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Abstract

We analyze the incentives for cooperation of three players differing in their efficiency
of effort in a contest game. We concentrate on the non-cooperative bargaining foun-
dation of coalition formation, and therefore, we adopt a two-stage model. In the first
stage, individuals form coalitions following a bargaining protocol similar to the one
proposed by Gul [7]. Afterwards, coalitions play the contest game of Esteban and
Ray [5] within the resulting coalition structure of the first stage. We find that the
grand coalition forms whenever the distribution of the bargaining power in the coali-
tion formation game is equal to the distribution of the relative efficiency of effort.
Finally, we use the case of equal bargaining power for all individuals to show that

other types of coalition structures may be observed as well.
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1 Introduction

A contest is a socio-economic environment in which players spend valuable resources in
order to raise their probabilities of winning a fixed prize. In this paper, we analyze the
incentives for cooperation of three players in the presence of the strong non-cooperative
threat of a contest. In particular, we consider players who differ in their efficiency of
effort or represent exogenously given groups of different size. Our main result states that
a society-wide agreement may not be reached if the discrepancy between the distribution
of the exogenously given group sizes and the distribution of the relative bargaining power
is too high.

Economists study contest games since the seminal work on rent-seeking by Tullock
[11]. In the rent-seeking literature the individual expenditure is usually interpreted as
lobbying effort in terms of time or money and the prize is taken to be a monopoly right
or a license. But “lobbying” is far from being the only example, because contest games
have been applied to patent races by Peréz-Castrillo and Verdier [8], to market share
competition by Schmalensee [9], and to financial institutions and money by Shapley and
Shubik [10]. One of the latest developments is due to Esteban and Ray [5] who concentrate
on the relationship between the distribution of society into interest groups and the level of
conflict defined as the social loss induced by the non-productive efforts.

Our contribution is to consider coalitions among players in a contest game. This exten-
sion is of special interest, because there is empirical evidence for the formation of coalitions

in contest environments. Consider for instance a country in transition to democracy which



is split into ethnic or religious groups. Often, all groups know that socially it would be
best to agree on a new constitution and divide the political power, but finally, negotiation
fails and a conflict between the groups emerges. A possible explanation is that if one group
has a high bargaining power but is relatively small in size, then the other groups prefer
to stop negotiations and fight for their political influence instead of signing an agreement
in favor of the small group. The next example is an application to patent races. We ob-
serve that firms form joint ventures in research and development in order to share their
knowledge and become more efficient. Said differently, firms can raise through cooperation
the probability of making the next invention which gives them access to a monopoly for
at least some time. Finally, remember the latest Soccer World Cup in Japan and South
Korea which is just one example of administrations bidding jointly for the concession of a
big cultural or sporting event.

Since we want to be explicit about the non-cooperative bargaining foundations of coali-
tion formation, we use the common approach of dividing the model into two stages. In the
first stage, players form coalitions and negotiate about the sharing rules of the cooperative
payoffs. We use a random protocol which is a modified version of the partnership game by
Gul [7]. In the second stage, coalitions play a contest game similar to the one proposed
by Esteban and Ray [5] within the resulting coalition structure of the first stage. Finally,
coalitions divide their obtained payoffs according to the sharing rules negotiated in the
coalition formation game.

We solve the two stages by backward induction and determine at first how much ex-

pected utility each coalition can assure itself in every possible coalition structure. Our



natural prediction for this value is the unique Nash equilibrium payoff of the contest game
played within the considered coalition structure. We prove in Proposition 1 and specially
in Corollary 1 that the expected utility of a player who faces two single players is different
from the expected utility he would get if the other two players have formed a coalition.
Because of this externality the contest game is a partition function game. In the next
step, we solve the coalition formation game for the equilibrium coalition structures and the
equilibrium expected utilities using stationary strategies. We show in Proposition 2 that
if the relative efficiency of effort is distributed in the same way as the relative bargaining
power, then the grand coalition forms. Moreover, if players are sufficiently patient, then
every player receives in equilibrium his relative efficiency of effort. We prove in Proposition
3 that the grand coalition is no longer the unique equilibrium coalition structure if every
player has the same bargaining power. Therefore, it is possible to observe a strictly positive
level of conflict in equilibrium.

Few papers have analyzed the question of coalition formation in contest games. Baik
and Lee [1] and [2] study a rent-seeking model with a linear cost function. They use the
open membership game as coalition formation game and obtain that coalitions with about
fifty percent of the individuals are formed. Esteban and Sékovics [6] consider a model of
repeated conflict and bilateral coalition formation. For the case of three individuals their
results predict that one coalition of size two forms. Bloch et al. [4] study the endogenous
formation of coalitions in a simplified version of the contest game of Esteban and Ray [5]
with a quadratic cost function. Their main result states that the grand coalition is the
unique equilibrium coalition structure of the size announcement game by Bloch [3]. Since a
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finite number of individuals are assumed to be identical in their model, two individuals who
belong to the same coalition receive the same share of the coalitional payoff. Therefore,
the prize is divided equally among all individuals.

