditions. If we use IV estimation for a single equation of thesystem, the equation an be written as
y = Zδ + εwhere

Z =
[
Y1 X1

]Notation:
• Let K be the total numer of weakly exogenous variables.
• Let K∗ = cols(X1) be the number of inluded exogs, and let K∗∗ = K −K∗ bethe number of exluded exogs (in this equation).
• LetG∗ = cols(Y1)+1 be the total number of inluded endogs, and letG∗∗ = G−G∗be the number of exluded endogs.Using this notation, onsider the seletion of instruments.
• Now the X1 are weakly exogenous and an serve as their own instruments.
• It turns out thatX exhausts the set of possible instruments, in that if the variablesin X don't lead to an identi�ed model then no other instruments will identify themodel either. Assuming this is true (we'll prove it in a moment), then a neessaryondition for identi�ation is that cols(X2) ≥ cols(Y1) sine if not then at leastone instrument must be used twie, so W will not have full olumn rank:

ρ(W ) < K∗ +G∗ − 1 ⇒ ρ(QZW ) < K∗ +G∗ − 1This is the order ondition for identi�ation in a set of simultaneous equations.When the only identifying information is exlusion restritions on the variablesthat enter an equation, then the number of exluded exogs must be greater thanor equal to the number of inluded endogs, minus 1 (the normalized lhs endog),e.g.,
K∗∗ ≥ G∗ − 1

• To show that this is in fat a neessary ondition onsider some arbitrary set ofinstruments W. A neessary ondition for identi�ation is that
ρ

(
plim

1

n
W ′Z

)
= K∗ +G∗ − 1where

Z =
[
Y1 X1

]Reall that we've partitioned the model
Y Γ = XB + Eas

Y =
[
y Y1 Y2

]

X =
[
X1 X2

]Given the redued form
Y = XΠ + Vwe an write the redued form using the same partition

[
y Y1 Y2

]
=
[
X1 X2

] [ π11 Π12 Π13

π21 Π22 Π23

]
+
[
v V1 V2

]
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Y1 = X1Π12 +X2Π22 + V1so

1

n
W ′Z =

1

n
W ′
[
X1Π12 +X2Π22 + V1 X1

]Beause the W 's are unorrelated with the V1 's, by assumption, the ross between Wand V1 onverges in probability to zero, so
plim

1

n
W ′Z = plim

1

n
W ′
[
X1Π12 +X2Π22 X1

]Sine the far rhs term is formed only of linear ombinations of olumns of X, the rankof this matrix an never be greater than K, regardless of the hoie of instruments. If Zhas more than K olumns, then it is not of full olumn rank. When Z has more than
K olumns we have

G∗ − 1 +K∗ > Kor noting that K∗∗ = K −K∗,

G∗ − 1 > K∗∗In this ase, the limiting matrix is not of full olumn rank, and the identi�ation onditionfails.
5.2. Su�ient onditions. Identi�ation essentially requires that the strutural pa-rameters be reoverable from the data. This won't be the ase, in general, unless thestrutural model is subjet to some restritions. We've already identi�ed neessary ondi-tions. Turning to su�ient onditions (again, we're only onsidering identi�ation throughzero restriitions on the parameters, for the moment).The model is

Y ′
t Γ = X ′

tB + Et

V (Et) = ΣThis leads to the redued form
Y ′
t = X ′

tBΓ−1 + EtΓ
−1

= X ′
tΠ + Vt

V (Vt) =
(
Γ−1

)′
ΣΓ−1

= ΩThe redued form parameters are onsistently estimable, but none of them are known apriori, and there are no restritions on their values. The problem is that more than onestrutural form has the same redued form, so knowledge of the redued form parametersalone isn't enough to determine the strutural parameters. To see this, onsider the model
Y ′
t ΓF = X ′

tBF + EtF

V (EtF ) = F ′ΣF



5. IDENTIFICATION BY EXCLUSION RESTRICTIONS 126where F is some arbirary nonsingular G×G matrix. The rf of this new model is
Y ′
t = X ′

tBF (ΓF )−1 + EtF (ΓF )−1

= X ′
tBFF

−1Γ−1 + EtFF
−1Γ−1

= X ′
tBΓ−1 + EtΓ

−1

= X ′
tΠ + VtLikewise, the ovariane of the rf of the transformed model is

V (EtF (ΓF )−1) = V (EtΓ
−1)

= ΩSine the two strutural forms lead to the same rf, and the rf is all that is diretly estimable,the models are said to be observationally equivalent. What we need for identi�ation arerestritions on Γ and B suh that the only admissible F is an identity matrix (if all of theequations are to be identi�ed). Take the oe�ient matries as partitioned before:
[

Γ

B

]
=




1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22


The oe�ients of the �rst equation of the transformed model are simply these oe�ientsmultiplied by the �rst olumn of F . This gives

[
Γ

B

] [
f11

F2

]
=




1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22




[
f11

F2

]

For identi�ation of the �rst equation we need that there be enough restritions so thatthe only admissible [
f11

F2

]be the leading olumn of an identity matrix, so that



1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22




[
f11

F2

]
=




1

−γ1

0

β1

0


Note that the third and �fth rows are[

Γ32

B22

]
F2 =

[
0

0

]Supposing that the leading matrix is of full olumn rank, e.g.,
ρ

([
Γ32

B22

])
= cols

([
Γ32

B22

])
= G− 1



5. IDENTIFICATION BY EXCLUSION RESTRICTIONS 127then the only way this an hold, without additional restritions on the model's parameters,is if F2 is a vetor of zeros. Given that F2 is a vetor of zeros, then the �rst equation
[

1 Γ12

] [ f11

F2

]
= 1 ⇒ f11 = 1Therefore, as long as

ρ

([
Γ32

B22

])
= G− 1then [

f11

F2

]
=

[
1

0G−1

]The �rst equation is identi�ed in this ase, so the ondition is su�ient for identi�ation.It is also neessary, sine the ondition implies that this submatrix must have at least G−1rows. Sine this matrix has
G∗∗ +K∗∗ = G−G∗ +K∗∗rows, we obtain
G−G∗ +K∗∗ ≥ G− 1or

K∗∗ ≥ G∗ − 1whih is the previously derived neessary ondition.The above result is fairly intuitive (draw piture here). The neessary ondition ensuresthat there are enough variables not in the equation of interest to potentially move the otherequations, so as to trae out the equation of interest. The su�ient ondition ensures thatthose other equations in fat do move around as the variables hange their values. Somepoints:
• When an equation has K∗∗ = G∗ − 1, is is exatly identi�ed, in that omission ofan identi�ying restrition is not possible without loosing onsisteny.
• When K∗∗ > G∗ − 1, the equation is overidenti�ed, sine one ould drop a re-strition and still retain onsisteny. Overidentifying restritions are thereforetestable. When an equation is overidenti�ed we have more instruments than arestritly neessary for onsistent estimation. Sine estimation by IV with moreinstruments is more e�ient asymptotially, one should employ overidentifyingrestritions if one is on�dent that they're true.
• We an repeat this partition for eah equation in the system, to see whih equa-tions are identi�ed and whih aren't.
• These results are valid assuming that the only identifying information omes fromknowing whih variables appear in whih equations, e.g., by exlusion restritions,and through the use of a normalization. There are other sorts of identifyinginformation that an be used. These inlude(1) Cross equation restritions(2) Additional restritions on parameters within equations (as in the Klein modeldisussed below)(3) Restritions on the ovariane matrix of the errors(4) Nonlinearities in variables
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• When these sorts of information are available, the above onditions aren't nees-sary for identi�ation, though they are of ourse still su�ient.To give an example of how other information an be used, onsider the model

Y Γ = XB + Ewhere Γ is an upper triangular matrix with 1's on the main diagonal. This is a triangularsystem of equations. In this ase, the �rst equation is
y1 = XB·1 + E·1Sine only exogs appear on the rhs, this equation is identi�ed.The seond equation is

y2 = −γ21y1 +XB·2 +E·2This equation has K∗∗ = 0 exluded exogs, and G∗ = 2 inluded endogs, so it fails theorder (neessary) ondition for identi�ation.
• However, suppose that we have the restrition Σ21 = 0, so that the �rst andseond strutural errors are unorrelated. In this ase

E(y1tε2t) = E
{
(X ′

tB·1 + ε1t)ε2t
}

= 0so there's no problem of simultaneity. If the entire Σ matrix is diagonal, thenfollowing the same logi, all of the equations are identi�ed. This is known as afully reursive model.
5.3. Example: Klein's Model 1. To give an example of determining identi�ationstatus, onsider the following maro model (this is the widely known Klein's Model 1)Consumption: Ct = α0 + α1Pt + α2Pt−1 + α3(W

p
t +W g

t ) + ε1tInvestment: It = β0 + β1Pt + β2Pt−1 + β3Kt−1 + ε2tPrivate Wages: W p
t = γ0 + γ1Xt + γ2Xt−1 + γ3At + ε3tOutput: Xt = Ct + It +GtPro�ts: Pt = Xt − Tt −W p

tCapital Stok: Kt = Kt−1 + It


ǫ1t

ǫ2t

ǫ3t


 ∼ IID







0

0

0


 ,




σ11 σ12 σ13

σ22 σ23

σ33





The other variables are the government wage bill, W g

t , taxes, Tt, government nonwagespending, Gt,and a time trend, At. The endogenous variables are the lhs variables,
Y ′
t =

[
Ct It W p

t Xt Pt Kt

]and the predetermined variables are all others:
X ′
t =

[
1 W g

t Gt Tt At Pt−1 Kt−1 Xt−1

]
.



5. IDENTIFICATION BY EXCLUSION RESTRICTIONS 129The model assumes that the errors of the equations are ontemporaneously orrelated, bynonautoorrelated. The model written as Y Γ = XB + E gives
Γ =




1 0 0 −1 0 0

0 1 0 −1 0 −1

−α3 0 1 0 1 0

0 0 −γ1 1 −1 0

−α1 −β1 0 0 1 0

0 0 0 0 0 1




B =




α0 β0 γ0 0 0 0

α3 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 γ3 0 0 0

α2 β2 0 0 0 0

0 β3 0 0 0 1

0 0 γ2 0 0 0


To hek this identi�ation of the onsumption equation, we need to extrat Γ32 and B22,the submatries of oe�ients of endogs and exogs that don't appear in this equation.These are the rows that have zeros in the �rst olumn, and we need to drop the �rstolumn. We get

[
Γ32

B22

]
=




1 0 −1 0 −1

0 −γ1 1 −1 0

0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1

0 γ2 0 0 0


We need to �nd a set of 5 rows of this matrix gives a full-rank 5×5 matrix. For example,seleting rows 3,4,5,6, and 7 we obtain the matrix

A =




0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1


This matrix is of full rank, so the su�ient ondition for identi�ation is met. Countinginluded endogs, G∗ = 3, and ounting exluded exogs, K∗∗ = 5, so

K∗∗ − L = G∗ − 1

5 − L = 3 − 1

L = 3

• The equation is over-identi�ed by three restritions, aording to the ountingrules, whih are orret when the only identifying information are the exlusionrestritions. However, there is additional information in this ase. Both W p
t and
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W g
t enter the onsumption equation, and their oe�ients are restrited to be thesame. For this reason the onsumption equation is in fat overidenti�ed by fourrestritions. 6. 2SLSWhen we have no information regarding ross-equation restritions or the struture ofthe error ovariane matrix, one an estimate the parameters of a single equation of thesystem without regard to the other equations.

• This isn't always e�ient, as we'll see, but it has the advantage that misspei�-ations in other equations will not a�et the onsisteny of the estimator of theparameters of the equation of interest.
• Also, estimation of the equation won't be a�eted by identi�ation problems inother equations.The 2SLS estimator is very simple: in the �rst stage, eah olumn of Y1 is regressed on allthe weakly exogenous variables in the system, e.g., the entire X matrix. The �tted valuesare

Ŷ1 = X(X ′X)−1X ′Y1

= PXY1

= XΠ̂1Sine these �tted values are the projetion of Y1 on the spae spanned by X, and sineany vetor in this spae is unorrelated with ε by assumption, Ŷ1 is unorrelated with ε.Sine Ŷ1 is simply the redued-form predition, it is orrelated with Y1, The only otherrequirement is that the instruments be linearly independent. This should be the ase whenthe order ondition is satis�ed, sine there are more olumns in X2 than in Y1 in this ase.The seond stage substitutes Ŷ1 in plae of Y1, and estimates by OLS. This originalmodel is
y = Y1γ1 +X1β1 + ε

= Zδ + εand the seond stage model is
y = Ŷ1γ1 +X1β1 + ε.Sine X1 is in the spae spanned by X, PXX1 = X1, so we an write the seond stagemodel as

y = PXY1γ1 + PXX1β1 + ε

≡ PXZδ + εThe OLS estimator applied to this model is
δ̂ = (Z ′PXZ)−1Z ′PXywhih is exatly what we get if we estimate using IV, with the redued form preditions ofthe endogs used as instruments. Note that if we de�ne
Ẑ = PXZ

=
[
Ŷ1 X1

]



7. TESTING THE OVERIDENTIFYING RESTRICTIONS 131so that Ẑ are the instruments for Z, then we an write
δ̂ = (Ẑ ′Z)−1Ẑ ′y

• Important note: OLS on the transformed model an be used to alulate the2SLS estimate of δ, sine we see that it's equivalent to IV using a partiular setof instruments. However the OLS ovariane formula is not valid. We need toapply the IV ovariane formula already seen above.Atually, there is also a simpli�ation of the general IV variane formula. De�ne
Ẑ = PXZ

=
[
Ŷ X

]The IV ovariane estimator would ordinarily be
V̂ (δ̂) =

(
Z ′Ẑ

)−1 (
Ẑ ′Ẑ

)(
Ẑ ′Z

)−1
σ̂2
IVHowever, looking at the last term in brakets

Ẑ ′Z =
[
Ŷ1 X1

]′ [
Y1 X1

]
=

[
Y ′

1(PX)Y1 Y ′
1(PX)X1

X ′
1Y1 X ′

1X1

]but sine PX is idempotent and sine PXX = X, we an write
[
Ŷ1 X1

]′ [
Y1 X1

]
=

[
Y ′

1PXPXY1 Y ′
1PXX1

X ′
1PXY1 X ′

1X1

]

=
[
Ŷ1 X1

]′ [
Ŷ1 X1

]

= Ẑ ′ẐTherefore, the seond and last term in the variane formula anel, so the 2SLS varovestimator simpli�es to
V̂ (δ̂) =

(
Z ′Ẑ

)−1
σ̂2
IVwhih, following some algebra similar to the above, an also be written as

V̂ (δ̂) =
(
Ẑ ′Ẑ

)−1
σ̂2
IVFinally, reall that though this is presented in terms of the �rst equation, it is general sineany equation an be plaed �rst.Properties of 2SLS:(1) Consistent(2) Asymptotially normal(3) Biased when the mean esists (the existene of moments is a tehnial issue wewon't go into here).(4) Asymptotially ine�ient, exept in speial irumstanes (more on this later).7. Testing the overidentifying restritionsThe seletion of whih variables are endogs and whih are exogs is part of the spei�-ation of the model. As suh, there is room for error here: one might erroneously lassifya variable as exog when it is in fat orrelated with the error term. A general test for thespei�ation on the model an be formulated as follows:



7. TESTING THE OVERIDENTIFYING RESTRICTIONS 132The IV estimator an be alulated by applying OLS to the transformed model, so theIV objetive funtion at the minimized value is
s(β̂IV ) =

(
y −Xβ̂IV

)′
PW

(
y −Xβ̂IV

)
,but

ε̂IV = y −Xβ̂IV

= y −X(X ′PWX)−1X ′PW y

=
(
I −X(X ′PWX)−1X ′PW

)
y

=
(
I −X(X ′PWX)−1X ′PW

)
(Xβ + ε)

= A (Xβ + ε)where
A ≡ I −X(X ′PWX)−1X ′PWso

s(β̂IV ) =
(
ε′ + β′X ′)A′PWA (Xβ + ε)Moreover, A′PWA is idempotent, as an be veri�ed by multipliation:

A′PWA =
(
I − PWX(X ′PWX)−1X ′)PW

(
I −X(X ′PWX)−1X ′PW

)

=
(
PW − PWX(X ′PWX)−1X ′PW

) (
PW − PWX(X ′PWX)−1X ′PW

)

=
(
I − PWX(X ′PWX)−1X ′)PW .Furthermore, A is orthogonal to X

AX =
(
I −X(X ′PWX)−1X ′PW

)
X

= X −X

= 0so
s(β̂IV ) = ε′A′PWAεSupposing the ε are normally distributed, with variane σ2, then the random variable
s(β̂IV )

σ2
=
ε′A′PWAε

σ2is a quadrati form of a N(0, 1) random variable with an idempotent matrix in the middle,so
s(β̂IV )

σ2
∼ χ2(ρ(A′PWA))This isn't available, sine we need to estimate σ2. Substituting a onsistent estimator,

s(β̂IV )

σ̂2

a∼ χ2(ρ(A′PWA))

• Even if the ε aren't normally distributed, the asymptoti result still holds. Thelast thing we need to determine is the rank of the idempotent matrix. We have
A′PWA =

(
PW − PWX(X ′PWX)−1X ′PW

)
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ρ(A′PWA) = Tr

(
PW − PWX(X ′PWX)−1X ′PW

)

= TrPW − TrX ′PWPWX(X ′PWX)−1

= TrW (W ′W )−1W ′ −KX

= TrW ′W (W ′W )−1 −KX

= KW −KXwhere KW is the number of olumns of W and KX is the number of olumnsof X. The degrees of freedom of the test is simply the number of overidentifyingrestritions: the number of instruments we have beyond the number that is stritlyneessary for onsistent estimation.
• This test is an overall spei�ation test: the joint null hypothesis is that themodel is orretly spei�ed and that the W form valid instruments (e.g., that thevariables lassi�ed as exogs really are unorrelated with ε. Rejetion an meanthat either the model y = Zδ + ε is misspei�ed, or that there is orrelationbetween X and ε.
• This is a partiular ase of the GMM riterion test, whih is overed in the seondhalf of the ourse. See Setion 8.
• Note that sine

ε̂IV = Aεand
s(β̂IV ) = ε′A′PWAεwe an write

s(β̂IV )

σ̂2
=

(
ε̂′W (W ′W )−1W ′) (W (W ′W )−1W ′ε̂

)

ε̂′ε̂/n

= n(RSSε̂IV |W /TSSε̂IV
)

= nR2
uwhere R2

u is the unentered R2 from a regression of the IV residuals on all of theinstruments W . This is a onvenient way to alulate the test statisti.
On an aside, onsider IV estimation of a just-identi�ed model, using the standard notation

y = Xβ + εand W is the matrix of instruments. If we have exat identi�ation then cols(W ) =

cols(X), so W ′

X is a square matrix. The transformed model is
PW y = PWXβ + PW εand the fon are
X ′PW (y −Xβ̂IV ) = 0The IV estimator is

β̂IV =
(
X ′PWX

)−1
X ′PW y
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(
X ′PWX

)−1
=

(
X ′W (W ′W )−1W ′X

)−1

= (W ′X)−1
(
X ′W (W ′W )−1

)−1

= (W ′X)−1(W ′W )
(
X ′W

)−1Now multiplying this by X ′PW y, we obtain
β̂IV = (W ′X)−1(W ′W )

(
X ′W

)−1
X ′PW y

= (W ′X)−1(W ′W )
(
X ′W

)−1
X ′W (W ′W )−1W ′y

= (W ′X)−1W ′yThe objetive funtion for the generalized IV estimator is
s(β̂IV ) =

(
y −Xβ̂IV

)′
PW

(
y −Xβ̂IV

)

= y′PW
(
y −Xβ̂IV

)
− β̂′IVX

′PW
(
y −Xβ̂IV

)

= y′PW
(
y −Xβ̂IV

)
− β̂′IVX

′PW y + β̂′IVX
′PWXβ̂IV

= y′PW
(
y −Xβ̂IV

)
− β̂′IV

(
X ′PW y +X ′PWXβ̂IV

)

= y′PW
(
y −Xβ̂IV

)by the fon for generalized IV. However, when we're in the just indenti�ed ase, this is
s(β̂IV ) = y′PW

(
y −X(W ′X)−1W ′y

)

= y′PW
(
I −X(W ′X)−1W ′) y

= y′
(
W (W ′W )−1W ′ −W (W ′W )−1W ′X(W ′X)−1W ′) y

= 0The value of the objetive funtion of the IV estimator is zero in the just identi�ed ase.This makes sense, sine we've already shown that the objetive funtion after dividing by
σ2 is asymptotially χ2 with degrees of freedom equal to the number of overidentifyingrestritions. In the present ase, there are no overidentifying restritions, so we have a
χ2(0) rv, whih has mean 0 and variane 0, e.g., it's simply 0. This means we're not ableto test the identifying restritions in the ase of exat identi�ation.

8. System methods of estimation2SLS is a single equation method of estimation, as noted above. The advantage of asingle equation method is that it's una�eted by the other equations of the system, so theydon't need to be spei�ed (exept for de�ning what are the exogs, so 2SLS an use theomplete set of instruments). The disadvantage of 2SLS is that it's ine�ient, in general.
• Reall that overidenti�ation improves e�ieny of estimation, sine an overi-denti�ed equation an use more instruments than are neessary for onsistentestimation.
• Seondly, the assumption is that
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Y Γ = XB + E

E(X ′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)

• Sine there is no autoorrelation of the Et 's, and sine the olumns of E areindividually homosedasti, then
Ψ =




σ11In σ12In · · · σ1GIn

σ22In
.... . . ...

· σGGIn




= Σ ⊗ InThis means that the strutural equations are heterosedasti and orrelated withone another
• In general, ignoring this will lead to ine�ient estimation, following the setion onGLS. When equations are orrelated with one another estimation should aountfor the orrelation in order to obtain e�ieny.
• Also, sine the equations are orrelated, information about one equation is im-pliitly information about all equations. Therefore, overidenti�ation restritionsin any equation improve e�ieny for all equations, even the just identi�ed equa-tions.
• Single equation methods an't use these types of information, and are thereforeine�ient (in general).8.1. 3SLS. Note: It is easier and more pratial to treat the 3SLS estimator as ageneralized method of moments estimator (see Chapter 15). I no longer teah the followingsetion, but it is retained for its possible historial interest. Another alternative is to useFIML (Subsetion 8.2), if you are willing to make distributional assumptions on the errors.This is omputationally feasible with modern omputers.Following our above notation, eah strutural equation an be written as

yi = Yiγ1 +Xiβ1 + εi

= Ziδi + εiGrouping the G equations together we get



y1

y2...
yG




=




Z1 0 · · · 0

0 Z2
...... . . . 0

0 · · · 0 ZG







δ1

δ2...
δG




+




ε1

ε2...
εG


or

y = Zδ + εwhere we already have that
E(εε′) = Ψ

= Σ ⊗ In



8. SYSTEM METHODS OF ESTIMATION 136The 3SLS estimator is just 2SLS ombined with a GLS orretion that takes advantage ofthe struture of Ψ. De�ne Ẑ as
Ẑ =




X(X ′X)−1X ′Z1 0 · · · 0

0 X(X ′X)−1X ′Z2
...... . . . 0

0 · · · 0 X(X ′X)−1X ′ZG




=




Ŷ1 X1 0 · · · 0

0 Ŷ2 X2
...... . . . 0

0 · · · 0 ŶG XG


These instruments are simply the unrestrited rf prediitions of the endogs, ombinedwith the exogs. The distintion is that if the model is overidenti�ed, then

Π = BΓ−1may be subjet to some zero restritions, depending on the restritions on Γ and B, and
Π̂ does not impose these restritions. Also, note that Π̂ is alulated using OLS equationby equation. More on this later.The 2SLS estimator would be

δ̂ = (Ẑ ′Z)−1Ẑ ′yas an be veri�ed by simple multipliation, and noting that the inverse of a blok-diagonalmatrix is just the matrix with the inverses of the bloks on the main diagonal. This IVestimator still ignores the ovariane information. The natural extension is to add the GLStransformation, putting the inverse of the error ovariane into the formula, whih givesthe 3SLS estimator
δ̂3SLS =

(
Ẑ ′ (Σ ⊗ In)

−1 Z
)−1

Ẑ ′ (Σ ⊗ In)
−1 y

=
(
Ẑ ′ (Σ−1 ⊗ In

)
Z
)−1

Ẑ ′ (Σ−1 ⊗ In
)
yThis estimator requires knowledge of Σ. The solution is to de�ne a feasible estimator usinga onsistent estimator of Σ. The obvious solution is to use an estimator based on the 2SLSresiduals:

ε̂i = yi − Ziδ̂i,2SLS(IMPORTANT NOTE: this is alulated using Zi, not Ẑi). Then the element i, j of Σis estimated by
σ̂ij =

ε̂′iε̂j
nSubstitute Σ̂ into the formula above to get the feasible 3SLS estimator.Analogously to what we did in the ase of 2SLS, the asymptoti distribution of the3SLS estimator an be shown to be

√
n
(
δ̂3SLS − δ

)
a∼ N


0, lim

n→∞
E





(
Ẑ ′ (Σ ⊗ In)

−1 Ẑ

n

)−1









8. SYSTEM METHODS OF ESTIMATION 137A formula for estimating the variane of the 3SLS estimator in �nite samples (anellingout the powers of n) is
V̂
(
δ̂3SLS

)
=
(
Ẑ ′
(
Σ̂−1 ⊗ In

)
Ẑ
)−1

• This is analogous to the 2SLS formula in equation (??), ombined with the GLSorretion.
• In the ase that all equations are just identi�ed, 3SLS is numerially equivalent to2SLS. Proving this is easiest if we use a GMM interpretation of 2SLS and 3SLS.GMM is presented in the next eonometris ourse. For now, take it on faith.The 3SLS estimator is based upon the rf parameter estimator Π̂, alulated equation byequation using OLS:

Π̂ = (X ′X)−1X ′Ywhih is simply
Π̂ = (X ′X)−1X ′

[
y1 y2 · · · yG

]that is, OLS equation by equation using all the exogs in the estimation of eah olumn of
Π. It may seem odd that we use OLS on the redued form, sine the rf equations areorrelated:

Y ′
t = X ′

tBΓ−1 + E′
tΓ

−1

= X ′
tΠ + V ′

tand
Vt =

(
Γ−1

)′
Et ∼ N

(
0,
(
Γ−1

)′
ΣΓ−1

)
,∀tLet this var-ov matrix be indiated by

Ξ =
(
Γ−1

)′
ΣΓ−1OLS equation by equation to get the rf is equivalent to




y1

y2...
yG




=




X 0 · · · 0

0 X
...... . . . 0

0 · · · 0 X







π1

π2...
πG




+




v1

v2...
vG


where yi is the n× 1 vetor of observations of the ith endog, X is the entire n×K matrixof exogs, πi is the ith olumn of Π, and vi is the ith olumn of V. Use the notation

y = Xπ + vto indiate the pooled model. Following this notation, the error ovariane matrix is
V (v) = Ξ ⊗ In

• This is a speial ase of a type of model known as a set of seemingly unrelatedequations (SUR) sine the parameter vetor of eah equation is di�erent. Theequations are ontemporanously orrelated, however. The general ase wouldhave a di�erent Xi for eah equation.
• Note that eah equation of the system individually satis�es the lassial assump-tions.
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• However, pooled estimation using the GLS orretion is more e�ient, sineequation-by-equation estimation is equivalent to pooled estimation, sine X isblok diagonal, but ignoring the ovariane information.
• The model is estimated by GLS, where Ξ is estimated using the OLS residualsfrom equation-by-equation estimation, whih are onsistent.
• In the speial ase that all the Xi are the same, whih is true in the present aseof estimation of the rf parameters, SUR ≡OLS. To show this note that in thisase X = In ⊗X. Using the rules(1) (A⊗B)−1 = (A−1 ⊗B−1)(2) (A⊗B)′ = (A′ ⊗B′) and(3) (A⊗B)(C ⊗D) = (AC ⊗BD), we get

π̂SUR =
(
(In ⊗X)′ (Ξ ⊗ In)

−1 (In ⊗X)
)−1

(In ⊗X)′ (Ξ ⊗ In)
−1 y

=
((

Ξ−1 ⊗X ′) (In ⊗X)
)−1 (

Ξ−1 ⊗X ′) y
=

(
Ξ ⊗ (X ′X)−1

) (
Ξ−1 ⊗X ′) y

=
[
IG ⊗ (X ′X)−1X ′] y

=




π̂1

π̂2...̂
πG




• So the unrestrited rf oe�ients an be estimated e�iently (assuming normality)by OLS, even if the equations are orrelated.
• We have ignored any potential zeros in the matrix Π, whih if they exist ouldpotentially inrease the e�ieny of estimation of the rf.
• Another example where SUR≡OLS is in estimation of vetor autoregressions. Seetwo setions ahead.8.2. FIML. Full information maximum likelihood is an alternative estimation method.FIML will be asymptotially e�ient, sine ML estimators based on a given informationset are asymptotially e�ient w.r.t. all other estimators that use the same informationset, and in the ase of the full-information ML estimator we use the entire information set.The 2SLS and 3SLS estimators don't require distributional assumptions, while FIML ofourse does. Our model is, reall

Y ′
t Γ = X ′

tB + E′
t

Et ∼ N(0,Σ),∀t
E(EtE

′
s) = 0, t 6= sThe joint normality of Et means that the density for Et is the multivariate normal, whihis

(2π)−g/2
(
detΣ−1

)−1/2
exp

(
−1

2
E′
tΣ

−1Et

)The transformation from Et to Yt requires the Jaobian
|det

dEt
dY ′

t

| = |det Γ|



9. EXAMPLE: 2SLS AND KLEIN'S MODEL 1 139so the density for Yt is
(2π)−G/2|det Γ|

(
detΣ−1

)−1/2
exp

(
−1

2

(
Y ′
t Γ −X ′

tB
)
Σ−1

(
Y ′
t Γ −X ′

tB
)′
)Given the assumption of independene over time, the joint log-likelihood funtion is

lnL(B,Γ,Σ) = −nG
2

ln(2π)+n ln(|det Γ|)−n
2

ln detΣ−1−1

2

n∑

t=1

(
Y ′
t Γ −X ′

tB
)
Σ−1

(
Y ′
t Γ −X ′

tB
)′

• This is a nonlinear in the parameters objetive funtion. Maximixation of thisan be done using iterative numeri methods. We'll see how to do this in the nextsetion.
• It turns out that the asymptoti distribution of 3SLS and FIML are the same,assuming normality of the errors.
• One an alulate the FIML estimator by iterating the 3SLS estimator, thusavoiding the use of a nonlinear optimizer. The steps are(1) Calulate Γ̂3SLS and B̂3SLS as normal.(2) Calulate Π̂ = B̂3SLSΓ̂−1

3SLS. This is new, we didn't estimate Π in this waybefore. This estimator may have some zeros in it. When Greene says iterated3SLS doesn't lead to FIML, he means this for a proedure that doesn't update
Π̂, but only updates Σ̂ and B̂ and Γ̂. If you update Π̂ you do onverge toFIML.(3) Calulate the instruments Ŷ = XΠ̂ and alulate Σ̂ using Γ̂ and B̂ to getthe estimated errors, applying the usual estimator.(4) Apply 3SLS using these new instruments and the estimate of Σ.(5) Repeat steps 2-4 until there is no hange in the parameters.

• FIML is fully e�ient, sine it's an ML estimator that uses all information. Thisimplies that 3SLS is fully e�ient when the errors are normally distributed. Also,if eah equation is just identi�ed and the errors are normal, then 2SLS will befully e�ient, sine in this ase 2SLS≡3SLS.
• When the errors aren't normally distributed, the likelihood funtion is of oursedi�erent than what's written above.9. Example: 2SLS and Klein's Model 1The Otave program Simeq/Klein.m performs 2SLS estimation for the 3 equations ofKlein's model 1, assuming nonautoorrelated errors, so that lagged endogenous variablesan be used as instruments. The results are:CONSUMPTION EQUATION*******************************************************2SLS estimation resultsObservations 21R-squared 0.976711Sigma-squared 1.044059estimate st.err. t-stat. p-valueConstant 16.555 1.321 12.534 0.000Profits 0.017 0.118 0.147 0.885

http://pareto.uab.es/mcreel/Econometrics/Examples/Simeq/Klein.m


9. EXAMPLE: 2SLS AND KLEIN'S MODEL 1 140Lagged Profits 0.216 0.107 2.016 0.060Wages 0.810 0.040 20.129 0.000*******************************************************INVESTMENT EQUATION*******************************************************2SLS estimation resultsObservations 21R-squared 0.884884Sigma-squared 1.383184estimate st.err. t-stat. p-valueConstant 20.278 7.543 2.688 0.016Profits 0.150 0.173 0.867 0.398Lagged Profits 0.616 0.163 3.784 0.001Lagged Capital -0.158 0.036 -4.368 0.000*******************************************************WAGES EQUATION*******************************************************2SLS estimation resultsObservations 21R-squared 0.987414Sigma-squared 0.476427estimate st.err. t-stat. p-valueConstant 1.500 1.148 1.307 0.209Output 0.439 0.036 12.316 0.000Lagged Output 0.147 0.039 3.777 0.002Trend 0.130 0.029 4.475 0.000*******************************************************The above results are not valid (spei�ally, they are inonsistent) if the errors areautoorrelated, sine lagged endogenous variables will not be valid instruments in thatase. You might onsider eliminating the lagged endogenous variables as instruments, andre-estimating by 2SLS, to obtain onsistent parameter estimates in this more omplexase. Standard errors will still be estimated inonsistently, unless use a Newey-West typeovariane estimator. Food for thought...



CHAPTER 12Introdution to the seond halfWe'll begin with study of extremum estimators in general. Let Zn be the availabledata, based on a sample of size n.Definition 0.1. [Extremum estimator℄ An extremum estimator θ̂ is the optimizingelement of an objetive funtion sn(Zn, θ) over a set Θ.We'll usually write the objetive funtion suppressing the dependene on Zn.Example: Least squares, linear modelLet the d.g.p. be yt = x′
tθ

0 +εt, t = 1, 2, ..., n, θ0 ∈ Θ. Staking observations vertially,
yn = Xnθ

0+εn, where Xn =
(
x1 x2 · · · xn

)′
. The least squares estimator is de�nedas

θ̂ ≡ arg min
Θ
sn(θ) = (1/n) [yn − Xnθ]

′ [yn − Xnθ]We readily �nd that θ̂ = (X′X)−1X′y.Example: Maximum likelihoodSuppose that the ontinuous random variable yt ∼ IIN(θ0, 1). The maximum likeli-hood estimator is de�ned as
θ̂ ≡ arg max

Θ
Ln(θ) =

n∏

t=1

(2π)−1/2 exp

(
−(yt − θ)2

2

)Beause the logarithmi funtion is stritly inreasing on (0,∞), maximization of theaverage logarithm of the likelihood funtion is ahieved at the same θ̂ as for the likelihoodfuntion:
θ̂ ≡ arg max

Θ
sn(θ) = (1/n) lnLn(θ) = −1/2 ln 2π − (1/n)

n∑

t=1

(yt − θ)2

2Solution of the f.o.. leads to the familiar result that θ̂ = ȳ.

• MLE estimators are asymptotially e�ient (Cramér-Rao lower bound, Theo-rem3), supposing the strong distributional assumptions upon whih they are basedare true.
• One an investigate the properties of an �ML� estimator supposing that the distri-butional assumptions are inorret. This gives a quasi-ML estimator, whih we'llstudy later.
• The strong distributional assumptions of MLE may be questionable in many ases.It is possible to estimate using weaker distributional assumptions based only onsome of the moments of a random variable(s).Example: Method of momentsSuppose we draw a random sample of yt from the χ2(θ0) distribution. Here, θ0 is theparameter of interest. The �rst moment (expetation), µ1, of a random variable will ingeneral be a funtion of the parameters of the distribution, i.e., µ1(θ

0) .
• µ1 = µ1(θ

0) is a moment-parameter equation.141
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• In this example, the relationship is the identity funtion µ1(θ

0) = θ0, though ingeneral the relationship may be more ompliated. The sample �rst moment is
µ̂1 =

n∑

t=1

yt/n.

• De�ne
m1(θ) = µ1(θ) − µ̂1

• The method of moments priniple is to hoose the estimator of the parameterto set the estimate of the population moment equal to the sample moment, i.e.,
m1(θ̂) ≡ 0. Then the moment-parameter equation is inverted to solve for theparameter estimate.In this ase,

m1(θ̂) = θ̂ −
n∑

t=1

yt/n = 0.Sine ∑n
t=1 yt/n

p→ θ0 by the LLN, the estimator is onsistent.More on the method of momentsContinuing with the above example, the variane of a χ2(θ0) r.v. is
V (yt) = E

(
yt − θ0

)2
= 2θ0.

• De�ne
m2(θ) = 2θ −

∑n
t=1 (yt − ȳ)2

n
• The MM estimator would set

m2(θ̂) = 2θ̂ −
∑n

t=1 (yt − ȳ)2

n
≡ 0.Again, by the LLN, the sample variane is onsistent for the true variane, thatis, ∑n

t=1 (yt − ȳ)2

n

p→ 2θ0.So,
θ̂ =

∑n
t=1 (yt − ȳ)2

2n
,whih is obtained by inverting the moment-parameter equation, is onsistent.Example: Generalized method of moments (GMM)The previous two examples give two estimators of θ0 whih are both onsistent. Witha given sample, the estimators will be di�erent in general.

• With two moment-parameter equations and only one parameter, we have overi-denti�ation, whih means that we have more information than is stritly nees-sary for onsistent estimation of the parameter.
• The GMM ombines information from the two moment-parameter equations toform a new estimator whih will be more e�ient, in general (proof of this below).



12. INTRODUCTION TO THE SECOND HALF 143From the �rst example, de�ne m1t(θ) = θ − yt. We already have that m1(θ) is the sampleaverage of m1t(θ), i.e.,
m1(θ) = 1/n

n∑

t=1

m1t(θ)

= θ −
n∑

t=1

yt/n.Clearly, when evaluated at the true parameter value θ0, bothE [m1t(θ
0)
]

= 0 and E [m1(θ
0)
]

=

0. From the seond example we de�ne additional moment onditions
m2t(θ) = 2θ − (yt − ȳ)2and

m2(θ) = 2θ −
∑n

t=1 (yt − ȳ)2

n
.Again, it is lear from the LLN that m2(θ

0)
a.s.→ 0. The MM estimator would hose θ̂ to seteither m1(θ̂) = 0 or m2(θ̂) = 0. In general, no single value of θ will solve the two equationssimultaneously.

• The GMM estimator is based on de�ning a measure of distane d(m(θ)), where
m(θ) = (m1(θ),m2(θ))

′ , and hoosing
θ̂ = arg min

Θ
sn(θ) = d (m(θ)) .An example would be to hoose d(m) = m′Am, where A is a positive de�nite matrix.While it's lear that the MM gives onsistent estimates if there is a one-to-one relationshipbetween parameters and moments, it's not immediately obvious that the GMM estimatoris onsistent. (We'll see later that it is.)These examples show that these widely used estimators may all be interpreted as thesolution of an optimization problem. For this reason, the study of extremum estimators isuseful for its generality. We will see that the general results extend smoothly to the morespeialized results available for spei� estimators. After studying extremum estimatorsin general, we will study the GMM estimator, then QML and NLS. The reason we studyGMM �rst is that LS, IV, NLS, MLE, QML and other well-known parametri estimatorsmay all be interpreted as speial ases of the GMM estimator, so the general results onGMM an simplify and unify the treatment of these other estimators. Nevertheless, thereare some speial results on QML and NLS, and both are important in empirial researh,whih makes fous on them useful.One of the foal points of the ourse will be nonlinear models. This is not to suggestthat linear models aren't useful. Linear models are more general than they might �rstappear, sine one an employ nonlinear transformations of the variables:

ϕ0(yt) =
[
ϕ1(xt) ϕ2(xt) · · · ϕp(xt)

]
θ0 + εtFor example,

ln yt = α+ βx1t + γx2
1t + δx1tx2t + εt�ts this form.

• The important point is that the model is linear in the parameters but not nees-sarily linear in the variables.