The remainder of the paper is structured as follows: In the next Section, we intro-
duce the contest game and derive the partition function game. In Section 3 we solve the

bargaining model, and in Section 4, we discuss some of our modelling choices.

2 Contest as a Partition Function Game

Consider three individuals who fight over a prize with a value normalized to 1. Let N =
{1,2, 3} be the set of individuals. A coalition C is a nonempty subset of N. A coalition
structure 7 is a partition of N. The set of all coalition structures is denoted by II. Let
V (C,7) be the worth of coalition C in 7.

We start by describing the expected utility maximization problem of the generic indi-
vidual in the coalition structure 7 = {1|2|3}. Every individual ¢ makes at the same time
and independently of the others a non-productive effort r; € R,. The efficiency of effort
of individual ¢ is common knowledge and denoted by n; > 0. We order the individuals
by assuming that n; > ny > n3 and normalize the parameter vector n = (nq, ng,n3) to
2?21 n; = 1. We denote the three-dimensional unit simplex by A2 and define the total
level of conflict as R = 23:1 n;rj. The probability that individual 7 wins the contest
is a function p; : Ry x A* — [0,1] satisfying the condition Z?lej (r;n) = 1 for all

(r;n) € R, x A3, We consider throughout the probability measure of the proportional



form
n;r;
pi(rin) = ——,
Zj:l Ty
and use the convention that if r; = 0 for all j, then p; (r;n) = n;. Moreover, let the cost of

effort be equal to the level of effort.! Therefore, the expected utility maximization problem

for individual ¢ given r_; is to choose r; € R, in order to

max LR ri |- (1)

n>0 \ 37 myr;
This part of our model is similar to a special case of the contest model proposed by
Esteban and Ray [5].> In their model, the cost of effort is a convex function, whereas we
consider the linear cost function suggested by Tullock [11]. The difference between our
model and the latter one stems from the fact that Tullock’s analysis is restricted to the
case of identical individuals.
Consider now the coalition structure = = {ij |k }. We assume that whenever a coalition
forms, then all members of the coalition merge.®> Therefore, the coalition {7,;} has the

following expected utility maximization problem: given 7, choose 7;; € R in order to

max (—( (nitnj)rij ri]) ) (2)

ni+n;)rij+ngr
Tij>0 i+ ;) zg+ kTE

'We make this assumption for purely technical reasons, because if we had considered a convex cost
function, then the calculation of the Nash equilibrium in the coalition structure m = {1|2]3} would have
become far too complicated. The disadvantage of using a linear cost function is that it implies the existence

of corner equilibria.
2Qur interpretation of the parameter vector n is not the same as the one of Esteban and Ray [5],

because they regard n; as the relative size of the exogenously given group i. We return to this point in

the last Section of the paper.
3Tt would also be reasonable to define the objective function of the coalition {i,j} by assuming that

individuals do not merge, an argument which has been brought forward by Bloch et al. [4]. In the last

Section of our paper we provide evidence that our main results are invariant to our modeling choice.



Accordingly, the expected utility maximization problem for individual k is: given 7y;,

choose 7, € Ry in order to

NeTk 3
max TN T .
rkgo ((ni+nj)7"ij+nk"'k Tk) ()

We use the convention that if 7, = r;; = 0, then p;; (r;;, 7%; n) = n;+n; and py, (rij, 76;n) =
ng.t

So far we have described two of the three possible types of coalition structures. It
is optimal for the grand coalition to put zero effort, because it receives the private good
anyway. Therefore, it has a worth of one.

Suppose that the coalition structure 7 is the outcome of the coalition formation game.
Since the contest game is a simultaneous move game, we take the Nash equilibrium of the
contest game played within 7 as the natural prediction of the effort vector. Proposition 1

characterizes the unique Nash equilibrium for every non-trivial coalition structure.

Proposition 1 (a) The unique Nash equilibrium r = (r5,r3,75) in the coalition structure
. . * 2n;ng(n;n;+n;ng—n;n -,
m = {1|2|3} is as follows: (a.1) if ng > 0.25, then rf = J(nfn(j+7;nk+:jnk;2 v for all i; (a.2)

if ng <0.25, thenry =0 and rf =713 = % (b) The unique Nash equilibrium (r};, ;)

(n1+n2 ijo

in the coalition structure ™ = {ij |k} is r}; = rj = (n; + ny;) ng.

Proof: See the Appendix. =
We derive the partition function game V' from Proposition 1 by plugging the equilibrium

efforts for every type of coalition structure into the corresponding objective functions.

4We are aware that the probabilities p;; (ri;,7k;n) and py (rij,7k;n) have not been defined formerly,
but nonetheless, this failure should not cause any kind of misunderstanding.



Corollary 1 The partition function game V is equal to

V(123,{123}) =1
V(ij, {ij |k}) = (ni+ny)?
V(k,{ijlk}) =n;

(1 — 2"—"])2 15 > 0.25
ninj+n;ng+n;ing iy ng )
Vil = (52) if ng < 0.25 and k # 3
0 if ng < 0.25 and k = 3.

3 The Coalition Formation Game

Since V summarizes all necessary information of the contest game, we are ready to ad-
dress the question of coalition formation. Our coalition formation game is inspired by the
partnership game of Gul [7]. The game is parameterized by a common discount factor
0 < ¢ < 1 and an exogenously given probability vector q = (g1, g2, g3) which represents the

relative bargaining power of the players.

The Bilateral Bargaining Game

Period 0:

Players decide sequentially and publicly whether to stay or exit the game according to the
ordering 1,2,3.> Let Sy be the set of players that decide to stay and denote by s, the
cardinality of Sy. If sp < 1, then the contest game is played within the coalition structure
{1]2|3}. If sy > 2, then a randomly selected bilateral meeting among the players in S,

takes place. We assume that every possible meeting occurs with equal probability. Suppose

5A change in the ordering of the players does not have any influence on Proposition 2. But, a different
ordering requires slight modifications in Proposition 3. Nonetheless, the general insights do not change.



that ¢+ and j meet each other. Player 7 is chosen with probability ¢; ; = qiffq

offer a; - € R,y which can be accepted or rejected by j. The offer describes j’s share of

the payoff V (ij, {ij|k}). If j rejects z? ., then we set 7° = {1]2|3} and pass to the next

INE

period. If j accepts z? ., then the coalition {7, j} forms and the actual coalition structure

Z]’
becomes 70 = {ij|k}. If kK & Sy, then the process of coalition formation stops and the

contest game is played within the coalition structure 7% If k € Sy, then we pass to the

next period.

Period t:
The game arrives at period ¢ if (a) #*~' = {123} and s;_1 > 2, or if (b) n** = {ij |k}
and s; ; = 3. Players in S; ; decide sequentially and publicly according to the ordering
1,2, 3 restricted to S;_; whether to stay or to leave the game. Let S; be the set of players
that decide to stay and denote by s; the cardinality of S;.

Suppose that 7=t = {1]2|3}. If s; < 1, then the contest game is played within the

t—1

coalition structure m If s; > 2, then a randomly selected bilateral meeting among

players in S, takes place. Every possible meeting occurs with equal probability. Suppose

that ¢+ and j meet each other. Player 7 is chosen with probability ¢; ; = q,ffq,
i T

offer of :v ; € Ry which can be accepted or rejected by j. If j rejects x! ., then we set

INE

t t—

mt = 7'~1 and pass to the next period. If j accepts ! ., then the coalition {j, k} forms and

3 ]’
the actual coalition structure becomes ¢ = {ij |k }. If k ¢ S;, then the process of coalition

formation stops and the contest game is played within the coalition structure 7t. If k € S;,

then we pass to the next period.
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Suppose that 71 = {ij|k}. If s; < 3, then the contest game is played within the

coalition structure 7w'~!. If s; = 3, then player 4, who represents the coalition {4, j} and is
the first in the ordering between 7 and j generated by 1,2,3, and player £ meet. Player 7 is
chosen with probability ¢;;x = ¢; + ¢; to make an offer xfjk € R, which can be accepted

or rejected by k. The offer describes k’s share of the payoff V' (123,{123}). If k rejects

t

ij %> then the grand

x}; ., then we set 7* = 7~ and pass to the next period. If k accepts =

coalition forms and payoffs are assigned accordingly.

Figure 1 below represents the Bilateral Bargaining game for ¢ = 0 and ¢t = 1.

uential opting out — 1 and 2opt out =0
Seq pting —

All other nodes All players stay {12‘3} forms

{12}
% 95
G, *0; 9,0
R _3_A
Follow the protocol of t=0 {1,3} forms .
t=

2 opts out
T

- Sequential opting out

All other nodes All players stay {1 32} forms
1
{{13}.2
G+ 0y q
1 2
R _2__A
Follow the protocol of t=1 {1,2,3} forms

Figure 1: The Bilateral Bargaining Game
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The main difference between our coalition formation game and the partnership game
is that we allow players to exit the bargaining process. This is the reason why in the
partnership game the grand coalition forms for any superadditive game in characteristic
function form, whereas we may observe in equilibrium other coalition structures as well.
The other differences are of minor importance, e.g. the partnership game is defined in
continuous time and analyzed for the vector q = (3, 3, 3).