12. INTRODUCTION TO THE SECOND HALF 144In spite of this generality, situations often arise whih simply an not be onvininglyrepresented by linear in the parameters models. Also, theory that applies to nonlinearmodels also applies to linear models, so one may as well start o� with the general ase.Example: Expenditure sharesRoy's Identity states that the quantity demanded of the ith of G goods is
xi =

−∂v(p, y)/∂pi
∂v(p, y)/∂y

.An expenditure share is
si ≡ pixi/y,so neessarily si ∈ [0, 1], and ∑G

i=1 si = 1. No linear in the parameters model for xi or siwith a parameter spae that is de�ned independent of the data an guarantee that either ofthese onditions holds. These onstraints will often be violated by estimated linear models,whih alls into question their appropriateness in ases of this sort.Example: Binary limited dependent variableThe referendum ontingent valuation (CV) method of infering the soial value of aprojet provides a simple example. This example is a speial ase of more general disretehoie (or binary response) models. Individuals are asked if they would pay an amount Afor provision of a projet. Indiret utility in the base ase (no projet) is v0(m, z)+ε0, where
m is inome and z is a vetor of other variables suh as pries, personal harateristis, et.After provision, utility is v1(m, z) + ε1. The random terms εi, i = 1, 2, re�et variations ofpreferenes in the population. With this, an individual agrees1 to pay A if

ε0 − ε1︸ ︷︷ ︸
ε

<
v1(m−A, z) − v0(m, z)︸ ︷︷ ︸

∆v(w, A)De�ne ε = ε0 − ε1, let w ollet m and z, and let ∆v(w, A) = v1(m − A, z) − v0(m, z).De�ne y = 1 if the onsumer agrees to pay A for the hange, y = 0 otherwise. Theprobability of agreement is(30) Pr(y = 1) = Fε [∆v(w, A)] .To simplify notation, de�ne p(w, A) ≡ Fε [∆v(w, A)] . To make the example spei�, sup-pose that
v1(m, z) = α− βm

v0(m, z) = −βmand ε0 and ε1 are i.i.d. extreme value random variables. That is, utility depends only oninome, preferenes in both states are homotheti, and a spei� distributional assumptionis made on the distribution of preferenes in the population. With these assumptions (thedetails are unimportant here, see artiles by D. MFadden if you're interested) it an beshown that
p(A, θ) = Λ (α+ βA) ,where Λ(z) is the logisti distribution funtion
Λ(z) = (1 + exp(−z))−1 .1We assume here that responses are truthful, that is there is no strategi behavior and that individualsare able to order their preferenes in this hypothetial situation.



12. INTRODUCTION TO THE SECOND HALF 145This is the simple logit model: the hoie probability is the logit funtion of a linear inparameters funtion.Now, y is either 0 or 1, and the expeted value of y is Λ (α+ βA) . Thus, we an write
y = Λ(α+ βA) + η

E(η) = 0.One ould estimate this by (nonlinear) least squares
(
α̂,β̂
)

= arg min
1

n

∑

t

(y − Λ (α+ βA))2The main point is that it is impossible that Λ (α+ βA) an be written as a linear in theparameters model, in the sense that, for arbitrary A, there are no θ, ϕ(A) suh that
Λ (α+ βA) = ϕ(A)′θ,∀Awhere ϕ(A) is a p-vetor valued funtion of A and θ is a p dimensional parameter. Thisis beause for any θ, we an always �nd a A suh that ϕ(A)′θ will be negative or greaterthan 1, whih is illogial, sine it is the expetation of a 0/1 binary random variable. Sinethis sort of problem ours often in empirial work, it is useful to study NLS and othernonlinear models.After disussing these estimation methods for parametri models we'll brie�y introduenonparametri estimation methods. These methods allow one, for example, to estimate

f(xt) onsistently when we are not willing to assume that a model of the form
yt = f(xt) + εtan be restrited to a parametri form
yt = f(xt, θ) + εt

Pr(εt < z) = Fε(z|φ, xt)
θ ∈ Θ, φ ∈ Φwhere f(·) and perhaps Fε(z|φ, xt) are of known funtional form. This is important sineeonomi theory gives us general information about funtions and the signs of their deriva-tives, but not about their spei� form.Then we'll look at simulation-based methods in eonometris. These methods allowus to substitute omputer power for mental power. Sine omputer power is beomingrelatively heap ompared to mental e�ort, any eonometriian who lives by the priniplesof eonomi theory should be interested in these tehniques.Finally, we'll look at how eonometri omputations an be done in parallel on aluster of omputers. This allows us to harness more omputational power to work withmore omplex models that an be dealt with using a desktop omputer.



CHAPTER 13Numeri optimization methodsReadings: Hamilton, h. 5, setion 7 (pp. 133-139)∗; Gourieroux and Monfort, Vol.1, h. 13, pp. 443-60∗; Go�e, et. al. (1994).If we're going to be applying extremum estimators, we'll need to know how to �ndan extremum. This setion gives a very brief introdution to what is a large literatureon numeri optimization methods. We'll onsider a few well-known tehniques, and onefairly new tehnique that may allow one to solve di�ult problems. The main objetiveis to beome familiar with the issues, and to learn how to use the BFGS algorithm at thepratial level.The general problem we onsider is how to �nd the maximizing element θ̂ (a K -vetor)of a funtion s(θ). This funtion may not be ontinuous, and it may not be di�erentiable.Even if it is twie ontinuously di�erentiable, it may not be globally onave, so loalmaxima, minima and saddlepoints may all exist. Supposing s(θ) were a quadrati funtionof θ, e.g.,
s(θ) = a+ b′θ +

1

2
θ′Cθ,the �rst order onditions would be linear:

Dθs(θ) = b+ Cθso the maximizing (minimizing) element would be θ̂ = −C−1b. This is the sort of problemwe have with linear models estimated by OLS. It's also the ase for feasible GLS, sineonditional on the estimate of the varov matrix, we have a quadrati objetive funtionin the remaining parameters.More general problems will not have linear f.o.., and we will not be able to solve forthe maximizer analytially. This is when we need a numeri optimization method.
1. SearhThe idea is to reate a grid over the parameter spae and evaluate the funtion at eahpoint on the grid. Selet the best point. Then re�ne the grid in the neighborhood of thebest point, and ontinue until the auray is �good enough�. See Figure 1. One has tobe areful that the grid is �ne enough in relationship to the irregularity of the funtion toensure that sharp peaks are not missed entirely.To hek q values in eah dimension of a K dimensional parameter spae, we need tohek qK points. For example, if q = 100 and K = 10, there would be 10010 points tohek. If 1000 points an be heked in a seond, it would take 3. 171×109 years to performthe alulations, whih is approximately the age of the earth. The searh method is a veryreasonable hoie if K is small, but it quikly beomes infeasible if K is moderate or large.146



2. DERIVATIVE-BASED METHODS 147Figure 1. The searh method

2. Derivative-based methods2.1. Introdution. Derivative-based methods are de�ned by(1) the method for hoosing the initial value, θ1(2) the iteration method for hoosing θk+1 given θk (based upon derivatives)(3) the stopping riterion.The iteration method an be broken into two problems: hoosing the stepsize ak (a salar)and hoosing the diretion of movement, dk, whih is of the same dimension of θ, so that
θ(k+1) = θ(k) + akdk.A loally inreasing diretion of searh d is a diretion suh that
∃a :

∂s(θ + ad)

∂a
> 0for a positive but small. That is, if we go in diretion d, we will improve on the objetivefuntion, at least if we don't go too far in that diretion.

• As long as the gradient at θ is not zero there exist inreasing diretions, andthey an all be represented as Qkg(θk) where Qk is a symmetri pd matrix and
g (θ) = Dθs(θ) is the gradient at θ. To see this, take a T.S. expansion around
a0 = 0

s(θ + ad) = s(θ + 0d) + (a− 0) g(θ + 0d)′d+ o(1)

= s(θ) + ag(θ)′d+ o(1)



2. DERIVATIVE-BASED METHODS 148Figure 2. Inreasing diretions of searh

For small enough a the o(1) term an be ignored. If d is to be an inreasingdiretion, we need g(θ)′d > 0. De�ning d = Qg(θ), where Q is positive de�nite,we guarantee that
g(θ)′d = g(θ)′Qg(θ) > 0unless g(θ) = 0. Every inreasing diretion an be represented in this way (p.d.matries are those suh that the angle between g and Qg(θ) is less that 90 degrees).See Figure 2.

• With this, the iteration rule beomes
θ(k+1) = θ(k) + akQkg(θk)and we keep going until the gradient beomes zero, so that there is no inreasing diretion.The problem is how to hoose a and Q.

• Conditional on Q, hoosing a is fairly straightforward. A simple line searh isan attrative possibility, sine a is a salar.
• The remaining problem is how to hoose Q.
• Note also that this gives no guarantees to �nd a global maximum.2.2. Steepest desent. Steepest desent (asent if we're maximizing) just sets Q toand identity matrix, sine the gradient provides the diretion of maximum rate of hangeof the objetive funtion.
• Advantages: fast - doesn't require anything more than �rst derivatives.
• Disadvantages: This doesn't always work too well however (draw piture of ba-nana funtion).



2. DERIVATIVE-BASED METHODS 149Figure 3. Newton-Raphson method

2.3. Newton-Raphson. The Newton-Raphson method uses information about theslope and urvature of the objetive funtion to determine whih diretion and how far tomove from an initial point. Supposing we're trying to maximize sn(θ). Take a seond orderTaylor's series approximation of sn(θ) about θk (an initial guess).
sn(θ) ≈ sn(θ

k) + g(θk)′
(
θ − θk

)
+ 1/2

(
θ − θk

)′
H(θk)

(
θ − θk

)To attempt to maximize sn(θ), we an maximize the portion of the right-hand side thatdepends on θ, i.e., we an maximize
s̃(θ) = g(θk)′θ + 1/2

(
θ − θk

)′
H(θk)

(
θ − θk

)with respet to θ. This is a muh easier problem, sine it is a quadrati funtion in θ, so ithas linear �rst order onditions. These are
Dθ s̃(θ) = g(θk) +H(θk)

(
θ − θk

)So the solution for the next round estimate is
θk+1 = θk −H(θk)−1g(θk)This is illustrated in Figure 3.However, it's good to inlude a stepsize, sine the approximation to sn(θ) may be badfar away from the maximizer θ̂, so the atual iteration formula is
θk+1 = θk − akH(θk)−1g(θk)

• A potential problem is that the Hessian may not be negative de�nite when we'refar from the maximizing point. So −H(θk)−1 may not be positive de�nite, and
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−H(θk)−1g(θk) may not de�ne an inreasing diretion of searh. This an happenwhen the objetive funtion has �at regions, in whih ase the Hessian matrix isvery ill-onditioned (e.g., is nearly singular), or when we're in the viinity of a loalminimum, H(θk) is positive de�nite, and our diretion is a dereasing diretionof searh. Matrix inverses by omputers are subjet to large errors when thematrix is ill-onditioned. Also, we ertainly don't want to go in the diretion of aminimum when we're maximizing. To solve this problem, Quasi-Newton methodssimply add a positive de�nite omponent to H(θ) to ensure that the resultingmatrix is positive de�nite, e.g., Q = −H(θ) + bI, where b is hosen large enoughso that Q is well-onditioned and positive de�nite. This has the bene�t thatimprovement in the objetive funtion is guaranteed.

• Another variation of quasi-Newton methods is to approximate the Hessian by us-ing suessive gradient evaluations. This avoids atual alulation of the Hessian,whih is an order of magnitude (in the dimension of the parameter vetor) moreostly than alulation of the gradient. They an be done to ensure that theapproximation is p.d. DFP and BFGS are two well-known examples.Stopping riteriaThe last thing we need is to deide when to stop. A digital omputer is subjet tolimited mahine preision and round-o� errors. For these reasons, it is unreasonable tohope that a program an exatly �nd the point that maximizes a funtion. We need tode�ne aeptable toleranes. Some stopping riteria are:
• Negligable hange in parameters:

|θkj − θk−1
j | < ε1,∀j

• Negligable relative hange:
|
θkj − θk−1

j

θk−1
j

| < ε2,∀j

• Negligable hange of funtion:
|s(θk) − s(θk−1)| < ε3

• Gradient negligibly di�erent from zero:
|gj(θk)| < ε4,∀j

• Or, even better, hek all of these.
• Also, if we're maximizing, it's good to hek that the last round (real, not ap-proximate) Hessian is negative de�nite.Starting valuesThe Newton-Raphson and related algorithms work well if the objetive funtion isonave (when maximizing), but not so well if there are onvex regions and loal minimaor multiple loal maxima. The algorithm may onverge to a loal minimum or to a loalmaximum that is not optimal. The algorithm may also have di�ulties onverging at all.
• The usual way to �ensure� that a global maximum has been found is to use manydi�erent starting values, and hoose the solution that returns the highest objetivefuntion value. THIS IS IMPORTANT in pratie. More on this later.Calulating derivatives



2. DERIVATIVE-BASED METHODS 151Figure 4. Using MuPAD to get analyti derivatives

The Newton-Raphson algorithm requires �rst and seond derivatives. It is often dif-�ult to alulate derivatives (espeially the Hessian) analytially if the funtion sn(·) isompliated. Possible solutions are to alulate derivatives numerially, or to use programssuh as MuPAD or Mathematia to alulate analyti derivatives. For example, Figure 4shows MuPAD1 alulating a derivative that I didn't know o� the top of my head, and onethat I did know.
• Numeri derivatives are less aurate than analyti derivatives, and are usuallymore ostly to evaluate. Both fators usually ause optimization programs to beless suessful when numeri derivatives are used.
• One advantage of numeri derivatives is that you don't have to worry abouthaving made an error in alulating the analyti derivative. When programminganalyti derivatives it's a good idea to hek that they are orret by using numeriderivatives. This is a lesson I learned the hard way when writing my thesis.
• Numeri seond derivatives are muh more aurate if the data are saled so thatthe elements of the gradient are of the same order of magnitude. Example: ifthe model is yt = h(αxt + βzt) + εt, and estimation is by NLS, suppose that
Dαsn(·) = 1000 and Dβsn(·) = 0.001. One ould de�ne α∗ = α/1000; x∗t =

1000xt;β∗ = 1000β; z∗t = zt/1000. In this ase, the gradients Dα∗sn(·) andDβsn(·)will both be 1.1MuPAD is not a freely distributable program, so it's not on the CD. You an download it fromhttp://www.mupad.de/download.shtml



4. EXAMPLES 152In general, estimation programs always work better if data is saled in thisway, sine roundo� errors are less likely to beome important. This is importantin pratie.
• There are algorithms (suh as BFGS and DFP) that use the sequential gradientevaluations to build up an approximation to the Hessian. The iterations arefaster for this reason sine the atual Hessian isn't alulated, but more iterationsusually are required for onvergene.
• Swithing between algorithms during iterations is sometimes useful.3. Simulated AnnealingSimulated annealing is an algorithm whih an �nd an optimum in the presene of non-onavities, disontinuities and multiple loal minima/maxima. Basially, the algorithmrandomly selets evaluation points, aepts all points that yield an inrease in the objetivefuntion, but also aepts some points that derease the objetive funtion. This allows thealgorithm to esape from loal minima. As more and more points are tried, periodiallythe algorithm fouses on the best point so far, and redues the range over whih randompoints are generated. Also, the probability that a negative move is aepted redues. Thealgorithm relies on many evaluations, as in the searh method, but fouses in on promisingareas, whih redues funtion evaluations with respet to the searh method. It does notrequire derivatives to be evaluated. I have a program to do this if you're interested.4. ExamplesThis setion gives a few examples of how some nonlinear models may be estimatedusing maximum likelihood.4.1. Disrete Choie: The logit model. In this setion we will onsider maximumlikelihood estimation of the logit model for binary 0/1 dependent variables. We will usethe BFGS algotithm to �nd the MLE.We saw an example of a binary hoie model in equation 30. A more general represen-tation is

y∗ = g(x) − ε

y = 1(y∗ > 0)

Pr(y = 1) = Fε[g(x)]

≡ p(x, θ)The log-likelihood funtion is
sn(θ) =

1

n

n∑

i=1

(yi ln p(xi, θ) + (1 − yi) ln [1 − p(xi, θ)])For the logit model (see the ontingent valuation example above), the probability hasthe spei� form
p(x, θ) =

1

1 + exp(−x′θ)You should download and examine LogitDGP.m , whih generates data aording tothe logit model, logit.m , whih alulates the loglikelihood, and EstimateLogit.m , whihsets things up and alls the estimation routine, whih uses the BFGS algorithm.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/LogitDGP.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m


4. EXAMPLES 153Here are some estimation results with n = 100, and the true θ = (0, 1)′.***********************************************Trial of MLE estimation of Logit modelMLE Estimation ResultsBFGS onvergene: Normal onvergeneAverage Log-L: 0.607063Observations: 100estimate st. err t-stat p-valueonstant 0.5400 0.2229 2.4224 0.0154slope 0.7566 0.2374 3.1863 0.0014Information CriteriaCAIC : 132.6230BIC : 130.6230AIC : 125.4127***********************************************The estimation program is alling mle_results(), whih in turn alls a number ofother routines. These funtions are part of the otave-forge repository.4.2. Count Data: The Poisson model. Demand for health are is usually thoughtof a a derived demand: health are is an input to a home prodution funtion that produeshealth, and health is an argument of the utility funtion. Grossman (1972), for example,models health as a apital stok that is subjet to depreiation (e.g., the e�ets of ageing).Health are visits restore the stok. Under the home prodution framework, individualsdeide when to make health are visits to maintain their health stok, or to deal withnegative shoks to the stok in the form of aidents or illnesses. As suh, individualdemand will be a funtion of the parameters of the individuals' utility funtions.The MEPS health data �le , meps1996.data, ontains 4564 observations on six mea-sures of health are usage. The data is from the 1996 Medial Expenditure Panel Survey(MEPS). You an get more information at http://www.meps.ahrq.gov/. The six mea-sures of use are are o�e-based visits (OBDV), outpatient visits (OPV), inpatient visits(IPV), emergeny room visits (ERV), dental visits (VDV), and number of presriptiondrugs taken (PRESCR). These form olumns 1 - 6 of meps1996.data. The ondition-ing variables are publi insurane (PUBLIC), private insurane (PRIV), sex (SEX), age(AGE), years of eduation (EDUC), and inome (INCOME). These form olumns 7 - 12of the �le, in the order given here. PRIV and PUBLIC are 0/1 binary variables, where a1 indiates that the person has aess to publi or private insurane overage. SEX is also0/1, where 1 indiates that the person is female. This data will be used in examples fairlyextensively in what follows.The program ExploreMEPS.m shows how the data may be read in, and gives somedesriptive information about variables, whih follows:All of the measures of use are ount data, whih means that they take on the values
0, 1, 2, .... It might be reasonable to try to use this information by speifying the density

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/meps1996.data
http://www.meps.ahrq.gov/
http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/ExploreMEPS.m


4. EXAMPLES 154as a ount data density. One of the simplest ount data densities is the Poisson density,whih is
fY (y) =

exp(−λ)λy

y!
.The Poisson average log-likelihood funtion is

sn(θ) =
1

n

n∑

i=1

(−λi + yi lnλi − ln yi!)We will parameterize the model as
λi = exp(x′

iβ)

xi = [1 PUBLIC PRIV SEX AGE EDUC INC]′.This ensures that the mean is positive, as is required for the Poisson model. Note that forthis parameterization
βj =

∂λ/∂βj
λso

βjxj = ηλxj
,the elastiity of the onditional mean of y with respet to the jth onditioning variable.The program EstimatePoisson.m estimates a Poisson model using the full data set.The results of the estimation, using OBDV as the dependent variable are here:MPITB extensions foundOBDV******************************************************Poisson model, MEPS 1996 full data setMLE Estimation ResultsBFGS onvergene: Normal onvergeneAverage Log-L: -3.671090Observations: 4564estimate st. err t-stat p-valueonstant -0.791 0.149 -5.290 0.000pub. ins. 0.848 0.076 11.093 0.000priv. ins. 0.294 0.071 4.137 0.000sex 0.487 0.055 8.797 0.000age 0.024 0.002 11.471 0.000edu 0.029 0.010 3.061 0.002in -0.000 0.000 -0.978 0.328Information CriteriaCAIC : 33575.6881 Avg. CAIC: 7.3566

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/EstimatePoisson.m


4. EXAMPLES 155BIC : 33568.6881 Avg. BIC: 7.3551AIC : 33523.7064 Avg. AIC: 7.3452******************************************************4.3. Duration data and the Weibull model. In some ases the dependent variablemay be the time that passes between the ourene of two events. For example, it may bethe duration of a strike, or the time needed to �nd a job one one is unemployed. Suhvariables take on values on the positive real line, and are referred to as duration data.A spell is the period of time between the ourene of initial event and the onludingevent. For example, the initial event ould be the loss of a job, and the �nal event is the�nding of a new job. The spell is the period of unemployment.Let t0 be the time the initial event ours, and t1 be the time the onluding eventours. For simpliity, assume that time is measured in years. The random variable Dis the duration of the spell, D = t1 − t0. De�ne the density funtion of D, fD(t), withdistribution funtion FD(t) = Pr(D < t).Several questions may be of interest. For example, one might wish to know the expetedtime one has to wait to �nd a job given that one has already waited s years. The probabilitythat a spell lasts s years is
Pr(D > s) = 1 − Pr(D ≤ s) = 1 − FD(s).The density of D onditional on the spell already having lasted s years is

fD(t|D > s) =
fD(t)

1 − FD(s)
.The expetaned additional time required for the spell to end given that is has alreadylasted s years is the expetation of D with respet to this density, minus s.

E = E(D|D > s) − s =

(∫ ∞

t
z

fD(z)

1 − FD(s)
dz

)
− sTo estimate this funtion, one needs to speify the density fD(t) as a parametri density,then estimate by maximum likelihood. There are a number of possibilities inluding theexponential density, the lognormal, et. A reasonably �exible model that is a generalizationof the exponential density is the Weibull density

fD(t|θ) = e−(λt)γ

λγ(λt)γ−1.Aording to this model, E(D) = λ−γ . The log-likelihood is just the produt of the logdensities.To illustrate appliation of this model, 402 observations on the lifespan of mongoosesin Serengeti National Park (Tanzania) were used to �t a Weibull model. The �spell� inthis ase is the lifetime of an individual mongoose. The parameter estimates and standarderrors are λ̂ = 0.559 (0.034) and γ̂ = 0.867 (0.033) and the log-likelihood value is -659.3.Figure 5 presents �tted life expetany (expeted additional years of life) as a funtion ofage, with 95% on�dene bands. The plot is aompanied by a nonparametri Kaplan-Meier estimate of life-expetany. This nonparametri estimator simply averages all spelllengths greater than age, and then subtrats age. This is onsistent by the LLN.In the �gure one an see that the model doesn't �t the data well, in that it preditslife expetany quite di�erently than does the nonparametri model. For ages 4-6, the



4. EXAMPLES 156Figure 5. Life expetany of mongooses, Weibull model

nonparametri estimate is outside the on�dene interval that results from the parametrimodel, whih asts doubt upon the parametri model. Mongooses that are between 2-6years old seem to have a lower life expetany than is predited by the Weibull model,whereas young mongooses that survive beyond infany have a higher life expetany, upto a bit beyond 2 years. Due to the dramati hange in the death rate as a funtion of t,one might speify fD(t) as a mixture of two Weibull densities,
fD(t|θ) = δ

(
e−(λ1t)

γ1

λ1γ1(λ1t)
γ1−1

)
+ (1 − δ)

(
e−(λ2t)

γ2

λ2γ2(λ2t)
γ2−1

)
.The parameters γi and λi, i = 1, 2 are the parameters of the two Weibull densities, and δis the parameter that mixes the two.With the same data, θ an be estimated using the mixed model. The results are alog-likelihood = -623.17. Note that a standard likelihood ratio test annot be used tohose between the two models, sine under the null that δ = 1 (single density), the twoparameters λ2 and γ2 are not identi�ed. It is possible to take this into aount, but thistopi is out of the sope of this ourse. Nevertheless, the improvement in the likelihoodfuntion is onsiderable. The parameter estimates are



5. NUMERIC OPTIMIZATION: PITFALLS 157Figure 6. Life expetany of mongooses, mixed Weibull model

Parameter Estimate St. Error
λ1 0.233 0.016
γ1 1.722 0.166
λ2 1.731 0.101
γ2 1.522 0.096
δ 0.428 0.035Note that the mixture parameter is highly signi�ant. This model leads to the �t in Figure6. Note that the parametri and nonparametri �ts are quite lose to one another, up toaround 6 years. The disagreement after this point is not too important, sine less than 5%of mongooses live more than 6 years, whih implies that the Kaplan-Meier nonparametriestimate has a high variane (sine it's an average of a small number of observations).Mixture models are often an e�etive way to model omplex responses, though theyan su�er from overparameterization. Alternatives will be disussed later.5. Numeri optimization: pitfallsIn this setion we'll examine two ommon problems that an be enountered whendoing numeri optimization of nonlinear models, and some solutions.5.1. Poor saling of the data. When the data is saled so that the magnitudes ofthe �rst and seond derivatives are of di�erent orders, problems an easily result. If weunomment the appropriate line in EstimatePoisson.m, the data will not be saled, and theestimation program will have di�ulty onverging (it seems to take an in�nite amount oftime). With unsaled data, the elements of the sore vetor have very di�erent magnitudes

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/EstimatePoisson.m


5. NUMERIC OPTIMIZATION: PITFALLS 158Figure 7. A foggy mountain

at the initial value of θ (all zeros). To see this run ChekSore.m. With unsaled data,one element of the gradient is very large, and the maximum and minimum elements are5 orders of magnitude apart. This auses onvergene problems due to serious numerialinauray when doing inversions to alulate the BFGS diretion of searh. With saleddata, none of the elements of the gradient are very large, and the maximum di�erene inorders of magnitude is 3. Convergene is quik.5.2. Multiple optima. Multiple optima (one global, others loal) an ompliatelife, sine we have limited means of determining if there is a higher maximum the the onewe're at. Think of limbing a mountain in an unknown range, in a very foggy plae (Figure7). You an go up until there's nowhere else to go up, but sine you're in the fog you don'tknow if the true summit is aross the gap that's at your feet. Do you laim vitory and gohome, or do you trudge down the gap and explore the other side?The best way to avoid stopping at a loal maximum is to use many starting values,for example on a grid, or randomly generated. Or perhaps one might have priors aboutpossible values for the parameters (e.g., from previous studies of similar data).Let's try to �nd the true minimizer of minus 1 times the foggy mountain funtion (sinethe algoritms are set up to minimize). From the piture, you an see it's lose to (0, 0), butlet's pretend there is fog, and that we don't know that. The program FoggyMountain.mshows that poor start values an lead to problems. It uses SA, whih �nds the true globalminimum, and it shows that BFGS using a battery of random start values an also �ndthe global minimum help. The output of one run is here:MPITB extensions found

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/CheckScore.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/FoggyMountain.m


5. NUMERIC OPTIMIZATION: PITFALLS 159======================================================BFGSMIN final resultsUsed numeri gradient------------------------------------------------------STRONG CONVERGENCEFuntion onv 1 Param onv 1 Gradient onv 1------------------------------------------------------Objetive funtion value -0.0130329Stepsize 0.10283343 iterations------------------------------------------------------param gradient hange15.9999 -0.0000 0.0000-28.8119 0.0000 0.0000The result with poor start valuesans =16.000 -28.812================================================SAMIN final resultsNORMAL CONVERGENCEFun. tol. 1.000000e-10 Param. tol. 1.000000e-03Obj. fn. value -0.100023parameter searh width0.037419 0.000018-0.000000 0.000051================================================Now try a battery of random start values anda short BFGS on eah, then iterate to onvergeneThe result using 20 randoms start valuesans =3.7417e-02 2.7628e-07The true maximizer is near (0.037,0)In that run, the single BFGS run with bad start values onverged to a point far fromthe true minimizer, whih simulated annealing and BFGS using a battery of random startvalues both found the true maximizaer. battery of random start values managed to �nd



5. NUMERIC OPTIMIZATION: PITFALLS 160the global max. The moral of the story is be autious and don't publish your results tooquikly.



EXERCISES 161Exerises(1) In otave, type �help bfgsmin_example�, to �nd out the loation of the �le. Edit the�le to examine it and learn how to all bfgsmin. Run it, and examine the output.(2) In otave, type �help samin_example�, to �nd out the loation of the �le. Edit the�le to examine it and learn how to all samin. Run it, and examine the output.(3) Using logit.m and EstimateLogit.m as templates, write a funtion to alulate theprobit loglikelihood, and a sript to estimate a probit model. Run it using data thatatually follows a logit model (you an generate it in the same way that is done in thelogit example).(4) Study mle_results.m to see what it does. Examine the funtions that mle_results.malls, and in turn the funtions that those funtions all. Write a omplete desriptionof how the whole hain works.(5) Look at the Poisson estimation results for the OBDV measure of health are use andgive an eonomi interpretation. Estimate Poisson models for the other 5 measures ofhealth are usage.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m


CHAPTER 14Asymptoti properties of extremum estimatorsReadings: Gourieroux and Monfort (1995), Vol. 2, Ch. 24∗; Amemiya, Ch. 4 setion4.1∗; Davidson and MaKinnon, pp. 591-96; Gallant, Ch. 3; Newey and MFadden (1994),�Large Sample Estimation and Hypothesis Testing,� in Handbook of Eonometris, Vol. 4,Ch. 36. 1. Extremum estimatorsIn De�nition 0.1 we de�ned an extremum estimator θ̂ as the optimizing element of anobjetive funtion sn(θ) over a set Θ. Let the objetive funtion sn(Zn, θ) depend upon a
n× p random matrix Zn =

[
z1 z2 · · · zn

]′ where the zt are p-vetors and p is �nite.Example 18. Given the model yi = x′iθ+ εi, with n observations, de�ne zi = (yi, x
′
i)
′.The OLS estimator minimizes

sn(Zn, θ) = 1/n

n∑

i=1

(
yi − x′iθ

)2

= 1/n ‖ Y −Xθ ‖2where Y and X are de�ned similarly to Z.2. ConsistenyThe following theorem is patterned on a proof in Gallant (1987) (the artile, ref. later),whih we'll see in its original form later in the ourse. It is interesting to ompare thefollowing proof with Amemiya's Theorem 4.1.1, whih is done in terms of onvergene inprobability.Theorem 19. [Consisteny of e.e.℄ Suppose that θ̂n is obtained by maximizing sn(θ)over Θ.Assume(1) Compatness: The parameter spae Θ is an open bounded subset of Eulideanspae ℜK . So the losure of Θ, Θ, is ompat.(2) Uniform Convergene: There is a nonstohasti funtion s∞(θ) that is ontinuousin θ on Θ suh that
lim
n→∞

sup
θ∈Θ

|sn(θ) − s∞(θ)| = 0, a.s.(3) Identi�ation: s∞(·) has a unique global maximum at θ0 ∈ Θ, i.e., s∞(θ0) >

s∞(θ), ∀θ 6= θ0, θ ∈ ΘThen θ̂n a.s.→ θ0.Proof: Selet a ω ∈ Ω and hold it �xed. Then {sn(ω, θ)} is a �xed sequene offuntions. Suppose that ω is suh that sn(θ) onverges uniformly to s∞(θ). This happenswith probability one by assumption (b). The sequene {θ̂n} lies in the ompat set Θ, by162



2. CONSISTENCY 163assumption (1) and the fat that maximixation is over Θ. Sine every sequene from aompat set has at least one limit point (Davidson, Thm. 2.12), say that θ̂ is a limit pointof {θ̂n}. There is a subsequene {θ̂nm} ({nm} is simply a sequene of inreasing integers)with limm→∞ θ̂nm = θ̂. By uniform onvergene and ontinuity
lim
m→∞

snm(θ̂nm) = s∞(θ̂).To see this, �rst of all, selet an element θ̂t from the sequene {θ̂nm

}
. Then uniformonvergene implies

lim
m→∞

snm(θ̂t) = s∞(θ̂t).Continuity of s∞ (·) implies that
lim
t→∞

s∞(θ̂t) = s∞(θ̂)sine the limit as t→ ∞ of {θ̂t} is θ̂. So the above laim is true.Next, by maximization
snm(θ̂nm) ≥ snm(θ0)whih holds in the limit, so

lim
m→∞

snm(θ̂nm) ≥ lim
m→∞

snm(θ0).However,
lim
m→∞

snm(θ̂nm) = s∞(θ̂),as seen above, and
lim
m→∞

snm(θ0) = s∞(θ0)by uniform onvergene, so
s∞(θ̂) ≥ s∞(θ0).But by assumption (3), there is a unique global maximum of s∞(θ) at θ0, so we must have

s∞(θ̂) = s∞(θ0), and θ̂ = θ0. Finally, all of the above limits hold almost surely, sine sofar we have held ω �xed, but now we need to onsider all ω ∈ Ω. Therefore {θ̂n} has onlyone limit point, θ0, exept on a set C ⊂ Ω with P (C) = 0.Disussion of the proof:
• This proof relies on the identi�ation assumption of a unique global maximum at
θ0. An equivalent way to state this is(2) Identi�ation: Any point θ in Θ with s∞(θ) ≥ s∞(θ0) must be suh that ‖ θ−θ0 ‖= 0,whih mathes the way we will write the assumption in the setion on nonparametriinferene.

• We assume that θ̂n is in fat a global maximum of sn (θ) . It is not required to beunique for n �nite, though the identi�ation assumption requires that the limitingobjetive funtion have a unique maximizing argument. The previous setion onnumeri optimization methods showed that atually �nding the global maximumof sn (θ) may be a non-trivial problem.
• See Amemiya's Example 4.1.4 for a ase where disontinuity leads to breakdownof onsisteny.
• The assumption that θ0 is in the interior of Θ (part of the identi�ation assump-tion) has not been used to prove onsisteny, so we ould diretly assume that θ0is simply an element of a ompat set Θ. The reason that we assume it's in the



2. CONSISTENCY 164interior here is that this is neessary for subsequent proof of asymptoti normality,and I'd like to maintain a minimal set of simple assumptions, for larity. Param-eters on the boundary of the parameter set ause theoretial di�ulties that wewill not deal with in this ourse. Just note that onventional hypothesis testingmethods do not apply in this ase.
• Note that sn (θ) is not required to be ontinuous, though s∞(θ) is.
• The following �gures illustrate why uniform onvergene is important. In theseond �gure, if the funtion is not onverging around the lower of the two maxima,there is no guarantee that the maximizer will be in the neighborhood of the globalmaximizer.

With uniform convergence, the maximum of the sample
objective function eventually must be in the neighborhood
of the maximum of the limiting objective function

With pointwise convergence, the sample objective function
may have its maximum far away from that of the limiting
objective function

We need a uniform strong law of large numbers in order to verify assumption (2) ofTheorem 19. The following theorem is from Davidson, pg. 337.



3. EXAMPLE: CONSISTENCY OF LEAST SQUARES 165Theorem 20. [Uniform Strong LLN℄ Let {Gn(θ)} be a sequene of stohasti real-valued funtions on a totally-bounded metri spae (Θ, ρ). Then
sup
θ∈Θ

|Gn(θ)| a.s.→ 0if and only if(a) Gn(θ) a.s.→ 0 for eah θ ∈ Θ0, where Θ0 is a dense subset of Θ and(b) {Gn(θ)} is strongly stohastially equiontinuous..
• The metri spae we are interested in now is simply Θ ⊂ ℜK , using the Eulideannorm.
• The pointwise almost sure onvergene needed for assuption (a) omes from oneof the usual SLLN's.
• Stronger assumptions that imply those of the theorem are:� the parameter spae is ompat (this has already been assumed)� the objetive funtion is ontinuous and bounded with probability one on theentire parameter spae� a standard SLLN an be shown to apply to some point in the parameterspae
• These are reasonable onditions in many ases, and heneforth when dealing withspei� estimators we'll simply assume that pointwise almost sure onvergenean be extended to uniform almost sure onvergene in this way.
• The more general theorem is useful in the ase that the limiting objetive funtionan be ontinuous in θ even if sn(θ) is disontinuous. This an happen beausedisontinuities may be smoothed out as we take expetations over the data. Inthe setion on simlation-based estimation we will se a ase of a disontinuousobjetive funtion.

3. Example: Consisteny of Least SquaresWe suppose that data is generated by random sampling of (y,w), where yt = α0 +β0wt

+εt. (wt, εt) has the ommon distribution funtion µwµε (w and ε are independent) withsupport W × E . Suppose that the varianes σ2
w and σ2

ε are �nite. Let θ0 = (α0, β0)′ ∈ Θ,for whih Θ is ompat. Let xt = (1, wt)
′, so we an write yt = x′tθ

0 + εt. The sampleobjetive funtion for a sample size n is
sn(θ) = 1/n

n∑

t=1

(
yt − x′tθ

)2
= 1/n

n∑

i=1

(
x′tθ

0 + εt − x′tθ
)2

= 1/n

n∑

t=1

(
x′t
(
θ0 − θ

))2
+ 2/n

n∑

t=1

x′t
(
θ0 − θ

)
εt + 1/n

n∑

t=1

ε2t

• Considering the last term, by the SLLN,
1/n

n∑

t=1

ε2t
a.s.→
∫

W

∫

E
ε2dµWdµE = σ2

ε .

• Considering the seond term, sine E(ε) = 0 and w and ε are independent, theSLLN implies that it onverges to zero.
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• Finally, for the �rst term, for a given θ, we assume that a SLLN applies so that

1/n
n∑

t=1

(
x′t
(
θ0 − θ

))2 a.s.→
∫

W

(
x′
(
θ0 − θ

))2
dµW(31)

=
(
α0 − α

)2
+ 2

(
α0 − α

) (
β0 − β

) ∫

W
wdµW +

(
β0 − β

)2 ∫

W
w2dµW

=
(
α0 − α

)2
+ 2

(
α0 − α

) (
β0 − β

)
E(w) +

(
β0 − β

)2
E
(
w2
)Finally, the objetive funtion is learly ontinuous, and the parameter spae is assumedto be ompat, so the onvergene is also uniform. Thus,

s∞(θ) =
(
α0 − α

)2
+ 2

(
α0 − α

) (
β0 − β

)
E(w) +

(
β0 − β

)2
E
(
w2
)

+ σ2
εA minimizer of this is learly α = α0, β = β0.Exerise 21. Show that in order for the above solution to be unique it is neessary that

E(w2) 6= 0. Disuss the relationship between this ondition and the problem of olinearityof regressors.This example shows that Theorem 19 an be used to prove strong onsisteny of theOLS estimator. There are easier ways to show this, of ourse - this is only an example ofappliation of the theorem. 4. Asymptoti NormalityA onsistent estimator is oftentimes not very useful unless we know how fast it is likelyto be onverging to the true value, and the probability that it is far away from the truevalue. Establishment of asymptoti normality with a known saling fator solves these twoproblems. The following theorem is similar to Amemiya's Theorem 4.1.3 (pg. 111).Theorem 22. [Asymptoti normality of e.e.℄ In addition to the assumptions of The-orem 19, assume(a) Jn(θ) ≡ D2
θsn(θ) exists and is ontinuous in an open, onvex neighborhood of θ0.(b) {Jn(θn)} a.s.→ J∞(θ0), a �nite negative de�nite matrix, for any sequene {θn} thatonverges almost surely to θ0.() √nDθsn(θ
0)

d→ N
[
0,I∞(θ0)

]
, where I∞(θ0) = limn→∞ V ar

√
nDθsn(θ

0)Then √
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]Proof: By Taylor expansion:
Dθsn(θ̂n) = Dθsn(θ

0) +D2
θsn(θ

∗)
(
θ̂ − θ0

)where θ∗ = λθ̂ + (1 − λ)θ0, 0 ≤ λ ≤ 1.

• Note that θ̂ will be in the neighborhood where D2
θsn(θ) exists with probabilityone as n beomes large, by onsisteny.

• Now the l.h.s. of this equation is zero, at least asymptotially, sine θ̂n is amaximizer and the f.o.. must hold exatly sine the limiting objetive funtionis stritly onave in a neighborhood of θ0.

• Also, sine θ∗ is between θ̂n and θ0, and sine θ̂n a.s.→ θ0 , assumption (b) gives
D2
θsn(θ

∗)
a.s.→ J∞(θ0)So

0 = Dθsn(θ
0) +

[
J∞(θ0) + op(1)

] (
θ̂ − θ0

)
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0 =

√
nDθsn(θ

0) +
[
J∞(θ0) + op(1)

]√
n
(
θ̂ − θ0

)Now J∞(θ0) is a �nite negative de�nite matrix, so the op(1) term is asymptotially irrele-vant next to J∞(θ0), so we an write
0
a
=

√
nDθsn(θ

0) + J∞(θ0)
√
n
(
θ̂ − θ0

)

√
n
(
θ̂ − θ0

)
a
= −J∞(θ0)−1√nDθsn(θ

0)Beause of assumption (), and the formula for the variane of a linear ombination ofr.v.'s, √
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]

• Assumption (b) is not implied by the Slutsky theorem. The Slutsky theorem saysthat g(xn) a.s.→ g(x) if xn → x and g(·) is ontinuous at x. However, the funtion
g(·) an't depend on n to use this theorem. In our ase Jn(θn) is a funtion of n.A theorem whih applies (Amemiya, Ch. 4) isTheorem 23. If gn(θ) onverges uniformly almost surely to a nonstohasti funtion

g∞(θ) uniformly on an open neighborhood of θ0, then gn(θ̂) a.s.→ g∞(θ0) if g∞(θ0) is on-tinuous at θ0 and θ̂ a.s.→ θ0.

• To apply this to the seond derivatives, su�ient onditions would be that theseond derivatives be strongly stohastially equiontinuous on a neighborhoodof θ0, and that an ordinary LLN applies to the derivatives when evaluated at
θ ∈ N(θ0).

• Stronger onditions that imply this are as above: ontinuous and bounded seondderivatives in a neighborhood of θ0.