We would like to characterize the equilibrium coalition structures and utilities for any
arbitrary q. Unfortunately, our parameter space would be enlarged too much, because our
results have to rely partly on a graphical analysis even for a fixed vector q. Therefore, we
analyze the bilateral bargaining game for the probability vectors (n;, ng,n3) and (%, %, %)
The first probability vector is focal, because it reflects symmetry between bargaining power

and efficiency of effort, whereas the second probability vector is the one used by Gul [7].

Proposition 2 Suppose that q = n. For all § < 1, the bilateral bargaining game has an
unique stationary subgame perfect equilibrium outcome. Let U; (6) be the expected utility
of player i in the equilibrium corresponding to 6. Then lims 1 U; (6) = n;. Moreover, the

grand coalition s the unique equilibrium coalition structure.
Proof: See the Appendix. =

Proposition 2 states that if q = n, then no individual opts out in equilibrium. But this
result does not hold any longer for different probability vectors q. In particular, this is
the case for q = (%, %, %) Since the calculations for characterizing the stationary subgame

perfect equilibrium outcome of the corresponding bilateral bargaining game become much
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longer, we refer to the author’s homepage for a complete proof of the next Proposition.®

Here we provide a graphical overview of its statement.

Proposition 3 Suppose that q = (%, %, %) The grand coalition is an equilibrium coalition

structure (a) with probability 1 if and only if ny < 0.578 and (a.1) n3 > 0.25, or (a.2)
2
0.184 < n3 < 0.25 and L(ny + ng)? > ( ny ) , or (a.3) 0.184 < ny < 0.25 and 1 >

— ni1+n2

2
(L> ; (b) with probability 2 if and only if (b.1) ny > 0.578 and ny > 0.184, or (b.2)

ni+n2

2
ny < 0.578, ny > 0.184, n3 < 0.184 and % + %(n1+n2)2 — in2 > ( B ) ; (c) with

9 ni+n2
probability % if and only if ny > 0.578, ny > 0.184, ng < 0.184 and (c.1) é— %n% — %nlnz +
2
snd+ snong — 2n? > 0, or (c.2) £(ny+n3)? > (me) ; (d) with probability 0 in all other
cases.

In Figure 2, the set of points (ni,ng, n3) fulfilling the constraints n; > ny > n3 and
ny + ng + n3 = 1 are the ones lying within the triangle indicated by the thicker lines.
The grand coalition forms for sure for all combinations of points (n1, ns, n3) lying in non-
shaded area of the triangle. The lightly grey shaded area within the triangle corresponds
to the set of points (ny, ng, n3) for which the grand coalition forms with probability % The
grand coalition forms with probability % for the set of points (nq, ny, n3) lying in the darkly
grey shaded area within the triangle. Finally, the black shaded area within the triangle

corresponds to set of points (n1,n9,n3) for which the grand coalition does not form.”

6The current homepage is http://idea.uab.es/~mvorsatz/.
"Proposition 3 is silent on the question which coalition structure may be observed when the grand

coalition does not form. From the proof of Proposition 3 it becomes clear that in some parts of the
black shaded area the coalition structure = = {ij |k } forms, whereas in other parts the coalition structure
m = {1|2|3} is the unique equilibrium coalition structure. Hence, any type of coalition structure may be
sustained in equilibrium.
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Figure 2: Equilibrium Coalition Structures

4 Discussion

It is difficult to generalize our findings to the case of n > 3 players, because we cannot write
the worth of a coalition in a coalition structure as a function of the size of coalitions. In the
literature this special function is termed “valuation”. In order to a valuation function, one
has to concentrate on the case of identical individuals as it has been done by Bloch et al.
[4]. This is the main reason why we restrict our analysis to the case of three individuals.
We turn next to the interpretation of the parameter vector n. So far we have considered
a model with three individuals who differ in the efficiency of effort. Esteban and Ray
[5] assume that the prize is an excludable public good and define the parameter n; as
the relative size of the exogenously given group ¢. Following their assumption that all
individuals who belong to the same group ¢ are enforced by a binding agreement to make
the same level of effort r;, we can interpret equation (1) as the expected utility maximization

problem of the representative individual of group i. Accordingly, if two groups ¢ and j form
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a coalition, then the relative group size of coalition {7, j} becomes n; +n;. Hence, equation
(2) states the expected utility maximization problem of the representative individual of
coalition {i,j}.