• Skip this in leture. A note on the order of these matries: Supposing that
sn(θ) is representable as an average of n terms, whih is the ase for all estimatorswe onsider, D2

θsn(θ) is also an average of n matries, the elements of whih arenot entered (they do not have zero expetation). Supposing a SLLN applies, thealmost sure limit of D2
θsn(θ

0), J∞(θ0) = O(1), as we saw in Example 51. On theother hand, assumption ():√nDθsn(θ
0)

d→ N
[
0,I∞(θ0)

] means that
√
nDθsn(θ

0) = Op()where we use the result of Example 49. If we were to omit the √
n, we'd have

Dθsn(θ
0) = n−

1

2Op(1)

= Op

(
n−

1

2

)where we use the fat that Op(nr)Op(nq) = Op(n
r+q). The sequene Dθsn(θ

0) isentered, so we need to sale by √
n to avoid onvergene to zero.5. Examples5.1. Coin �ipping, yet again. Remember that in setion 4.1 we saw that the as-ymptoti variane of the MLE of the parameter of a Bernoulli trial, using i.i.d. data, was

limV ar
√
n (p̂− p) = p (1 − p). Let's verify this using the methods of this Chapter. The



5. EXAMPLES 168log-likelihood funtion is
sn(p) =

1

n

n∑

t=1

{yt ln p+ (1 − yt) (1 − ln p)}so
Esn(p) = p0 ln p+

(
1 − p0

)
(1 − ln p)by the fat that the observations are i.i.d. Thus, s∞(p) = p0 ln p +

(
1 − p0

)
(1 − ln p). Abit of alulation shows that

D2
θsn(p)

∣∣
p=p0

≡ Jn(θ) =
−1

p0 (1 − p0)
,whih doesn't depend upon n. By results we've seen on MLE, limV ar

√
n
(
p̂− p0

)
=

−J−1
∞ (p0). And in this ase, −J−1

∞ (p0) = p0
(
1 − p0

). It's omforting to see that this isthe same result we got in setion 4.1.5.2. Binary response models. Extending the Bernoulli trial model to binary re-sponse models with onditioning variables, suh models arise in a variety of ontexts.We've already seen a logit model. Another simple example is a probit threshold-rossingmodel. Assume that
y∗ = x′β − ε

y = 1(y∗ > 0)

ε ∼ N(0, 1)Here, y∗ is an unobserved (latent) ontinuous variable, and y is a binary variable thatindiates whether y∗is negative or positive. Then Pr(y = 1) = Pr(ε < xβ) = Φ(xβ),where
Φ(•) =

∫ xβ

−∞
(2π)−1/2 exp(−ε

2

2
)dεis the standard normal distribution funtion.In general, a binary response model will require that the hoie probability be param-eterized in some form. For a vetor of explanatory variables x, the response probabilitywill be parameterized in some manner

Pr(y = 1|x) = p(x, θ)If p(x, θ) = Λ(x′θ), we have a logit model. If p(x, θ) = Φ(x′θ), where Φ(·) is the standardnormal distribution funtion, then we have a probit model.Regardless of the parameterization, we are dealing with a Bernoulli density,
fYi

(yi|xi) = p(xi, θ)
yi(1 − p(x, θ))1−yiso as long as the observations are independent, the maximum likelihood (ML) estimator,

θ̂, is the maximizer of
sn(θ) =

1

n

n∑

i=1

(yi ln p(xi, θ) + (1 − yi) ln [1 − p(xi, θ)])

≡ 1

n

n∑

i=1

s(yi, xi, θ).(32)Following the above theoretial results, θ̂ tends in probability to the θ0 that maximizes theuniform almost sure limit of sn(θ). Noting that Eyi = p(xi, θ
0), and following a SLLN for



5. EXAMPLES 169i.i.d. proesses, sn(θ) onverges almost surely to the expetation of a representative term
s(y, x, θ). First one an take the expetation onditional on x to get
Ey|x {y ln p(x, θ) + (1 − y) ln [1 − p(x, θ)]} = p(x, θ0) ln p(x, θ)+

[
1 − p(x, θ0)

]
ln [1 − p(x, θ)] .Next taking expetation over x we get the limiting objetive funtion(33) s∞(θ) =

∫

X

{
p(x, θ0) ln p(x, θ) +

[
1 − p(x, θ0)

]
ln [1 − p(x, θ)]

}
µ(x)dx,where µ(x) is the (joint - the integral is understood to be multiple, and X is the support of

x) density funtion of the explanatory variables x. This is learly ontinuous in θ, as longas p(x, θ) is ontinuous, and if the parameter spae is ompat we therefore have uniformalmost sure onvergene. Note that p(x, θ) is ontinous for the logit and probit models,for example. The maximizing element of s∞(θ), θ∗, solves the �rst order onditions
∫

X

{
p(x, θ0)

p(x, θ∗)
∂

∂θ
p(x, θ∗) − 1 − p(x, θ0)

1 − p(x, θ∗)
∂

∂θ
p(x, θ∗)

}
µ(x)dx = 0This is learly solved by θ∗ = θ0. Provided the solution is unique, θ̂ is onsistent. Question:what's needed to ensure that the solution is unique?The asymptoti normality theorem tells us that

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
.In the ase of i.i.d. observations I∞(θ0) = limn→∞ V ar

√
nDθsn(θ

0) is simply the expe-tation of a typial element of the outer produt of the gradient.
• There's no need to subtrat the mean, sine it's zero, following the f.o.. in theonsisteny proof above and the fat that observations are i.i.d.
• The terms in n also drop out by the same argument:

lim
n→∞

V ar
√
nDθsn(θ

0) = lim
n→∞

V ar
√
nDθ

1

n

∑

t

s(θ0)

= lim
n→∞

V ar
1√
n
Dθ

∑

t

s(θ0)

= lim
n→∞

1

n
V ar

∑

t

Dθs(θ
0)

= lim
n→∞

V arDθs(θ
0)

= V arDθs(θ
0)So we get

I∞(θ0) = E
{
∂

∂θ
s(y, x, θ0)

∂

∂θ′
s(y, x, θ0)

}
.Likewise,

J∞(θ0) = E ∂2

∂θ∂θ′
s(y, x, θ0).Expetations are jointly over y and x, or equivalently, �rst over y onditional on x, thenover x. From above, a typial element of the objetive funtion is

s(y, x, θ0) = y ln p(x, θ0) + (1 − y) ln
[
1 − p(x, θ0)

]
.Now suppose that we are dealing with a orretly spei�ed logit model:

p(x, θ) =
(
1 + exp(−x′θ)

)−1
.



5. EXAMPLES 170We an simplify the above results in this ase. We have that
∂

∂θ
p(x, θ) =

(
1 + exp(−x′θ)

)−2
exp(−x′θ)x

=
(
1 + exp(−x′θ)

)−1 exp(−x′θ)
1 + exp(−x′θ)

x

= p(x, θ) (1 − p(x, θ))x

=
(
p(x, θ) − p(x, θ)2

)
x.So

∂

∂θ
s(y, x, θ0) =

[
y − p(x, θ0)

]
x(34)

∂2

∂θ∂θ′
s(θ0) = −

[
p(x, θ0) − p(x, θ0)2

]
xx′.Taking expetations over y then x gives

I∞(θ0) =

∫
EY
[
y2 − 2p(x, θ0)p(x, θ0) + p(x, θ0)2

]
xx′µ(x)dx(35)

=

∫ [
p(x, θ0) − p(x, θ0)2

]
xx′µ(x)dx.(36)where we use the fat that EY (y) = EY (y2) = p(x, θ0). Likewise,(37) J∞(θ0) = −

∫ [
p(x, θ0) − p(x, θ0)2

]
xx′µ(x)dx.Note that we arrive at the expeted result: the information matrix equality holds (that is,

J∞(θ0) = −I∞(θ0)). With this,
√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]simpli�es to √
n
(
θ̂ − θ0

)
d→ N

[
0,−J∞(θ0)−1

]whih an also be expressed as
√
n
(
θ̂ − θ0

)
d→ N

[
0,I∞(θ0)−1

]
.On a �nal note, the logit and standard normal CDF's are very similar - the logitdistribution is a bit more fat-tailed. While oe�ients will vary slightly between thetwo models, funtions of interest suh as estimated probabilities p(x, θ̂) will be virtuallyidential for the two models.5.3. Example: Linearization of a nonlinear model. Ref. Gourieroux and Mon-fort, setion 8.3.4. White, Intn'l Eon. Rev. 1980 is an earlier referene.Suppose we have a nonlinear model

yi = h(xi, θ
0) + εiwhere

εi ∼ iid(0, σ2)The nonlinear least squares estimator solves
θ̂n = arg min

1

n

n∑

i=1

(yi − h(xi, θ))
2



5. EXAMPLES 171We'll study this more later, but for now it is lear that the fo for minimization will requiresolving a set of nonlinear equations. A ommon approah to the problem seeks to avoidthis di�ulty by linearizing the model. A �rst order Taylor's series expansion about thepoint x0 with remainder gives
yi = h(x0, θ0) + (xi − x0)

′ ∂h(x0, θ
0)

∂x
+ νiwhere νi enompasses both εi and the Taylor's series remainder. Note that νi is no longera lassial error - its mean is not zero. We should expet problems.De�ne

α∗ = h(x0, θ
0) − x′0

∂h(x0, θ0)

∂x

β∗ =
∂h(x0, θ

0)

∂xGiven this, one might try to estimate α∗ and β∗ by applying OLS to
yi = α+ βxi + νi

• Question, will α̂ and β̂ be onsistent for α∗ and β∗?
• The answer is no, as one an see by interpreting α̂ and β̂ as extremum estimators.Let γ = (α, β′)′.

γ̂ = arg min sn(γ) =
1

n

n∑

i=1

(yi − α− βxi)
2The objetive funtion onverges to its expetation

sn(γ)
u.a.s.→ s∞(γ) = EXEY |X (y − α− βx)2and γ̂ onverges a.s. to the γ0 that minimizes s∞(γ):

γ0 = arg min EXEY |X (y − α− βx)2Noting that
EXEY |X

(
y − α− x′β

)2
= EXEY |X

(
h(x, θ0) + ε− α− βx

)2

= σ2 + EX
(
h(x, θ0) − α− βx

)2sine ross produts involving ε drop out. α0 and β0 orrespond to the hyperplane that islosest to the true regression funtion h(x, θ0) aording to the mean squared error rite-rion. This depends on both the shape of h(·) and the density funtion of the onditioningvariables.



5. EXAMPLES 172

x_0

α

β

x

x

x

x

x
x x

x

x

x

Tangent line

Fitted line

Inconsistency of the linear approximation, even at 
the approximation point

h(x,θ)

• It is lear that the tangent line does not minimize MSE, sine, for example, if
h(x, θ0) is onave, all errors between the tangent line and the true funtion arenegative.

• Note that the true underlying parameter θ0 is not estimated onsistently, either(it may be of a di�erent dimension than the dimension of the parameter of theapproximating model, whih is 2 in this example).
• Seond order and higher-order approximations su�er from exatly the same prob-lem, though to a less severe degree, of ourse. For this reason, translog, Gen-eralized Leontiev and other ��exible funtional forms� based upon seond-orderapproximations in general su�er from bias and inonsisteny. The bias may notbe too important for analysis of onditional means, but it an be very importantfor analyzing �rst and seond derivatives. In prodution and onsumer analysis,�rst and seond derivatives (e.g., elastiities of substitution) are often of interest,so in this ase, one should be autious of unthinking appliation of models thatimpose stong restritions on seond derivatives.
• This sort of linearization about a long run equilibrium is a ommon pratie indynami maroeonomi models. It is justi�ed for the purposes of theoretialanalysis of a model given the model's parameters, but it is not justi�able for theestimation of the parameters of the model using data. The setion on simulation-based methods o�ers a means of obtaining onsistent estimators of the parametersof dynami maro models that are too omplex for standard methods of analysis.



5. EXAMPLES 173Chapter Exerises(1) Suppose that xi ∼ uniform(0,1), and yi = 1−x2
i +εi, where εi is iid(0,σ2). Supposewe estimate the misspei�ed model yi = α + βxi + ηi by OLS. Find the numerivalues of α0 and β0 that are the probability limits of α̂ and β̂(2) Verify your results using Otave by generating data that follows the above model,and alulating the OLS estimator. When the sample size is very large the es-timator should be very lose to the analytial results you obtained in question1.(3) Use the asymptoti normality theorem to �nd the asymptoti distribution of theML estimator of β0 for the model y = xβ0 + ε, where ε ∼ N(0, 1) and is in-dependent of x. This means �nding ∂2

∂β∂β′ sn(β), J (β0), ∂sn(β)
∂β

∣∣∣ , and I(β0). Theexpressions may involve the unspei�ed density of x.(4) Assume a d.g.p. follows the logit model: Pr(y = 1|x) =
(
1 + exp(−β0x)

)−1.(a) Assume that x ∼ uniform(-a,a). Find the asymptoti distribution of the MLestimator of β0 (this is a salar parameter).(b) Now assume that x ∼ uniform(-2a,2a). Again �nd the asymptoti distribu-tion of the ML estimator of β0.() Comment on the results



CHAPTER 15Generalized method of moments (GMM)Readings: Hamilton Ch. 14∗; Davidson and MaKinnon, Ch. 17 (see pg. 587 for refs.to appliations); Newey and MFadden (1994), �Large Sample Estimation and HypothesisTesting,� in Handbook of Eonometris, Vol. 4, Ch. 36.
1. De�nitionWe've already seen one example of GMM in the introdution, based upon the χ2distribution. Consider the following example based upon the t-distribution. The densityfuntion of a t-distributed r.v. Yt is

fYt(yt, θ
0) =

Γ
[(
θ0 + 1

)
/2
]

(πθ0)1/2 Γ (θ0/2)

[
1 +

(
y2
t /θ

0
)]−(θ0+1)/2Given an iid sample of size n, one ould estimate θ0 by maximizing the log-likelihoodfuntion

θ̂ ≡ arg max
Θ

lnLn(θ) =

n∑

t=1

ln fYt(yt, θ)

• This approah is attrative sine ML estimators are asymptotially e�ient. Thisis beause the ML estimator uses all of the available information (e.g., the dis-tribution is fully spei�ed up to a parameter). Realling that a distribution isompletely haraterized by its moments, the ML estimator is interpretable as aGMM estimator that uses all of the moments. The method of moments estimatoruses only K moments to estimate a K− dimensional parameter. Sine informa-tion is disarded, in general, by the MM estimator, e�ieny is lost relative tothe ML estimator.
• Continuing with the example, a t-distributed r.v. with density fYt(yt, θ

0) hasmean zero and variane V (yt) = θ0/
(
θ0 − 2

) (for θ0 > 2).

• Using the notation introdued previously, de�ne a moment ondition m1t(θ) =

θ/ (θ − 2) − y2
t and m1(θ) = 1/n

∑n
t=1m1t(θ) = θ/ (θ − 2) − 1/n

∑n
t=1 y

2
t . Asbefore, when evaluated at the true parameter value θ0, both Eθ0

[
m1t(θ

0)
]

= 0and Eθ0
[
m1(θ

0)
]

= 0.

• Choosing θ̂ to set m1(θ̂) ≡ 0 yields a MM estimator:(38) θ̂ =
2

1 − nP
i y

2
iThis estimator is based on only one moment of the distribution - it uses less informationthan the ML estimator, so it is intuitively lear that the MM estimator will be ine�ientrelative to the ML estimator. 174
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• An alternative MM estimator ould be based upon the fourth moment of thet-distribution. The fourth moment of a t-distributed r.v. is

µ4 ≡ E(y4
t ) =

3
(
θ0
)2

(θ0 − 2) (θ0 − 4)
,provided θ0 > 4. We an de�ne a seond moment ondition

m2(θ) =
3 (θ)2

(θ − 2) (θ − 4)
− 1

n

n∑

t=1

y4
t

• A seond, di�erent MM estimator hooses θ̂ to set m2(θ̂) ≡ 0. If you solve thisyou'll see that the estimate is di�erent from that in equation 38.This estimator isn't e�ient either, sine it uses only one moment. A GMM estimatorwould use the two moment onditions together to estimate the single parameter. TheGMM estimator is overidenti�ed, whih leads to an estimator whih is e�ient relative tothe just identi�ed MM estimators (more on e�ieny later).
• As before, set mn(θ) = (m1(θ),m2(θ))

′ . The n subsript is used to indiate thesample size. Note that m(θ0) = Op(n
−1/2), sine it is an average of enteredrandom variables, whereas m(θ) = Op(1), θ 6= θ0, where expetations are takenusing the true distribution with parameter θ0. This is the fundamental reasonthat GMM is onsistent.

• A GMM estimator requires de�ning a measure of distane, d (m(θ)). A popularhoie (for reasons noted below) is to set d (m(θ)) = m′Wnm, and we minimize
sn(θ) = m(θ)′Wnm(θ). We assume Wn onverges to a �nite positive de�nite ma-trix.

• In general, assume we have g moment onditions, so m(θ) is a g -vetor and Wis a g × g matrix.For the purposes of this ourse, the following de�nition of the GMM estimator is su�ientlygeneral:Definition 24. The GMM estimator of the K -dimensional parameter vetor θ0,

θ̂ ≡ arg minΘ sn(θ) ≡ mn(θ)
′Wnmn(θ), where mn(θ) = 1

n

∑n
t=1mt(θ) is a g-vetor, g ≥ K,with Eθm(θ) = 0, and Wn onverges almost surely to a �nite g × g symmetri positivede�nite matrix W∞.What's the reason for using GMM if MLE is asymptotially e�ient?

• Robustness: GMM is based upon a limited set of moment onditions. For on-sisteny, only these moment onditions need to be orretly spei�ed, whereasMLE in e�et requires orret spei�ation of every oneivable moment ondi-tion. GMM is robust with respet to distributional misspei�ation. The prie forrobustness is loss of e�ieny with respet to the MLE estimator. Keep in mindthat the true distribution is not known so if we erroneously speify a distributionand estimate by MLE, the estimator will be inonsistent in general (not always).� Feasibility: in some ases the MLE estimator is not available, beause we arenot able to dedue the likelihood funtion. More on this in the setion onsimulation-based estimation. The GMM estimator may still be feasible eventhough MLE is not possible.



3. ASYMPTOTIC NORMALITY 1762. ConsistenyWe simply assume that the assumptions of Theorem 19 hold, so the GMM estimatoris strongly onsistent. The only assumption that warrants additional omments is thatof identi�ation. In Theorem 19, the third assumption reads: () Identi�ation: s∞(·)has a unique global maximum at θ0, i.e., s∞(θ0) > s∞(θ), ∀θ 6= θ0. Taking the ase of aquadrati objetive funtion sn(θ) = mn(θ)
′Wnmn(θ), �rst onsider mn(θ).

• Applying a uniform law of large numbers, we get mn(θ)
a.s.→ m∞(θ).

• Sine Eθ′mn(θ
0) = 0 by assumption, m∞(θ0) = 0.

• Sine s∞(θ0) = m∞(θ0)′W∞m∞(θ0) = 0, in order for asymptoti identi�ation,we need that m∞(θ) 6= 0 for θ 6= θ0, for at least some element of the vetor. Thisand the assumption that Wn
a.s.→ W∞, a �nite positive g × g de�nite g × g matrixguarantee that θ0 is asymptotially identi�ed.

• Note that asymptoti identi�ation does not rule out the possibility of lak ofidenti�ation for a given data set - there may be multiple minimizing solutions in�nite samples.
3. Asymptoti normalityWe also simply assume that the onditions of Theorem 22 hold, so we will have as-ymptoti normality. However, we do need to �nd the struture of the asymptoti variane-ovariane matrix of the estimator. From Theorem 22, we have

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′ sn(θ) and I∞(θ0) = limn→∞ V ar
√
n ∂
∂θsn(θ

0).We need to determine the form of these matries given the objetive funtion sn(θ) =

mn(θ)
′Wnmn(θ).Now using the produt rule from the introdution,

∂

∂θ
sn(θ) = 2

[
∂

∂θ
m

′

n (θ)

]
Wnmn (θ)De�ne the K × g matrix

Dn(θ) ≡
∂

∂θ
m′
n (θ) ,so:(39) ∂

∂θ
s(θ) = 2D(θ)Wm (θ) .(Note that sn(θ), Dn(θ), Wn and mn(θ) all depend on the sample size n, but it is omittedto unlutter the notation).To take seond derivatives, let Di be the i− th row of D(θ). Using the produt rule,

∂2

∂θ′∂θi
s(θ) =

∂

∂θ′
2Di(θ)Wnm (θ)

= 2DiWD′ + 2m′W

[
∂

∂θ′
D′
i

]When evaluating the term
2m(θ)′W

[
∂

∂θ′
D(θ)′i

]



4. CHOOSING THE WEIGHTING MATRIX 177at θ0, assume that ∂
∂θ′D(θ)′i satis�es a LLN, so that it onverges almost surely to a �nitelimit. In this ase, we have

2m(θ0)′W

[
∂

∂θ′
D(θ0)′i

]
a.s.→ 0,sine m(θ0) = op(1), W

a.s.→ W∞.Staking these results over the K rows of D, we get
lim

∂2

∂θ∂θ′
sn(θ

0) = J∞(θ0) = 2D∞W∞D
′
∞, a.s.,where we de�ne limD = D∞, a.s., and limW = W∞, a.s. (we assume a LLN holds).With regard to I∞(θ0), following equation 39, and noting that the sores have meanzero at θ0 (sine Em(θ0) = 0 by assumption), we have

I∞(θ0) = lim
n→∞

V ar
√
n
∂

∂θ
sn(θ

0)

= lim
n→∞

E4nDnWnm(θ0)m(θ)′WnD
′
n

= lim
n→∞

E4DnWn

{√
nm(θ0)

}{√
nm(θ)′

}
WnD

′
nNow, given that m(θ0) is an average of entered (mean-zero) quantities, it is reasonable toexpet a CLT to apply, after multipliation by √

n. Assuming this,
√
nm(θ0)

d→ N(0,Ω∞),where
Ω∞ = lim

n→∞
E
[
nm(θ0)m(θ0)′

]
.Using this, and the last equation, we get

I∞(θ0) = 4D∞W∞Ω∞W∞D
′
∞Using these results, the asymptoti normality theorem gives us

√
n
(
θ̂ − θ0

)
d→ N

[
0,
(
D∞W∞D

′
∞
)−1

D∞W∞Ω∞W∞D
′
∞
(
D∞W∞D

′
∞
)−1
]
,the asymptoti distribution of the GMM estimator for arbitrary weighting matrix Wn.Note that for J∞ to be positive de�nite, D∞ must have full row rank, ρ(D∞) = k.4. Choosing the weighting matrix

W is a weighting matrix, whih determines the relative importane of violations of theindividual moment onditions. For example, if we are muh more sure of the �rst momentondition, whih is based upon the variane, than of the seond, whih is based upon thefourth moment, we ould set
W =

[
a 0

0 b

]with a muh larger than b. In this ase, errors in the seond moment ondition have lessweight in the objetive funtion.
• Sine moments are not independent, in general, we should expet that there be aorrelation between the moment onditions, so it may not be desirable to set theo�-diagonal elements to 0. W may be a random, data dependent matrix.
• We have already seen that the hoie of W will in�uene the asymptoti distri-bution of the GMM estimator. Sine the GMM estimator is already ine�ient



4. CHOOSING THE WEIGHTING MATRIX 178w.r.t. MLE, we might like to hoose the W matrix to make the GMM estimatore�ient within the lass of GMM estimators de�ned by mn(θ).
• To provide a little intuition, onsider the linear model y = x′β + ε, where ε ∼
N(0,Ω). That is, he have heterosedastiity and autoorrelation.

• Let P be the Cholesky fatorization of Ω−1, e.g, P ′P = Ω−1.

• Then the model Py = PXβ+Pε satis�es the lassial assumptions of homosedas-tiity and nonautoorrelation, sine V (Pε) = PV (ε)P ′ = PΩP ′ = P (P ′P )−1P ′ =

PP−1 (P ′)−1 P ′ = In. (Note: we use (AB)−1 = B−1A−1 for A, B both nonsingu-lar). This means that the transformed model is e�ient.
• The OLS estimator of the model Py = PXβ+Pε minimizes the objetive funtion

(y−Xβ)′Ω−1(y−Xβ). Interpreting (y − Xβ) = ε(β) as moment onditions (notethat they do have zero expetation when evaluated at β0), the optimal weightingmatrix is seen to be the inverse of the ovariane matrix of the moment onditions.This result arries over to GMM estimation. (Note: this presentation of GLS isnot a GMM estimator, beause the number of moment onditions here is equal tothe sample size, n. Later we'll see that GLS an be put into the GMM frameworkde�ned above).Theorem 25. If θ̂ is a GMM estimator that minimizesmn(θ)
′Wnmn(θ), the asymptotivariane of θ̂ will be minimized by hoosing Wn so that Wn

a.s→ W∞ = Ω−1
∞ , where Ω∞ =

limn→∞ E
[
nm(θ0)m(θ0)′

]
.Proof: For W∞ = Ω−1

∞ , the asymptoti variane
(
D∞W∞D

′
∞
)−1

D∞W∞Ω∞W∞D
′
∞
(
D∞W∞D

′
∞
)−1simpli�es to (D∞Ω−1

∞ D′
∞
)−1

. Now, for any hoie suh that W∞ 6= Ω−1
∞ , onsider thedi�erene of the inverses of the varianes when W = Ω−1 versus when W is some arbitrarypositive de�nite matrix:

(
D∞Ω−1

∞ D′
∞
)
−
(
D∞W∞D

′
∞
) [
D∞W∞Ω∞W∞D

′
∞
]−1 (

D∞W∞D
′
∞
)

= D∞Ω−1/2
∞

[
I − Ω1/2

∞
(
W∞D

′
∞
) [
D∞W∞Ω∞W∞D

′
∞
]−1

D∞W∞Ω1/2
∞
]
Ω−1/2
∞ D′

∞as an be veri�ed by multipliation. The term in brakets is idempotent, whih is also easyto hek by multipliation, and is therefore positive semide�nite. A quadrati form in apositive semide�nite matrix is also positive semide�nite. The di�erene of the inverses ofthe varianes is positive semide�nite, whih implies that the di�erene of the varianes isnegative semide�nite, whih proves the theorem.The result(40) √
n
(
θ̂ − θ0

)
d→ N

[
0,
(
D∞Ω−1

∞ D′
∞
)−1
]allows us to treat

θ̂ ≈ N

(
θ0,

(
D∞Ω−1

∞ D′
∞
)−1

n

)
,where the ≈ means �approximately distributed as.� To operationalize this we need estima-tors of D∞ and Ω∞.

• The obvious estimator of D̂∞ is simply ∂
∂θm

′
n

(
θ̂
)
, whih is onsistent by theonsisteny of θ̂, assuming that ∂

∂θm
′
n is ontinuous in θ. Stohasti equiontinuity



5. ESTIMATION OF THE VARIANCE-COVARIANCE MATRIX 179results an give us this result even if ∂
∂θm

′
n is not ontinuous. We now turn toestimation of Ω∞.5. Estimation of the variane-ovariane matrix(See Hamilton Ch. 10, pp. 261-2 and 280-84)∗.In the ase that we wish to use the optimal weighting matrix, we need an estimateof Ω∞, the limiting variane-ovariane matrix of √nmn(θ

0). While one ould estimate
Ω∞ parametrially, we in general have little information upon whih to base a parametrispei�ation. In general, we expet that:

• mt will be autoorrelated (Γts = E(mtm
′
t−s) 6= 0). Note that this autoovarianewill not depend on t if the moment onditions are ovariane stationary.

• ontemporaneously orrelated, sine the individual moment onditions will not ingeneral be independent of one another (E(mitmjt) 6= 0).
• and have di�erent varianes (E(m2

it) = σ2
it ).Sine we need to estimate so many omponents if we are to take the parametri approah,it is unlikely that we would arrive at a orret parametri spei�ation. For this reason,researh has foused on onsistent nonparametri estimators of Ω∞.Heneforth we assume that mt is ovariane stationary (the ovariane between mt and

mt−s does not depend on t). De�ne the v − th autoovariane of the moment onditions
Γv = E(mtm

′
t−s). Note that E(mtm

′
t+s) = Γ′

v. Reall that mt and m are funtions of θ, sofor now assume that we have some onsistent estimator of θ0, so that m̂t = mt(θ̂). Now
Ωn = E

[
nm(θ0)m(θ0)′

]
= E

[
n

(
1/n

n∑

t=1

mt

)(
1/n

n∑

t=1

m′
t

)]

= E
[
1/n

(
n∑

t=1

mt

)(
n∑

t=1

m′
t

)]

= Γ0 +
n− 1

n

(
Γ1 + Γ′

1

)
+
n− 2

n

(
Γ2 + Γ′

2

)
· · · + 1

n

(
Γn−1 + Γ′

n−1

)A natural, onsistent estimator of Γv is
Γ̂v = 1/n

n∑

t=v+1

m̂tm̂
′
t−v.(you might use n−v in the denominator instead). So, a natural, but inonsistent, estimatorof Ω∞ would be

Ω̂ = Γ̂0 +
n− 1

n

(
Γ̂1 + Γ̂′

1

)
+
n− 2

n

(
Γ̂2 + Γ̂′

2

)
+ · · · +

(
Γ̂n−1 + Γ̂′

n−1

)

= Γ̂0 +
n−1∑

v=1

n− v

n

(
Γ̂v + Γ̂′

v

)
.This estimator is inonsistent in general, sine the number of parameters to estimate ismore than the number of observations, and inreases more rapidly than n, so informationdoes not build up as n→ ∞.On the other hand, supposing that Γv tends to zero su�iently rapidly as v tends to

∞, a modi�ed estimator
Ω̂ = Γ̂0 +

q(n)∑

v=1

(
Γ̂v + Γ̂′

v

)
,



6. ESTIMATION USING CONDITIONAL MOMENTS 180where q(n)
p→ ∞ as n → ∞ will be onsistent, provided q(n) grows su�iently slowly.The term n−v
n an be dropped beause q(n) must be op(n). This allows information toaumulate at a rate that satis�es a LLN. A disadvantage of this estimator is that it maynot be positive de�nite. This ould ause one to alulate a negative χ2 statisti, forexample!

• Note: the formula for Ω̂ requires an estimate of m(θ0), whih in turn requires anestimate of θ, whih is based upon an estimate of Ω! The solution to this irularityis to set the weighting matrix W arbitrarily (for example to an identity matrix),obtain a �rst onsistent but ine�ient estimate of θ0, then use this estimate toform Ω̂, then re-estimate θ0. The proess an be iterated until neither Ω̂ nor θ̂hange appreiably between iterations.5.1. Newey-West ovariane estimator. The Newey-West estimator (Eonomet-ria, 1987) solves the problem of possible nonpositive de�niteness of the above estimator.Their estimator is
Ω̂ = Γ̂0 +

q(n)∑

v=1

[
1 − v

q + 1

](
Γ̂v + Γ̂′

v

)
.This estimator is p.d. by onstrution. The ondition for onsisteny is that n−1/4q → 0.Note that this is a very slow rate of growth for q. This estimator is nonparametri - we'veplaed no parametri restritions on the form of Ω. It is an example of a kernel estimator.In a more reent paper, Newey and West (Review of Eonomi Studies, 1994) usepre-whitening before applying the kernel estimator. The idea is to �t a VAR model to themoment onditions. It is expeted that the residuals of the VAR model will be more nearlywhite noise, so that the Newey-West ovariane estimator might perform better with shortlag lengths..The VAR model is

m̂t = Θ1m̂t−1 + · · · + Θpm̂t−p + utThis is estimated, giving the residuals ût. Then the Newey-West ovariane estimator isapplied to these pre-whitened residuals, and the ovariane Ω is estimated ombining the�tted VAR
̂̂mt = Θ̂1m̂t−1 + · · · + Θ̂pm̂t−pwith the kernel estimate of the ovariane of the ut. See Newey-West for details.

• I have a program that does this if you're interested.6. Estimation using onditional momentsSo far, the moment onditions have been presented as unonditional expetations.One ommon way of de�ning unonditional moment onditions is based upon onditionalmoment onditions.Suppose that a random variable Y has zero expetation onditional on the randomvariable X
EY |XY =

∫
Y f(Y |X)dY = 0Then the unonditional expetation of the produt of Y and a funtion g(X) of X is alsozero. The unonditional expetation is

EY g(X) =

∫

X

(∫

Y
Y g(X)f(Y,X)dY

)
dX.



6. ESTIMATION USING CONDITIONAL MOMENTS 181This an be fatored into a onditional expetation and an expetation w.r.t. the marginaldensity of X :

EY g(X) =

∫

X

(∫

Y
Y g(X)f(Y |X)dY

)
f(X)dX.Sine g(X) doesn't depend on Y it an be pulled out of the integral

EY g(X) =

∫

X

(∫

Y
Y f(Y |X)dY

)
g(X)f(X)dX.But the term in parentheses on the rhs is zero by assumption, so

EY g(X) = 0as laimed.This is important eonometrially, sine models often imply restritions on onditionalmoments. Suppose a model tells us that the funtion K(yt, xt) has expetation, onditionalon the information set It, equal to k(xt, θ),
EθK(yt, xt)|It = k(xt, θ).

• For example, in the ontext of the lassial linear model yt = x′tβ+ εt, we an set
K(yt, xt) = yt so that k(xt, θ) = x′tβ.

With this, the funtion
ht(θ) = K(yt, xt) − k(xt, θ)has onditional expetation equal to zero

Eθht(θ)|It = 0.This is a salar moment ondition, whih isn't su�ient to identify a K -dimensionalparameter θ (K > 1). However, the above result allows us to form various unonditionalexpetations
mt(θ) = Z(wt)ht(θ)where Z(wt) is a g× 1-vetor valued funtion of wt and wt is a set of variables drawn fromthe information set It. The Z(wt) are instrumental variables. We now have g momentonditions, so as long as g > K the neessary ondition for identi�ation holds.One an form the n× g matrix

Zn =




Z1(w1) Z2(w1) · · · Zg(w1)

Z1(w2) Z2(w2) Zg(w2)... ...
Z1(wn) Z2(wn) · · · Zg(wn)




=




Z ′
1

Z ′
2

Z ′
n






6. ESTIMATION USING CONDITIONAL MOMENTS 182With this we an form the g moment onditions
mn(θ) =

1

n
Z ′
n




h1(θ)

h2(θ)...
hn(θ)




=
1

n
Z ′
nhn(θ)

=
1

n

n∑

t=1

Ztht(θ)

=
1

n

n∑

t=1

mt(θ)where Z(t,·) is the tth row of Zn. This �ts the previous treatment. An interesting questionthat arises is how one should hoose the instrumental variables Z(wt) to ahieve maximume�ieny.Note that with this hoie of moment onditions, we have that Dn ≡ ∂
∂θm

′(θ) (a K× gmatrix) is
Dn(θ) =

∂

∂θ

1

n

(
Z ′
nhn(θ)

)′

=
1

n

(
∂

∂θ
h′n (θ)

)
Znwhih we an de�ne to be

Dn(θ) =
1

n
HnZn.where Hn is a K × n matrix that has the derivatives of the individual moment onditionsas its olumns. Likewise, de�ne the var-ov. of the moment onditions

Ωn = E
[
nmn(θ

0)mn(θ
0)′
]

= E
[

1

n
Z ′
nhn(θ

0)hn(θ
0)′Zn

]

= Z ′
nE
(

1

n
hn(θ

0)hn(θ
0)′
)
Zn

≡ Z ′
n

Φn

n
Znwhere we have de�ned Φn = V arhn(θ

0). Note that the dimension of this matrix is growingwith the sample size, so it is not onsistently estimable without additional assumptions.The asymptoti normality theorem above says that the GMM estimator using theoptimal weighting matrix is distributed as
√
n
(
θ̂ − θ0

)
d→ N(0, V∞)where(41) V∞ = lim

n→∞

((
HnZn
n

)(
Z ′
nΦnZn
n

)−1(Z ′
nH

′
n

n

))−1

.Using an argument similar to that used to prove that Ω−1
∞ is the e�ient weighting matrix,we an show that putting

Zn = Φ−1
n H ′

n



8. A SPECIFICATION TEST 183auses the above var-ov matrix to simplify to(42) V∞ = lim
n→∞

(
HnΦ

−1
n H ′

n

n

)−1

.and furthermore, this matrix is smaller that the limiting var-ov for any other hoie ofinstrumental variables. (To prove this, examine the di�erene of the inverses of the var-ovmatries with the optimal intruments and with non-optimal instruments. As above, youan show that the di�erene is positive semi-de�nite).
• Note that both Hn, whih we should write more properly as Hn(θ

0), sine itdepends on θ0, and Φ must be onsistently estimated to apply this.
• Usually, estimation of Hn is straightforward - one just uses

Ĥ =
∂

∂θ
h′n
(
θ̃
)
,where θ̃ is some initial onsistent estimator based on non-optimal instruments.

• Estimation of Φn may not be possible. It is an n × n matrix, so it has moreunique elements than n, the sample size, so without restritions on the parametersit an't be estimated onsistently. Basially, you need to provide a parametrispei�ation of the ovarianes of the ht(θ) in order to be able to use optimalinstruments. A solution is to approximate this matrix parametrially to de�nethe instruments. Note that the simpli�ed var-ov matrix in equation 42 will notapply if approximately optimal instruments are used - it will be neessary to usean estimator based upon equation 41, where the term Z′
nΦnZn

n must be estimatedonsistently apart, for example by the Newey-West proedure.7. Estimation using dynami moment onditionsNote that dynami moment onditions simplify the var-ov matrix, but are often harderto formulate. The will be added in future editions. For now, the Hansen appliation belowis enough. 8. A spei�ation testThe �rst order onditions for minimization, using the an estimate of the optimal weight-ing matrix, are
∂

∂θ
s(θ̂) = 2

[
∂

∂θ
m

′

n

(
θ̂
)]

Ω̂−1mn

(
θ̂
)
≡ 0or

D(θ̂)Ω̂−1mn(θ̂) ≡ 0Consider a Taylor expansion of m(θ̂):(43) m(θ̂) = mn(θ
0) +D′

n(θ
0)
(
θ̂ − θ0

)
+ op(1).Multiplying by D(θ̂)Ω̂−1 we obtain

D(θ̂)Ω̂−1m(θ̂) = D(θ̂)Ω̂−1mn(θ
0) +D(θ̂)Ω̂−1D(θ0)′

(
θ̂ − θ0

)
+ op(1)The lhs is zero, and sine θ̂ tends to θ0 and Ω̂ tends to Ω∞, we an write

D∞Ω−1
∞ mn(θ

0)
a
= −D∞Ω−1

∞ D′
∞
(
θ̂ − θ0

)
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√
n
(
θ̂ − θ0

)
a
= −

√
n
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1
∞ mn(θ

0)With this, and taking into aount the original expansion (equation 43), we get
√
nm(θ̂)

a
=

√
nmn(θ

0) −
√
nD′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1
∞ mn(θ

0).This last an be written as
√
nm(θ̂)

a
=

√
n
(
Ω1/2
∞ −D′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
Ω−1/2
∞ mn(θ

0)Or
√
nΩ−1/2

∞ m(θ̂)
a
=

√
n
(
Ig − Ω−1/2

∞ D′
∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
Ω−1/2
∞ mn(θ

0)Now √
nΩ−1/2

∞ mn(θ
0)

d→ N(0, Ig)and one an easily verify that
P =

(
Ig − Ω−1/2

∞ D′
∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)is idempotent of rank g −K, (reall that the rank of an idempotent matrix is equal to itstrae) so
(√

nΩ−1/2
∞ m(θ̂)

)′ (√
nΩ−1/2

∞ m(θ̂)
)

= nm(θ̂)′Ω−1
∞ m(θ̂)

d→ χ2(g −K)Sine Ω̂ onverges to Ω∞, we also have
nm(θ̂)′Ω̂−1m(θ̂)

d→ χ2(g −K)or
n · sn(θ̂) d→ χ2(g −K)supposing the model is orretly spei�ed. This is a onvenient test sine we just multiplythe optimized value of the objetive funtion by n, and ompare with a χ2(g −K) ritialvalue. The test is a general test of whether or not the moments used to estimate areorretly spei�ed.

• This won't work when the estimator is just identi�ed. The f.o.. are
Dθsn(θ) = DΩ̂−1m(θ̂) ≡ 0.But with exat identi�ation, both D and Ω̂ are square and invertible (at leastasymptotially, assuming that asymptoti normality hold), so

m(θ̂) ≡ 0.So the moment onditions are zero regardless of the weighting matrix used. Assuh, we might as well use an identity matrix and save trouble. Also sn(θ̂) = 0,so the test breaks down.
• A note: this sort of test often over-rejets in �nite samples. One should be autiousin rejeting a model when this test rejets.9. Other estimators interpreted as GMM estimators9.1. OLS with heterosedastiity of unknown form.Example 26. White's heterosedasti onsistent varov estimator for OLS.