Finally, we want to introduce a different objective function for coalition {i,j}. Bloch
et al. [4] analyze a model with a finite number of homogeneous individuals. In their
model individual 7 and j do not merge after the formation of coalition {7, j} and decide
cooperatively on the optimal effort levels. The new expected utility maximization problem

of coalition {3, j} is to take 7, as given and to choose r; and r; in order to

max (M_”_TJ) , (4)

74,7520 NiTi+N;Ti +NET
Similarly, the new expected utility maximization problem for individual & is to take r; and

r; as given and to choose r; in order to

max (—”’“’"’“ —rk) . (5)

r5>0 niTi+n;ri+ngTy
One sees that if n; > n;, then r; = 0, a result which can be interpreted as a buy-out of
individual j by individual 7. Making all the necessary calculations we establish that the

corresponding values of the partition function game become

V (i (i k) = (prestesnd ) and V(b (i ) = (mpigr) 0 (©)
We omit a formal proof of showing that Proposition 2 does not change due to the new
values. The key point is to check whether a player wants to opt out of the coalition
formation game after the formation of coalition {i,7}. All players stay in the game if
and only if n; +n; > (%)2 and ngp > (WM)Q We rewrite the first

14



weak inequality as (1 —m) (1 —n;)° > (1 —n; —ng)° and reduce it to n; +n; > n3.
Since n; > n3, the weak inequality holds. We rewrite the second inequality as n; >

ng (1 — ng — 2n;) = ng (n; — n;). Since n; > n; by assumption, the weak inequality holds

as well.

References

[1] K.H. Baik and S. Lee, Collective Rent-Seeking with Endogeneous Group Sizes, Euro-

pean Journal of Political Economy 13 (1997), 113-126.

2]

, Strategic Groups and Rent Dissipation, Economic Inquiry 39 (2001), 672-684.

[3] F. Bloch, Sequential Formation of Coalitions in Games with Externalities and Fized

Payoff Division, Games and Economic Behavior 14 (1996), 90-123.

[4] F. Bloch, S. Sdnchez-Pagés, and R. Soubeyran, When does Universal Peace Prevail?
Secession and Group Formation in Rent Seeking Contests and Policy Conflicts, Un-

published manuscript (2002).

[5] J. Esteban and D. Ray, Conflict and Distribution, Journal of Economic Theory 87

(1999), 379-415.

[6] J. Esteban and J. Sdkovics, Olson vs. Coase: Coalitional Worth in Conflict, Unpub-

lished manuscript (2002).

[7] F. Gul, Bargaining Foundations of the Shapley Value, Econometrica 57 (1989), 81-95.

15



[8] D. Pérez-Castrillo and T. Verdier, La structure industrielle dans une course au brevet

avec cotts fizes et coits variables, Revue Economique 42 (1991), 1111-1140.

[9] R. Schmalensee, A Model of Promotional Competetition in Oligopoly, Review of Eco-

nomic Studies 43 (1976), 71-76.

[10] L. Shapley and M. Shubik, Trade Using one Commodity as a Means of Payment,

Journal of Political Economy 85 (1977), 937-967.

[11] G. Tullock, The Welfare Costs of Tariffs, Monopolies and Theft, Western Economic

Journal 5 (1967), 224-232.

Appendix

Proof of Proposition 1: (a) Consider the coalition structure = = {1|2|3}. We start by
showing that at most one individual makes zero effort in equilibrium. Suppose that r* = 0.
By assumption the expected utility of individual ¢ equals n;. But if he made an effort of
¢ > 0, with € small, then his final utility would be 1 — ¢ > n,. This is a contradiction to
r* = 0 being an equilibrium. Suppose next that r; = r; = 0. Then individual ¢ wants to
make the smallest strictly positive effort. Therefore, he does not have a best response and
we conclude that there is no equilibrium with r; = rg = 0.

Consider now the maximization problem (1). From the first order condition we obtain

2
niR—njr;
R2

(B_mn)—1ep=1-2 ™)

~1=0& i £

|8
=

Since the level of conflict in equilibrium is implicitly given by the equation 2?21 pi =1,
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the equation Zle (1 — %) = 1 must be satisfied. Straightforward calculus yields

R = 2n1n2n3 . 2
- —
NniNg + Ning + nong m

where m = Mfetmnstnens jq the harmonic mean of n. Plugging R* into the last equation
ninansg

of (7) yields p; = %% From rewriting the first equation of (7) in terms of r; we

deduce that

«  _ miR—(R*)? _ na2ngngng(ningtningAngng)—4nining  oning(ninj4ning—ning) (8)
ny n?(ninj+n¢nk+njnk)2 (nmj—knmk—knjnk)z

Hence, r; is positive if and only if n;n;+n;n, —n;n, > 0. The condition for individual 1 and
2is ning +n3 (n; — ng) > 0 and nang + ny (ng — n3) > 0, respectively. Since n; > ny > ng,
both conditions are satisfied. Finally, consider the corresponding inequality for individual

3 which can be stated as ng > 22 Since the weak inequality i(h +t3) > t1ty holds

ni+nz

for any t1,t, € [0,1], we have as a particular case i(nl + ng) > ngny. Hence, ng > 0.25

is a necessary condition for r* >> 0. Evaluating the second order condition at the unique
critical point yields

(13 -2) Y 2R i)
R4

<0,

where the inequality holds because of R* —n;ry = >, n;r7 > 0. Hence, if n3 > 0.25, then

2 . . . . — . . . . K .
ri = njne(ning Tk —nink) g1 a1 § constitutes the unique Nash equilibrium of the contest
(ninj+ning+n;ng)

game in the coalition structure 7 = {1 2| 3}.

Suppose that n3 < 0.25. Then the first order condition of the maximization problem

ng

. . e
(1) given 7§ = 0 and r; is Y

(1 —p;) = 1. We rewrite it as pf (1 — pf) = rF and use

.
nir;

p; = 0 in order to obtain pip5 = ri = r3. Finally, because of p; = rar T

we verify that

17



* ning

= ) Since the first order condition is as well sufficient we have shown that if

ns < 0.25, then the vector (rf,r3,r3) = ((mjrnz)% (mjrni)Q,O) constitutes the unique Nash
equilibrium of the contest game in the coalition structure 7 = {1 |2|3}.
(b) We turn now to the coalition structure 7 = {75 |k }. The proof that r}; and r} are

strictly positive uses similar arguments as the proof of the former part. The first order

conditions of the maximization problems (2) and (3) are

(nitn;)rij+nere (nitn;)rij+nerk

We multiply the first equation of (9) by 7;; and the second one by 7 to yield the condition
p;;Py = 7i; = - In the next step, we deduce that r;; = (n; + n;) ny by using the definitions

of p;; and p;. Finally, we evaluate the second order conditions in the corresponding critical

(nitnj)ngrs;

((ni+nj)r;‘j —|—nk'r;;)

2(nq;—|—nj)2nkr,’;
((ni+nj)r;j+nkr,’;)

points. Since the conditions — s < 0 and — s < 0 hold, we

*

have shown that the vector (r};,7;) = ((n; +n;) ng, (n; + n;) ny) constitutes the unique

Nash equilibrium in the coalition structure = = {ij |k }. q.e.d.

We prove Proposition 2 in a series of Lemmata. Since we restrict ourselves to stationary
strategies, let x5 be the offer made by S to T" at any ¢. Furthermore, the partition function
game V is said to be strictly superadditive if for all 7 € II and for all S,7 € © we have

V(SUT,{(m\T\S)u (SUT)}) >V (S, {n}) + V (T, {r}).

Lemma 1 The partition function game V' s strictly superadditive.

Proof of Lemma 1: We prove at first with a geometric argument that f/(n) =
V (i, {ij |k}) — V (i,{i|j| k}) = V (4, {¢|j| k}) > O for all n. Suppose that ng > 0.25.
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In Figure 3 we draw the level curve V (n) = 0 when {i,j} = {1,2}. The three straight
lines correspond to the set of points satisfying the conditions n; = 0.25, ny = 0.25 and
ny + ny = 0.75. Therefore, the shaded triangle in the center of the figure is the set of
points (nq, ng, ng) where n; > 0.25, ny > 0.25 and n; + np < 0.75. Notice that this area is
bounded away from the level curve at zero. Since V (n) is a continuous function in n, the

result follows if we find a point (n1, ns,ns) in the shaded area for which V (n) > 0. Take

n; = 5 for all i, then V (3,3,3) = 5 — 2 = 2. Hence, V (n) takes positive values all over
the area of interest.
"
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Figure 3: V (n) = 0 when ng > 0.25

Suppose now that ng < 0.25. By Corollary 1, taking £ = 3, we have to prove that

2.2
nytn;

the inequality V (n) = (n, +ns)® — i 0 holds. We use Figure 4 to establish the
result. The four straight lines correspond to the conditions n; + no = 0.75, ny + ny = 1,
ni = ng and ny = ng. The shaded area indicates the set of points (ny, ng, n3) satisfying the
conditions 0.75 < ny + ny < 1 and ny > ny > n3. Using the point (ny, ng, ng) = (2, %, %)

5
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we establish that V (2,2,1) = 0.409—0.32 > 0. Hence, V (n) takes strictly positive values

1
5

in this area whenever n; > 0 for all /.