9. OTHER ESTIMATORS INTERPRETED AS GMM ESTIMATORS 185Suppose y = Xβ0 + ε, where ε ∼ N(0,Σ), Σ a diagonal matrix.
• The typial approah is to parameterize Σ = Σ(σ), where σ is a �nite dimensionalparameter vetor, and to estimate β and σ jointly (feasible GLS). This will workwell if the parameterization of Σ is orret.
• If we're not on�dent about parameterizing Σ, we an still estimate β onsistentlyby OLS. However, the typial ovariane estimator V (β̂) = (X′X)−1 σ̂2 will bebiased and inonsistent, and will lead to invalid inferenes.By exogeneity of the regressors xt (a K × 1 olumn vetor) we have E(xtεt) = 0,whihsuggests the moment ondition

mt(β) = xt
(
yt − x′

tβ
)
.In this ase, we have exat identi�ation ( K parameters and K moment onditions). Wehave

m(β) = 1/n
∑

t

mt = 1/n
∑

t

xtyt − 1/n
∑

t

xtx
′
tβ.For any hoie of W, m(β) will be identially zero at the minimum, due to exat iden-ti�ation. That is, sine the number of moment onditions is idential to the number ofparameters, the fo imply that m(β̂) ≡ 0 regardless of W. There is no need to use the �op-timal� weighting matrix in this ase, an identity matrix works just as well for the purposeof estimation. Thereforê

β =

(∑

t

xtx
′
t

)−1∑

t

xtyt = (X′X)−1X′y,whih is the usual OLS estimator.The GMM estimator of the asymptoti varov matrix is (D̂∞Ω̂−1D̂∞
′)−1

. Reall that
D̂∞ is simply ∂

∂θm
′
(
θ̂
)
. In this ase

D̂∞ = −1/n
∑

t

xtx
′
t = −X′X/n.Reall that a possible estimator of Ω is

Ω̂ = Γ̂0 +
n−1∑

v=1

(
Γ̂v + Γ̂′

v

)
.This is in general inonsistent, but in the present ase of nonautoorrelation, it simpli�esto

Ω̂ = Γ̂0whih has a onstant number of elements to estimate, so information will aumulate, andonsisteny obtains. In the present ase
Ω̂ = Γ̂0 = 1/n

(
n∑

t=1

m̂tm̂
′
t

)

= 1/n

[
n∑

t=1

xtx
′
t

(
yt − x′

tβ̂
)2
]

= 1/n

[
n∑

t=1

xtx
′
tε̂

2
t

]

=
X′ÊX

n



9. OTHER ESTIMATORS INTERPRETED AS GMM ESTIMATORS 186where Ê is an n× n diagonal matrix with ε̂2t in the position t, t.Therefore, the GMM varov. estimator, whih is onsistent, is
V̂
(√

n
(
β̂ − β

))
=

{(
−X′X

n

)(
X′ÊX

n

−1
)(

−X′X
n

)}−1

=

(
X′X
n

)−1
(

X′ÊX

n

)(
X′X
n

)−1This is the varov estimator that White (1980) arrived at in an in�uential artile. Thisestimator is onsistent under heterosedastiity of an unknown form. If there is autoor-relation, the Newey-West estimator an be used to estimate Ω - the rest is the same.9.2. Weighted Least Squares. Consider the previous example of a linear modelwith heterosedastiity of unknown form:
y = Xβ0 + ε

ε ∼ N(0,Σ)where Σ is a diagonal matrix.Now, suppose that the form of Σ is known, so that Σ(θ0) is a orret parametrispei�ation (whih may also depend upon X). In this ase, the GLS estimator is
β̃ =

(
X′Σ−1X

)−1
X′Σ−1y)This estimator an be interpreted as the solution to the K moment onditions

m(β̃) = 1/n
∑

t

xtyt
σt(θ0)

− 1/n
∑

t

xtx
′
t

σt(θ0)
β̃ ≡ 0.That is, the GLS estimator in this ase has an obvious representation as a GMM estima-tor. With autoorrelation, the representation exists but it is a little more ompliated.Nevertheless, the idea is the same. There are a few points:

• The (feasible) GLS estimator is known to be asymptotially e�ient in the lassof linear asymptotially unbiased estimators (Gauss-Markov).
• This means that it is more e�ient than the above example of OLS with White'sheterosedasti onsistent ovariane, whih is an alternative GMM estimator.
• This means that the hoie of the moment onditions is important to ahievee�ieny.9.3. 2SLS. Consider the linear model

yt = z′tβ + εt,or
y = Zβ + εusing the usual onstrution, where β is K × 1 and εt is i.i.d. Suppose that this equationis one of a system of simultaneous equations, so that zt ontains both endogenous andexogenous variables. Suppose that xt is the vetor of all exogenous and predeterminedvariables that are unorrelated with εt (suppose that xt is r × 1).

• De�ne Ẑ as the vetor of preditions of Z when regressed upon X, e.g., Ẑ =

X (X′X)−1
X′Z

Ẑ = X
(
X′X

)−1
X′Z
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• Sine Ẑ is a linear ombination of the exogenous variables x, ẑt must be un-orrelated with ε. This suggests the K-dimensional moment ondition mt(β) =

ẑt (yt − z′tβ) and so
m(β) = 1/n

∑

t

ẑt
(
yt − z′tβ

)
.

• Sine we have K parameters and K moment onditions, the GMM estimator willset m identially equal to zero, regardless of W, so we have
β̂ =

(∑

t

ẑtz
′
t

)−1∑

t

(ẑtyt) =
(
Ẑ′Z

)−1
Ẑ′yThis is the standard formula for 2SLS. We use the exogenous variables and the reduedform preditions of the endogenous variables as instruments, and apply IV estimation. SeeHamilton pp. 420-21 for the varov formula (whih is the standard formula for 2SLS), andfor how to deal with εt heterogeneous and dependent (basially, just use the Newey-West orsome other onsistent estimator of Ω, and apply the usual formula). Note that εt dependentauses lagged endogenous variables to loose their status as legitimate instruments.9.4. Nonlinear simultaneous equations. GMM provides a onvenient way to es-timate nonlinear systems of simultaneous equations. We have a system of equations of theform

y1t = f1(zt, θ
0
1) + ε1t

y2t = f2(zt, θ
0
2) + ε2t...

yGt = fG(zt, θ
0
G) + εGt,or in ompat notation

yt = f(zt, θ
0) + εt,where f(·) is a G -vetor valued funtion, and θ0 = (θ0′

1 , θ
0′
2 , · · · , θ0′

G)′.We need to �nd an Ai × 1 vetor of instruments xit, for eah equation, that are un-orrelated with εit. Typial instruments would be low order monomials in the exogenousvariables in zt, with their lagged values. Then we an de�ne the (∑G
i=1Ai

)
× 1 orthogo-nality onditions

mt(θ) =




(y1t − f1(zt, θ1))x1t

(y2t − f2(zt, θ2))x2t...
(yGt − fG(zt, θG))xGt



.

• A note on identi�ation: seletion of instruments that ensure identi�ation is anon-trivial problem.
• A note on e�ieny: the seleted set of instruments has important e�ets on thee�ieny of estimation. Unfortunately there is little theory o�ering guidane onwhat is the optimal set. More on this later.9.5. Maximum likelihood. In the introdution we argued that ML will in generalbe more e�ient than GMM sine ML impliitly uses all of the moments of the distributionwhile GMM uses a limited number of moments. Atually, a distribution with P parametersan be uniquely haraterized by P moment onditions. However, some sets of P moment



9. OTHER ESTIMATORS INTERPRETED AS GMM ESTIMATORS 188onditions may ontain more information than others, sine the moment onditions ouldbe highly orrelated. A GMM estimator that hose an optimal set of P moment onditionswould be fully e�ient. Here we'll see that the optimal moment onditions are simply thesores of the ML estimator.Let yt be a G -vetor of variables, and let Yt = (y′1, y
′
2, ..., y

′
t)
′. Then at time t, Yt−1has been observed (refer to it as the information set, sine we assume the onditioningvariables have been seleted to take advantage of all useful information). The likelihoodfuntion is the joint density of the sample:

L(θ) = f(y1, y2, ..., yn, θ)whih an be fatored as
L(θ) = f(yn|Yn−1, θ) · f(Yn−1, θ)and we an repeat this to get

L(θ) = f(yn|Yn−1, θ) · f(yn−1|Yn−2, θ) · ... · f(y1).The log-likelihood funtion is therefore
lnL(θ) =

n∑

t=1

ln f(yt|Yt−1, θ).De�ne
mt(Yt, θ) ≡ Dθ ln f(yt|Yt−1, θ)as the sore of the tth observation. It an be shown that, under the regularity onditions,that the sores have onditional mean zero when evaluated at θ0 (see notes to Introdutionto Eonometris):

E{mt(Yt, θ
0)|Yt−1} = 0so one ould interpret these as moment onditions to use to de�ne a just-identi�ed GMMestimator ( if there are K parameters there are K sore equations). The GMM estimatorsets

1/n

n∑

t=1

mt(Yt, θ̂) = 1/n

n∑

t=1

Dθ ln f(yt|Yt−1, θ̂) = 0,whih are preisely the �rst order onditions of MLE. Therefore, MLE an be interpretedas a GMM estimator. The GMM varov formula is V∞ =
(
D∞Ω−1D′

∞
)−1.Consistent estimates of variane omponents are as follows

• D∞

D̂∞ =
∂

∂θ′
m(Yt, θ̂) = 1/n

n∑

t=1

D2
θ ln f(yt|Yt−1, θ̂)

• Ω It is important to note that mt and mt−s, s > 0 are both onditionally andunonditionally unorrelated. Conditional unorrelation follows from the fat that
mt−s is a funtion of Yt−s, whih is in the information set at time t. Unonditionalunorrelation follows from the fat that onditional unorrelation hold regardlessof the realization of Yt−1, so marginalizing with respet to Yt−1 preserves unor-relation (see the setion on ML estimation, above). The fat that the sores areserially unorrelated implies that Ω an be estimated by the estimator of the 0th



10. EXAMPLE: THE HAUSMAN TEST 189autoovariane of the moment onditions:
Ω̂ = 1/n

n∑

t=1

mt(Yt, θ̂)mt(Yt, θ̂)
′ = 1/n

n∑

t=1

[
Dθ ln f(yt|Yt−1, θ̂)

] [
Dθ ln f(yt|Yt−1, θ̂)

]′Reall from study of ML estimation that the information matrix equality (equation ??)states that
E
{[
Dθ ln f(yt|Yt−1, θ

0)
] [
Dθ ln f(yt|Yt−1, θ

0)
]′}

= −E
{
D2
θ ln f(yt|Yt−1, θ

0)
}
.This result implies the well known (and already seeen) result that we an estimate V∞ inany of three ways:

• The sandwih version:
V̂∞ = n





{∑n
t=1D

2
θ ln f(yt|Yt−1, θ̂)

}
×

{∑n
t=1

[
Dθ ln f(yt|Yt−1, θ̂)

] [
Dθ ln f(yt|Yt−1, θ̂)

]′}−1

×
{∑n

t=1D
2
θ ln f(yt|Yt−1, θ̂)

}





−1

• or the inverse of the negative of the Hessian (sine the middle and last term anel,exept for a minus sign):
V̂∞ =

[
−1/n

n∑

t=1

D2
θ ln f(yt|Yt−1, θ̂)

]−1

,

• or the inverse of the outer produt of the gradient (sine the middle and lastanel exept for a minus sign, and the �rst term onverges to minus the inverseof the middle term, whih is still inside the overall inverse)
V̂∞ =

{
1/n

n∑

t=1

[
Dθ ln f(yt|Yt−1, θ̂)

] [
Dθ ln f(yt|Yt−1, θ̂)

]′
}−1

.This simpli�ation is a speial result for the MLE estimator - it doesn't apply to GMMestimators in general.Asymptotially, if the model is orretly spei�ed, all of these forms onverge to thesame limit. In small samples they will di�er. In partiular, there is evidene that theouter produt of the gradient formula does not perform very well in small samples (seeDavidson and MaKinnon, pg. 477). White's Information matrix test (Eonometria,1982) is based upon omparing the two ways to estimate the information matrix: outerprodut of gradient or negative of the Hessian. If they di�er by too muh, this is evideneof misspei�ation of the model.10. Example: The Hausman TestThis setion disusses the Hausman test, whih was originally presented in Hausman,J.A. (1978), Spei�ation tests in eonometris, Eonometria, 46, 1251-71.Consider the simple linear regression model yt = x′tβ+ǫt.We assume that the funtionalform and the hoie of regressors is orret, but that the some of the regressors may beorrelated with the error term, whih as you know will produe inonsisteny of β̂. Forexample, this will be a problem if
• if some regressors are endogeneous
• some regressors are measured with error
• lagged values of the dependent variable are used as regressors and ǫt is autoor-related.
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Figure 2. IV
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To illustrate, the Otave program biased.m performs a Monte Carlo experiment whereerrors are orrelated with regressors, and estimation is by OLS and IV. The true valueof the slope oe�ient used to generate the data is β = 2. Figure 1 shows that the OLSestimator is quite biased, while Figure 2 shows that the IV estimator is on average muhloser to the true value. If you play with the program, inreasing the sample size, you ansee evidene that the OLS estimator is asymptotially biased, while the IV estimator isonsistent.We have seen that inonsistent and the onsistent estimators onverge to di�erentprobability limits. This is the idea behind the Hausman test - a pair of onsistent estimatorsonverge to the same probability limit, while if one is onsistent and the other is not they

http://pareto.uab.es/mcreel/Econometrics/Examples/Hausman/biased.m


10. EXAMPLE: THE HAUSMAN TEST 191onverge to di�erent limits. If we aept that one is onsistent (e.g., the IV estimator),but we are doubting if the other is onsistent (e.g., the OLS estimator), we might try tohek if the di�erene between the estimators is signi�antly di�erent from zero.
• If we're doubting about the onsisteny of OLS (or QML, et.), why should webe interested in testing - why not just use the IV estimator? Beause the OLSestimator is more e�ient when the regressors are exogenous and the other las-sial assumptions (inluding normality of the errors) hold. When we have a moree�ient estimator that relies on stronger assumptions (suh as exogeneity) thanthe IV estimator, we might prefer to use it, unless we have evidene that theassumptions are false.So, let's onsider the ovariane between the MLE estimator θ̂ (or any other fully e�ientestimator) and some other CAN estimator, say θ̃. Now, let's reall some results from MLE.Equation 11 is:

√
n
(
θ̂ − θ0

)
a.s.→ −H∞(θ0)

−1√ng(θ0).Equation 16 is
H∞(θ) = −I∞(θ).Combining these two equations, we get

√
n
(
θ̂ − θ0

)
a.s.→ I∞(θ0)

−1√ng(θ0).Also, equation 18 tells us that the asymptoti ovariane between any CAN estimatorand the MLE sore vetor is
V∞

[ √
n
(
θ̃ − θ

)

√
ng(θ)

]
=

[
V∞(θ̃) IK

IK I∞(θ)

]
.Now, onsider

[
IK 0K

0K I∞(θ)−1

][ √
n
(
θ̃ − θ

)

√
ng(θ)

]
a.s.→




√
n
(
θ̃ − θ

)

√
n
(
θ̂ − θ

)

 .The asymptoti ovariane of this is

V∞




√
n
(
θ̃ − θ

)

√
n
(
θ̂ − θ

)

 =

[
IK 0K

0K I∞(θ)−1

] [
V∞(θ̃) IK

IK I∞(θ)

] [
IK 0K

0K I∞(θ)−1

]

=

[
V∞(θ̃) I∞(θ)−1

I∞(θ)−1 I∞(θ)−1

]
,whih, for larity in what follows, we might write as

V∞




√
n
(
θ̃ − θ

)

√
n
(
θ̂ − θ

)

 =

[
V∞(θ̃) I∞(θ)−1

I∞(θ)−1 V∞(θ̂)

]
.So, the asymptoti ovariane between the MLE and any other CAN estimator is equal tothe MLE asymptoti variane (the inverse of the information matrix).Now, suppose we with to test whether the the two estimators are in fat both onvergingto θ0, versus the alternative hypothesis that the �MLE� estimator is not in fat onsistent(the onsisteny of θ̃ is a maintained hypothesis). Under the null hypothesis that they are,
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[
IK −IK

]



√
n
(
θ̃ − θ0

)

√
n
(
θ̂ − θ0

)

 =

√
n
(
θ̃ − θ̂

)
,will be asymptotially normally distributed as

√
n
(
θ̃ − θ̂

)
d→ N

(
0, V∞(θ̃) − V∞(θ̂)

)
.So,

n
(
θ̃ − θ̂

)′ (
V∞(θ̃) − V∞(θ̂)

)−1 (
θ̃ − θ̂

)
d→ χ2(ρ),where ρ is the rank of the di�erene of the asymptoti varianes. A statisti that has thesame asymptoti distribution is

(
θ̃ − θ̂

)′ (
V̂ (θ̃) − V̂ (θ̂)

)−1 (
θ̃ − θ̂

)
d→ χ2(ρ).This is the Hausman test statisti, in its original form. The reason that this test has powerunder the alternative hypothesis is that in that ase the �MLE� estimator will not beonsistent, and will onverge to θA, say, where θA 6= θ0. Then the mean of the asymptotidistribution of vetor √

n
(
θ̃ − θ̂

) will be θ0 − θA, a non-zero vetor, so the test statistiwill eventually rejet, regardless of how small a signi�ane level is used.
• Note: if the test is based on a sub-vetor of the entire parameter vetor of theMLE, it is possible that the inonsisteny of the MLE will not show up in theportion of the vetor that has been used. If this is the ase, the test may nothave power to detet the inonsisteny. This may our, for example, when theonsistent but ine�ient estimator is not identi�ed for all the parameters of themodel.Some things to note:
• The rank, ρ, of the di�erene of the asymptoti varianes is often less than thedimension of the matries, and it may be di�ult to determine what the true rankis. If the true rank is lower than what is taken to be true, the test will be biasedagainst rejetion of the null hypothesis. The ontrary holds if we underestimatethe rank.
• A solution to this problem is to use a rank 1 test, by omparing only a singleoe�ient. For example, if a variable is suspeted of possibly being endogenous,that variable's oe�ients may be ompared.
• This simple formula only holds when the estimator that is being tested for onsis-teny is fully e�ient under the null hypothesis. This means that it must be a MLestimator or a fully e�ient estimator that has the same asymptoti distributionas the ML estimator. This is quite restritive sine modern estimators suh asGMM and QML are not in general fully e�ient.Following up on this last point, let's think of two not neessarily e�ient estimators, θ̂1and θ̂2, where one is assumed to be onsistent, but the other may not be. We assumefor expositional simpliity that both θ̂1 and θ̂2 belong to the same parameter spae, andthat they an be expressed as generalized method of moments (GMM) estimators. Theestimators are de�ned (suppressing the dependene upon data) by

θ̂i = arg min
θi∈Θ

m
i
(θi)

′Wimi(θi)



11. APPLICATION: NONLINEAR RATIONAL EXPECTATIONS 193where mi(θi) is a gi × 1 vetor of moment onditions, and Wi is a gi × gi positive de�niteweighting matrix, i = 1, 2. Consider the omnibus GMM estimator(44) (
θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)

′ m2(θ2)
′
] [ W1 0(g1×g2)

0(g2×g1) W2

][
m1(θ1)

m2(θ2)

]
.Suppose that the asymptoti ovariane of the omnibus moment vetor is

Σ = lim
n→∞

V ar

{
√
n

[
m1(θ1)

m2(θ2)

]}(45)
≡

(
Σ1 Σ12

· Σ2

)
.The standard Hausman test is equivalent to a Wald test of the equality of θ1 and θ2 (orsubvetors of the two) applied to the omnibus GMM estimator, but with the ovariane ofthe moment onditions estimated as

Σ̂ =

(
Σ̂1 0(g1×g2)

0(g2×g1) Σ̂2

)
.While this is learly an inonsistent estimator in general, the omitted Σ12 term anels outof the test statisti when one of the estimators is asymptotially e�ient, as we have seenabove, and thus it need not be estimated.The general solution when neither of the estimators is e�ient is lear: the entire Σmatrix must be estimated onsistently, sine the Σ12 term will not anel out. Methodsfor onsistently estimating the asymptoti ovariane of a vetor of moment onditionsare well-known, e.g., the Newey-West estimator disussed previously. The Hausman testusing a proper estimator of the overall ovariane matrix will now have an asymptoti χ2distribution when neither estimator is e�ient. This isHowever, the test su�ers from a loss of power due to the fat that the omnibus GMMestimator of equation 44 is de�ned using an ine�ient weight matrix. A new test an bede�ned by using an alternative omnibus GMM estimator(46) (

θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)

′ m2(θ2)
′
] (

Σ̃
)−1

[
m1(θ1)

m2(θ2)

]
,where Σ̃ is a onsistent estimator of the overall ovariane matrix Σ of equation 45. Bystandard arguments, this is a more e�ient estimator than that de�ned by equation 44, sothe Wald test using this alternative is more powerful. See my artile in Applied Eonomis,2004, for more details, inluding simulation results. The Otave sript hausman.m alu-lates the Wald test orresponding to the e�ient joint GMM estimator (the �H2� test inmy paper), for a simple linear model.11. Appliation: Nonlinear rational expetationsReadings: Hansen and Singleton, 1982∗; Tauhen, 1986Though GMM estimation has many appliations, appliation to rational expetationsmodels is elegant, sine theory diretly suggests the moment onditions. Hansen and Sin-gleton's 1982 paper is also a lassi worth studying in itself. Though I strongly reommendreading the paper, I'll use a simpli�ed model with similar notation to Hamilton's.We assume a representative onsumer maximizes expeted disounted utility over anin�nite horizon. Utility is temporally additive, and the expeted utility hypothesis holds.

http://pareto.uab.es/mcreel/Econometrics/Examples/Hausman/hausman.m


11. APPLICATION: NONLINEAR RATIONAL EXPECTATIONS 194The future onsumption stream is the stohasti sequene {ct}∞t=0 . The objetive funtionat time t is the disounted expeted utility(47) ∞∑

s=0

βsE (u(ct+s)|It) .

• The parameter β is between 0 and 1, and re�ets disounting.
• It is the information set at time t, and inludes the all realizations of randomvariables indexed t and earlier.
• The hoie variable is ct - urrent onsumption, whih is onstained to be lessthan or equal to urrent wealth wt.
• Suppose the onsumer an invest in a risky asset. A dollar invested in the assetyields a gross return

(1 + rt+1) =
pt+1 + dt+1

ptwhere pt is the prie and dt is the dividend in period t. The prie of ct is normalizedto 1.

• Current wealth wt = (1 + rt)it−1, where it−1 is investment in period t− 1. So theproblem is to alloate urrent wealth between urrent onsumption and investmentto �nane future onsumption: wt = ct + it.
• Future net rates of return rt+s, s > 0 are not known in period t: the asset is risky.A partial set of neessary onditions for utility maximization have the form:(48) u′(ct) = βE

{
(1 + rt+1) u

′(ct+1)|It
}
.To see that the ondition is neessary, suppose that the lhs < rhs. Then by reduingurrent onsumption marginally would ause equation 47 to drop by u′(ct), sine thereis no disounting of the urrent period. At the same time, the marginal redution inonsumption �nanes investment, whih has gross return (1 + rt+1) , whih ould �naneonsumption in period t + 1. This inrease in onsumption would ause the objetivefuntion to inrease by βE {(1 + rt+1)u

′(ct+1)|It} . Therefore, unless the ondition holds,the expeted disounted utility funtion is not maximized.
• To use this we need to hoose the funtional form of utility. A onstant relativerisk aversion form is

u(ct) =
c1−γt − 1

1 − γwhere γ is the oe�ient of relative risk aversion. With this form,
u′(ct) = c−γtso the fo are

c−γt = βE
{
(1 + rt+1) c

−γ
t+1|It

}While it is true that
E
(
c−γt − β

{
(1 + rt+1) c

−γ
t+1

})
|It = 0so that we ould use this to de�ne moment onditions, it is unlikely that ct is stationary,even though it is in real terms, and our theory requires stationarity. To solve this, dividethough by c−γt

E

(1-β{(1 + rt+1)

(
ct+1

ct

)−γ
})

|It = 0



11. APPLICATION: NONLINEAR RATIONAL EXPECTATIONS 195(note that ct an be passed though the onditional expetation sine ct is hosen basedonly upon information available in time t).Now 1-β{(1 + rt+1)

(
ct+1

ct

)−γ
}is analogous to ht(θ) de�ned above: it's a salar moment ondition. To get a vetor of mo-ment onditions we need some instruments. Suppose that zt is a vetor of variables drawnfrom the information set It. We an use the neessary onditions to form the expressions

[
1 − β (1 + rt+1)

(
ct+1

ct

)−γ]
zt ≡ mt(θ)

• θ represents β and γ.
• Therefore, the above expression may be interpreted as a moment ondition whihan be used for GMM estimation of the parameters θ0.Note that at time t, mt−s has been observed, and is therefore an element of the informationset. By rational expetations, the autoovarianes of the moment onditions other than

Γ0 should be zero. The optimal weighting matrix is therefore the inverse of the varianeof the moment onditions:
Ω

∞
= limE

[
nm(θ0)m(θ0)′

]whih an be onsistently estimated by
Ω̂ = 1/n

n∑

t=1

mt(θ̂)mt(θ̂)
′As before, this estimate depends on an initial onsistent estimate of θ, whih an beobtained by setting the weighting matrixW arbitrarily (to an identity matrix, for example).After obtaining θ̂, we then minimize

s(θ) = m(θ)′Ω̂−1m(θ).This proess an be iterated, e.g., use the new estimate to re-estimate Ω, use this toestimate θ0, and repeat until the estimates don't hange.
• In priniple, we ould use a very large number of moment onditions in estimation,sine any urrent or lagged variable ould be used in xt. Sine use of more momentonditions will lead to a more (asymptotially) e�ient estimator, one might betempted to use many instrumental variables. We will do a omputer lab thatwill show that this may not be a good idea with �nite samples. This issue hasbeen studied using Monte Carlos (Tauhen, JBES, 1986). The reason for poorperformane when using many instruments is that the estimate of Ω beomes veryimpreise.
• Empirial papers that use this approah often have serious problems in obtainingpreise estimates of the parameters. Note that we are basing everything on asingle parial �rst order ondition. Probably this f.o.. is simply not informativeenough. Simulation-based estimation methods (disussed below) are one means oftrying to use more informative moment onditions to estimate this sort of model.



12. EMPIRICAL EXAMPLE: A PORTFOLIO MODEL 19612. Empirial example: a portfolio modelThe Otave program portfolio.m performs GMM estimation of a portfolio model, usingthe data �le tauhen.data. The olumns of this data �le are c, p, and d in that order. Thereare 95 observations (soure: Tauhen, JBES, 1986). As instruments we use lags of c and
r, as well as a onstant. For a single lag the estimation results areMPITB extensions found******************************************************Example of GMM estimation of rational expetations modelGMM Estimation ResultsBFGS onvergene: Normal onvergeneObjetive funtion value: 0.000014Observations: 94Value df p-valueX^2 test 0.001 1.000 0.971estimate st. err t-stat p-valuebeta 0.915 0.009 97.271 0.000gamma 0.569 0.319 1.783 0.075******************************************************For two lags the estimation results areMPITB extensions found******************************************************Example of GMM estimation of rational expetations modelGMM Estimation ResultsBFGS onvergene: Normal onvergeneObjetive funtion value: 0.037882Observations: 93Value df p-valueX^2 test 3.523 3.000 0.318estimate st. err t-stat p-valuebeta 0.857 0.024 35.636 0.000gamma -2.351 0.315 -7.462 0.000******************************************************

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/portfolio.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/tauchen.data


12. EMPIRICAL EXAMPLE: A PORTFOLIO MODEL 197Pretty learly, the results are sensitive to the hoie of instruments. Maybe there is someproblem here: poor instruments, or possibly a onditional moment that is not very infor-mative. Moment onditions formed from Euler onditions sometimes do not identify theparameter of a model. See Hansen, Heaton and Yarron, (1996) JBES V14, N3. Is that aproblem here, (I haven't heked it arefully)?



12. EMPIRICAL EXAMPLE: A PORTFOLIO MODEL 198Exerises(1) Show how to ast the generalized IV estimator presented in setion 4 as a GMMestimator. Identify what are the moment onditions, mt(θ), what is the formof the the matrix Dn, what is the e�ient weight matrix, and show that theovariane matrix formula given previously orresponds to the GMM ovarianematrix formula.(2) Using Otave, generate data from the logit dgp . Reall that E(yt|xt) = p(xt, θ) =

[1 + exp(−xt′θ)]−1. Consider the moment ondtions (exatly identi�ed) mt(θ) =

[yt − p(xt, θ)]xt(a) Estimate by GMM, using these moments.(b) Estimate by MLE.() The two estimators should oinide. Prove analytially that the estimatorsoiide.(3) Verify the missing steps needed to show that n ·m(θ̂)′Ω̂−1m(θ̂) has a χ2(g −K)distribution. That is, show that the monster matrix is idempotent and has traeequal to g −K.(4) For the portfolio example, experiment with the program using lags of 3 and 4periods to de�ne instruments(a) Iterate the estimation of θ = (β, γ) and Ω to onvergene.(b) Comment on the results. Are the results sensitive to the set of instrumentsused? (Look at Ω̂ as well as θ̂. Are these good instruments? Are the instru-ments highly orrelated with one another?



CHAPTER 16Quasi-MLQuasi-ML is the estimator one obtains when a misspei�ed probability model is usedto alulate an �ML� estimator.Given a sample of size n of a random vetor y and a vetor of onditioning variables x,suppose the joint density of Y =
(

y1 . . . yn

) onditional on X =
(

x1 . . . xn

) isa member of the parametri family pY(Y|X, ρ), ρ ∈ Ξ. The true joint density is assoiatedwith the vetor ρ0 :

pY(Y|X, ρ0).As long as the marginal density of X doesn't depend on ρ0, this onditional density fullyharaterizes the random harateristis of samples: i.e., it fully desribes the probabilisti-ally important features of the d.g.p. The likelihood funtion is just this density evaluatedat other values ρ
L(Y|X, ρ) = pY(Y|X, ρ), ρ ∈ Ξ.

• Let Yt−1 =
(

y1 . . . yt−1

), Y0 = 0, and let Xt =
(

x1 . . . xt

) Thelikelihood funtion, taking into aount possible dependene of observations, anbe written as
L(Y|X, ρ) =

n∏

t=1

pt(yt|Yt−1,Xt, ρ)

≡
n∏

t=1

pt(ρ)

• The average log-likelihood funtion is:
sn(ρ) =

1

n
lnL(Y|X, ρ) =

1

n

n∑

t=1

ln pt(ρ)

• Suppose that we do not have knowledge of the family of densities pt(ρ).Mistakenly,we may assume that the onditional density of yt is a member of the family
ft(yt|Yt−1,Xt, θ), θ ∈ Θ, where there is no θ0 suh that ft(yt|Yt−1,Xt, θ

0) =

pt(yt|Yt−1,Xt, ρ
0),∀t (this is what we mean by �misspei�ed�).

• This setup allows for heterogeneous time series data, with dynami misspei�a-tion.The QML estimator is the argument that maximizes the misspei�ed average log like-lihood, whih we refer to as the quasi-log likelihood funtion. This objetive funtionis
sn(θ) =

1

n

n∑

t=1

ln ft(yt|Yt−1,Xt, θ
0)

≡ 1

n

n∑

t=1

ln ft(θ)199



1. CONSISTENT ESTIMATION OF VARIANCE COMPONENTS 200and the QML is
θ̂n = arg max

Θ
sn(θ)A SLLN for dependent sequenes applies (we assume), so that

sn(θ)
a.s.→ lim

n→∞
E 1

n

n∑

t=1

ln ft(θ) ≡ s∞(θ)We assume that this an be strengthened to uniform onvergene, a.s., following the pre-vious arguments. The �pseudo-true� value of θ is the value that maximizes s̄(θ):
θ0 = arg max

Θ
s∞(θ)Given assumptions so that theorem 19 is appliable, we obtain

lim
n→∞

θ̂n = θ0, a.s.
• Applying the asymptoti normality theorem,

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]where
J∞(θ0) = lim

n→∞
ED2

θsn(θ
0)and

I∞(θ0) = lim
n→∞

V ar
√
nDθsn(θ

0).

• Note that asymptoti normality only requires that the additional assumptionsregarding J and I hold in a neighborhood of θ0 for J and at θ0, for I, notthroughout Θ. In this sense, asymptoti normality is a loal property.
1. Consistent Estimation of Variane ComponentsConsistent estimation of J∞(θ0) is straightforward. Assumption (b) of Theorem 22implies that

Jn(θ̂n) =
1

n

n∑

t=1

D2
θ ln ft(θ̂n)

a.s.→ lim
n→∞

E 1

n

n∑

t=1

D2
θ ln ft(θ

0) = J∞(θ0).That is, just alulate the Hessian using the estimate θ̂n in plae of θ0.Consistent estimation of I∞(θ0) is more di�ult, and may be impossible.
• Notation: Let gt ≡ Dθft(θ

0)We need to estimate
I∞(θ0) = lim

n→∞
V ar

√
nDθsn(θ

0)

= lim
n→∞

V ar
√
n

1

n

n∑

t=1

Dθ ln ft(θ
0)

= lim
n→∞

1

n
V ar

n∑

t=1

gt

= lim
n→∞

1

n
E
{(

n∑

t=1

(gt − Egt)
)(

n∑

t=1

(gt − Egt)
)′}



2. EXAMPLE: THE MEPS DATA 201This is going to ontain a term
lim
n→∞

1

n

n∑

t=1

(Egt) (Egt)′whih will not tend to zero, in general. This term is not onsistently estimable in general,sine it requires alulating an expetation using the true density under the d.g.p., whihis unknown.
• There are important ases where I∞(θ0) is onsistently estimable. For example,suppose that the data ome from a random sample (i.e., they are iid). Thiswould be the ase with ross setional data, for example. (Note: under i.i.d.sampling, the joint distribution of (yt, xt) is idential. This does not imply thatthe onditional density f(yt|xt) is idential).
• With random sampling, the limiting objetive funtion is simply

s∞(θ0) = EXE0 ln f(y|x, θ0)where E0 means expetation of y|x and EX means expetation respet to themarginal density of x.
• By the requirement that the limiting objetive funtion be maximized at θ0 wehave

DθEXE0 ln f(y|x, θ0) = Dθs∞(θ0) = 0

• The dominated onvergene theorem allows swithing the order of expetationand di�erentiation, so
DθEXE0 ln f(y|x, θ0) = EXE0Dθ ln f(y|x, θ0) = 0The CLT implies that

1√
n

n∑

t=1

Dθ ln f(y|x, θ0)
d→ N(0,I∞(θ0)).That is, it's not neessary to subtrat the individual means, sine they are zero.Given this, and due to independent observations, a onsistent estimator is

Î =
1

n

n∑

t=1

Dθ ln ft(θ̂)Dθ′ ln ft(θ̂)This is an important ase where onsistent estimation of the ovariane matrix is possible.Other ases exist, even for dynamially misspei�ed time series models.2. Example: the MEPS DataTo hek the plausibility of the Poisson model for the MEPS data, we an ompare thesample unonditional variane with the estimated unonditional variane aording to thePoisson model: V̂ (y) =
Pn

t=1
λ̂t

n . Using the program PoissonVariane.m, for OBDV andERV, we get We see that even after onditioning, the overdispersion is not aptured inTable 1. Marginal Varianes, Sample and Estimated (Poisson)OBDV ERVSample 38.09 0.151Estimated 3.28 0.086either ase. There is huge problem with OBDV, and a signi�ant problem with ERV. In

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/PoissonVariance.m


2. EXAMPLE: THE MEPS DATA 202both ases the Poisson model does not appear to be plausible. You an hek this for theother use measures if you like.2.1. In�nite mixture models: the negative binomial model. Referene: Cameronand Trivedi (1998) Regression analysis of ount data, hapter 4.The two measures seem to exhibit extra-Poisson variation. To apture unobservedheterogeneity, a possibility is the random parameters approah. Consider the possibilitythat the onstant term in a Poisson model were random:
fY (y|x, ε) =

exp(−θ)θy
y!

θ = exp(x′β + ε)

= exp(x′β) exp(ε)

= λνwhere λ = exp(x′β) and ν = exp(ε). Now ν aptures the randomness in the onstant.The problem is that we don't observe ν, so we will need to marginalize it to get a usabledensity
fY (y|x) =

∫ ∞

−∞

exp[−θ]θy
y!

fv(z)dzThis density an be used diretly, perhaps using numerial integration to evaluate thelikelihood funtion. In some ases, though, the integral will have an analyti solution. Forexample, if ν follows a ertain one parameter gamma density, then(49) fY (y|x, φ) =
Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ ( λ

ψ + λ

)ywhere φ = (λ,ψ). ψ appears sine it is the parameter of the gamma density.
• For this density, E(y|x) = λ, whih we have parameterized λ = exp(x′β)

• The variane depends upon how ψ is parameterized.� If ψ = λ/α, where α > 0, then V (y|x) = λ + αλ. Note that λ is a funtionof x, so that the variane is too. This is referred to as the NB-I model.� If ψ = 1/α, where α > 0, then V (y|x) = λ+ αλ2. This is referred to as theNB-II model.So both forms of the NB model allow for overdispersion, with the NB-II model allowingfor a more radial form.Testing redution of a NB model to a Poisson model annot be done by testing α = 0using standard Wald or LR proedures. The ritial values need to be adjusted to aountfor the fat that α = 0 is on the boundary of the parameter spae. Without getting intodetails, suppose that the data were in fat Poisson, so there is equidispersion and the true
α = 0. Then about half the time the sample data will be underdispersed, and about halfthe time overdispersed. When the data is underdispersed, the MLE of α will be α̂ = 0.Thus, under the null, there will be a probability spike in the asymptoti distribution of√
n(α̂− α) =

√
nα̂ at 0, so standard testing methods will not be valid.This program will do estimation using the NB model. Note how modelargs is used toselet a NB-I or NB-II density. Here are NB-I estimation results for OBDV:MPITB extensions foundOBDV

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/EstimateNegBin.m


2. EXAMPLE: THE MEPS DATA 203======================================================BFGSMIN final resultsUsed analyti gradient------------------------------------------------------STRONG CONVERGENCEFuntion onv 1 Param onv 1 Gradient onv 1------------------------------------------------------Objetive funtion value 2.18573Stepsize 0.000717 iterations------------------------------------------------------param gradient hange1.0965 0.0000 -0.00000.2551 -0.0000 0.00000.2024 -0.0000 0.00000.2289 0.0000 -0.00000.1969 0.0000 -0.00000.0769 0.0000 -0.00000.0000 -0.0000 0.00001.7146 -0.0000 0.0000******************************************************Negative Binomial model, MEPS 1996 full data setMLE Estimation ResultsBFGS onvergene: Normal onvergeneAverage Log-L: -2.185730Observations: 4564estimate st. err t-stat p-valueonstant -0.523 0.104 -5.005 0.000pub. ins. 0.765 0.054 14.198 0.000priv. ins. 0.451 0.049 9.196 0.000sex 0.458 0.034 13.512 0.000age 0.016 0.001 11.869 0.000edu 0.027 0.007 3.979 0.000in 0.000 0.000 0.000 1.000alpha 5.555 0.296 18.752 0.000Information CriteriaCAIC : 20026.7513 Avg. CAIC: 4.3880BIC : 20018.7513 Avg. BIC: 4.3862AIC : 19967.3437 Avg. AIC: 4.3750******************************************************Note that the parameter values of the last BFGS iteration are di�erent that thosereported in the �nal results. This re�ets two things - �rst, the data were saled beforedoing the BFGS minimization, but the mle_results sript takes this into aount andreports the results using the original saling. But also, the parameterization α = exp(α∗)



2. EXAMPLE: THE MEPS DATA 204is used to enfore the restrition that α > 0. The unrestrited parameter α∗ = logα isused to de�ne the log-likelihood funtion, sine the BFGS minimization algorithm doesnot do ontrained minimization. To get the standard error and t-statisti of the estimateof α, we need to use the delta method. This is done inside mle_results, making use ofthe funtion parameterize.m .Likewise, here are NB-II results:MPITB extensions foundOBDV======================================================BFGSMIN final resultsUsed analyti gradient------------------------------------------------------STRONG CONVERGENCEFuntion onv 1 Param onv 1 Gradient onv 1------------------------------------------------------Objetive funtion value 2.18496Stepsize 0.010439413 iterations------------------------------------------------------param gradient hange1.0375 0.0000 -0.00000.3673 -0.0000 0.00000.2136 0.0000 -0.00000.2816 0.0000 -0.00000.3027 0.0000 0.00000.0843 -0.0000 0.0000-0.0048 0.0000 -0.00000.4780 -0.0000 0.0000******************************************************Negative Binomial model, MEPS 1996 full data setMLE Estimation ResultsBFGS onvergene: Normal onvergeneAverage Log-L: -2.184962Observations: 4564estimate st. err t-stat p-valueonstant -1.068 0.161 -6.622 0.000pub. ins. 1.101 0.095 11.611 0.000priv. ins. 0.476 0.081 5.880 0.000sex 0.564 0.050 11.166 0.000age 0.025 0.002 12.240 0.000edu 0.029 0.009 3.106 0.002in -0.000 0.000 -0.176 0.861alpha 1.613 0.055 29.099 0.000

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/parameterize.m


2. EXAMPLE: THE MEPS DATA 205Information CriteriaCAIC : 20019.7439 Avg. CAIC: 4.3864BIC : 20011.7439 Avg. BIC: 4.3847AIC : 19960.3362 Avg. AIC: 4.3734******************************************************
• For the OBDV usage measurel, the NB-II model does a slightly better job thanthe NB-I model, in terms of the average log-likelihood and the information riteria(more on this last in a moment).
• Note that both versions of the NB model �t muh better than does the Poissonmodel (see 4.2).
• The estimated α is highly signi�ant.To hek the plausibility of the NB-II model, we an ompare the sample unonditionalvariane with the estimated unonditional variane aording to the NB-II model: V̂ (y) =

Pn
t=1

λ̂t+α̂(λ̂t)
2

n . For OBDV and ERV (estimation results not reported), we get For OBDV,Table 2. Marginal Varianes, Sample and Estimated (NB-II)OBDV ERVSample 38.09 0.151Estimated 30.58 0.182the overdispersion problem is signi�antly better than in the Poisson ase, but there is stillsome that is not aptured. For ERV, the negative binomial model seems to apture theoverdispersion adequately.2.2. Finite mixture models: the mixed negative binomial model. The �nitemixture approah to �tting health are demand was introdued by Deb and Trivedi (1997).The mixture approah has the intuitive appeal of allowing for subgroups of the populationwith di�erent health status. If individuals are lassi�ed as healthy or unhealthy then twosubgroups are de�ned. A �ner lassi�ation sheme would lead to more subgroups. Manystudies have inorporated objetive and/or subjetive indiators of health status in ane�ort to apture this heterogeneity. The available objetive measures, suh as limitationson ativity, are not neessarily very informative about a person's overall health status.Subjetive, self-reported measures may su�er from the same problem, and may also not beexogenousFinite mixture models are oneptually simple. The density is
fY (y, φ1, ..., φp, π1, ..., πp−1) =

p−1∑

i=1

πif
(i)
Y (y, φi) + πpf

p
Y (y, φp),where πi > 0, i = 1, 2, ..., p, πp = 1 −∑p−1

i=1 πi, and ∑p
i=1 πi = 1. Identi�ation requiresthat the πi are ordered in some way, for example, π1 ≥ π2 ≥ · · · ≥ πp and φi 6= φj , i 6= j.This is simple to aomplish post-estimation by rearrangement and possible elimination ofredundant omponent densities.