Figure 4: V (n) = 0 when n3 < 0.25

Similarly, by Corollary 1 and taking s = 3, we have to prove that (ns + nj)2 > (1";3)2.
We rewrite the inequality as (ns + n;) (1 — ng) > n; and perform all the necessary calculus
to yield ng (1 —n3 —n;) = ngnx > 0. Hence, individual 3 and j profit from forming a
coalition. Finally, we have to check that the inequality V (123,{123}) > V (ij, {ij |k }) +
V (k,{ij |k }) holds for all possible permutations of the set of players. This follows, because

the equilibrium level of conflict R* is strictly positive in any coalition structure of the type

m={ijlk}. q.e.d.

Lemma 2 Let q = n and suppose that x;; has been accepted at t. If s;11 = 3, then T ij

*
and x}; ) are acceptable offers.

Proof of Lemma 2:  Suppose that zj ;; is not an acceptable offer. If z7;, is not an
acceptable offer either, then coalition {4, j} and player k£ will negotiate for ever, because by
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stationarity s;..,, = 3 for all m > 2. In this case every player gets zero utility. But if player
k had left the game before, then he would have received an utility of ni > 0 from playing
the contest game within the coalition structure = = {ij |k}. Hence, we have reached a
contradiction to s;;; = 3 and conclude that T}; p must be an acceptable offer. Since T} i
is not acceptable by assumption, the one-period discounted expected utility of player k is

equal to
Uk ((5, xz’,j) =9 ((nz + nj) x;‘j’k + (S’I”Lk (nz + TLj) x:j,k + (52’/7% (nz + ’I”Lj) x;‘j,k + )
* e T T (ni+nj)‘z‘:j,k
Player k accepts the offer z;;, if and only if it is at least as high as the discounted value
of the expected continuation utility from rejecting it; that is z7;, > 6Uy (6, 2;;). On the

other hand player 7 will not offer more than Uy (6, ;). Thus, zj;, = J(ﬁ;&j)x;‘j,k.

Since
‘5(1711'7;3:) # 1 for all 6 < 1, we must have z7;, = 0 which implies U} (4, 7;;) = 0. This is a

contradiction to s;11 = 3, because player k£ can get strictly more by leaving the game and

playing the contest game within the coalition structure 7 = {ij |k }. q.e.d.

Lemma 3 Let q = n and suppose that x;; has been accepted at t. If s, = 3, then the
grand coalition forms in the next period and the one-period discounted expected utilities are
equal to (U} (6,:5),U; (6, 2:5) , Uy (8,:5)) = (0 (ni +n5) (1 — zi), 6 (ni +nj) i, 6ny).

Proof of Lemma 3: Suppose that s;11 = 3. Since we know from Lemma 2 that zj ,;

and z7; , are acceptable offers, the one-period discounted expected utilities are given by

Up (0,2i5) = 6 ((ns +ny) (1 — 2iy) (1 — x) +ne (1 — 2ij) 5 45)
Uz (6, i5) = 6 ((ns +1ny) mi (1 — 235) + iy ;) (10)
Uy (8,215) = 6 ((ni +mn5) xj o + 1 (1= 5 55)) -
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Player i accepts x} ;; if and only if (1 — ;) ¥} ;; > 06U} (6, 2; ). Therefore, in equilibrium
the equation must be satisfied with equality. Using a similar argument we establish that

x5, = 0Uy (9,2 ;). The solution of the system of linear equations (10), given z;;, is

(50 Thi5) = (6°ng, 6% (03 4 ;) )

(Ur (0,2i5) ,Ur (8,255) ,Up (8,255)) = (6 (ns +n;) (1 —zi5),6 (i + nj) 25, 0ng) -
Equation (11) states the unique stationary subgame equilibrium payoff of the continuation
game after z; ; if it is optimal for every player to stay in the game. If player k had left the
game before, then he would have received an expected utility of dni which is strictly less
than dn,. If player j had opted out, then he would have received an expected utility of
d(n; + nj)2 ; ; which is strictly less than U7 (6, x; ;). Finally, player i does not to opt out ei-

ther, because if he did so, then his expected utility would be equal to 6 (n; + n2)2 (1 =)
But this is strictly less than U (6, z; ;). q.e.d.

Lemma 4 Let q = n and suppose that s, = 3. Then the one-period discounted expected
utility of player 1 is equal to U} () = ony for all 1 =1,2,3.

Proof of Lemma 4: If player j accepts the offer z;; at ¢, then Uy (6, ;) + U7 (6, 5 5) =
d (n; +n;). The corresponding stand alone expected utility of individual & is U} (6, z; ;) =
dnyg. Since the final utility of coalition {i,j} is independent of the applied sharing rule,
player i selects the offer that makes individual j indifferent between accepting and rejecting
it. That is 0 (n; +n;) zj; = 0U; (d), where U; (6) is the expected utility of player j
at the beginning of stage t. Hence, the share which remains for player ¢ is equal to
8 (n; +n;) (1 — ;) = 6 (n; + n;) — U (6). Player i meets player j and is chosen to make
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the offer with probability 3% Player 7 and k meet with probability % In this case
player i gets his stand alone value dn;. Finally, player ¢ meets j in the role of the responder

with probability 3 . Therefore, the expected utilities of the players are equal to

_|_

Ui (0) = 35,55 16 (n1+ ng) — U5 (8)] +

ni4ns 3'n +n3
+3 (# + mw) SU; (9)
Us (8) = 1226 (ny + na) — 6UF (8)] + 222 (5 (no + ny) — 6U; (5)] + Soma+
1 (2 + ) U3 (9)

Us (0) = 37555 [0 (n1+ ns) — 6UT (9)] +

ni+ng
1
+3 (mr-ll—lns + nz-l—ns) U3 (9).-

The solution of the system of three linear equation and three unknowns is U} (§) = dn; for

[5 (TLQ + ng) — 5U2 ( )] + %5713"‘

3 n2—|—n3

alll =1,2,3. q.e.d.
Lemma 5 Let q = n. Then, no player leaves the game at t.

Proof of Lemma 5: Assume that only player & leaves the game at t. Since the partition
function game V is strictly superadditive by Lemma 1, we can apply similar arguments to
the ones used in Lemmata 2 and 3 to show that player 7 and j form a coalition and adopt
the sharing rules (z;,z},) = (52 n:jn] 52#1'%) in the unique stationary subgame perfect
equilibrium of the continuation game. This implies that the expected utilities of the players
in this subgame are equal to (U7 (6),U; (6), Uy (8)) = (6ni (ni +n;), 0n; (ni + nj) , 0ng).

Using all payoffs of the stationary equilibrium of the continuation games that we have

already obtained, we represent in Figure 5 the game tree at t.

23



n, + ({123) (1{123) @iy prefed)m
5 E::E 5 EP](L;»)E 5 EP] nﬁz ™ E 5 @/(2 éﬂ;})ga Ey n2+n3 i 5@5(2,3@\2}5 5@//(2@@;}5 sv(2 {Jﬁ;})

O O O
. o 8 heend BebE Heom) el eiedE  Hbbes)d

=

SO
oo

=
=

Figure 5: The Opting Out Game at ¢

We prove in the next step that player 3 may only leave the game whenever player 1
and 2 have left the game before. If ng < 0.25, then player 3 can do stay, because in this

case V (3,{1]2|3}) = 0. Assume now that nz > 0.25. In Figure 6, we draw the level

2ning
nmj—|—nink—|—njnk

. 2
curve V (n) = n; (n; +n;) — (1 — ) = 0. The shaded area corresponds to

the set of points (ny, ng, n3) where n; > 0.25. We check that V' (3.3,3)=2—-2=:>0.
Hence, by continuity of V (n) and since the shaded area and the indifference curve do not
intersect, we have that V (n) takes positives values all over the area of interest. Taking
1 = 3 we conclude that player 3 stays in the game.

We turn now to the stay or exit decision of player 2 given that player 3 stays in the
game afterwards. Since mo > n2, he stays in the game whenever player 1 has decided to
stay in the game before. Suppose that player 1 has left the game and that ng > 0.25.

Player 2 does not leave the game, because by taking i = 2 and j = 3 in Figure 6, we

can prove that he gains from staying. Suppose now that ns < 0.25. Player 2 stays in the
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Figure 6: V (n) when ng > 0.25

game if and only if the condition ny (ny + ng) > (n;fm)Q is satisfied. We restate the weak
inequality in the form (1 — ny) (1 — ng)® > ny = 1—ny —ng. This condition is equivalent to
(1 —=n1 —n3+mninz) (1 —n3) > 1—n; —nz. We perform all the necessary multiplications
to arrive at n; (1 — n3) — n3 (1 —ny — n3) > 0. Since n; > n3 and n3 > 0, we have shown
that it is optimal for player 2 to stay in the game. Finally, player 1 decides to stay given

that player 2 and 3 do not leave the game afterwards, because his payoff from leaving is

dn? < 6ny. q.e.d.

Proof of Proposition 2: By Lemma 5 we have that s; = 3. Therefore, we can apply
Lemma 4 to get that U (6) = om; for all [ which reduces U} (6) = n; as § — 1. Moreover,
the grand coalition forms independently of the Nature moves, because it has been seen in

Lemmata 2 and 4 that every offer is accepted in equilibrium. q.e.d.
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