• The properties of the mixture density follow in a straightforward way from thoseof the omponents. In partiular, the moment generating funtion is the samemixture of the moment generating funtions of the omponent densities, so, forexample, E(Y |x) =
∑p

i=1 πiµi(x), where µi(x) is the mean of the ith omponentdensity.



2. EXAMPLE: THE MEPS DATA 206
• Mixture densities may su�er from overparameterization, sine the total number ofparameters grows rapidly with the number of omponent densities. It is possibleto onstrained parameters aross the mixtures.
• Testing for the number of omponent densities is a triky issue. For example,testing for p = 1 (a single omponent, whih is to say, no mixture) versus p = 2(a mixture of two omponents) involves the restrition π1 = 1, whih is on theboundary of the parameter spae. Not that when π1 = 1, the parameters of theseond omponent an take on any value without a�eting the density. Usualmethods suh as the likelihood ratio test are not appliable when parametersare on the boundary under the null hypothesis. Information riteria means ofhoosing the model (see below) are valid.The following results are for a mixture of 2 NB-II models, for the OBDV data, whih youan repliate using this program .OBDV******************************************************Mixed Negative Binomial model, MEPS 1996 full data setMLE Estimation ResultsBFGS onvergene: Normal onvergeneAverage Log-L: -2.164783Observations: 4564estimate st. err t-stat p-valueonstant 0.127 0.512 0.247 0.805pub. ins. 0.861 0.174 4.962 0.000priv. ins. 0.146 0.193 0.755 0.450sex 0.346 0.115 3.017 0.003age 0.024 0.004 6.117 0.000edu 0.025 0.016 1.590 0.112in -0.000 0.000 -0.214 0.831alpha 1.351 0.168 8.061 0.000onstant 0.525 0.196 2.678 0.007pub. ins. 0.422 0.048 8.752 0.000priv. ins. 0.377 0.087 4.349 0.000sex 0.400 0.059 6.773 0.000age 0.296 0.036 8.178 0.000edu 0.111 0.042 2.634 0.008in 0.014 0.051 0.274 0.784alpha 1.034 0.187 5.518 0.000Mix 0.257 0.162 1.582 0.114Information CriteriaCAIC : 19920.3807 Avg. CAIC: 4.3647BIC : 19903.3807 Avg. BIC: 4.3610AIC : 19794.1395 Avg. AIC: 4.3370******************************************************

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/EstimateNegBin.m


2. EXAMPLE: THE MEPS DATA 207It is worth noting that the mixture parameter is not signi�antly di�erent from zero,but also not that the oe�ients of publi insurane and age, for example, di�er quite abit between the two latent lasses.2.3. Information riteria. As seen above, a Poisson model an't be tested (usingstandard methods) as a restrition of a negative binomial model. But it seems, based uponthe values of the likelihood funtions and the fat that the NB model �ts the varianemuh better, that the NB model is more appropriate. How an we determine whih of aset of ompeting models is the best?The information riteria approah is one possibility. Information riteria are funtionsof the log-likelihood, with a penalty for the number of parameters used. Three popularinformation riteria are the Akaike (AIC), Bayes (BIC) and onsistent Akaike (CAIC). Theformulae are
CAIC = −2 lnL(θ̂) + k(lnn+ 1)

BIC = −2 lnL(θ̂) + k lnn

AIC = −2 lnL(θ̂) + 2kIt an be shown that the CAIC and BIC will selet the orretly spei�ed model froma group of models, asymptotially. This doesn't mean, of ourse, that the orret modelis neesarily in the group. The AIC is not onsistent, and will asymptotially favor anover-parameterized model over the orretly spei�ed model. Here are information riteriavalues for the models we've seen, for OBDV. Pretty learly, the NB models are betterTable 3. Information Criteria, OBDVModel AIC BIC CAICPoisson 7.345 7.355 7.357NB-I 4.375 4.386 4.388NB-II 4.373 4.385 4.386MNB-II 4.337 4.361 4.365than the Poisson. The one additional parameter gives a very signi�ant improvement inthe likelihood funtion value. Between the NB-I and NB-II models, the NB-II is slightlyfavored. But one should remember that information riteria values are statistis, withvarianes. With another sample, it may well be that the NB-I model would be favored,sine the di�erenes are so small. The MNB-II model is favored over the others, by all 3information riteria.Why is all of this in the hapter on QML? Let's suppose that the orret model forOBDV is in fat the NB-II model. It turns out in this ase that the Poisson model willgive onsistent estimates of the slope parameters (if a model is a member of the linear-exponential family and the onditional mean is orretly spei�ed, then the parameters ofthe onditional mean will be onsistently estimated). So the Poisson estimator would bea QML estimator that is onsistent for some parameters of the true model. The ordinaryOPG or inverse Hessinan �ML� ovariane estimators are however biased and inonsistent,sine the information matrix equality does not hold for QML estimators. But for i.i.d. data(whih is the ase for the MEPS data) the QML asymptoti ovariane an be onsistentlyestimated, as disussed above, using the sandwih form for the ML estimator. mle_resultsin fat reports sandwih results, so the Poisson estimation results would be reliable for



2. EXAMPLE: THE MEPS DATA 208inferene even if the true model is the NB-I or NB-II. Not that they are in fat similar tothe results for the NB models.However, if we assume that the orret model is the MNB-II model, as is favored bythe information riteria, then both the Poisson and NB-x models will have misspei�edmean funtions, so the parameters that in�uene the means would be estimated with biasand inonsistently.



EXERCISES 209ExerisesExerises(1) Considering the MEPS data (the desription is in Setion 4.2), for the OBDV (y)measure, let η be a latent index of health status that has expetation equal to unity.1We suspet that η and PRIV may be orrelated, but we assume that η is unorrelatedwith the other regressors. We assume that
E(y|PUB,PRIV,AGE,EDUC, INC, η)

= exp(β1 + β2PUB + β3PRIV + β4AGE + β5EDUC + β6INC)η.We use the Poisson QML estimator of the model
y ∼ Poisson(λ)

λ = exp(β1 + β2PUB + β3PRIV +(50)
β4AGE + β5EDUC + β6INC).Sine muh previous evidene indiates that health are servies usage is overdis-persed2, this is almost ertainly not an ML estimator, and thus is not e�ient. However,when η and PRIV are unorrelated, this estimator is onsistent for the βi parameters,sine the onditional mean is orretly spei�ed in that ase. When η and PRIV areorrelated, Mullahy's (1997) NLIV estimator that uses the residual funtion

ε =
y

λ
− 1,where λ is de�ned in equation 50, with appropriate instruments, is onsistent. Asinstruments we use all the exogenous regressors, as well as the ross produts of PUBwith the variables in Z = {AGE,EDUC, INC}. That is, the full set of instrumentsis

W = {1 PUB Z PUB × Z }.(a) Calulate the Poisson QML estimates.(b) Calulate the generalized IV estimates (do it using a GMM formulation - see theportfolio example for hints how to do this).() Calulate the Hausman test statisti to test the exogeneity of PRIV.(d) omment on the results

1A restrition of this sort is neessary for identi�ation.2Overdispersion exists when the onditional variane is greater than the onditional mean. If this is thease, the Poisson spei�ation is not orret.



CHAPTER 17Nonlinear least squares (NLS)Readings: Davidson and MaKinnon, Ch. 2∗ and 5∗; Gallant, Ch. 11. Introdution and de�nitionNonlinear least squares (NLS) is a means of estimating the parameter of the model
yt = f(xt, θ

0) + εt.

• In general, εt will be heterosedasti and autoorrelated, and possibly nonnor-mally distributed. However, dealing with this is exatly as in the ase of linearmodels, so we'll just treat the iid ase here,
εt ∼ iid(0, σ2)If we stak the observations vertially, de�ning

y = (y1, y2, ..., yn)
′

f = (f(x1, θ), f(x1, θ), ..., f(x1, θ))
′and

ε = (ε1, ε2, ..., εn)
′we an write the n observations as

y = f(θ) + εUsing this notation, the NLS estimator an be de�ned as
θ̂ ≡ arg min

Θ
sn(θ) =

1

n
[y − f(θ)]′ [y − f(θ)] =

1

n
‖ y − f(θ) ‖2

• The estimator minimizes the weighted sum of squared errors, whih is the sameas minimizing the Eulidean distane between y and f(θ).The objetive funtion an be written as
sn(θ) =

1

n

[
y′y − 2y′f(θ) + f(θ)′f(θ)

]
,whih gives the �rst order onditions

−
[
∂

∂θ
f(θ̂)′

]
y +

[
∂

∂θ
f(θ̂)′

]
f(θ̂) ≡ 0.De�ne the n×K matrix(51) F(θ̂) ≡ Dθ′f(θ̂).In shorthand, use F̂ in plae of F(θ̂). Using this, the �rst order onditions an be writtenas

−F̂′y + F̂′f(θ̂) ≡ 0,210



2. IDENTIFICATION 211or(52) F̂′
[
y − f(θ̂)

]
≡ 0.This bears a good deal of similarity to the f.o.. for the linear model - the derivative ofthe predition is orthogonal to the predition error. If f(θ) = Xθ, then F̂ is simply X, sothe f.o.. (with spherial errors) simplify to

X′y − X′Xβ = 0,the usual 0LS f.o..We an interpret this geometrially: INSERT drawings of geometrial depition of OLSand NLS (see Davidson and MaKinnon, pgs. 8,13 and 46).
• Note that the nonlinearity of the manifold leads to potential multiple loal max-ima, minima and saddlepoints: the objetive funtion sn(θ) is not neessarilywell-behaved and may be di�ult to minimize.2. Identi�ationAs before, identi�ation an be onsidered onditional on the sample, and asymptoti-ally. The ondition for asymptoti identi�ation is that sn(θ) tend to a limiting funtion

s∞(θ) suh that s∞(θ0) < s∞(θ), ∀θ 6= θ0. This will be the ase if s∞(θ0) is stritly onvexat θ0, whih requires that D2
θs∞(θ0) be positive de�nite. Consider the objetive funtion:

sn(θ) =
1

n

n∑

t=1

[yt − f(xt, θ)]
2

=
1

n

n∑

t=1

[
f(xt, θ

0) + εt − ft(xt, θ)
]2

=
1

n

n∑

t=1

[
ft(θ

0) − ft(θ)
]2

+
1

n

n∑

t=1

(εt)
2

− 2

n

n∑

t=1

[
ft(θ

0) − ft(θ)
]
εt

• As in example 3, whih illustrated the onsisteny of extremum estimators usingOLS, we onlude that the seond term will onverge to a onstant whih doesnot depend upon θ.
• A LLN an be applied to the third term to onlude that it onverges pointwiseto 0, as long as f(θ) and ε are unorrelated.
• Next, pointwise onvergene needs to be stregnthened to uniform almost sureonvergene. There are a number of possible assumptions one ould use. Here,we'll just assume it holds.
• Turning to the �rst term, we'll assume a pointwise law of large numbers applies,so(53) 1

n

n∑

t=1

[
ft(θ

0) − ft(θ)
]2 a.s.→

∫ [
f(z, θ0) − f(z, θ)

]2
dµ(z),where µ(x) is the distribution funtion of x. In many ases, f(x, θ) will be boundedand ontinuous, for all θ ∈ Θ, so strengthening to uniform almost sure onvergeneis immediate. For example if f(x, θ) = [1 + exp(−xθ)]−1 , f : ℜK → (0, 1) , abounded range, and the funtion is ontinuous in θ.



4. ASYMPTOTIC NORMALITY 212Given these results, it is lear that a minimizer is θ0. When onsidering identi�ation(asymptoti), the question is whether or not there may be some other minimizer. A loalondition for identi�ation is that
∂2

∂θ∂θ′
s∞(θ) =

∂2

∂θ∂θ′

∫ [
f(x, θ0) − f(x, θ)

]2
dµ(x)be positive de�nite at θ0. Evaluating this derivative, we obtain (after a little work)

∂2

∂θ∂θ′

∫ [
f(x, θ0) − f(x, θ)

]2
dµ(x)

∣∣∣∣
θ0

= 2

∫ [
Dθf(z, θ0)′

] [
Dθ′f(z, θ0)

]′
dµ(z)the expetation of the outer produt of the gradient of the regression funtion evaluated at

θ0. (Note: the uniform boundedness we have already assumed allows passing the derivativethrough the integral, by the dominated onvergene theorem.) This matrix will be positivede�nite (wp1) as long as the gradient vetor is of full rank (wp1). The tangent spae to theregression manifold must span a K -dimensional spae if we are to onsistently estimate a
K -dimensional parameter vetor. This is analogous to the requirement that there be noperfet olinearity in a linear model. This is a neessary ondition for identi�ation. Notethat the LLN implies that the above expetation is equal to

J∞(θ0) = 2 lim EF′F
n3. ConsistenyWe simply assume that the onditions of Theorem 19 hold, so the estimator is onsis-tent. Given that the strong stohasti equiontinuity onditions hold, as disussed above,and given the above identi�ation onditions an a ompat estimation spae (the losureof the parameter spae Θ), the onsisteny proof's assumptions are satis�ed.4. Asymptoti normalityAs in the ase of GMM, we also simply assume that the onditions for asymptotinormality as in Theorem 22 hold. The only remaining problem is to determine the formof the asymptoti variane-ovariane matrix. Reall that the result of the asymptotinormality theorem is

√
n
(
θ̂ − θ0

)
d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]
,where J∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′ sn(θ) evaluated at θ0, and
I∞(θ0) = limV ar

√
nDθsn(θ

0)The objetive funtion is
sn(θ) =

1

n

n∑

t=1

[yt − f(xt, θ)]
2So

Dθsn(θ) = − 2

n

n∑

t=1

[yt − f(xt, θ)]Dθf(xt, θ).Evaluating at θ0,

Dθsn(θ
0) = − 2

n

n∑

t=1

εtDθf(xt, θ
0).



5. EXAMPLE: THE POISSON MODEL FOR COUNT DATA 213Note that the expetation of this is zero, sine ǫt and xt are assumed to be unorrelated.So to alulate the variane, we an simply alulate the seond moment about zero. Alsonote that
n∑

t=1

εtDθf(xt, θ
0) =

∂

∂θ

[
f(θ0)

]′
ε

= F′εWith this we obtain
I∞(θ0) = limV ar

√
nDθsn(θ

0)

= limnE 4

n2
F′εε'F

= 4σ2 lim EF′F
nWe've already seen that

J∞(θ0) = 2 lim EF′F
n
,where the expetation is with respet to the joint density of x and ε. Combining theseexpressions for J∞(θ0) and I∞(θ0), and the result of the asymptoti normality theorem,we get

√
n
(
θ̂ − θ0

)
d→ N

(
0,

(
lim EF′F

n

)−1

σ2

)
.We an onsistently estimate the variane ovariane matrix using(54) (

F̂′F̂
n

)−1

σ̂2,where F̂ is de�ned as in equation 51 and
σ̂2 =

[
y − f(θ̂)

]′ [
y − f(θ̂)

]

n
,the obvious estimator. Note the lose orrespondene to the results for the linear model.5. Example: The Poisson model for ount dataSuppose that yt onditional on xt is independently distributed Poisson. A Poissonrandom variable is a ount data variable, whih means it an take the values {0,1,2,...}.This sort of model has been used to study visits to dotors per year, number of patentsregistered by businesses per year, et.The Poisson density is

f(yt) =
exp(−λt)λyt

t

yt!
, yt ∈ {0, 1, 2, ...}.The mean of yt is λt, as is the variane. Note that λt must be positive. Suppose that thetrue mean is

λ0
t = exp(x′

tβ
0),whih enfores the positivity of λt. Suppose we estimate β0 by nonlinear least squares:

β̂ = arg min sn(β) =
1

T

n∑

t=1

(
yt − exp(x′

tβ)
)2



6. THE GAUSS-NEWTON ALGORITHM 214We an write
sn(β) =

1

T

n∑

t=1

(
exp(x′

tβ
0 + εt − exp(x′

tβ)
)2

=
1

T

n∑

t=1

(
exp(x′

tβ
0 − exp(x′

tβ)
)2

+
1

T

n∑

t=1

ε2t + 2
1

T

n∑

t=1

εt
(
exp(x′

tβ
0 − exp(x′

tβ)
)The last term has expetation zero sine the assumption that E(yt|xt) = exp(x′

tβ
0) impliesthat E (εt|xt) = 0, whih in turn implies that funtions of xt are unorrelated with εt.Applying a strong LLN, and noting that the objetive funtion is ontinuous on a ompatparameter spae, we get

s∞(β) = Ex

(
exp(x′β0 − exp(x′β)

)2
+ Ex exp(x′β0)where the last term omes from the fat that the onditional variane of ε is the same asthe variane of y. This funtion is learly minimized at β = β0, so the NLS estimator isonsistent as long as identi�ation holds.Exerise 27. Determine the limiting distribution of√n(β̂ − β0

)
. This means �ndingthe the spei� forms of ∂2

∂β∂β′ sn(β), J (β0), ∂sn(β)
∂β

∣∣∣ , and I(β0). Again, use a CLT as needed,no need to verify that it an be applied.6. The Gauss-Newton algorithmReadings: Davidson and MaKinnon, Chapter 6, pgs. 201-207∗.The Gauss-Newton optimization tehnique is spei�ally designed for nonlinear leastsquares. The idea is to linearize the nonlinear model, rather than the objetive funtion.The model is
y = f(θ0) + ε.At some θ in the parameter spae, not equal to θ0, we have
y = f(θ) + νwhere ν is a ombination of the fundamental error term ε and the error due to evaluatingthe regression funtion at θ rather than the true value θ0. Take a �rst order Taylor's seriesapproximation around a point θ1 :

y = f(θ1) +
[
Dθ′f

(
θ1
)] (

θ − θ1
)

+ ν + approximation error.De�ne z ≡ y − f(θ1) and b ≡ (θ − θ1). Then the last equation an be written as
z = F(θ1)b+ ω,where, as above, F(θ1) ≡ Dθ′f(θ

1) is the n × K matrix of derivatives of the regressionfuntion, evaluated at θ1, and ω is ν plus approximation error from the trunated Taylor'sseries.
• Note that F is known, given θ1.

• Note that one ould estimate b simply by performing OLS on the above equation.
• Given b̂, we alulate a new round estimate of θ0 as θ2 = b̂+ θ1.With this, take anew Taylor's series expansion around θ2 and repeat the proess. Stop when b̂ = 0(to within a spei�ed tolerane).



7. APPLICATION: LIMITED DEPENDENT VARIABLES AND SAMPLE SELECTION 215To see why this might work, onsider the above approximation, but evaluated at the NLSestimator:
y = f(θ̂) + F(θ̂)

(
θ − θ̂

)
+ ωThe OLS estimate of b ≡ θ − θ̂ is

b̂ =
(
F̂′F̂

)−1
F̂′
[
y − f(θ̂)

]
.This must be zero, sine

F̂′
(
θ̂
) [

y − f(θ̂)
]
≡ 0by de�nition of the NLS estimator (these are the normal equations as in equation 52, Sine

b̂ ≡ 0 when we evaluate at θ̂, updating would stop.
• The Gauss-Newton method doesn't require seond derivatives, as does the Newton-Raphson method, so it's faster.
• The varov estimator, as in equation 54 is simple to alulate, sine we have F̂as a by-produt of the estimation proess (i.e., it's just the last round �regressormatrix�). In fat, a normal OLS program will give the NLS varov estimatordiretly, sine it's just the OLS varov estimator from the last iteration.
• The method an su�er from onvergene problems sine F(θ)′F(θ), may be verynearly singular, even with an asymptotially identi�ed model, espeially if θ isvery far from θ̂. Consider the example

y = β1 + β2xtβ
3 + εtWhen evaluated at β2 ≈ 0, β3 has virtually no e�et on the NLS objetive fun-tion, so F will have rank that is �essentially� 2, rather than 3. In this ase, F′Fwill be nearly singular, so (F′F)−1 will be subjet to large roundo� errors.7. Appliation: Limited dependent variables and sample seletionReadings: Davidson and MaKinnon, Ch. 15∗ (a quik reading is su�ient), J.Hekman, �Sample Seletion Bias as a Spei�ation Error�, Eonometria, 1979 (This is alassi artile, not required for reading, and whih is a bit out-dated. Nevertheless it's agood plae to start if you enounter sample seletion problems in your researh).Sample seletion is a ommon problem in applied researh. The problem ours whenobservations used in estimation are sampled non-randomly, aording to some seletionsheme.7.1. Example: Labor Supply. Labor supply of a person is a positive number ofhours per unit time supposing the o�er wage is higher than the reservation wage, whihis the wage at whih the person prefers not to work. The model (very simple, with tsubsripts suppressed):

• Charateristis of individual: x

• Latent labor supply: s∗ = x′β + ω

• O�er wage: wo = z′γ + ν

• Reservation wage: wr = q′δ + ηWrite the wage di�erential as
w∗ =

(
z′γ + ν

)
−
(
q′δ + η

)

≡ r′θ + ε



7. APPLICATION: LIMITED DEPENDENT VARIABLES AND SAMPLE SELECTION 216We have the set of equations
s∗ = x′β + ω

w∗ = r′θ + ε.Assume that [
ω

ε

]
∼ N

([
0

0

]
,

[
σ2 ρσ

ρσ 1

])
.We assume that the o�er wage and the reservation wage, as well as the latent variable s∗are unobservable. What is observed is

w = 1 [w∗ > 0]

s = ws∗.In other words, we observe whether or not a person is working. If the person is working,we observe labor supply, whih is equal to latent labor supply, s∗. Otherwise, s = 0 6= s∗.Note that we are using a simplifying assumption that individuals an freely hoose theirweekly hours of work.Suppose we estimated the model
s∗ = x′β + residualusing only observations for whih s > 0. The problem is that these observations are thosefor whih w∗ > 0, or equivalently, −ε < r′θ and
E
[
ω| − ε < r′θ

]
6= 0,sine ε and ω are dependent. Furthermore, this expetation will in general depend on xsine elements of x an enter in r. Beause of these two fats, least squares estimation isbiased and inonsistent.Consider more arefully E [ω| − ε < r′θ] . Given the joint normality of ω and ε, we anwrite (see for example Spanos Statistial Foundations of Eonometri Modelling, pg. 122)

ω = ρσε+ η,where η has mean zero and is independent of ε. With this we an write
s∗ = x′β + ρσε+ η.If we ondition this equation on −ε < r′θ we get

s = x′β + ρσE(ε| − ε < r′θ) + ηwhih may be written as
s = x′β + ρσE(ε|ε > −r′θ) + η

• A useful result is that for
z ∼ N(0, 1)

E(z|z > z∗) =
φ(z∗)

Φ(−z∗) ,where φ (·) and Φ (·) are the standard normal density and distribution funtion,respetively. The quantity on the RHS above is known as the inverse Mill's ratio:
IMR(z∗) =

φ(z∗)
Φ(−z∗)



7. APPLICATION: LIMITED DEPENDENT VARIABLES AND SAMPLE SELECTION 217With this we an write (making use of the fat that the standard normal densityis symmetri about zero, so that φ(−a) = φ(a)):
s = x′β + ρσ

φ (r′θ)
Φ (r′θ)

+ η(55)
≡

[
x′ φ(r′θ)

Φ(r′θ)

] [ β

ζ

]
+ η.(56)where ζ = ρσ. The error term η has onditional mean zero, and is unorrelated with theregressors x′ φ(r′θ)

Φ(r′θ) . At this point, we an estimate the equation by NLS.
• Hekman showed how one an estimate this in a two step proedure where �rst θ isestimated, then equation 56 is estimated by least squares using the estimated valueof θ to form the regressors. This is ine�ient and estimation of the ovariane isa triky issue. It is probably easier (and more e�ient) just to do MLE.
• The model presented above depends strongly on joint normality. There exist manyalternative models whih weaken the maintained assumptions. It is possible toestimate onsistently without distributional assumptions. See Ahn and Powell,Journal of Eonometris, 1994.



CHAPTER 18Nonparametri inferene1. Possible pitfalls of parametri inferene: estimationReadings: H. White (1980) �Using Least Squares to Approximate Unknown Regres-sion Funtions,� International Eonomi Review, pp. 149-70.In this setion we onsider a simple example, whih illustrates both why nonparametrimethods may in some ases be preferred to parametri methods.We suppose that data is generated by random sampling of (y, x), where y = f(x) +ε,
x is uniformly distributed on (0, 2π), and ε is a lassial error. Suppose that

f(x) = 1 +
3x

2π
−
( x

2π

)2The problem of interest is to estimate the elastiity of f(x) with respet to x, throughoutthe range of x.In general, the funtional form of f(x) is unknown. One idea is to take a Taylor'sseries approximation to f(x) about some point x0. Flexible funtional forms suh as thetransendental logarithmi (usually know as the translog) an be interpreted as seondorder Taylor's series approximations. We'll work with a �rst order approximation, forsimpliity. Approximating about x0:
h(x) = f(x0) +Dxf(x0) (x− x0)If the approximation point is x0 = 0, we an write

h(x) = a+ bxThe oe�ient a is the value of the funtion at x = 0, and the slope is the value of thederivative at x = 0. These are of ourse not known. One might try estimation by ordinaryleast squares. The objetive funtion is
s(a, b) = 1/n

n∑

t=1

(yt − h(xt))
2 .The limiting objetive funtion, following the argument we used to get equations 31 and53 is

s∞(a, b) =

∫ 2π

0
(f(x) − h(x))2 dx.The theorem regarding the onsisteny of extremum estimators (Theorem 19) tells us that

â and b̂ will onverge almost surely to the values that minimize the limiting objetivefuntion. Solving the �rst order onditions1 reveals that s∞(a, b) obtains its minimumat {a0 = 7
6 , b

0 = 1
π

}
. The estimated approximating funtion ĥ(x) therefore tends almostsurely to

h∞(x) = 7/6 + x/π1The following results were obtained using the ommand maxima -b fff.ma You an get the soure �leat http://pareto.uab.es/mreel/Eonometris/Examples/Nonparametri/fff.ma.218

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/fff.mac
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In Figure 1 we see the true funtion and the limit of the approximation to see the asymptotibias as a funtion of x.(The approximating model is the straight line, the true model has urvature.) Notethat the approximating model is in general inonsistent, even at the approximation point.This shows that ��exible funtional forms� based upon Taylor's series approximations donot in general lead to onsistent estimation of funtions.The approximating model seems to �t the true model fairly well, asymptotially. How-ever, we are interested in the elastiity of the funtion. Reall that an elastiity is themarginal funtion divided by the average funtion:
ε(x) = xφ′(x)/φ(x)Good approximation of the elastiity over the range of x will require a good approximationof both f(x) and f ′(x) over the range of x. The approximating elastiity is
η(x) = xh′(x)/h(x)In Figure 2 we see the true elastiity and the elastiity obtained from the limiting approx-imating model.The true elastiity is the line that has negative slope for large x. Visually we see thatthe elastiity is not approximated so well. Root mean squared error in the approximationof the elastiity is (∫ 2π

0
(ε(x) − η(x))2 dx

)1/2

= . 31546Now suppose we use the leading terms of a trigonometri series as the approximatingmodel. The reason for using a trigonometri series as an approximating model is motivatedby the asymptoti properties of the Fourier �exible funtional form (Gallant, 1981, 1982),whih we will study in more detail below. Normally with this type of model the numberof basis funtions is an inreasing funtion of the sample size. Here we hold the set ofbasis funtion �xed. We will onsider the asymptoti behavior of a �xed model, whih weinterpret as an approximation to the estimator's behavior in �nite samples. Consider theset of basis funtions:
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Figure 3. True funtion and more �exible approximation
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Z(x) =
[

1 x cos(x) sin(x) cos(2x) sin(2x)
]
.The approximating model is

gK(x) = Z(x)α.Maintaining these basis funtions as the sample size inreases, we �nd that the limitingobjetive funtion is minimized at
{
a1 =

7

6
, a2 =

1

π
, a3 = − 1

π2
, a4 = 0, a5 = − 1

4π2
, a6 = 0

}
.Substituting these values into gK(x) we obtain the almost sure limit of the approximation(57) g∞(x) = 7/6 + x/π + (cos x)

(
− 1

π2

)
+ (sinx) 0 + (cos 2x)

(
− 1

4π2

)
+ (sin 2x) 0In Figure 3 we have the approximation and the true funtion: Clearly the trunatedtrigonometri series model o�ers a better approximation, asymptotially, than does thelinear model. In Figure 4 we have the more �exible approximation's elastiity and that ofthe true funtion: On average, the �t is better, though there is some implausible wavyness
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in the estimate. Root mean squared error in the approximation of the elastiity is
(∫ 2π

0

(
ε(x) − g′∞(x)x

g∞(x)

)2

dx

)1/2

= . 16213,about half that of the RMSE when the �rst order approximation is used. If the trigono-metri series ontained in�nite terms, this error measure would be driven to zero, as weshall see.2. Possible pitfalls of parametri inferene: hypothesis testingWhat do we mean by the term �nonparametri inferene�? Simply, this means inferenesthat are possible without restriting the funtions of interest to belong to a parametrifamily.
• Consider means of testing for the hypothesis that onsumers maximize utility. Aonsequene of utility maximization is that the Slutsky matrix D2

ph(p, U), where
h(p, U) are the a set of ompensated demand funtions, must be negative semi-de�nite. One approah to testing for utility maximization would estimate a setof normal demand funtions x(p,m).

• Estimation of these funtions by normal parametri methods requires spei�ationof the funtional form of demand, for example
x(p,m) = x(p,m, θ0) + ε, θ0 ∈ Θ0,where x(p,m, θ0) is a funtion of known form and Θ0 is a �nite dimensionalparameter.

• After estimation, we ould use x̂ = x(p,m, θ̂) to alulate (by solving the inte-grability problem, whih is non-trivial) D̂2
ph(p, U). If we an statistially rejetthat the matrix is negative semi-de�nite, we might onlude that onsumers don'tmaximize utility.

• The problem with this is that the reason for rejetion of the theoretial propositionmay be that our hoie of funtional form is inorret. In the introdutory setionwe saw that funtional form misspei�ation leads to inonsistent estimation ofthe funtion and its derivatives.
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• Testing using parametri models always means we are testing a ompound hy-pothesis. The hypothesis that is tested is 1) the eonomi proposition we wish totest, and 2) the model is orretly spei�ed. Failure of either 1) or 2) an lead torejetion. This is known as the �model-indued augmenting hypothesis.�
• Varian's WARP allows one to test for utility maximization without speifying theform of the demand funtions. The only assumptions used in the test are thosediretly implied by theory, so rejetion of the hypothesis alls into question thetheory.
• Nonparametri inferene allows diret testing of eonomi propositions, withoutthe �model-indued augmenting hypothesis�.3. The Fourier funtional formReadings: Gallant, 1987, �Identi�ation and onsisteny in semi-nonparametri re-gression,� in Advanes in Eonometris, Fifth World Congress, V. 1, Truman Bewley, ed.,Cambridge.
• Suppose we have a multivariate model

y = f(x) + ε,where f(x) is of unknown form and x is a P−dimensional vetor. For simpliity,assume that ε is a lassial error. Let us take the estimation of the vetor ofelastiities with typial element
ξxi

=
xi

f(x)

∂f(x)

∂xif(x)
,at an arbitrary point xi.The Fourier form, following Gallant (1982), but with a somewhat di�erent parameteriza-tion, may be written as(58) gK(x | θK) = α+ x′β + 1/2x′Cx +

A∑

α=1

J∑

j=1

(
ujα cos(jk′

αx) − vjα sin(jk′
αx)
)
.where the K-dimensional parameter vetor(59) θK = {α, β′, vec∗(C)′, u11, v11, . . . , uJA, vJA}′.

• We assume that the onditioning variables x have eah been transformed to liein an interval that is shorter than 2π. This is required to avoid periodi behaviorof the approximation, whih is desirable sine eonomi funtions aren't periodi.For example, subtrat sample means, divide by the maxima of the onditioningvariables, and multiply by 2π − eps, where eps is some positive number less than
2π in value.

• The kα are �elementary multi-indies� whih are simply P− vetors formed ofintegers (negative, positive and zero). The kα, α = 1, 2, ..., A are required to belinearly independent, and we follow the onvention that the �rst non-zero elementbe positive. For example
[

0 1 −1 0 1
]′



3. THE FOURIER FUNCTIONAL FORM 223is a potential multi-index to be used, but
[

0 −1 −1 0 1
]′is not sine its �rst nonzero element is negative. Nor is

[
0 2 −2 0 2

]′a multi-index we would use, sine it is a salar multiple of the original multi-index.
• We parameterize the matrix C di�erently than does Gallant beause it simpli�esthings in pratie. The ost of this is that we are no longer able to test a quadratispei�ation using nested testing.The vetor of �rst partial derivatives is(60) DxgK(x | θK) = β + Cx +

A∑

α=1

J∑

j=1

[(
−ujα sin(jk′

αx) − vjα cos(jk′
αx)
)
jkα

]and the matrix of seond partial derivatives is(61) D2
xgK(x|θK) = C +

A∑

α=1

J∑

j=1

[(
−ujα cos(jk′

αx) + vjα sin(jk′
αx)
)
j2kαk

′
α

]To de�ne a ompat notation for partial derivatives, let λ be an N -dimensional multi-index with no negative elements. De�ne | λ |∗ as the sum of the elements of λ. If we have
N arguments x of the (arbitrary) funtion h(x), use Dλh(x) to indiate a ertain partialderivative:

Dλh(x) ≡ ∂|λ|
∗

∂xλ1

1 ∂xλ2

2 · · · ∂xλN

N

h(x)When λ is the zero vetor, Dλh(x) ≡ h(x). Taking this de�nition and the last few equationsinto aount, we see that it is possible to de�ne (1 ×K) vetor Zλ(x) so that(62) DλgK(x|θK) = zλ(x)′θK .

• Both the approximating model and the derivatives of the approximating modelare linear in the parameters.
• For the approximating model to the funtion (not derivatives), write gK(x|θK) =

z′θK for simpliity.The following theorem an be used to prove the onsisteny of the Fourier form.Theorem 28. [Gallant and Nyhka, 1987℄ Suppose that ĥn is obtained by maximizinga sample objetive funtion sn(h) over HKn where HK is a subset of some funtion spae
H on whih is de�ned a norm ‖ h ‖. Consider the following onditions:(a) Compatness: The losure of H with respet to ‖ h ‖ is ompat in the relativetopology de�ned by ‖ h ‖.(b) Denseness: ∪KHK , K = 1, 2, 3, ... is a dense subset of the losure of H with respetto ‖ h ‖ and HK ⊂ HK+1.() Uniform onvergene: There is a point h∗ in H and there is a funtion s∞(h, h∗)that is ontinuous in h with respet to ‖ h ‖ suh that

lim
n→∞

sup
H

| sn(h) − s∞(h, h∗) |= 0



3. THE FOURIER FUNCTIONAL FORM 224almost surely.(d) Identi�ation: Any point h in the losure of H with s∞(h, h∗) ≥ s∞(h∗, h∗) musthave ‖ h− h∗ ‖= 0.Under these onditions limn→∞ ‖ h∗−ĥn ‖= 0 almost surely, provided that limn→∞Kn =

∞ almost surely.The modi�ation of the original statement of the theorem that has been made is to setthe parameter spae Θ in Gallant and Nyhka's (1987) Theorem 0 to a single point and tostate the theorem in terms of maximization rather than minimization.This theorem is very similar in form to Theorem 19. The main di�erenes are:(1) A generi norm ‖ h ‖ is used in plae of the Eulidean norm. This norm maybe stronger than the Eulidean norm, so that onvergene with respet to ‖ h ‖implies onvergene w.r.t the Eulidean norm. Typially we will want to makesure that the norm is strong enough to imply onvergene of all funtions ofinterest.(2) The �estimation spae� H is a funtion spae. It plays the role of the parameterspae Θ in our disussion of parametri estimators. There is no restrition to aparametri family, only a restrition to a spae of funtions that satisfy ertainonditions. This formulation is muh less restritive than the restrition to aparametri family.(3) There is a denseness assumption that was not present in the other theorem.We will not prove this theorem (the proof is quite similar to the proof of theorem [19℄, seeGallant, 1987) but we will disuss its assumptions, in relation to the Fourier form as theapproximating model.3.1. Sobolev norm. Sine all of the assumptions involve the norm ‖ h ‖ , we needto make expliit what norm we wish to use. We need a norm that guarantees that theerrors in approximation of the funtions we are interested in are aounted for. Sine weare interested in �rst-order elastiities in the present ase, we need lose approximation ofboth the funtion f(x) and its �rst derivative f ′(x), throughout the range of x. Let X bean open set that ontains all values of x that we're interested in. The Sobolev norm isappropriate in this ase. It is de�ned, making use of our notation for partial derivatives,as:
‖ h ‖m,X= max

|λ∗|≤m
sup
X

∣∣∣Dλh(x)
∣∣∣To see whether or not the funtion f(x) is well approximated by an approximating model

gK(x | θK), we would evaluate
‖ f(x) − gK(x | θK) ‖m,X .We see that this norm takes into aount errors in approximating the funtion and partialderivatives up to order m. If we want to estimate �rst order elastiities, as is the ase inthis example, the relevant m would be m = 1. Furthermore, sine we examine the supover X , onvergene w.r.t. the Sobolev means uniform onvergene, so that we obtainonsistent estimates for all values of x.3.2. Compatness. Verifying ompatness with respet to this norm is quite tehni-al and unenlightening. It is proven by Elbadawi, Gallant and Souza, Eonometria, 1983.The basi requirement is that if we need onsisteny w.r.t. ‖ h ‖m,X , then the funtions



3. THE FOURIER FUNCTIONAL FORM 225of interest must belong to a Sobolev spae whih takes into aount derivatives of order
m+ 1. A Sobolev spae is the set of funtions

Wm,X (D) = {h(x) :‖ h(x) ‖m,X< D},where D is a �nite onstant. In plain words, the funtions must have bounded partialderivatives of one order higher than the derivatives we seek to estimate.3.3. The estimation spae and the estimation subspae. Sine in our ase we'reinterested in onsistent estimation of �rst-order elastiities, we'll de�ne the estimation spaeas follows:Definition 29. [Estimation spae℄ The estimation spae H = W2,X (D). The estima-tion spae is an open set, and we presume that h∗ ∈ H.So we are assuming that the funtion to be estimated has bounded seond derivativesthroughout X .With seminonparametri estimators, we don't atually optimize over the estimationspae. Rather, we optimize over a subspae, HKn , de�ned as:Definition 30. [Estimation subspae℄ The estimation subspae HK is de�ned as
HK = {gK(x|θK) : gK(x|θK) ∈ W2,Z(D), θK ∈ ℜK},where gK(x, θK) is the Fourier form approximation as de�ned in Equation 58.3.4. Denseness. The important point here is that HK is a spae of funtions that isindexed by a �nite dimensional parameter (θK has K elements, as in equation 59). With

n observations, n > K, this parameter is estimable. Note that the true funtion h∗ isnot neessarily an element of HK , so optimization over HK may not lead to a onsistentestimator. In order for optimization over HK to be equivalent to optimization over H, atleast asymptotially, we need that:(1) The dimension of the parameter vetor, dim θKn → ∞ as n→ ∞. This is ahievedby making A and J in equation 58 inreasing funtions of n, the sample size. Itis lear that K will have to grow more slowly than n. The seond requirement is:(2) We need that the HK be dense subsets of H.The estimation subspae HK , de�ned above, is a subset of the losure of the estimationspae, H . A set of subsets Aa of a set A is �dense� if the losure of the ountable unionof the subsets is equal to the losure of A:
∪∞
a=1Aa = AUse a piture here. The rest of the disussion of denseness is provided just for ompleteness:there's no need to study it in detail. To show that HK is a dense subset of H with respetto ‖ h ‖1,X , it is useful to apply Theorem 1 of Gallant (1982), who in turn ites Edmundsand Mosatelli (1977). We reprodue the theorem as presented by Gallant, with minornotational hanges, for onveniene of referene:Theorem 31. [Edmunds and Mosatelli, 1977℄ Let the real-valued funtion h∗(x) beontinuously di�erentiable up to order m on an open set ontaining the losure of X . Thenit is possible to hoose a triangular array of oe�ients θ1, θ2, . . . θK , . . . , suh that forevery q with 0 ≤ q < m, and every ε > 0, ‖ h∗(x) − hK(x|θK) ‖q,X= o(K−m+q+ε) as

K → ∞.



3. THE FOURIER FUNCTIONAL FORM 226In the present appliation, q = 1, and m = 2. By de�nition of the estimation spae, theelements of H are one ontinuously di�erentiable on X , whih is open and ontains thelosure of X , so the theorem is appliable. Closely following Gallant and Nyhka (1987),
∪∞HK is the ountable union of the HK . The impliation of Theorem 31 is that there isa sequene of {hK} from ∪∞HK suh that

lim
K→∞

‖ h∗ − hK ‖1,X= 0,for all h∗ ∈ H. Therefore,
H ⊂ ∪∞HK .However,
∪∞HK ⊂ H,so
∪∞HK ⊂ H.Therefore
H = ∪∞HK ,so ∪∞HK is a dense subset of H, with respet to the norm ‖ h ‖1,X .3.5. Uniform onvergene. We now turn to the limiting objetive funtion. Weestimate by OLS. The sample objetive funtion stated in terms of maximization is

sn(θK) = − 1

n

n∑

t=1

(yt − gK(xt | θK))2With random sampling, as in the ase of Equations 31 and 53, the limiting objetivefuntion is(63) s∞ (g, f) = −
∫

X
(f(x) − g(x))2 dµx− σ2

ε .where the true funtion f(x) takes the plae of the generi funtion h∗ in the presentationof the theorem. Both g(x) and f(x) are elements of ∪∞HK .The pointwise onvergene of the objetive funtion needs to be strengthened to uni-form onvergene. We will simply assume that this holds, sine the way to verify thisdepends upon the spei� appliation. We also have ontinuity of the objetive funtionin g, with respet to the norm ‖ h ‖1,X sine
lim

‖g1−g0‖1,X→0

{
s∞
(
g1, f)

)
− s∞

(
g0, f)

)}

= lim
‖g1−g0‖1,X→0

∫

X

[(
g1(x) − f(x)

)2 −
(
g0(x) − f(x)

)2]
dµx.By the dominated onvergene theorem (whih applies sine the �nite bound D used tode�ne W2,Z(D) is dominated by an integrable funtion), the limit and the integral an beinterhanged, so by inspetion, the limit is zero.3.6. Identi�ation. The identi�ation ondition requires that for any point (g, f) in

H×H, s∞(g, f) ≥ s∞(f, f) ⇒ ‖ g−f ‖1,X= 0. This ondition is learly satis�ed given that
g and f are one ontinuously di�erentiable (by the assumption that de�nes the estimationspae).



3. THE FOURIER FUNCTIONAL FORM 2273.7. Review of onepts. For the example of estimation of �rst-order elastiities,the relevant onepts are:
• Estimation spae H = W2,X (D): the funtion spae in the losure of whih thetrue funtion must lie.
• Consisteny norm ‖ h ‖1,X . The losure of H is ompat with respet to thisnorm.
• Estimation subspae HK . The estimation subspae is the subset of H that isrepresentable by a Fourier form with parameter θK . These are dense subsets of
H.

• Sample objetive funtion sn(θK), the negative of the sum of squares. By standardarguments this onverges uniformly to the
• Limiting objetive funtion s∞( g, f), whih is ontinuous in g and has a globalmaximum in its �rst argument, over the losure of the in�nite union of the esti-mation subpaes, at g = f.

• As a result of this, �rst order elastiities
xi

f(x)

∂f(x)

∂xif(x)are onsistently estimated for all x ∈ X .3.8. Disussion. Consisteny requires that the number of parameters used in theexpansion inrease with the sample size, tending to in�nity. If parameters are added at ahigh rate, the bias tends relatively rapidly to zero. A basi problem is that a high rate ofinlusion of additional parameters auses the variane to tend more slowly to zero. Theissue of how to hose the rate at whih parameters are added and whih to add �rst isfairly omplex. A problem is that the allowable rates for asymptoti normality to obtain(Andrews 1991; Gallant and Souza, 1991) are very strit. Supposing we stik to theserates, our approximating model is:
gK(x|θK) = z′θK .

• De�ne ZK as the n ×K matrix of regressors obtained by staking observations.The LS estimator is
θ̂K =

(
Z′
KZK

)+
Z′
Ky,where (·)+ is the Moore-Penrose generalized inverse.� This is used sine Z′

KZK may be singular, as would be the ase for K(n)large enough when some dummy variables are inluded.
• . The predition, z′θ̂K , of the unknown funtion f(x) is asymptotially normallydistributed: √

n
(
z′θ̂K − f(x)

)
d→ N(0, AV ),where

AV = lim
n→∞

E

[
z′
(

Z′
KZK

n

)+

zσ̂2

]
.Formally, this is exatly the same as if we were dealing with a parametri linearmodel. I emphasize, though, that this is only valid if K grows very slowly as

n grows. If we an't stik to aeptable rates, we should probably use someother method of approximating the small sample distribution. Bootstrapping isa possibility. We'll disuss this in the setion on simulation.



4. KERNEL REGRESSION ESTIMATORS 2284. Kernel regression estimatorsReadings: Bierens, 1987, �Kernel estimators of regression funtions,� in Advanes inEonometris, Fifth World Congress, V. 1, Truman Bewley, ed., Cambridge.An alternative method to the semi-nonparametri method is a fully nonparametrimethod of estimation. Kernel regression estimation is an example (others are splines,nearest neighbor, et.). We'll onsider the Nadaraya-Watson kernel regression estimatorin a simple ase.
• Suppose we have an iid sample from the joint density f(x, y), where x is k -dimensional. The model is

yt = g(xt) + εt,where
E(εt|xt) = 0.

• The onditional expetation of y given x is g(x). By de�nition of the onditionalexpetation, we have
g(x) =

∫
y
f(x, y)

h(x)
dy

=
1

h(x)

∫
yf(x, y)dy,where h(x) is the marginal density of x :

h(x) =

∫
f(x, y)dy.

• This suggests that we ould estimate g(x) by estimating h(x) and ∫ yf(x, y)dy.4.1. Estimation of the denominator. A kernel estimator for h(x) has the form
ĥ(x) =

1

n

n∑

t=1

K [(x− xt) /γn]

γkn
,where n is the sample size and k is the dimension of x.

• The funtion K(·) (the kernel) is absolutely integrable:
∫

|K(x)|dx <∞,and K(·) integrates to 1 :
∫
K(x)dx = 1.In this respet, K(·) is like a density funtion, but we do not neessarily restrit

K(·) to be nonnegative.
• The window width parameter, γn is a sequene of positive numbers that satis�es

lim
n→∞

γn = 0

lim
n→∞

nγkn = ∞So, the window width must tend to zero, but not too quikly.
• To show pointwise onsisteny of ĥ(x) for h(x), �rst onsider the expetationof the estimator (sine the estimator is an average of iid terms we only need to



4. KERNEL REGRESSION ESTIMATORS 229onsider the expetation of a representative term):
E
[
ĥ(x)

]
=

∫
γ−kn K [(x− z) /γn]h(z)dz.Change variables as z∗ = (x− z)/γn, so z = x− γnz

∗ and | dzdz∗′ | = γkn, we obtain
E
[
ĥ(x)

]
=

∫
γ−kn K (z∗)h(x− γnz

∗)γkndz
∗

=

∫
K (z∗)h(x− γnz

∗)dz∗.Now, asymptotially,
lim
n→∞

E
[
ĥ(x)

]
= lim

n→∞

∫
K (z∗)h(x− γnz

∗)dz∗

=

∫
lim
n→∞

K (z∗)h(x− γnz
∗)dz∗

=

∫
K (z∗)h(x)dz∗

= h(x)

∫
K (z∗) dz∗

= h(x),sine γn → 0 and ∫ K (z∗) dz∗ = 1 by assumption. (Note: that we an pass thelimit through the integral is a result of the dominated onvergene theorem.. Forthis to hold we need that h(·) be dominated by an absolutely integrable funtion.
• Next, onsidering the variane of ĥ(x), we have, due to the iid assumption

nγknV
[
ĥ(x)

]
= nγkn

1

n2

n∑

t=1

V

{
K [(x− xt) /γn]

γkn

}

= γ−kn
1

n

n∑

t=1

V {K [(x− xt) /γn]}

• By the representative term argument, this is
nγknV

[
ĥ(x)

]
= γ−kn V {K [(x− z) /γn]}

• Also, sine V (x) = E(x2) −E(x)2 we have
nγknV

[
ĥ(x)

]
= γ−kn E

{
(K [(x− z) /γn])

2
}
− γ−kn {E (K [(x− z) /γn])}2

=

∫
γ−kn K [(x− z) /γn]

2 h(z)dz − γkn

{∫
γ−kn K [(x− z) /γn] h(z)dz

}2

=

∫
γ−kn K [(x− z) /γn]

2 h(z)dz − γknE
[
ĥ(x)

]2The seond term onverges to zero:
γknE

[
ĥ(x)

]2
→ 0,by the previous result regarding the expetation and the fat that γn → 0. There-fore,

lim
n→∞

nγknV
[
ĥ(x)

]
= lim

n→∞

∫
γ−kn K [(x− z) /γn]

2 h(z)dz.



4. KERNEL REGRESSION ESTIMATORS 230Using exatly the same hange of variables as before, this an be shown to be
lim
n→∞

nγknV
[
ĥ(x)

]
= h(x)

∫
[K(z∗)]2 dz∗.Sine both ∫ [K(z∗)]2 dz∗ and h(x) are bounded, this is bounded, and sine nγkn →

∞ by assumption, we have that
V
[
ĥ(x)

]
→ 0.

• Sine the bias and the variane both go to zero, we have pointwise onsisteny(onvergene in quadrati mean implies onvergene in probability).4.2. Estimation of the numerator. To estimate ∫ yf(x, y)dy, we need an estimatorof f(x, y). The estimator has the same form as the estimator for h(x), only with onedimension more:
f̂(x, y) =

1

n

n∑

t=1

K∗ [(y − yt) /γn, (x− xt) /γn]

γk+1
nThe kernel K∗ (·) is required to have mean zero:

∫
yK∗ (y, x) dy = 0and to marginalize to the previous kernel for h(x) :

∫
K∗ (y, x) dy = K(x).With this kernel, we have

∫
yf̂(y, x)dy =

1

n

n∑

t=1

yt
K [(x− xt) /γn]

γknby marginalization of the kernel, so we obtain
ĝ(x) =

1

ĥ(x)

∫
yf̂(y, x)dy

=

1
n

∑n
t=1 yt

K[(x−xt)/γn]
γk

n

1
n

∑n
t=1

K[(x−xt)/γn]
γk

n

=

∑n
t=1 ytK [(x− xt) /γn]∑n
t=1K [(x− xt) /γn]

.This is the Nadaraya-Watson kernel regression estimator.4.3. Disussion.
• The kernel regression estimator for g(xt) is a weighted average of the yj, j =

1, 2, ..., n, where higher weights are assoiated with points that are loser to xt.The weights sum to 1.
• The window width parameter γn imposes smoothness. The estimator is inreas-ingly �at as γn → ∞, sine in this ase eah weight tends to 1/n.

• A large window width redues the variane (strong imposition of �atness), butinreases the bias.
• A small window width redues the bias, but makes very little use of informa-tion exept points that are in a small neighborhood of xt. Sine relatively littleinformation is used, the variane is large when the window width is small.



6. SEMI-NONPARAMETRIC MAXIMUM LIKELIHOOD 231
• The standard normal density is a popular hoie for K(.) and K∗(y, x), thoughthere are possibly better alternatives.4.4. Choie of the window width: Cross-validation. The seletion of an appro-priate window width is important. One popular method is ross validation. This onsistsof splitting the sample into two parts (e.g., 50%-50%). The �rst part is the �in sample�data, whih is used for estimation, and the seond part is the �out of sample� data, usedfor evaluation of the �t though RMSE or some other riterion. The steps are:(1) Split the data. The out of sample data is yout and xout.(2) Choose a window width γ.(3) With the in sample data, �t ŷoutt orresponding to eah xoutt . This �tted value isa funtion of the in sample data, as well as the evaluation point xoutt , but it doesnot involve youtt .(4) Repeat for all out of sample points.(5) Calulate RMSE(γ)(6) Go to step 2, or to the next step if enough window widths have been tried.(7) Selet the γ that minimizes RMSE(γ) (Verify that a minimum has been found,for example by plotting RMSE as a funtion of γ).(8) Re-estimate using the best γ and all of the data.This same priniple an be used to hoose A and J in a Fourier form model.5. Kernel density estimationThe previous disussion suggests that a kernel density estimator may easily be on-struted. We have already seen how joint densities may be estimated. If were interestedin a onditional density, for example of y onditional on x, then the kernel estimate of theonditional density is simply

f̂y|x =
f̂(x, y)

ĥ(x)

=

1
n

∑n
t=1

K∗[(y−yt)/γn,(x−xt)/γn]

γk+1
n

1
n

∑n
t=1

K[(x−xt)/γn]
γk

n

=
1

γn

∑n
t=1K∗ [(y − yt) /γn, (x− xt) /γn]∑n

t=1K [(x− xt) /γn]where we obtain the expressions for the joint and marginal densities from the setion onkernel regression. 6. Semi-nonparametri maximum likelihoodReadings: Gallant and Nyhka, Eonometria, 1987. For a Fortran program to dothis and a useful disussion in the user's guide, seethis link . See also Cameron and Johansson, Journal of Applied Eonometris, V. 12,1997.MLE is the estimation method of hoie when we are on�dent about speifying thedensity. Is is possible to obtain the bene�ts of MLE when we're not so on�dent about thespei�ation? In part, yes.Suppose we're interested in the density of y onditional on x (both may be vetors).Suppose that the density f(y|x, φ) is a reasonable starting approximation to the true

http://www.econ.duke.edu/~get/snp.html


6. SEMI-NONPARAMETRIC MAXIMUM LIKELIHOOD 232density. This density an be reshaped by multiplying it by a squared polynomial. The newdensity is
gp(y|x, φ, γ) =

h2
p(y|γ)f(y|x, φ)

ηp(x, φ, γ)where
hp(y|γ) =

p∑

k=0

γky
kand ηp(x, φ, γ) is a normalizing fator to make the density integrate (sum) to one. Beause

h2
p(y|γ)/ηp(x, φ, γ) is a homogenous funtion of θ it is neessary to impose a normalization:
γ0 is set to 1. The normalization fator ηp(φ, γ) is alulated (following Cameron andJohansson) using

E(Y r) =
∞∑

y=0

yrfY (y|φ, γ)

=

∞∑

y=0

yr
[hp (y|γ)]2
ηp(φ, γ)

fY (y|φ)

=

∞∑

y=0

p∑

k=0

p∑

l=0

yrfY (y|φ)γkγly
kyl/ηp(φ, γ)

=

p∑

k=0

p∑

l=0

γkγl





∞∑

y=0

yr+k+lfY (y|φ)



 /ηp(φ, γ)

=

p∑

k=0

p∑

l=0

γkγlmk+l+r/ηp(φ, γ).By setting r = 0 we get that the normalizing fator is64(64) ηp(φ, γ) =

p∑

k=0

p∑

l=0

γkγlmk+lReall that γ0 is set to 1 to ahieve identi�ation. The mr in equation 64 are the rawmoments of the baseline density. Gallant and Nyhka (1987) give onditions under whihsuh a density may be treated as orretly spei�ed, asymptotially. Basially, the order ofthe polynomial must inrease as the sample size inreases. However, there are tehnialities.Similarly to Cameron and Johannson (1997), we may develop a negative binomialpolynomial (NBP) density for ount data. The negative binomial baseline density may bewritten (see equation as
fY (y|φ) =

Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ ( λ

ψ + λ

)ywhere φ = {λ,ψ}, λ > 0 and ψ > 0. The usual means of inorporating onditioningvariables x is the parameterization λ = ex
′β. When ψ = λ/α we have the negativebinomial-I model (NB-I). When ψ = 1/α we have the negative binomial-II (NP-II) model.For the NB-I density, V (Y ) = λ + αλ. In the ase of the NB-II model, we have V (Y ) =

λ+ αλ2. For both forms, E(Y ) = λ.The reshaped density, with normalization to sum to one, is(65) fY (y|φ, γ) =
[hp (y|γ)]2
ηp(φ, γ)

Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(
ψ

ψ + λ

)ψ ( λ

ψ + λ

)y
.



6. SEMI-NONPARAMETRIC MAXIMUM LIKELIHOOD 233Figure 5. Negative binomial raw moments

To get the normalization fator, we need the moment generating funtion:(66) MY (t) = ψψ
(
λ− etλ+ ψ

)−ψ
.To illustrate, Figure 5 shows alulation of the �rst four raw moments of the NB density,alulated using MuPAD, whih is a Computer Algebra System that (use to be?) free forpersonal use. These are the moments you would need to use a seond order polynomial

(p = 2). MuPAD will output these results in the form of C ode, whih is relatively easy toedit to write the likelihood funtion for the model. This has been done in NegBinSNP.,whih is a C++ version of this model that an be ompiled to use with otave using themkotfile ommand. Note the impressive length of the expressions when the degree ofthe expansion is 4 or 5! This is an example of a model that would be di�ult to formulatewithout the help of a program like MuPAD.It is possible that there is onditional heterogeneity suh that the appropriate reshapingshould be more loal. This an be aomodated by allowing the γk parameters to dependupon the onditioning variables, for example using polynomials.Gallant and Nyhka, Eonometria, 1987 prove that this sort of density an approxi-mate a wide variety of densities arbitrarily well as the degree of the polynomial inreaseswith the sample size. This approah is not without its drawbaks: the sample objetivefuntion an have an extremely large number of loal maxima that an lead to numeridi�ulties. If someone ould �gure out how to do in a way suh that the sample objetivefuntion was nie and smooth, they would probably get the paper published in a goodjournal. Any ideas?Here's a plot of true and the limiting SNP approximations (with the order of thepolynomial �xed) to four di�erent ount data densities, whih variously exhibit over andunderdispersion, as well as exess zeros. The baseline model is a negative binomial density.

http://www.mupad.org
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/NegBinSNP.cc
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7. ExamplesWe'll use the MEPS OBDV data to illustrate kernel regression and semi-nonparametrimaximum likelihood.7.1. Kernel regression estimation. Let's try a kernel regression �t for the OBDVdata. The program OBDVkernel.m loads the MEPS OBDV data, sans over a rangeof window widths and alulates leave-one-out CV sores, and plots the �tted OBDVusage versus AGE, using the best window width. The plot is in Figure 6. Note thatusage inreases with age, just as we've seen with the parametri models. One ould usebootstrapping to generate a on�dene interval to the �t.7.2. Seminonparametri ML estimation and the MEPS data. Now let's esti-mate a seminonparametri density for the OBDV data. We'll reshape a negative binomialdensity, as disussed above. The program EstimateNBSNP.m loads the MEPS OBDVdata and estimates the model, using a NB-I baseline density and a 2nd order polynomialexpansion. The output is:OBDV======================================================BFGSMIN final resultsUsed numeri gradient------------------------------------------------------STRONG CONVERGENCEFuntion onv 1 Param onv 1 Gradient onv 1

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/OBDVkernel.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/EstimateNBSNP.m


7. EXAMPLES 235Figure 6. Kernel �tted OBDV usage versus AGE
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------------------------------------------------------Objetive funtion value 2.17061Stepsize 0.006524 iterations------------------------------------------------------param gradient hange1.3826 0.0000 -0.00000.2317 -0.0000 0.00000.1839 0.0000 0.00000.2214 0.0000 -0.00000.1898 0.0000 -0.00000.0722 0.0000 -0.0000-0.0002 0.0000 -0.00001.7853 -0.0000 -0.0000-0.4358 0.0000 -0.00000.1129 0.0000 0.0000******************************************************NegBin SNP model, MEPS full data setMLE Estimation ResultsBFGS onvergene: Normal onvergeneAverage Log-L: -2.170614Observations: 4564estimate st. err t-stat p-valueonstant -0.147 0.126 -1.173 0.241pub. ins. 0.695 0.050 13.936 0.000priv. ins. 0.409 0.046 8.833 0.000sex 0.443 0.034 13.148 0.000age 0.016 0.001 11.880 0.000



7. EXAMPLES 236edu 0.025 0.006 3.903 0.000in -0.000 0.000 -0.011 0.991gam1 1.785 0.141 12.629 0.000gam2 -0.436 0.029 -14.786 0.000lnalpha 0.113 0.027 4.166 0.000Information CriteriaCAIC : 19907.6244 Avg. CAIC: 4.3619BIC : 19897.6244 Avg. BIC: 4.3597AIC : 19833.3649 Avg. AIC: 4.3456******************************************************Note that the CAIC and BIC are lower for this model than for the models presented inTable 3. This model �ts well, still being parsimonious. You an play around trying otheruse measures, using a NP-II baseline density, and using other orders of expansions. Densityfuntions formed in this way may have MANY loal maxima, so you need to be arefulbefore aepting the results of a asual run. To guard against having onverged to a loalmaximum, one an try using multiple starting values, or one ould try simulated annealingas an optimization method. If you unomment the relevant lines in the program, you anuse SA to do the minimization. This will take a lot of time, ompared to the default BFGSminimization. The hapter on parallel omputations might be interesting to read beforetrying this.



CHAPTER 19Simulation-based estimationReadings: In addition to the book mentioned previously, artiles inlude Gallant andTauhen (1996), �Whih Moments to Math?�, ECONOMETRIC THEORY, Vol. 12, 1996,pages 657-681;  Gourieroux, Monfort and Renault (1993), �Indiret Inferene,� J. Apl.Eonometris; Pakes and Pollard (1989) Eonometria; MFadden (1989) Eonometria.1. MotivationSimulation methods are of interest when the DGP is fully haraterized by a parametervetor, but the likelihood funtion is not alulable. If it were available, we would simplyestimate by MLE, whih is asymptotially fully e�ient.1.1. Example: Multinomial and/or dynami disrete response models. Let
y∗i be a latent random vetor of dimension m. Suppose that

y∗i = Xiβ + εiwhere Xi is m×K. Suppose that(67) εi ∼ N(0,Ω)Heneforth drop the i subsript when it is not needed for larity.
• y∗ is not observed. Rather, we observe a many-to-one mapping

y = τ(y∗)This mapping is suh that eah element of y is either zero or one (in some asesonly one element will be one).
• De�ne

Ai = A(yi) = {y∗|yi = τ(y∗)}Suppose random sampling of (yi,Xi). In this ase the elements of yi may not beindependent of one another (and learly are not if Ω is not diagonal). However,
yi is independent of yj, i 6= j.

• Let θ = (β′, (vec∗Ω)′)′ be the vetor of parameters of the model. The ontributionof the ith observation to the likelihood funtion is
pi(θ) =

∫

Ai

n(y∗i −Xiβ,Ω)dy∗iwhere
n(ε,Ω) = (2π)−M/2 |Ω|−1/2 exp

[−ε′Ω−1ε

2

]is the multivariate normal density of an M -dimensional random vetor. Thelog-likelihood funtion is
lnL(θ) =

1

n

n∑

i=1

ln pi(θ)237



1. MOTIVATION 238and the MLE θ̂ solves the sore equations
1

n

n∑

i=1

gi(θ̂) =
1

n

n∑

i=1

Dθpi(θ̂)

pi(θ̂)
≡ 0.

• The problem is that evaluation of Li(θ) and its derivative w.r.t. θ by standardmethods of numeri integration suh as quadrature is omputationally infeasiblewhen m (the dimension of y) is higher than 3 or 4 (as long as there are norestritions on Ω).

• The mapping τ(y∗) has not been made spei� so far. This setup is quite general:for di�erent hoies of τ(y∗) it nests the ase of dynami binary disrete hoiemodels as well as the ase of multinomial disrete hoie (the hoie of one out ofa �nite set of alternatives).� Multinomial disrete hoie is illustrated by a (very simple) job searh model.We have ross setional data on individuals' mathing to a set of m jobs thatare available (one of whih is unemployment). The utility of alternative j is
uj = Xjβ + εjUtilities of jobs, staked in the vetor ui are not observed. Rather, we observethe vetor formed of elements

yj = 1 [uj > uk,∀k ∈ m,k 6= j]Only one of these elements is di�erent than zero.� Dynami disrete hoie is illustrated by repeated hoies over time betweentwo alternatives. Let alternative j have utility
ujt = Wjtβ − εjt,

j ∈ {1, 2}
t ∈ {1, 2, ...,m}Then

y∗ = u2 − u1

= (W2 −W1)β + ε2 − ε1

≡ Xβ + εNow the mapping is (element-by-element)
y = 1 [y∗ > 0] ,that is yit = 1 if individual i hooses the seond alternative in period t, zerootherwise.1.2. Example: Marginalization of latent variables. Eonomi data often presentssubstantial heterogeneity that may be di�ult to model. A possibility is to introdue la-tent random variables. This an ause the problem that there may be no known losedform for the distribution of observable variables after marginalizing out the unobservablelatent variables. For example, ount data (that takes values 0, 1, 2, 3, ...) is often modeledusing the Poisson distribution

Pr(y = i) =
exp(−λ)λi

i!



1. MOTIVATION 239The mean and variane of the Poisson distribution are both equal to λ :

E(y) = V (y) = λ.Often, one parameterizes the onditional mean as
λi = exp(Xiβ).This ensures that the mean is positive (as it must be). Estimation by ML is straightforward.Often, ount data exhibits �overdispersion� whih simply means that
V (y) > E(y).If this is the ase, a solution is to use the negative binomial distribution rather than thePoisson. An alternative is to introdue a latent variable that re�ets heterogeneity intothe spei�ation:

λi = exp(Xiβ + ηi)where ηi has some spei�ed density with support S (this density may depend on additionalparameters). Let dµ(ηi) be the density of ηi. In some ases, the marginal density of y
Pr(y = yi) =

∫

S

exp [− exp(Xiβ + ηi)] [exp(Xiβ + ηi)]
yi

yi!
dµ(ηi)will have a losed-form solution (one an derive the negative binomial distribution in theway if η has an exponential distribution), but often this will not be possible. In this ase,simulation is a means of alulating Pr(y = i), whih is then used to do ML estimation.This would be an example of the Simulated Maximum Likelihood (SML) estimation.

• In this ase, sine there is only one latent variable, quadrature is probably abetter hoie. However, a more �exible model with heterogeneity would allow allparameters (not just the onstant) to vary. For example
Pr(y = yi) =

∫

S

exp [− exp(Xiβi)] [exp(Xiβi)]
yi

yi!
dµ(βi)entails a K = dimβi-dimensional integral, whih will not be evaluable by quad-rature when K gets large.1.3. Estimation of models spei�ed in terms of stohasti di�erential equa-tions. It is often onvenient to formulate models in terms of ontinuous time using dif-ferential equations. A realisti model should aount for exogenous shoks to the system,whih an be done by assuming a random omponent. This leads to a model that isexpressed as a system of stohasti di�erential equations. Consider the proess

dyt = g(θ, yt)dt + h(θ, yt)dWtwhih is assumed to be stationary. {Wt} is a standard Brownian motion (Weiner proess),suh that
W (T ) =

∫ T

0
dWt ∼ N(0, T )Brownian motion is a ontinuous-time stohasti proess suh that

• W (0) = 0

• [W (s) −W (t)] ∼ N(0, s − t)

• [W (s) −W (t)] and [W (j) −W (k)] are independent for s > t > j > k. That is,non-overlapping segments are independent.



2. SIMULATED MAXIMUM LIKELIHOOD (SML) 240One an think of Brownian motion the aumulation of independent normally distributedshoks with in�nitesimal variane.
• The funtion g(θ, yt) is the deterministi part.
• h(θ, yt) determines the variane of the shoks.To estimate a model of this sort, we typially have data that are assumed to be observationsof yt in disrete points y1, y2, ...yT . That is, though yt is a ontinuous proess it is observedin disrete time.To perform inferene on θ, diret ML or GMM estimation is not usually feasible,beause one annot, in general, dedue the transition density f(yt|yt−1, θ). This density isneessary to evaluate the likelihood funtion or to evaluate moment onditions (whih arebased upon expetations with respet to this density).
• A typial solution is to �disretize� the model, by whih we mean to �nd a disretetime approximation to the model. The disretized version of the model is

yt − yt−1 = g(φ, yt−1) + h(φ, yt−1)εt

εt ∼ N(0, 1)The disretization indues a new parameter, φ (that is, the φ0 whih de�nesthe best approximation of the disretization to the atual (unknown) disretetime version of the model is not equal to θ0 whih is the true parameter value).This is an approximation, and as suh �ML� estimation of φ (whih is atuallyquasi-maximum likelihood, QML) based upon this equation is in general biasedand inonsistent for the original parameter, θ. Nevertheless, the approximationshouldn't be too bad, whih will be useful, as we will see.
• The important point about these three examples is that omputational di�ultiesprevent diret appliation of ML, GMM, et. Nevertheless the model is fullyspei�ed in probabilisti terms up to a parameter vetor. This means that themodel is simulable, onditional on the parameter vetor.

2. Simulated maximum likelihood (SML)For simpliity, onsider ross-setional data. An ML estimator solves
θ̂ML = arg max sn(θ) =

1

n

n∑

t=1

ln p(yt|Xt, θ)where p(yt|Xt, θ) is the density funtion of the tth observation. When p(yt|Xt, θ) does nothave a known losed form, θ̂ML is an infeasible estimator. However, it may be possible tode�ne a random funtion suh that
Eνf(ν, yt,Xt, θ) = p(yt|Xt, θ)where the density of ν is known. If this is the ase, the simulator

p̃ (yt,Xt, θ) =
1

H

H∑

s=1

f(νts, yt,Xt, θ)is unbiased for p(yt|Xt, θ).



2. SIMULATED MAXIMUM LIKELIHOOD (SML) 241
• The SML simply substitutes p̃ (yt,Xt, θ) in plae of p(yt|Xt, θ) in the log-likelihoodfuntion, that is

θ̂SML = arg max sn(θ) =
1

n

n∑

i=1

ln p̃ (yt,Xt, θ)2.1. Example: multinomial probit. Reall that the utility of alternative j is
uj = Xjβ + εjand the vetor y is formed of elements

yj = 1 [uj > uk, k ∈ m,k 6= j]The problem is that Pr(yj = 1|θ) an't be alulated whenm is larger than 4 or 5. However,it is easy to simulate this probability.
• Draw ε̃i from the distribution N(0,Ω)

• Calulate ũi = Xiβ + ε̃i (where Xi is the matrix formed by staking the Xij)

• De�ne ỹij = 1 [uij > uik,∀k ∈ m,k 6= j]

• Repeat this H times and de�ne
π̃ij =

∑H
h=1 ỹijh
H

• De�ne π̃i as the m-vetor formed of the π̃ij. Eah element of π̃i is between 0 and1, and the elements sum to one.
• Now p̃ (yi,Xi, θ) = y′iπ̃i
• The SML multinomial probit log-likelihood funtion is

lnL(β,Ω) =
1

n

n∑

i=1

y′i ln p̃ (yi,Xi, θ)This is to be maximized w.r.t. β and Ω.Notes:
• TheH draws of ε̃i are draw only one and are used repeatedly during the iterationsused to �nd β̂ and Ω̂. The draws are di�erent for eah i. If the ε̃i are re-drawn atevery iteration the estimator will not onverge.
• The log-likelihood funtion with this simulator is a disontinuous funtion of βand Ω. This does not ause problems from a theoretial point of view sine it anbe shown that lnL(β,Ω) is stohastially equiontinuous. However, it does auseproblems if one attempts to use a gradient-based optimization method suh asNewton-Raphson.
• It may be the ase, partiularly if few simulations, H, are used, that some elementsof π̃i are zero. If the orresponding element of yi is equal to 1, there will be a

log(0) problem.
• Solutions to disontinuity:� 1) use an estimation method that doesn't require a ontinuous and di�eren-tiable objetive funtion, for example, simulated annealing. This is ompu-tationally ostly.� 2) Smooth the simulated probabilities so that they are ontinuous funtionsof the parameters. For example, apply a kernel transformation suh as

ỹij = Φ

(
A×

[
uij −

m
max
k=1

uik

])
+ .5 × 1

[
uij =

m
max
k=1

uik

]



3. METHOD OF SIMULATED MOMENTS (MSM) 242where A is a large positive number. This approximates a step funtion suhthat ỹij is very lose to zero if uij is not the maximum, and uij = 1 if itis the maximum. This makes ỹij a ontinuous funtion of β and Ω, so that
p̃ij and therefore lnL(β,Ω) will be ontinuous and di�erentiable. Consis-teny requires that A(n)

p→ ∞, so that the approximation to a step funtionbeomes arbitrarily lose as the sample size inreases. There are alterna-tive methods (e.g., Gibbs sampling) that may work better, but this is tootehnial to disuss here.
• To solve to log(0) problem, one possibility is to searh the web for the slog funtion.Also, inrease H if this is a serious problem.2.2. Properties. The properties of the SML estimator depend on how H is set. Thefollowing is taken from Lee (1995) �Asymptoti Bias in Simulated Maximum LikelihoodEstimation of Disrete Choie Models,� Eonometri Theory, 11, pp. 437-83.Theorem 32. [Lee℄ 1) if limn→∞ n1/2/H = 0, then

√
n
(
θ̂SML − θ0

)
d→ N(0,I−1(θ0))2) if limn→∞ n1/2/H = λ, λ a �nite onstant, then

√
n
(
θ̂SML − θ0

)
d→ N(B,I−1(θ0))where B is a �nite vetor of onstants.

• This means that the SML estimator is asymptotially biased if H doesn't growfaster than n1/2.

• The varov is the typial inverse of the information matrix, so that as long as Hgrows fast enough the estimator is onsistent and fully asymptotially e�ient.3. Method of simulated moments (MSM)Suppose we have a DGP(y|x, θ) whih is simulable given θ, but is suh that the densityof y is not alulable.One ould, in priniple, base a GMM estimator upon the moment onditions
mt(θ) = [K(yt, xt) − k(xt, θ)] ztwhere
k(xt, θ) =

∫
K(yt, xt)p(y|xt, θ)dy,

zt is a vetor of instruments in the information set and p(y|xt, θ) is the density of yonditional on xt. The problem is that this density is not available.
• However k(xt, θ) is readily simulated using

k̃ (xt, θ) =
1

H

H∑

h=1

K(ỹht , xt)

• By the law of large numbers, k̃ (xt, θ)
a.s.→ k (xt, θ) , as H → ∞, whih provides alear intuitive basis for the estimator, though in fat we obtain onsisteny evenforH �nite, sine a law of large numbers is also operating aross the n observationsof real data, so errors introdued by simulation anel themselves out.
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• This allows us to form the moment onditions(68) m̃t(θ) =

[
K(yt, xt) − k̃ (xt, θ)

]
ztwhere zt is drawn from the information set. As before, form

m̃(θ) =
1

n

n∑

i=1

m̃t(θ)

=
1

n

n∑

i=1

[
K(yt, xt) −

1

H

H∑

h=1

k(ỹht , xt)

]
zt(69) with whih we form the GMM riterion and estimate as usual. Note that theunbiased simulator k(ỹht , xt) appears linearly within the sums.3.1. Properties. Suppose that the optimal weighting matrix is used. MFadden (ref.above) and Pakes and Pollard (refs. above) show that the asymptoti distribution of theMSM estimator is very similar to that of the infeasible GMM estimator. In partiular,assuming that the optimal weighting matrix is used, and for H �nite,(70) √

n
(
θ̂MSM − θ0

)
d→ N

[
0,

(
1 +

1

H

)(
D∞Ω−1D′

∞
)−1
]where (D∞Ω−1D′

∞
)−1 is the asymptoti variane of the infeasible GMM estimator.

• That is, the asymptoti variane is in�ated by a fator 1 + 1/H. For this reasonthe MSM estimator is not fully asymptotially e�ient relative to the infeasibleGMM estimator, for H �nite, but the e�ieny loss is small and ontrollable, bysetting H reasonably large.
• The estimator is asymptotially unbiased even for H = 1. This is an advantagerelative to SML.
• If one doesn't use the optimal weighting matrix, the asymptoti varov is just theordinary GMM varov, in�ated by 1 + 1/H.

• The above presentation is in terms of a spei� moment ondition based upon theonditional mean. Simulated GMM an be applied to moment onditions of anyform.3.2. Comments. Why is SML inonsistent ifH is �nite, while MSM is? The reason isthat SML is based upon an average of logarithms of an unbiased simulator (the densitiesof the observations). To use the multinomial probit model as an example, the log-likelihoodfuntion is
lnL(β,Ω) =

1

n

n∑

i=1

y′i ln pi(β,Ω)The SML version is
lnL(β,Ω) =

1

n

n∑

i=1

y′i ln p̃i(β,Ω)The problem is that
E ln(p̃i(β,Ω)) 6= ln(E p̃i(β,Ω))in spite of the fat that

E p̃i(β,Ω) = pi(β,Ω)due to the fat that ln(·) is a nonlinear transformation. The only way for the two to beequal (in the limit) is if H tends to in�nite so that p̃ (·) tends to p (·).



4. EFFICIENT METHOD OF MOMENTS (EMM) 244The reason that MSM does not su�er from this problem is that in this ase the unbiasedsimulator appears linearly within every sum of terms, and it appears within a sum over
n (see equation [69℄). Therefore the SLLN applies to anel out simulation errors, fromwhih we get onsisteny. That is, using simple notation for the random sampling ase,the moment onditions

m̃(θ) =
1

n

n∑

i=1

[
K(yt, xt) −

1

H

H∑

h=1

k(ỹht , xt)

]
zt(71)

=
1

n

n∑

i=1

[
k(xt, θ

0) + εt −
1

H

H∑

h=1

[k(xt, θ) + ε̃ht]

]
zt(72)onverge almost surely tõ

m∞(θ) =

∫ [
k(x, θ0) − k(x, θ)

]
z(x)dµ(x).(note: zt is assume to be made up of funtions of xt). The objetive funtion onverges to

s∞(θ) = m̃∞(θ)′Ω−1
∞ m̃∞(θ)whih obviously has a minimum at θ0, heneforth onsisteny.

• If you look at equation 72 a bit, you will see why the variane in�ation fator is
(1 + 1

H ). 4. E�ient method of moments (EMM)The hoie of whih moments upon whih to base a GMM estimator an have verypronouned e�ets upon the e�ieny of the estimator.
• A poor hoie of moment onditions may lead to very ine�ient estimators, andan even ause identi�ation problems (as we've seen with the GMM problemset).
• The drawbak of the above approah MSM is that the moment onditions usedin estimation are seleted arbitrarily. The asymptoti e�ieny of the estimatormay be low.
• The asymptotially optimal hoie of moments would be the sore vetor of thelikelihood funtion,

mt(θ) = Dθ ln pt(θ | It)As before, this hoie is unavailable.The e�ient method of moments (EMM) (see Gallant and Tauhen (1996), �Whih Mo-ments to Math?�, ECONOMETRIC THEORY, Vol. 12, 1996, pages 657-681) seeks toprovide moment onditions that losely mimi the sore vetor. If the approximation isvery good, the resulting estimator will be very nearly fully e�ient.The DGP is haraterized by random sampling from the density
p(yt|xt, θ0) ≡ pt(θ

0)We an de�ne an auxiliary model, alled the �sore generator�, whih simply providesa (misspei�ed) parametri density
f(y|xt, λ) ≡ ft(λ)
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• This density is known up to a parameter λ. We assume that this density funtionis alulable. Therefore quasi-ML estimation is possible. Spei�ally,

λ̂ = arg max
Λ

sn(λ) =
1

n

n∑

t=1

ln ft(λ).

• After determining λ̂ we an alulate the sore funtions Dλ ln f(yt|xt, λ̂).
• The important point is that even if the density is misspei�ed, there is a pseudo-true λ0 for whih the true expetation, taken with respet to the true but unknowndensity of y, p(y|xt, θ0), and then marginalized over x is zero:

∃λ0 : EXEY |X
[
Dλ ln f(y|x, λ0)

]
=

∫

X

∫

Y |X
Dλ ln f(y|x, λ0)p(y|x, θ0)dydµ(x) = 0

• We have seen in the setion on QML that λ̂ p→ λ0; this suggests using the momentonditions(73) mn(θ, λ̂) =
1

n

n∑

t=1

∫
Dλ ln ft(λ̂)pt(θ)dy

• These moment onditions are not alulable, sine pt(θ) is not available, but theyare simulable using̃
mn(θ, λ̂) =

1

n

n∑

t=1

1

H

H∑

h=1

Dλ ln f(ỹht |xt, λ̂)where ỹht is a draw from DGP (θ), holding xt �xed. By the LLN and the fat that
λ̂ onverges to λ0,

m̃∞(θ0, λ0) = 0.This is not the ase for other values of θ, assuming that λ0 is identi�ed.
• The advantage of this proedure is that if f(yt|xt, λ) losely approximates p(y|xt, θ),then m̃n(θ, λ̂) will losely approximate the optimal moment onditions whih har-aterize maximum likelihood estimation, whih is fully e�ient.
• If one has prior information that a ertain density approximates the data well, itwould be a good hoie for f(·).
• If one has no density in mind, there exist good ways of approximating unknowndistributions parametrially: Philips' ERA's (Eonometria, 1983) and Gallantand Nyhka's (Eonometria, 1987) SNP density estimator whih we saw before.Sine the SNP density is onsistent, the e�ieny of the indiret estimator is thesame as the infeasible ML estimator.4.1. Optimal weighting matrix. I will present the theory for H �nite, and possiblysmall. This is done beause it is sometimes impratial to estimate with H very large.Gallant and Tauhen give the theory for the ase of H so large that it may be treated asin�nite (the di�erene being irrelevant given the numerial preision of a omputer). Thetheory for the ase of H in�nite follows diretly from the results presented here.The moment ondition m̃(θ, λ̂) depends on the pseudo-ML estimate λ̂. We an applyTheorem 22 to onlude that(74) √

n
(
λ̂− λ0

)
d→ N

[
0,J (λ0)−1I(λ0)J (λ0)−1

]If the density f(yt|xt, λ̂) were in fat the true density p(y|xt, θ), then λ̂ would be themaximum likelihood estimator, and J (λ0)−1I(λ0) would be an identity matrix, due to the



4. EFFICIENT METHOD OF MOMENTS (EMM) 246information matrix equality. However, in the present ase we assume that f(yt|xt, λ̂) isonly an approximation to p(y|xt, θ), so there is no anellation.Reall that J (λ0) ≡ p lim
(

∂2

∂λ∂λ′ sn(λ
0)
)
. Comparing the de�nition of sn(λ) with thede�nition of the moment ondition in Equation 73, we see that

J (λ0) = Dλ′m(θ0, λ0).As in Theorem 22,
I(λ0) = lim

n→∞
E
[
n
∂sn(λ)

∂λ

∣∣∣∣
λ0

∂sn(λ)

∂λ′

∣∣∣∣
λ0

]
.In this ase, this is simply the asymptoti variane ovariane matrix of the momentonditions, Ω. Now take a �rst order Taylor's series approximation to √

nmn(θ
0, λ̂) about

λ0 :
√
nm̃n(θ

0, λ̂) =
√
nm̃n(θ

0, λ0) +
√
nDλ′m̃(θ0, λ0)

(
λ̂− λ0

)
+ op(1)First onsider √nm̃n(θ

0, λ0). It is straightforward but somewhat tedious to show thatthe asymptoti variane of this term is 1
H I∞(λ0).Next onsider the seond term √

nDλ′m̃(θ0, λ0)
(
λ̂− λ0

). Note that Dλ′m̃n(θ
0, λ0)

a.s.→
J (λ0), so we have

√
nDλ′m̃(θ0, λ0)

(
λ̂− λ0

)
=

√
nJ (λ0)

(
λ̂− λ0

)
, a.s.But noting equation 74

√
nJ (λ0)

(
λ̂− λ0

)
a∼ N

[
0,I(λ0)

]Now, ombining the results for the �rst and seond terms,
√
nm̃n(θ

0, λ̂)
a∼ N

[
0,

(
1 +

1

H

)
I(λ0)

]Suppose that Î(λ0) is a onsistent estimator of the asymptoti variane-ovariane matrixof the moment onditions. This may be ompliated if the sore generator is a poorapproximator, sine the individual sore ontributions may not have mean zero in this ase(see the setion on QML) . Even if this is the ase, the individuals means an be alulatedby simulation, so it is always possible to onsistently estimate I(λ0) when the model issimulable. On the other hand, if the sore generator is taken to be orretly spei�ed, theordinary estimator of the information matrix is onsistent. Combining this with the resulton the e�ient GMM weighting matrix in Theorem 25, we see that de�ning θ̂ as
θ̂ = arg min

Θ
mn(θ, λ̂)′

[(
1 +

1

H

)
Î(λ0)

]−1

mn(θ, λ̂)is the GMM estimator with the e�ient hoie of weighting matrix.
• If one has used the Gallant-Nyhka ML estimator as the auxiliary model, theappropriate weighting matrix is simply the information matrix of the auxiliarymodel, sine the sores are unorrelated. (e.g., it really is ML estimation asymp-totially, sine the sore generator an approximate the unknown density arbi-trarily well).



5. EXAMPLES 2474.2. Asymptoti distribution. Sine we use the optimal weighting matrix, the as-ymptoti distribution is as in Equation 40, so we have (using the result in Equation 74):
√
n
(
θ̂ − θ0

)
d→ N


0,

(
D∞

[(
1 +

1

H

)
I(λ0)

]−1

D′
∞

)−1

 ,where

D∞ = lim
n→∞

E
[
Dθm

′
n(θ

0, λ0)
]
.This an be onsistently estimated using

D̂ = Dθm
′
n(θ̂, λ̂)4.3. Diagnoti testing. The fat that

√
nmn(θ

0, λ̂)
a∼ N

[
0,

(
1 +

1

H

)
I(λ0)

]implies that
nmn(θ̂, λ̂)′

[(
1 +

1

H

)
I(λ̂)

]−1

mn(θ̂, λ̂)
a∼ χ2(q)where q is dim(λ) − dim(θ), sine without dim(θ) moment onditions the model is notidenti�ed, so testing is impossible. One test of the model is simply based on this statisti: ifit exeeds the χ2(q) ritial point, something may be wrong (the small sample performaneof this sort of test would be a topi worth investigating).

• Information about what is wrong an be gotten from the pseudo-t-statistis:
(diag [(1 +

1

H

)
I(λ̂)

]1/2
)−1 √

nmn(θ̂, λ̂)an be used to test whih moments are not well modeled. Sine these momentsare related to parameters of the sore generator, whih are usually related toertain features of the model, this information an be used to revise the model.These aren't atually distributed as N(0, 1), sine √
nmn(θ

0, λ̂) and √
nmn(θ̂, λ̂)have di�erent distributions (that of √nmn(θ̂, λ̂) is somewhat more ompliated).It an be shown that the pseudo-t statistis are biased toward nonrejetion. SeeGourieroux et. al. or Gallant and Long, 1995, for more details.5. Examples5.1. Estimation of stohasti di�erential equations. It is often onvenient toformulate theoretial models in terms of di�erential equations, and when the observationfrequeny is high (e.g., weekly, daily, hourly or real-time) it may be more natural to adoptthis framework for eonometri models of time series.The most ommon approah to estimation of stohasti di�erential equations is to�disretize� the model, as above, and estimate using the disretized version. However, sinethe disretization is only an approximation to the true disrete-time version of the model(whih is not alulable), the resulting estimator is in general biased and inonsistent.An alternative is to use indiret inferene: The disretized model is used as the soregenerator. That is, one estimates by QML to obtain the sores of the disretized approxi-mation:
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yt − yt−1 = g(φ, yt−1) + h(φ, yt−1)εt

εt ∼ N(0, 1)Indiate these sores by mn(θ, φ̂). Then the system of stohasti di�erential equations
dyt = g(θ, yt)dt + h(θ, yt)dWtis simulated over θ, and the sores are alulated and averaged over the simulations
m̃n(θ, φ̂) =

1

N

N∑

i=1

min(θ, φ̂)

θ̂ is hosen to set the simulated sores to zero
m̃n(θ̂, φ̂) ≡ 0(sine θ and φ are of the same dimension).This method requires simulating the stohasti di�erential equation. There are manyways of doing this. Basially, they involve doing very �ne disretizations:

yt+τ = yt + g(θ, yt) + h(θ, yt)ηt

ηt ∼ N(0, τ)By setting τ very small, the sequene of ηt approximates a Brownian motion fairly well.This is only one method of using indiret inferene for estimation of di�erential equa-tions. There are others (see Gallant and Long, 1995 and Gourieroux et. al.). Use of a seriesapproximation to the transitional density as in Gallant and Long is an interesting possi-bility sine the sore generator may have a higher dimensional parameter than the model,whih allows for diagnosti testing. In the method desribed above the sore generator'sparameter φ is of the same dimension as is θ, so diagnosti testing is not possible.5.2. EMM estimation of a disrete hoie model. In this setion onsider EMMestimation. There is a sophistiated pakage by Gallant and Tauhen for this, but herewe'll look at some simple, but hopefully didati ode. The �le probitdgp.m generatesdata that follows the probit model. The �le emm_moments.m de�nes EMM momentonditions, where the DGP and sore generator an be passed as arguments. Thus, it is ageneral purpose moment ondition for EMM estimation. This �le is interesting enough towarrant some disussion. A listing appears in Listing 19.1. Line 3 de�nes the DGP, andthe arguments needed to evaluate it are de�ned in line 4. The sore generator is de�ned inline 5, and its arguments are de�ned in line 6. The QML estimate of the parameter of thesore generator is read in line 7. Note in line 10 how the random draws needed to simulatedata are passed with the data, and are thus �xed during estimation, to avoid �hattering�.The simulated data is generated in line 16, and the derivative of the sore generator usingthe simulated data is alulated in line 18. In line 20 we average the sores of the soregenerator, whih are the moment onditions that the funtion returns.1 funtion sores = emm_moments(theta, data, momentargs)2 k = momentargs{1};3 dgp = momentargs{2}; # the data generating proess (DGP)4 dgpargs = momentargs{3}; # its arguments (ell array)5 sg = momentargs{4}; # the sore generator (SG)

http://www.econ.duke.edu/~get/emm.html
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/ProbitDGP.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/gmm/emm_moments.m


5. EXAMPLES 2496 sgargs = momentargs{5}; # SG arguments (ell array)7 phi = momentargs{6}; # QML estimate of SG parameter8 y = data(:,1);9 x = data(:,2:k+1);10 rand_draws = data(:,k+2:olumns(data)); # passed with data to ensure fixedaross iterations11 n = rows(y);12 sores = zeros(n,rows(phi)); # ontainer for moment ontributions13 reps = olumns(rand_draws); # how many simulations?14 for i = 1:reps15 e = rand_draws(:,i);16 y = feval(dgp, theta, x, e, dgpargs); # simulated data17 sgdata = [y x℄; # simulated data for SG18 sores = sores + numgradient(sg, {phi, sgdata, sgargs}); # gradient of SG19 endfor20 sores = sores / reps; # average over number of simulations21 endfuntion Listing 19.1The �le emm_example.m performs EMM estimation of the probit model, using a logitmodel as the sore generator. The results we obtain areSore generator results:=====================================================BFGSMIN final resultsUsed analyti gradient------------------------------------------------------STRONG CONVERGENCEFuntion onv 1 Param onv 1 Gradient onv 1------------------------------------------------------Objetive funtion value 0.281571Stepsize 0.027915 iterations------------------------------------------------------param gradient hange1.8979 0.0000 0.00001.6648 -0.0000 0.00001.9125 -0.0000 0.00001.8875 -0.0000 0.00001.7433 -0.0000 0.0000======================================================Model results:******************************************************EMM exampleGMM Estimation ResultsBFGS onvergene: Normal onvergene

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/gmm/emm_example.m


5. EXAMPLES 250Objetive funtion value: 0.000000Observations: 1000Exatly identified, no spe. testestimate st. err t-stat p-valuep1 1.069 0.022 47.618 0.000p2 0.935 0.022 42.240 0.000p3 1.085 0.022 49.630 0.000p4 1.080 0.022 49.047 0.000p5 0.978 0.023 41.643 0.000******************************************************It might be interesting to ompare the standard errors with those obtained from MLestimation, to hek e�ieny of the EMM estimator. One ould even do a Monte Carlostudy.



5. EXAMPLES 251Exerises(1) Do SML estimation of the probit model.(2) Do a little Monte Carlo study to ompare ML, SML and EMM estimation of theprobit model. Investigate how the number of simulations a�et the two simulation-based estimators.



CHAPTER 20Parallel programming for eonometrisThe following borrows heavily from Creel (2005).Parallel omputing an o�er an important redution in the time to omplete ompu-tations. This is well-known, but it bears emphasis sine it is the main reason that parallelomputing may be attrative to users. To illustrate, the Intel Pentium IV (Willamette)proessor, running at 1.5GHz, was introdued in November of 2000. The Pentium IV(Northwood-HT) proessor, running at 3.06GHz, was introdued in November of 2002. Anapproximate doubling of the performane of a ommodity CPU took plae in two years.Extrapolating this admittedly rough snapshot of the evolution of the performane of om-modity proessors, one would need to wait more than 6.6 years and then purhase a newomputer to obtain a 10-fold improvement in omputational performane. The examples inthis hapter show that a 10-fold improvement in performane an be ahieved immediately,using distributed parallel omputing on available omputers.Reent (this is written in 2005) developments that may make parallel omputing at-trative to a broader spetrum of researhers who do omputations. The �rst is the fatthat setting up a luster of omputers for distributed parallel omputing is not di�ult. Ifyou are using the ParallelKnoppix bootable CD that aompanies these notes, you are lessthan 10 minutes away from reating a luster, supposing you have a seond omputer athand and a rossover ethernet able. See the ParallelKnoppix tutorial. A seond develop-ment is the existene of extensions to some of the high-level matrix programming (HLMP)languages1 that allow the inorporation of parallelism into programs written in these lan-guages. A third is the spread of dual and quad-ore CPUs, so that an ordinary desktop orlaptop omputer an be made into a mini-luster. Those ores won't work together on asingle problem unless they are told how to.Following are examples of parallel implementations of several mainstream problemsin eonometris. A fous of the examples is on the possibility of hiding parallelizationfrom end users of programs. If programs that run in parallel have an interfae that isnearly idential to the interfae of equivalent serial versions, end users will �nd it easy totake advantage of parallel omputing's performane. We ontinue to use Otave, takingadvantage of the MPI Toolbox (MPITB) for Otave, by by Fernández Baldomero et al.(2004). There are also parallel pakages for Ox, R, and Python whih may be of interestto eonometriians, but as of this writing, the following examples are the most aessibleintrodution to parallel programming for eonometriians.1. Example problemsThis setion introdues example problems from eonometris, and shows how they anbe parallelized in a natural way.1By �high-level matrix programming language� I mean languages suh as MATLAB (TM the Mathworks,In.), Ox (TM OxMetris Tehnologies, Ltd.), and GNU Otave (www.otave.org), for example.252
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1. EXAMPLE PROBLEMS 2531.1. Monte Carlo. A Monte Carlo study involves repeating a random experimentmany times under idential onditions. Several authors have noted that Monte Carlostudies are obvious andidates for parallelization (Doornik et al. 2002; Bruhe, 2003) sinebloks of repliations an be done independently on di�erent omputers. To illustrate theparallelization of a Monte Carlo study, we use same trae test example as do Doornik, et.al. (2002). traetest.m is a funtion that alulates the trae test statisti for the lak ofointegration of integrated time series. This funtion is illustrative of the format that weadopt for Monte Carlo simulation of a funtion: it reeives a single argument of ell type,and it returns a row vetor that holds the results of one random simulation. The singleargument in this ase is a ell array that holds the length of the series in its �rst position,and the number of series in the seond position. It generates a random result though aproess that is internal to the funtion, and it reports some output in a row vetor (in thisase the result is a salar).m_example1.m is an Otave sript that exeutes a Monte Carlo study of the traetest by repeatedly evaluating the traetest.m funtion. The main thing to notie aboutthis sript is that lines 7 and 10 all the funtion montearlo.m. When alled with 3arguments, as in line 7, montearlo.m exeutes serially on the omputer it is alled from.In line 10, there is a fourth argument. When alled with four arguments, the last argumentis the number of slave hosts to use. We see that running the Monte Carlo study on oneor more proessors is transparent to the user - he or she must only indiate the number ofslave omputers to be used.1.2. ML. For a sample {(yt, xt)}n of n observations of a set of dependent and ex-planatory variables, the maximum likelihood estimator of the parameter θ an be de�nedas
θ̂ = arg max sn(θ)where

sn(θ) =
1

n

n∑

t=1

ln f(yt|xt, θ)Here, yt may be a vetor of random variables, and the model may be dynami sine xt mayontain lags of yt. As Swann (2002) points out, this an be broken into sums over bloksof observations, for example two bloks:
sn(θ) =

1

n

{(
n1∑

t=1

ln f(yt|xt, θ)
)

+

(
n∑

t=n1+1

ln f(yt|xt, θ)
)}Analogously, we an de�ne up to n bloks. Again following Swann, parallelization an bedone by alulating eah blok on separate omputers.mle_example1.m is an Otave sript that alulates the maximum likelihood estimatorof the parameter vetor of a model that assumes that the dependent variable is distributedas a Poisson random variable, onditional on some explanatory variables. In lines 1-3 thedata is read, the name of the density funtion is provided in the variable model, and theinitial value of the parameter vetor is set. In line 5, the funtion mle_estimate performsordinary serial alulation of the ML estimator, while in line 7 the same funtion is alledwith 6 arguments. The fourth and �fth arguments are empty plaeholders where optionsto mle_estimate may be set, while the sixth argument is the number of slave omputers touse for parallel exeution, 1 in this ase. A person who runs the program sees no parallelprogramming ode - the parallelization is transparent to the end user, beyond having to
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1. EXAMPLE PROBLEMS 254selet the number of slave omputers. When exeuted, this sript prints out the estimatestheta_s and theta_p, whih are idential.It is worth noting that a di�erent likelihood funtion may be used by making the modelvariable point to a di�erent funtion. The likelihood funtion itself is an ordinary Otavefuntion that is not parallelized. The mle_estimate funtion is a generi funtion that anall any likelihood funtion that has the appropriate input/output syntax for evaluationeither serially or in parallel. Users need only learn how to write the likelihood funtionusing the Otave language.1.3. GMM. For a sample as above, the GMM estimator of the parameter θ an bede�ned as
θ̂ ≡ arg min

Θ
sn(θ)where

sn(θ) = mn(θ)
′Wnmn(θ)and

mn(θ) =
1

n

n∑

t=1

mt(yt|xt, θ)Sine mn(θ) is an average, it an obviously be omputed blokwise, using for example 2bloks:(75) mn(θ) =
1

n

{(
n1∑

t=1

mt(yt|xt, θ)
)

+

(
n∑

t=n1+1

mt(yt|xt, θ)
)}Likewise, we may de�ne up to n bloks, eah of whih ould potentially be omputed on adi�erent mahine.gmm_example1.m is a sript that illustrates how GMM estimation may be done seriallyor in parallel. When this is run, theta_s and theta_p are idential up to the tolerane foronvergene of the minimization routine. The point to notie here is that an end user anperform the estimation in parallel in virtually the same way as it is done serially. Again,gmm_estimate, used in lines 8 and 10, is a generi funtion that will estimate any modelspei�ed by the moments variable - a di�erent model an be estimated by hanging thevalue of the moments variable. The funtion that moments points to is an ordinary Otavefuntion that uses no parallel programming, so users an write their models using thesimple and intuitive HLMP syntax of Otave. Whether estimation is done in parallel orserially depends only the seventh argument to gmm_estimate - when it is missing or zero,estimation is by default done serially with one proessor. When it is positive, it spei�esthe number of slave nodes to use.1.4. Kernel regression. The Nadaraya-Watson kernel regression estimator of a fun-tion g(x) at a point x is

ĝ(x) =

∑n
t=1 ytK [(x− xt) /γn]∑n
t=1K [(x− xt) /γn]

≡
n∑

t=1

wtyyWe see that the weight depends upon every data point in the sample. To alulate the �tat every point in a sample of size n, on the order of n2k alulations must be done, where kis the dimension of the vetor of explanatory variables, x. Raine (2002) demonstrates thatMPI parallelization an be used to speed up alulation of the kernel regression estimator
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1. EXAMPLE PROBLEMS 255Figure 1. Speedups from parallelization
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by alulating the �ts for portions of the sample on di�erent omputers. We follow thisimplementation here. kernel_example1.m is a sript for serial and parallel kernel regres-sion. Serial exeution is obtained by setting the number of slaves equal to zero, in line 15.In line 17, a single slave is spei�ed, so exeution is in parallel on the master and slavenodes.The example programs show that parallelization may be mostly hidden from end users.Users an bene�t from parallelization without having to write or understand parallel ode.The speedups one an obtain are highly dependent upon the spei� problem at hand, aswell as the size of the luster, the e�ieny of the network, et. Some examples of speedupsare presented in Creel (2005). Figure 1 reprodues speedups for some eonometri problemson a luster of 12 desktop omputers. The speedup for k nodes is the time to �nish theproblem on a single node divided by the time to �nish the problem on k nodes. Note thatyou an get 10X speedups, as laimed in the introdution. It's pretty obvious that muhgreater speedups ould be obtained using a larger luster, for the �embarrassingly parallel�problems.
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CHAPTER 21Final projet: eonometri estimation of a RBC modelTHIS IS NOT FINISHED - IGNORE IT FOR NOWIn this last hapter we'll go through a worked example that ombines a number of thetopis we've seen. We'll do simulated method of moments estimation of a real businessyle model, similar to what Valderrama (2002) does.1. DataWe'll develop a model for private onsumption and real gross private investment. Thedata are obtained from the US Bureau of Eonomi Analysis (BEA) National Inome andProdut Aounts (NIPA), Table 11.1.5, Lines 2 and 6 (you an download quarterly datafrom 1947-I to the present). The data we use are in the �le rb_data.m. This data is real(onstant dollars).The program plots.m will make a few plots, inluding Figures 1 though 3. First lookingat the plot for levels, we an see that real onsumption and investment are learly nonsta-tionary (surprise, surprise). There appears to be somewhat of a strutural hange in themid-1970's.Looking at growth rates, the series for onsumption has an extended period of high growthin the 1970's, beoming more moderate in the 90's. The volatility of growth of onsumptionhas delined somewhat, over time. Looking at investment, there are some notable periodsof high volatility in the mid-1970's and early 1980's, for example. Sine 1990 or so, volatilityseems to have delined.Eonomi models for growth often imply that there is no long term growth (!) - thedata that the models generate is stationary and ergodi. Or, the data that the modelsFigure 1. Consumption and Investment, LevelsExamples/RBC/levels.eps
Figure 2. Consumption and Investment, Growth RatesExamples/RBC/growth.eps
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3. A REDUCED FORM MODEL 258Figure 3. Consumption and Investment, Bandpass FilteredExamples/RBC/filtered.eps
generate needs to be passed through the inverse of a �lter. We'll follow this, and generatestationary business yle data by applying the bandpass �lter of Christiano and Fitzgerald(1999). The �ltered data is in Figure 3. We'll try to speify an eonomi model that angenerate similar data. To get data that look like the levels for onsumption and investment,we'd need to apply the inverse of the bandpass �lter.2. An RBC ModelConsider a very simple stohasti growth model (the same used by Maliar and Maliar(2003), with minor notational di�erene):

max{ct,kt}∞t=0
E0
∑∞

t=0 β
tU(ct)

ct + kt = (1 − δ) kt−1 + φtk
α
t−1

log φt = ρ log φt−1 + ǫt

ǫt ∼ IIN(0, σ2
ǫ )Assume that the utility funtion is

U(ct) =
c1−γt − 1

1 − γ

• β is the disount rate
• δ is the depreiation rate of apital
• α is the elastiity of output with respet to apital
• φ is a tehnology shok that is positive. φt is observed in period t.
• γ is the oe�ient of relative risk aversion. When γ = 1, the utility funtion islogarithmi.
• gross investment, it, is the hange in the apital stok:

it = kt − (1 − δ) kt−1

• we assume that the initial ondition (k0, θ0) is given.We would like to estimate the parameters θ =
(
β, γ, δ, α, ρ, σ2

ǫ

)′ using the data that we haveon onsumption and investment. This problem is very similar to the GMM estimation ofthe portfolio model disussed in Setions 11 and 12. One an derive the Euler onditionin the same way we did there, and use it to de�ne a GMM estimator. That approah wasnot very suessful, reall. Now we'll try to use some more informative moment onditionsto see if we get better results. 3. A redued form modelMaroeonomi time series data are often modeled using vetor autoregressions. Avetor autogression is just the vetor version of an autoregressive model. Let yt be a



5. SOLVING THE STRUCTURAL MODEL 259
G-vetor of jointly dependent variables. A VAR(p) model is

yt = c+A1yt−1 +A2yt−2 + ...+Apyt−p + vtwhere c is a G-vetor of parameters, and Aj, j=1,2,...,p, are G×G matries of parameters.Let vt = Rtηt, where ηt ∼ IIN(0, I2), and Rt is upper triangular. So V (vt|yt−1, ...yt−p) =

RtR
′

t. You an think of a VAR model as the redued form of a dynami linear simultaneousequations model where all of the variables are treated as endogenous. Clearly, if all of thevariables are endogenous, one would need some form of additional information to identifya strutural model. But we already have a strutural model, and we're only going to usethe VAR to help us estimate the parameters. A well-�tting redued form model will beadequate for the purpose.We're seen that our data seems to have episodes where the variane of growth ratesand �ltered data is non-onstant. This brings us to the general area of stohasti volatility.Without going into details, we'll just onsider the exponential GARCH model of Nelson(1991) as presented in Hamilton (1994, pg. 668-669).De�ne ht = vec∗(Rt), the vetor of elements in the upper triangle of Rt (in our asethis is a 3 × 1 vetor). We assume that the elements follow
log hjt = κj + P(j,.)

{
|vt−1| −

√
2/π + ℵ(j,.)vt−1

}
+ G(j,.) log ht−1The variane of the VAR error depends upon its own past, as well as upon the pastrealizations of the shoks.

• This is an EGARCH(1,1) spei�ation. The obvious generalization is the EGARCH(r,m)spei�ation, with longer lags (r for lags of v, m for lags of h).
• The advantage of the EGARCH formulation is that the variane is assuredlypositive without parameter restritions
• The matrix P has dimension 3 × 2.
• The matrix G has dimension 3 × 3.
• The matrix ℵ (reminder to self: this is an �aleph�) has dimension 2 × 2.
• The parameter matrix ℵ allows for leverage, so that positive and negative shoksan have asymmetri e�ets upon volatility.
• We will probably want to restrit these parameter matries in some way. Forinstane, G ould plausibly be diagonal.With the above spei�ation, we have

ηt ∼ IIN (0, I2)

ηt = R−1
t vtand we know how to alulate Rt and vt, given the data and the parameters. Thus, it isstraighforward to do estimation by maximum likelihood. This will be the sore generator.4. Results (I): The sore generator5. Solving the strutural modelThe �rst order ondition for the strutural model is

c−γt = βEt

(
c−γt+1

(
1 − δ + αφt+1k

α−1
t

))



5. SOLVING THE STRUCTURAL MODEL 260or
ct =

{
βEt

[
c−γt+1

(
1 − δ + αφt+1k

α−1
t

)]}−1

γThe problem is that we annot solve for ct sine we do not know the solution for theexpetation in the previous equation.The parameterized expetations algorithm (PEA: den Haan and Maret, 1990), is ameans of solving the problem. The expetations term is replaed by a parametri funtion.As long as the parametri funtion is a �exible enough funtion of variables that have beenrealized in period t, there exist parameter values that make the approximation as lose tothe true expetation as is desired. We will write the approximation
Et

[
c−γt+1

(
1 − δ + αφt+1k

α−1
t

)]
≃ exp (ρ0 + ρ1 log φt + ρ2 log kt−1)For given values of the parameters of this approximating funtion, we an solve for ct, andthen for kt using the restrition that

ct + kt = (1 − δ) kt−1 + φtk
α
t−1This allows us to generate a series {(ct, kt)}. Then the expetations approximation isupdated by �tting

c−γt+1

(
1 − δ + αφt+1k

α−1
t

)
= exp (ρ0 + ρ1 log φt + ρ2 log kt−1) + ηtby nonlinear least squares. The 2 step proedure of generating data and updating theparameters of the approximation to expetations is iterated until the parameters no longerhange. When this is the ase, the expetations funtion is the best �t to the generateddata. As long it is a rih enough parametri model to enompass the true expetationsfuntion, it an be made to be equal to the true expetations funtion by using a longenough simulation.Thus, given the parameters of the strutural model, θ =

(
β, γ, δ, α, ρ, σ2

ǫ

)′, we angenerate data {(ct, kt)} using the PEA. From this we an get the series {(ct, it)} using
it = kt − (1 − δ) kt−1. This an be used to do EMM estimation using the sores of theredued form model to de�ne moments, using the simulated data from the strutural model.
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CHAPTER 22Introdution to OtaveWhy is Otave being used here, sine it's not that well-known by eonometriians?Well, beause it is a high quality environment that is easily extensible, uses well-testedand high performane numerial libraries, it is liensed under the GNU GPL, so you anget it for free and modify it if you like, and it runs on both GNU/Linux, Ma OSX andWindows systems. It's also quite easy to learn.1. Getting startedGet the ParallelKnoppix CD, as was desribed in Setion 3. Then burn the image,and boot your omputer with it. This will give you this same PDF �le, but with all ofthe example programs ready to run. The editor is on�gure with a maro to exeute theprograms using Otave, whih is of ourse installed. From this point, I assume you arerunning the CD (or sitting in the omputer room aross the hall from my o�e), or thatyou have on�gured your omputer to be able to run the *.m �les mentioned below.2. A short introdutionThe objetive of this introdution is to learn just the basis of Otave. There are otherways to use Otave, whih I enourage you to explore. These are just some rudiments.After this, you an look at the example programs sattered throughout the doument (andedit them, and run them) to learn more about how Otave an be used to do eonometris.Students of mine: your problem sets will inlude exerises that an be done by modifyingthe example programs in relatively minor ways. So study the examples!Otave an be used interatively, or it an be used to run programs that are written us-ing a text editor. We'll use this seond method, preparing programs with NEdit, and allingOtave from within the editor. The program �rst.m gets us started. To run this, open it upwith NEdit (by �nding the orret �le inside the /home/knoppix/Desktop/Eonometrisfolder and liking on the ion) and then type CTRL-ALT-o, or use the Otave item inthe Shell menu (see Figure 1).Note that the output is not formatted in a pleasing way. That's beause printf()doesn't automatially start a new line. Edit first.m so that the 8th line reads �printf(�helloworld\n�);� and re-run the program.We need to know how to load and save data. The program seond.m shows how. Oneyou have run this, you will �nd the �le �x� in the diretory Eonometris/Examples/OtaveIntro/You might have a look at it with NEdit to see Otave's default format for saving data.Basially, if you have data in an ASCII text �le, named for example �myfile.data�, formedof numbers separated by spaes, just use the ommand �load myfile.data�. After havingdone so, the matrix �myfile� (without extension) will ontain the data.Please have a look at CommonOperations.m for examples of how to do some basithings in Otave. Now that we're done with the basis, have a look at the Otave programsthat are inluded as examples. If you are looking at the browsable PDF version of this262
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3. IF YOU'RE RUNNING A LINUX INSTALLATION... 263Figure 1. Running an Otave program

doument, then you should be able to lik on links to open them. If not, the exampleprograms are available here and the support �les needed to run these are available here.Those pages will allow you to examine individual �les, out of ontext. To atually usethese �les (edit and run them), you should go to the home page of this doument, sineyou will probably want to download the pdf version together with all the support �les andexamples. Or get the bootable CD.There are some other resoures for doing eonometris with Otave. You might like tohek the artile Eonometris with Otave and the Eonometris Toolbox , whih is forMatlab, but muh of whih ould be easily used with Otave.3. If you're running a Linux installation...Then to get the same behavior as found on the CD, you need to:
• Get the olletion of support programs and the examples, from the doumenthome page.
• Put them somewhere, and tell Otave how to �nd them, e.g., by putting a link tothe MyOtaveFiles diretory in /usr/loal/share/otave/site-m
• Make sure nedit is installed and on�gured to run Otave and use syntax high-lighting. Copy the �le /home/eonometris/.nedit from the CD to do this. Or,get the �le NeditCon�guration and save it in your $HOME diretory with thename �.nedit�. Not to put too �ne a point on it, please note that there is aperiod in that name.
• Assoiate *.m �les with NEdit so that they open up in the editor when you likon them. That should do it.
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CHAPTER 23Notation and Review
• All vetors will be olumn vetors, unless they have a transpose symbol (or I forgetto apply this rule - your help athing typos and er0rors is muh appreiated).For example, if xt is a p×1 vetor, x′t is a 1×p vetor. When I refer to a p-vetor,I mean a olumn vetor.1. Notation for di�erentiation of vetors and matries[3, Chapter 1℄Let s(·) : ℜp → ℜ be a real valued funtion of the p-vetor θ. Then ∂s(θ)

∂θ is organizedas a p-vetor,
∂s(θ)

∂θ
=




∂s(θ)
∂θ1
∂s(θ)
∂θ2...
∂s(θ)
∂θp


Following this onvention,∂s(θ)∂θ′ is a 1 × p vetor, and ∂2s(θ)
∂θ∂θ′ is a p× p matrix. Also,

∂2s(θ)

∂θ∂θ′
=

∂

∂θ

(
∂s(θ)

∂θ′

)
=

∂

∂θ′

(
∂s(θ)

∂θ

)
.Exerise 33. For a and x both p-vetors, show that ∂a′x

∂x = a.Let f(θ):ℜp → ℜn be a n-vetor valued funtion of the p-vetor θ. Let f(θ)′ be the
1 × n valued transpose of f . Then ( ∂∂θf(θ)′

)′
= ∂

∂θ′ f(θ).

• Produt rule: Let f(θ):ℜp → ℜn and h(θ):ℜp → ℜn be n-vetor valued funtionsof the p-vetor θ. Then
∂

∂θ′
h(θ)′f(θ) = h′

(
∂

∂θ′
f

)
+ f ′

(
∂

∂θ′
h

)has dimension 1 × p. Applying the transposition rule we get
∂

∂θ
h(θ)′f(θ) =

(
∂

∂θ
f ′
)
h+

(
∂

∂θ
h′
)
fwhih has dimension p× 1.Exerise 34. For A a p× p matrix and x a p× 1 vetor, show that ∂x′Ax

∂x = A+A′.
• Chain rule: Let f(·):ℜp → ℜn a n-vetor valued funtion of a p-vetor argument,and let g():ℜr → ℜp be a p-vetor valued funtion of an r-vetor valued argument
ρ. Then

∂

∂ρ′
f [g (ρ)] =

∂

∂θ′
f(θ)

∣∣∣∣
θ=g(ρ)

∂

∂ρ′
g(ρ)has dimension n× r.Exerise 35. For x and β both p× 1 vetors, show that ∂ exp(x′β)

∂β = exp(x′β)x.264



2. CONVERGENGE MODES 2652. Convergenge modesReadings: [1, Chapter 4℄;[4, Chapter 4℄.We will onsider several modes of onvergene. The �rst three modes disussed aresimply for bakground. The stohasti modes are those whih will be used later in theourse.Definition 36. A sequene is a mapping from the natural numbers {1, 2, ...} =

{n}∞n=1 = {n} to some other set, so that the set is ordered aording to the naturalnumbers assoiated with its elements.Real-valued sequenes:Definition 37. [Convergene℄ A real-valued sequene of vetors {an} onverges to thevetor a if for any ε > 0 there exists an integer Nε suh that for all n > Nε, ‖ an − a ‖< ε. a is the limit of an, written an → a.Deterministi real-valued funtions. Consider a sequene of funtions {fn(ω)}where
fn : Ω → T ⊆ ℜ.

Ω may be an arbitrary set.Definition 38. [Pointwise onvergene℄ A sequene of funtions {fn(ω)} onvergespointwise on Ω to the funtion f(ω) if for all ε > 0 and ω ∈ Ω there exists an integer Nεωsuh that
|fn(ω) − f(ω)| < ε,∀n > Nεω.It's important to note that Nεω depends upon ω, so that onverge may be muh morerapid for ertain ω than for others. Uniform onvergene requires a similar rate of onver-gene throughout Ω.Definition 39. [Uniform onvergene℄ A sequene of funtions {fn(ω)} onvergesuniformly on Ω to the funtion f(ω) if for any ε > 0 there exists an integer N suh that

sup
ω∈Ω

|fn(ω) − f(ω)| < ε,∀n > N.(insert a diagram here showing the envelope around f(ω) in whih fn(ω) must lie)Stohasti sequenes. In eonometris, we typially deal with stohasti sequenes.Given a probability spae (Ω,F , P ) , reall that a random variable maps the sample spaeto the real line, i.e., X(ω) : Ω → ℜ. A sequene of random variables {Xn(ω)} is a olletionof suh mappings, i.e., eah Xn(ω) is a random variable with respet to the probabilityspae (Ω,F , P ) . For example, given the model Y = Xβ0 + ε, the OLS estimator β̂n =

(X ′X)−1X ′Y, where n is the sample size, an be used to form a sequene of random vetors
{β̂n}. A number of modes of onvergene are in use when dealing with sequenes of randomvariables. Several suh modes of onvergene should already be familiar:Definition 40. [Convergene in probability℄ Let Xn(ω) be a sequene of random vari-ables, and let X(ω) be a random variable. Let An = {ω : |Xn(ω) − X(ω)| > ε}. Then
{Xn(ω)} onverges in probability to X(ω) if

lim
n→∞

P (An) = 0,∀ε > 0.



2. CONVERGENGE MODES 266Convergene in probability is written as Xn
p→ X, or plim Xn = X.Definition 41. [Almost sure onvergene℄ Let Xn(ω) be a sequene of random vari-ables, and let X(ω) be a random variable. Let A = {ω : limn→∞Xn(ω) = X(ω)}. Then

{Xn(ω)} onverges almost surely to X(ω) if
P (A) = 1.In other words, Xn(ω) → X(ω) (ordinary onvergene of the two funtions) exept on aset C = Ω − A suh that P (C) = 0. Almost sure onvergene is written as Xn

a.s.→ X, or
Xn → X,a.s. One an show that

Xn
a.s.→ X ⇒ Xn

p→ X.Definition 42. [Convergene in distribution℄ Let the r.v. Xn have distribution fun-tion Fn and the r.v. Xn have distribution funtion F. If Fn → F at every ontinuity pointof F, then Xn onverges in distribution to X.Convergene in distribution is written as Xn
d→ X. It an be shown that onvergene inprobability implies onvergene in distribution.Stohasti funtions. Simple laws of large numbers (LLN's) allow us to diretlyonlude that β̂n a.s.→ β0 in the OLS example, sine

β̂n = β0 +

(
X ′X
n

)−1(X ′ε
n

)
,and X′ε

n

a.s.
→ 0 by a SLLN. Note that this term is not a funtion of the parameter β. Thiseasy proof is a result of the linearity of the model, whih allows us to express the estimatorin a way that separates parameters from random funtions. In general, this is not possible.We often deal with the more ompliated situation where the stohasti sequene dependson parameters in a manner that is not reduible to a simple sequene of random variables.In this ase, we have a sequene of random funtions that depend on θ: {Xn(ω, θ)}, whereeah Xn(ω, θ) is a random variable with respet to a probability spae (Ω,F , P ) and theparameter θ belongs to a parameter spae θ ∈ Θ.Definition 43. [Uniform almost sure onvergene℄ {Xn(ω, θ)} onverges uniformlyalmost surely in Θ to X(ω, θ) if

lim
n→∞

sup
θ∈Θ

|Xn(ω, θ) −X(ω, θ)| = 0, (a.s.)Impliit is the assumption that all Xn(ω, θ) and X(ω, θ) are random variables w.r.t.
(Ω,F , P ) for all θ ∈ Θ.We'll indiate uniform almost sure onvergene by u.a.s.→ and uniformonvergene in probability by u.p.→ .

• An equivalent de�nition, based on the fat that �almost sure� means �with prob-ability one� is
Pr

(
lim
n→∞

sup
θ∈Θ

|Xn(ω, θ) −X(ω, θ)| = 0

)
= 1This has a form similar to that of the de�nition of a.s. onvergene - the essentialdi�erene is the addition of the sup.



3. RATES OF CONVERGENCE AND ASYMPTOTIC EQUALITY 2673. Rates of onvergene and asymptoti equalityIt's often useful to have notation for the relative magnitudes of quantities. Quantitiesthat are small relative to others an often be ignored, whih simpli�es analysis.Definition 44. [Little-o℄ Let f(n) and g(n) be two real-valued funtions. The notation
f(n) = o(g(n)) means limn→∞

f(n)
g(n) = 0.Definition 45. [Big-O℄ Let f(n) and g(n) be two real-valued funtions. The notation

f(n) = O(g(n)) means there exists some N suh that for n > N,
∣∣∣ f(n)
g(n)

∣∣∣ < K, where K is a�nite onstant.This de�nition doesn't require that f(n)
g(n) have a limit (it may �utuate boundedly).If {fn} and {gn} are sequenes of random variables analogous de�nitions areDefinition 46. The notation f(n) = op(g(n)) means f(n)

g(n)

p→ 0.Example 47. The least squares estimator θ̂ = (X ′X)−1X ′Y = (X ′X)−1X ′ (Xθ0 + ε
)

=

θ0 + (X ′X)−1X ′ε. Sine plim (X′X)−1X′ε
1 = 0, we an write (X ′X)−1X ′ε = op(1) and

θ̂ = θ0 + op(1). Asymptotially, the term op(1) is negligible. This is just a way of indiat-ing that the LS estimator is onsistent.Definition 48. The notation f(n) = Op(g(n)) means there exists some Nε suh thatfor ε > 0 and all n > Nε,

P

(∣∣∣∣
f(n)

g(n)

∣∣∣∣ < Kε

)
> 1 − ε,where Kε is a �nite onstant.Example 49. If Xn ∼ N(0, 1) then Xn = Op(1), sine, given ε, there is always some

Kε suh that P (|Xn| < Kε) > 1 − ε.Useful rules:
• Op(n

p)Op(n
q) = Op(n

p+q)

• op(n
p)op(n

q) = op(n
p+q)Example 50. Consider a random sample of iid r.v.'s with mean 0 and variane σ2.The estimator of the mean θ̂ = 1/n

∑n
i=1 xi is asymptotially normally distributed, e.g.,

n1/2θ̂
A∼ N(0, σ2). So n1/2θ̂ = Op(1), so θ̂ = Op(n

−1/2). Before we had θ̂ = op(1), now wehave have the stronger result that relates the rate of onvergene to the sample size.Example 51. Now onsider a random sample of iid r.v.'s with mean µ and variane σ2.The estimator of the mean θ̂ = 1/n
∑n

i=1 xi is asymptotially normally distributed, e.g.,
n1/2

(
θ̂ − µ

)
A∼ N(0, σ2). So n1/2

(
θ̂ − µ

)
= Op(1), so θ̂ − µ = Op(n

−1/2), so θ̂ = Op(1).These two examples show that averages of entered (mean zero) quantities typiallyhave plim 0, while averages of unentered quantities have �nite nonzero plims. Note thatthe de�nition of Op does not mean that f(n) and g(n) are of the same order. Asymptotiequality ensures that this is the ase.Definition 52. Two sequenes of random variables {fn} and {gn} are asymptotiallyequal (written fn a
= gn) if

plim

(
f(n)

g(n)

)
= 1Finally, analogous almost sure versions of op and Op are de�ned in the obvious way.



EXERCISES 268Exerises(1) For a and x both p× 1 vetors, show that Dxa
′x = a.(2) For A a p× p matrix and x a p× 1 vetor, show that D2

xx
′Ax = A+A′.(3) For x and β both p× 1 vetors, show that Dβ expx′β = exp(x′β)x.(4) For x and β both p× 1 vetors, �nd the analyti expression for D2

β expx′β.(5) Write an Otave program that veri�es eah of the previous results by taking numeriderivatives. For a hint, type help numgradient and help numhessian inside otave.



CHAPTER 24LiensesThis doument and the assoiated examples and materials are opyright Mihael Creel,under the terms of the GNU General Publi Liense, ver. 2., or at your option, under theCreative Commons Attribution-Share Alike Liense, Version 2.5. The lienses follow.1. The GPLGNU GENERAL PUBLIC LICENSEVersion 2, June 1991Copyright (C) 1989, 1991 Free Software Foundation, In.59 Temple Plae, Suite 330, Boston, MA 02111-1307 USAEveryone is permitted to opy and distribute verbatim opiesof this liense doument, but hanging it is not allowed.PreambleThe lienses for most software are designed to take away yourfreedom to share and hange it. By ontrast, the GNU General PubliLiense is intended to guarantee your freedom to share and hange freesoftware--to make sure the software is free for all its users. ThisGeneral Publi Liense applies to most of the Free SoftwareFoundation's software and to any other program whose authors ommit tousing it. (Some other Free Software Foundation software is overed bythe GNU Library General Publi Liense instead.) You an apply it toyour programs, too.When we speak of free software, we are referring to freedom, notprie. Our General Publi Lienses are designed to make sure that youhave the freedom to distribute opies of free software (and harge forthis servie if you wish), that you reeive soure ode or an get itif you want it, that you an hange the software or use piees of itin new free programs; and that you know you an do these things.To protet your rights, we need to make restritions that forbidanyone to deny you these rights or to ask you to surrender the rights.These restritions translate to ertain responsibilities for you if youdistribute opies of the software, or if you modify it.For example, if you distribute opies of suh a program, whethergratis or for a fee, you must give the reipients all the rights that269



1. THE GPL 270you have. You must make sure that they, too, reeive or an get thesoure ode. And you must show them these terms so they know theirrights.We protet your rights with two steps: (1) opyright the software, and(2) offer you this liense whih gives you legal permission to opy,distribute and/or modify the software.Also, for eah author's protetion and ours, we want to make ertainthat everyone understands that there is no warranty for this freesoftware. If the software is modified by someone else and passed on, wewant its reipients to know that what they have is not the original, sothat any problems introdued by others will not reflet on the originalauthors' reputations.Finally, any free program is threatened onstantly by softwarepatents. We wish to avoid the danger that redistributors of a freeprogram will individually obtain patent lienses, in effet making theprogram proprietary. To prevent this, we have made it lear that anypatent must be liensed for everyone's free use or not liensed at all.The preise terms and onditions for opying, distribution andmodifiation follow.
GNU GENERAL PUBLIC LICENSETERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION0. This Liense applies to any program or other work whih ontainsa notie plaed by the opyright holder saying it may be distributedunder the terms of this General Publi Liense. The "Program", below,refers to any suh program or work, and a "work based on the Program"means either the Program or any derivative work under opyright law:that is to say, a work ontaining the Program or a portion of it,either verbatim or with modifiations and/or translated into anotherlanguage. (Hereinafter, translation is inluded without limitation inthe term "modifiation".) Eah liensee is addressed as "you".Ativities other than opying, distribution and modifiation are notovered by this Liense; they are outside its sope. The at ofrunning the Program is not restrited, and the output from the Programis overed only if its ontents onstitute a work based on theProgram (independent of having been made by running the Program).



1. THE GPL 271Whether that is true depends on what the Program does.1. You may opy and distribute verbatim opies of the Program'ssoure ode as you reeive it, in any medium, provided that youonspiuously and appropriately publish on eah opy an appropriateopyright notie and dislaimer of warranty; keep intat all thenoties that refer to this Liense and to the absene of any warranty;and give any other reipients of the Program a opy of this Liensealong with the Program.You may harge a fee for the physial at of transferring a opy, andyou may at your option offer warranty protetion in exhange for a fee.2. You may modify your opy or opies of the Program or any portionof it, thus forming a work based on the Program, and opy anddistribute suh modifiations or work under the terms of Setion 1above, provided that you also meet all of these onditions:a) You must ause the modified files to arry prominent notiesstating that you hanged the files and the date of any hange.b) You must ause any work that you distribute or publish, that inwhole or in part ontains or is derived from the Program or anypart thereof, to be liensed as a whole at no harge to all thirdparties under the terms of this Liense.) If the modified program normally reads ommands interativelywhen run, you must ause it, when started running for suhinterative use in the most ordinary way, to print or display anannounement inluding an appropriate opyright notie and anotie that there is no warranty (or else, saying that you providea warranty) and that users may redistribute the program underthese onditions, and telling the user how to view a opy of thisLiense. (Exeption: if the Program itself is interative butdoes not normally print suh an announement, your work based onthe Program is not required to print an announement.)
These requirements apply to the modified work as a whole. Ifidentifiable setions of that work are not derived from the Program,and an be reasonably onsidered independent and separate works inthemselves, then this Liense, and its terms, do not apply to thosesetions when you distribute them as separate works. But when you



1. THE GPL 272distribute the same setions as part of a whole whih is a work basedon the Program, the distribution of the whole must be on the terms ofthis Liense, whose permissions for other liensees extend to theentire whole, and thus to eah and every part regardless of who wrote it.Thus, it is not the intent of this setion to laim rights or ontestyour rights to work written entirely by you; rather, the intent is toexerise the right to ontrol the distribution of derivative orolletive works based on the Program.In addition, mere aggregation of another work not based on the Programwith the Program (or with a work based on the Program) on a volume ofa storage or distribution medium does not bring the other work underthe sope of this Liense.3. You may opy and distribute the Program (or a work based on it,under Setion 2) in objet ode or exeutable form under the terms ofSetions 1 and 2 above provided that you also do one of the following:a) Aompany it with the omplete orresponding mahine-readablesoure ode, whih must be distributed under the terms of Setions1 and 2 above on a medium ustomarily used for software interhange; or,b) Aompany it with a written offer, valid for at least threeyears, to give any third party, for a harge no more than yourost of physially performing soure distribution, a ompletemahine-readable opy of the orresponding soure ode, to bedistributed under the terms of Setions 1 and 2 above on a mediumustomarily used for software interhange; or,) Aompany it with the information you reeived as to the offerto distribute orresponding soure ode. (This alternative isallowed only for nonommerial distribution and only if youreeived the program in objet ode or exeutable form with suhan offer, in aord with Subsetion b above.)The soure ode for a work means the preferred form of the work formaking modifiations to it. For an exeutable work, omplete soureode means all the soure ode for all modules it ontains, plus anyassoiated interfae definition files, plus the sripts used toontrol ompilation and installation of the exeutable. However, as aspeial exeption, the soure ode distributed need not inludeanything that is normally distributed (in either soure or binaryform) with the major omponents (ompiler, kernel, and so on) of theoperating system on whih the exeutable runs, unless that omponentitself aompanies the exeutable.



1. THE GPL 273If distribution of exeutable or objet ode is made by offeringaess to opy from a designated plae, then offering equivalentaess to opy the soure ode from the same plae ounts asdistribution of the soure ode, even though third parties are notompelled to opy the soure along with the objet ode.
4. You may not opy, modify, subliense, or distribute the Programexept as expressly provided under this Liense. Any attemptotherwise to opy, modify, subliense or distribute the Program isvoid, and will automatially terminate your rights under this Liense.However, parties who have reeived opies, or rights, from you underthis Liense will not have their lienses terminated so long as suhparties remain in full ompliane.5. You are not required to aept this Liense, sine you have notsigned it. However, nothing else grants you permission to modify ordistribute the Program or its derivative works. These ations areprohibited by law if you do not aept this Liense. Therefore, bymodifying or distributing the Program (or any work based on theProgram), you indiate your aeptane of this Liense to do so, andall its terms and onditions for opying, distributing or modifyingthe Program or works based on it.6. Eah time you redistribute the Program (or any work based on theProgram), the reipient automatially reeives a liense from theoriginal liensor to opy, distribute or modify the Program subjet tothese terms and onditions. You may not impose any furtherrestritions on the reipients' exerise of the rights granted herein.You are not responsible for enforing ompliane by third parties tothis Liense.7. If, as a onsequene of a ourt judgment or allegation of patentinfringement or for any other reason (not limited to patent issues),onditions are imposed on you (whether by ourt order, agreement orotherwise) that ontradit the onditions of this Liense, they do notexuse you from the onditions of this Liense. If you annotdistribute so as to satisfy simultaneously your obligations under thisLiense and any other pertinent obligations, then as a onsequene youmay not distribute the Program at all. For example, if a patentliense would not permit royalty-free redistribution of the Program byall those who reeive opies diretly or indiretly through you, then



1. THE GPL 274the only way you ould satisfy both it and this Liense would be torefrain entirely from distribution of the Program.If any portion of this setion is held invalid or unenforeable underany partiular irumstane, the balane of the setion is intended toapply and the setion as a whole is intended to apply in otherirumstanes.It is not the purpose of this setion to indue you to infringe anypatents or other property right laims or to ontest validity of anysuh laims; this setion has the sole purpose of proteting theintegrity of the free software distribution system, whih isimplemented by publi liense praties. Many people have madegenerous ontributions to the wide range of software distributedthrough that system in reliane on onsistent appliation of thatsystem; it is up to the author/donor to deide if he or she is willingto distribute software through any other system and a liensee annotimpose that hoie.This setion is intended to make thoroughly lear what is believed tobe a onsequene of the rest of this Liense.
8. If the distribution and/or use of the Program is restrited inertain ountries either by patents or by opyrighted interfaes, theoriginal opyright holder who plaes the Program under this Liensemay add an expliit geographial distribution limitation exludingthose ountries, so that distribution is permitted only in or amongountries not thus exluded. In suh ase, this Liense inorporatesthe limitation as if written in the body of this Liense.9. The Free Software Foundation may publish revised and/or new versionsof the General Publi Liense from time to time. Suh new versions willbe similar in spirit to the present version, but may differ in detail toaddress new problems or onerns.Eah version is given a distinguishing version number. If the Programspeifies a version number of this Liense whih applies to it and "anylater version", you have the option of following the terms and onditionseither of that version or of any later version published by the FreeSoftware Foundation. If the Program does not speify a version number ofthis Liense, you may hoose any version ever published by the Free SoftwareFoundation.



1. THE GPL 27510. If you wish to inorporate parts of the Program into other freeprograms whose distribution onditions are different, write to the authorto ask for permission. For software whih is opyrighted by the FreeSoftware Foundation, write to the Free Software Foundation; we sometimesmake exeptions for this. Our deision will be guided by the two goalsof preserving the free status of all derivatives of our free software andof promoting the sharing and reuse of software generally.NO WARRANTY11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTYFOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHENOTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIESPROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSEDOR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OFMERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK ASTO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THEPROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,REPAIR OR CORRECTION.12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITINGWILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/ORREDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISINGOUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITEDTO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BYYOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHERPROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THEPOSSIBILITY OF SUCH DAMAGES.END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New ProgramsIf you develop a new program, and you want it to be of the greatestpossible use to the publi, the best way to ahieve this is to make itfree software whih everyone an redistribute and hange under these terms.To do so, attah the following noties to the program. It is safestto attah them to the start of eah soure file to most effetivelyonvey the exlusion of warranty; and eah file should have at least



1. THE GPL 276the "opyright" line and a pointer to where the full notie is found.<one line to give the program's name and a brief idea of what it does.>Copyright (C) <year> <name of author>This program is free software; you an redistribute it and/or modifyit under the terms of the GNU General Publi Liense as published bythe Free Software Foundation; either version 2 of the Liense, or(at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See theGNU General Publi Liense for more details.You should have reeived a opy of the GNU General Publi Liensealong with this program; if not, write to the Free SoftwareFoundation, In., 59 Temple Plae, Suite 330, Boston, MA 02111-1307 USAAlso add information on how to ontat you by eletroni and paper mail.If the program is interative, make it output a short notie like thiswhen it starts in an interative mode:Gnomovision version 69, Copyright (C) year name of authorGnomovision omes with ABSOLUTELY NO WARRANTY; for details type `show w'.This is free software, and you are welome to redistribute itunder ertain onditions; type `show ' for details.The hypothetial ommands `show w' and `show ' should show the appropriateparts of the General Publi Liense. Of ourse, the ommands you use maybe alled something other than `show w' and `show '; they ould even bemouse-liks or menu items--whatever suits your program.You should also get your employer (if you work as a programmer) or yourshool, if any, to sign a "opyright dislaimer" for the program, ifneessary. Here is a sample; alter the names:Yoyodyne, In., hereby dislaims all opyright interest in the program`Gnomovision' (whih makes passes at ompilers) written by James Haker.<signature of Ty Coon>, 1 April 1989Ty Coon, President of VieThis General Publi Liense does not permit inorporating your program into



2. CREATIVE COMMONS 277proprietary programs. If your program is a subroutine library, you mayonsider it more useful to permit linking proprietary appliations with thelibrary. If this is what you want to do, use the GNU Library GeneralPubli Liense instead of this Liense.2. Creative CommonsLegal CodeAttribution-ShareAlike 2.5CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOTPROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CRE-ATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDESTHIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NOWARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMSLIABILITY FOR DAMAGES RESULTING FROM ITS USE.LienseTHE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OFTHIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THEWORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW.ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSEOR COPYRIGHT LAW IS PROHIBITED.BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU AC-CEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LI-CENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATIONOF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.1. De�nitions1. "Colletive Work" means a work, suh as a periodial issue, anthology or enylo-pedia, in whih the Work in its entirety in unmodi�ed form, along with a number of otherontributions, onstituting separate and independent works in themselves, are assembledinto a olletive whole. A work that onstitutes a Colletive Work will not be onsidereda Derivative Work (as de�ned below) for the purposes of this Liense.2. "Derivative Work" means a work based upon the Work or upon the Work and otherpre-existing works, suh as a translation, musial arrangement, dramatization, �tionaliza-tion, motion piture version, sound reording, art reprodution, abridgment, ondensation,or any other form in whih the Work may be reast, transformed, or adapted, exept thata work that onstitutes a Colletive Work will not be onsidered a Derivative Work forthe purpose of this Liense. For the avoidane of doubt, where the Work is a musialomposition or sound reording, the synhronization of the Work in timed-relation with amoving image ("synhing") will be onsidered a Derivative Work for the purpose of thisLiense.3. "Liensor" means the individual or entity that o�ers the Work under the terms ofthis Liense.4. "Original Author" means the individual or entity who reated the Work.5. "Work" means the opyrightable work of authorship o�ered under the terms of thisLiense.6. "You" means an individual or entity exerising rights under this Liense who hasnot previously violated the terms of this Liense with respet to the Work, or who has
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CHAPTER 25The attiThis holds material that is not really ready to be inorporated into the main body,but that I don't want to lose. Basially, ignore it, unless you'd like to help get it ready forinlusion.
1. Hurdle modelsReturning to the Poisson model, lets look at atual and �tted ount probabilities.Atual relative frequenies are f(y = j) =

∑
i 1(yi = j)/n and �tted frequenies are

f̂(y = j) =
∑n

i=1 fY (j|xi, θ̂)/n We see that for the OBDV measure, there are many moreTable 1. Atual and Poisson �tted frequeniesCount OBDV ERVCount Atual Fitted Atual Fitted0 0.32 0.06 0.86 0.831 0.18 0.15 0.10 0.142 0.11 0.19 0.02 0.023 0.10 0.18 0.004 0.0024 0.052 0.15 0.002 0.00025 0.032 0.10 0 2.4e-5atual zeros than predited. For ERV, there are somewhat more atual zeros than �tted,but the di�erene is not too important.Why might OBDV not �t the zeros well? What if people made the deision to ontatthe dotor for a �rst visit, they are sik, then the dotor deides on whether or not follow-upvisits are needed. This is a prinipal/agent type situation, where the total number of visitsdepends upon the deision of both the patient and the dotor. Sine di�erent parametersmay govern the two deision-makers hoies, we might expet that di�erent parametersgovern the probability of zeros versus the other ounts. Let λp be the parameters of thepatient's demand for visits, and let λd be the paramter of the dotor's �demand� for visits.The patient will initiate visits aording to a disrete hoie model, for example, a logitmodel:
Pr(Y = 0) = fY (0, λp) = 1 − 1/ [1 + exp(−λp)]
Pr(Y > 0) = 1/ [1 + exp(−λp)] ,The above probabilities are used to estimate the binary 0/1 hurdle proess. Then, forthe observations where visits are positive, a trunated Poisson density is estimated. This282



1. HURDLE MODELS 283density is
fY (y, λd|y > 0) =

fY (y, λd)

Pr(y > 0)

=
fY (y, λd)

1 − exp(−λd)sine aording to the Poisson model with the dotor's paramaters,
Pr(y = 0) =

exp(−λd)λ0
d

0!
.Sine the hurdle and trunated omponents of the overall density for Y share no parameters,they may be estimated separately, whih is omputationally more e�ient than estimatingthe overall model. (Reall that the BFGS algorithm, for example, will have to invert theapproximated Hessian. The omputational overhead is of order K2 where K is the numberof parameters to be estimated) . The expetation of Y is

E(Y |x) = Pr(Y > 0|x)E(Y |Y > 0, x)

=

(
1

1 + exp(−λp)

)(
λd

1 − exp(−λd)

)



1. HURDLE MODELS 284Here are hurdle Poisson estimation results for OBDV, obtained from this estimation program**************************************************************************MEPS data, OBDVlogit resultsStrong onvergeneObservations = 500Funtion value -0.58939t-Stats params t(OPG) t(Sand.) t(Hess)onstant -1.5502 -2.5709 -2.5269 -2.5560pub_ins 1.0519 3.0520 3.0027 3.0384priv_ins 0.45867 1.7289 1.6924 1.7166sex 0.63570 3.0873 3.1677 3.1366age 0.018614 2.1547 2.1969 2.1807edu 0.039606 1.0467 0.98710 1.0222in 0.077446 1.7655 2.1672 1.9601Information CriteriaConsistent Akaike639.89Shwartz632.89Hannan-Quinn614.96Akaike 603.39**************************************************************************

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/estimate_hpoisson.ox


1. HURDLE MODELS 285The results for the trunated part:**************************************************************************MEPS data, OBDVtpoisson resultsStrong onvergeneObservations = 500Funtion value -2.7042t-Stats params t(OPG) t(Sand.) t(Hess)onstant 0.54254 7.4291 1.1747 3.2323pub_ins 0.31001 6.5708 1.7573 3.7183priv_ins 0.014382 0.29433 0.10438 0.18112sex 0.19075 10.293 1.1890 3.6942age 0.016683 16.148 3.5262 7.9814edu 0.016286 4.2144 0.56547 1.6353in -0.0079016 -2.3186 -0.35309 -0.96078Information CriteriaConsistent Akaike2754.7Shwartz2747.7Hannan-Quinn2729.8Akaike 2718.2**************************************************************************



1. HURDLE MODELS 286Fitted and atual probabilites (NB-II �ts are provided as well) are:Table 2. Atual and Hurdle Poisson �tted frequeniesCount OBDV ERVCount Atual Fitted HP Fitted NB-II Atual Fitted HP Fitted NB-II0 0.32 0.32 0.34 0.86 0.86 0.861 0.18 0.035 0.16 0.10 0.10 0.102 0.11 0.071 0.11 0.02 0.02 0.023 0.10 0.10 0.08 0.004 0.006 0.0064 0.052 0.11 0.06 0.002 0.002 0.0025 0.032 0.10 0.05 0 0.0005 0.001For the Hurdle Poisson models, the ERV �t is very aurate. The OBDV �t is notso good. Zeros are exat, but 1's and 2's are underestimated, and higher ounts areoverestimated. For the NB-II �ts, performane is at least as good as the hurdle Poissonmodel, and one should reall that many fewer parameters are used. Hurdle version of thenegative binomial model are also widely used.1.1. Finite mixture models. The following are results for a mixture of 2 negative bi-nomial (NB-I) models, for the OBDV data, whih you an repliate using this estimation program

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/estimate_mixnegbin.ox


1. HURDLE MODELS 287**************************************************************************MEPS data, OBDVmixnegbin resultsStrong onvergeneObservations = 500Funtion value -2.2312t-Stats params t(OPG) t(Sand.) t(Hess)onstant 0.64852 1.3851 1.3226 1.4358pub_ins -0.062139 -0.23188 -0.13802 -0.18729priv_ins 0.093396 0.46948 0.33046 0.40854sex 0.39785 2.6121 2.2148 2.4882age 0.015969 2.5173 2.5475 2.7151edu -0.049175 -1.8013 -1.7061 -1.8036in 0.015880 0.58386 0.76782 0.73281ln_alpha 0.69961 2.3456 2.0396 2.4029onstant -3.6130 -1.6126 -1.7365 -1.8411pub_ins 2.3456 1.7527 3.7677 2.6519priv_ins 0.77431 0.73854 1.1366 0.97338sex 0.34886 0.80035 0.74016 0.81892age 0.021425 1.1354 1.3032 1.3387edu 0.22461 2.0922 1.7826 2.1470in 0.019227 0.20453 0.40854 0.36313ln_alpha 2.8419 6.2497 6.8702 7.6182logit_inv_mix 0.85186 1.7096 1.4827 1.7883Information CriteriaConsistent Akaike2353.8Shwartz2336.8Hannan-Quinn2293.3Akaike 2265.2**************************************************************************Delta method for mix parameter st. err.mix se_mix0.70096 0.12043
• The 95% on�dene interval for the mix parameter is perilously lose to 1, whihsuggests that there may really be only one omponent density, rather than amixture. Again, this is not the way to test this - it is merely suggestive.
• Eduation is interesting. For the subpopulation that is �healthy�, i.e., that makesrelatively few visits, eduation seems to have a positive e�et on visits. For the�unhealthy� group, eduation has a negative e�et on visits. The other results aremore mixed. A larger sample ould help larify things.



1. HURDLE MODELS 288The following are results for a 2 omponent onstrained mixture negative binomial modelwhere all the slope parameters in λj = exβj are the same aross the two omponents.The onstants and the overdispersion parameters αj are allowed to di�er for the twoomponents.



2. MODELS FOR TIME SERIES DATA 289**************************************************************************MEPS data, OBDVmixnegbin resultsStrong onvergeneObservations = 500Funtion value -2.2441t-Stats params t(OPG) t(Sand.) t(Hess)onstant -0.34153 -0.94203 -0.91456 -0.97943pub_ins 0.45320 2.6206 2.5088 2.7067priv_ins 0.20663 1.4258 1.3105 1.3895sex 0.37714 3.1948 3.4929 3.5319age 0.015822 3.1212 3.7806 3.7042edu 0.011784 0.65887 0.50362 0.58331in 0.014088 0.69088 0.96831 0.83408ln_alpha 1.1798 4.6140 7.2462 6.4293onst_2 1.2621 0.47525 2.5219 1.5060lnalpha_2 2.7769 1.5539 6.4918 4.2243logit_inv_mix 2.4888 0.60073 3.7224 1.9693Information CriteriaConsistent Akaike2323.5Shwartz2312.5Hannan-Quinn2284.3Akaike 2266.1**************************************************************************Delta method for mix parameter st. err.mix se_mix0.92335 0.047318
• Now the mixture parameter is even loser to 1.
• The slope parameter estimates are pretty lose to what we got with the NB-Imodel. 2. Models for time series dataThis setion an be ignored in its present form. Just left in to form a basis for om-pletion (by someone else ?!) at some point.Hamilton, Time Series Analysis is a good referene for this setion. This is veryinomplete and ontributions would be very welome.Up to now we've onsidered the behavior of the dependent variable yt as a funtionof other variables xt. These variables an of ourse ontain lagged dependent variables,e.g., xt = (wt, yt−1, ..., yt−j). Pure time series methods onsider the behavior of yt as afuntion only of its own lagged values, unonditional on other observable variables. One



2. MODELS FOR TIME SERIES DATA 290an think of this as modeling the behavior of yt after marginalizing out all other variables.While it's not immediately lear why a model that has other explanatory variables shouldmarginalize to a linear in the parameters time series model, most time series work is donewith linear models, though nonlinear time series is also a large and growing �eld. We'llstik with linear time series models.2.1. Basi onepts.Definition 53 (Stohasti proess). A stohasti proess is a sequene of randomvariables, indexed by time:(76) {Yt}∞t=−∞Definition 54 (Time series). A time series is one observation of a stohasti proess,over a spei� interval:(77) {yt}nt=1So a time series is a sample of size n from a stohasti proess. It's important to keepin mind that oneptually, one ould draw another sample, and that the values would bedi�erent.Definition 55 (Autoovariane). The jth autoovariane of a stohasti proess is(78) γjt = E(yt − µt)(yt−j − µt−j)where µt = E (yt) .Definition 56 (Covariane (weak) stationarity). A stohasti proess is ovarianestationary if it has time onstant mean and autoovarianes of all orders:
µt = µ,∀t
γjt = γj ,∀tAs we've seen, this implies that γj = γ−j : the autoovarianes depend only one theinterval between observations, but not the time of the observations.Definition 57 (Strong stationarity). A stohasti proess is strongly stationary if thejoint distribution of an arbitrary olletion of the {Yt} doesn't depend on t.Sine moments are determined by the distribution, strong stationarity⇒weak station-arity.What is the mean of Yt? The time series is one sample from the stohasti proess.One ould think of M repeated samples from the stoh. pro., e.g., {ymt } By a LLN, wewould expet that

lim
M→∞

1

M

M∑

m=1

ytm
p→ E(Yt)The problem is, we have only one sample to work with, sine we an't go bak in timeand ollet another. How an E(Yt) be estimated then? It turns out that ergodiity is theneeded property.Definition 58 (Ergodiity). A stationary stohasti proess is ergodi (for the mean)if the time average onverges to the mean(79) 1

n

n∑

t=1

yt
p→ µ



2. MODELS FOR TIME SERIES DATA 291A su�ient ondition for ergodiity is that the autoovarianes be absolutely summable:
∞∑

j=0

|γj | <∞This implies that the autoovarianes die o�, so that the yt are not so strongly dependentthat they don't satisfy a LLN.Definition 59 (Autoorrelation). The jth autoorrelation, ρj is just the jth autoo-variane divided by the variane:(80) ρj =
γj
γ0Definition 60 (White noise). White noise is just the time series literature term for alassial error. ǫt is white noise if i) E(ǫt) = 0,∀t, ii) V (ǫt) = σ2, ∀t, and iii) ǫt and ǫs areindependent, t 6= s. Gaussian white noise just adds a normality assumption.2.2. ARMA models. With these onepts, we an disuss ARMA models. Theseare losely related to the AR and MA error proesses that we've already disussed. Themain di�erene is that the lhs variable is observed diretly now.MA(q) proesses. A qth order moving average (MA) proess is

yt = µ+ εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−qwhere εt is white noise. The variane is
γ0 = E (yt − µ)2

= E (εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q)
2

= σ2
(
1 + θ2

1 + θ2
2 + · · · + θ2

q

)Similarly, the autoovarianes are
γj = θj + θj+1θ1 + θj+2θ2 + · · · + θqθq−j, j ≤ q

= 0, j > qTherefore an MA(q) proess is neessarily ovariane stationary and ergodi, as long as σ2and all of the θj are �nite.AR(p) proesses. An AR(p) proess an be represented as
yt = c+ φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εtThe dynami behavior of an AR(p) proess an be studied by writing this pth order di�er-ene equation as a vetor �rst order di�erene equation:




yt

yt−1...
yt−p+1




=




c

0...
0







φ1 φ2 · · · φp

1 0 0 0

0 1 0
. . . 0... . . . . . . . . . 0 · · ·

0 · · · 0 1 0







yt−1

yt−2...
yt−p




+




εt

0...
0


or

Yt = C + FYt−1 +Et



2. MODELS FOR TIME SERIES DATA 292With this, we an reursively work forward in time:
Yt+1 = C + FYt + Et+1

= C + F (C + FYt−1 + Et) + Et+1

= C + FC + F 2Yt−1 + FEt + Et+1and
Yt+2 = C + FYt+1 + Et+2

= C + F
(
C + FC + F 2Yt−1 + FEt + Et+1

)
+ Et+2

= C + FC + F 2C + F 3Yt−1 + F 2Et + FEt+1 + Et+2or in general
Yt+j = C + FC + · · · + F jC + F j+1Yt−1 + F jEt + F j−1Et+1 + · · · + FEt+j−1 + Et+jConsider the impat of a shok in period t on yt+j . This is simply

∂Yt+j
∂E′

t (1,1)

= F j(1,1)If the system is to be stationary, then as we move forward in time this impat must die o�.Otherwise a shok auses a permanent hange in the mean of yt. Therefore, stationarityrequires that
lim
j→∞

F j(1,1) = 0

• Save this result, we'll need it in a minute.
Consider the eigenvalues of the matrix F. These are the for λ suh that

|F − λIP | = 0The determinant here an be expressed as a polynomial. for example, for p = 1, the matrix
F is simply

F = φ1so
|φ1 − λ| = 0an be written as
φ1 − λ = 0When p = 2, the matrix F is

F =

[
φ1 φ2

1 0

]so
F − λIP =

[
φ1 − λ φ2

1 −λ

]and
|F − λIP | = λ2 − λφ1 − φ2So the eigenvalues are the roots of the polynomial

λ2 − λφ1 − φ2



2. MODELS FOR TIME SERIES DATA 293whih an be found using the quadrati equation. This generalizes. For a pth order ARproess, the eigenvalues are the roots of
λp − λp−1φ1 − λp−2φ2 − · · · − λφp−1 − φp = 0Supposing that all of the roots of this polynomial are distint, then the matrix F an befatored as

F = TΛT−1where T is the matrix whih has as its olumns the eigenvetors of F, and Λ is a diagonalmatrix with the eigenvalues on the main diagonal. Using this deomposition, we an write
F j =

(
TΛT−1

) (
TΛT−1

)
· · ·
(
TΛT−1

)where TΛT−1 is repeated j times. This gives
F j = TΛjT−1and

Λj =




λj1 0 0

0 λj2 . . .
0 λjp


Supposing that the λi i = 1, 2, ..., p are all real valued, it is lear that

lim
j→∞

F j(1,1) = 0requires that
|λi| < 1, i = 1, 2, ..., pe.g., the eigenvalues must be less than one in absolute value.

• It may be the ase that some eigenvalues are omplex-valued. The previous resultgeneralizes to the requirement that the eigenvalues be less than one in modulus,where the modulus of a omplex number a+ bi is
mod(a+ bi) =

√
a2 + b2This leads to the famous statement that �stationarity requires the roots of thedeterminantal polynomial to lie inside the omplex unit irle.� draw piturehere.

• When there are roots on the unit irle (unit roots) or outside the unit irle, weleave the world of stationary proesses.
• Dynami multipliers: ∂yt+j/∂εt = F j(1,1) is a dynami multiplier or an impulse-response funtion. Real eigenvalues lead to steady movements, whereas omlpexeigenvalue lead to oillatory behavior. Of ourse, when there are multiple eigen-values the overall e�et an be a mixture. pituresInvertibility of AR proessTo begin with, de�ne the lag operator L

Lyt = yt−1
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L2yt = L(Lyt)

= Lyt−1

= yt−2or
(1 − L)(1 + L)yt = 1 − Lyt + Lyt − L2yt

= 1 − yt−2A mean-zero AR(p) proess an be written as
yt − φ1yt−1 − φ2yt−2 − · · · − φpyt−p = εtor
yt(1 − φ1L− φ2L

2 − · · · − φpL
p) = εtFator this polynomial as

1 − φ1L− φ2L
2 − · · · − φpL

p = (1 − λ1L)(1 − λ2L) · · · (1 − λpL)For the moment, just assume that the λi are oe�ients to be determined. Sine L isde�ned to operate as an algebrai quantitiy, determination of the λi is the same as deter-mination of the λi suh that the following two expressions are the same for all z :

1 − φ1z − φ2z
2 − · · · − φpz

p = (1 − λ1z)(1 − λ2z) · · · (1 − λpz)Multiply both sides by z−p
z−p − φ1z

1−p − φ2z
2−p − · · ·φp−1z

−1 − φp = (z−1 − λ1)(z
−1 − λ2) · · · (z−1 − λp)and now de�ne λ = z−1 so we get

λp − φ1λ
p−1 − φ2λ

p−2 − · · · − φp−1λ− φp = (λ− λ1)(λ− λ2) · · · (λ− λp)The LHS is preisely the determinantal polynomial that gives the eigenvalues of F. There-fore, the λi that are the oe�ients of the fatorization are simply the eigenvalues of thematrix F.Now onsider a di�erent stationary proess
(1 − φL)yt = εt

• Stationarity, as above, implies that |φ| < 1.Multiply both sides by 1 + φL+ φ2L2 + ...+ φjLj to get
(
1 + φL+ φ2L2 + ...+ φjLj

)
(1 − φL)yt =

(
1 + φL+ φ2L2 + ...+ φjLj

)
εtor, multiplying the polynomials on th LHS, we get

(
1 + φL+ φ2L2 + ...+ φjLj − φL− φ2L2 − ...− φjLj − φj+1Lj+1

)
yt

==
(
1 + φL+ φ2L2 + ...+ φjLj

)
εtand with anellations we have

(
1 − φj+1Lj+1

)
yt =

(
1 + φL+ φ2L2 + ...+ φjLj

)
εtso

yt = φj+1Lj+1yt +
(
1 + φL+ φ2L2 + ...+ φjLj

)
εt
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yt ∼=

(
1 + φL+ φ2L2 + ...+ φjLj

)
εtand the approximation beomes better and better as j inreases. However, we started with

(1 − φL)yt = εtSubstituting this into the above equation we have
yt ∼=

(
1 + φL+ φ2L2 + ...+ φjLj

)
(1 − φL)ytso (

1 + φL+ φ2L2 + ...+ φjLj
)
(1 − φL) ∼= 1and the approximation beomes arbitrarily good as j inreases arbitrarily. Therefore, for

|φ| < 1, de�ne
(1 − φL)−1 =

∞∑

j=0

φjLjReall that our mean zero AR(p) proess
yt(1 − φ1L− φ2L

2 − · · · − φpL
p) = εtan be written using the fatorization

yt(1 − λ1L)(1 − λ2L) · · · (1 − λpL) = εtwhere the λ are the eigenvalues of F, and given stationarity, all the |λi| < 1. Therefore, wean invert eah �rst order polynomial on the LHS to get
yt =




∞∑

j=0

λj1L
j






∞∑

j=0

λj2L
j


 · · ·




∞∑

j=0

λjpL
j


 εtThe RHS is a produt of in�nite-order polynomials in L, whih an be represented as

yt = (1 + ψ1L+ ψ2L
2 + · · · )εtwhere the ψi are real-valued and absolutely summable.

• The ψi are formed of produts of powers of the λi, whih are in turn funtions ofthe φi.
• The ψi are real-valued beause any omplex-valued λi always our in onjugatepairs. This means that if a + bi is an eigenvalue of F, then so is a − bi. Inmultipliation

(a+ bi) (a− bi) = a2 − abi+ abi− b2i2

= a2 + b2whih is real-valued.
• This shows that an AR(p) proess is representable as an in�nite-order MA(q)proess.
• Reall before that by reursive substitution, an AR(p) proess an be written as

Yt+j = C + FC + · · · + F jC + F j+1Yt−1 + F jEt + F j−1Et+1 + · · · + FEt+j−1 + Et+j
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Yt = F j+1Yt−j−1 + F jEt−j + F j−1Et−j+1 + · · · + FEt−1 + EtAs j → ∞, the lagged Y on the RHS drops out. The Et−s are vetors of zerosexept for their �rst element, so we see that the �rst equation here, in the limit,is just

yt =

∞∑

j=0

(
F j
)
1,1
εt−jwhih makes expliit the relationship between the ψi and the φi (and the λi aswell, realling the previous fatorization of F j).Moments of AR(p) proess. The AR(p) proess is

yt = c+ φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εtAssuming stationarity, E(yt) = µ,∀t, so
µ = c+ φ1µ+ φ2µ+ ...+ φpµso
µ =

c

1 − φ1 − φ2 − ...− φpand
c = µ− φ1µ− ...− φpµso

yt − µ = µ− φ1µ− ...− φpµ+ φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt − µ

= φ1(yt−1 − µ) + φ2(yt−2 − µ) + ...+ φp(yt−p − µ) + εtWith this, the seond moments are easy to �nd: The variane is
γ0 = φ1γ1 + φ2γ2 + ...+ φpγp + σ2The autoovarianes of orders j ≥ 1 follow the rule

γj = E [(yt − µ) (yt−j − µ))]

= E [(φ1(yt−1 − µ) + φ2(yt−2 − µ) + ...+ φp(yt−p − µ) + εt) (yt−j − µ)]

= φ1γj−1 + φ2γj−2 + ...+ φpγj−pUsing the fat that γ−j = γj , one an take the p + 1 equations for j = 0, 1, ..., p, whihhave p+ 1 unknowns (σ2, γ0, γ1, ..., γp) and solve for the unknowns. With these, the γj for
j > p an be solved for reursively.Invertibility of MA(q) proess. An MA(q) an be written as

yt − µ = (1 + θ1L+ ...+ θqL
q)εtAs before, the polynomial on the RHS an be fatored as

(1 + θ1L+ ...+ θqL
q) = (1 − η1L)(1 − η2L)...(1 − ηqL)and eah of the (1 − ηiL) an be inverted as long as |ηi| < 1. If this is the ase, then wean write

(1 + θ1L+ ...+ θqL
q)−1(yt − µ) = εt
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(1 + θ1L+ ...+ θqL

q)−1will be an in�nite-order polynomial in L, so we get
∞∑

j=0

−δjLj(yt−j − µ) = εtwith δ0 = −1, or
(yt − µ) − δ1(yt−1 − µ) − δ2(yt−2 − µ) + ... = εtor

yt = c+ δ1yt−1 + δ2yt−2 + ...+ εtwhere
c = µ+ δ1µ+ δ2µ+ ...So we see that an MA(q) has an in�nite AR representation, as long as the |ηi| < 1,

i = 1, 2, ..., q.

• It turns out that one an always manipulate the parameters of an MA(q) proessto �nd an invertible representation. For example, the two MA(1) proesses
yt − µ = (1 − θL)εtand
y∗t − µ = (1 − θ−1L)ε∗thave exatly the same moments if

σ2
ε∗ = σ2

εθ
2For example, we've seen that

γ0 = σ2(1 + θ2).Given the above relationships amongst the parameters,
γ∗0 = σ2

εθ
2(1 + θ−2) = σ2(1 + θ2)so the varianes are the same. It turns out that all the autoovarianes will be thesame, as is easily heked. This means that the two MA proesses are observation-ally equivalent. As before, it's impossible to distinguish between observationallyequivalent proesses on the basis of data.

• For a given MA(q) proess, it's always possible to manipulate the parameters to�nd an invertible representation (whih is unique).
• It's important to �nd an invertible representation, sine it's the only representa-tion that allows one to represent εt as a funtion of past y′s. The other represen-tations express
• Why is invertibility important? The most important reason is that it provides ajusti�ation for the use of parsimonious models. Sine an AR(1) proess has anMA(∞) representation, one an reverse the argument and note that at least someMA(∞) proesses have an AR(1) representation. At the time of estimation, it's alot easier to estimate the single AR(1) oe�ient rather than the in�nite numberof oe�ients assoiated with the MA representation.
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• This is the reason that ARMA models are popular. Combining low-order AR andMA models an usually o�er a satisfatory representation of univariate time seriesdata with a reasonable number of parameters.
• Stationarity and invertibility of ARMA models is similar to what we've seen - wewon't go into the details. Likewise, alulating moments is similar.Exerise 61. Calulate the autoovarianes of an ARMA(1,1) model: (1 + φL)yt =

c+ (1 + θL)ǫt
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