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Abstract

We consider exchange markets with heterogeneous indivisible
goods. We are interested in exchange rules that are efficient and
immune to manipulations via endowments (either with respect to
hiding or destroying part of the endowment or transferring part of the
endowment to another trader). We consider three manipulability ax-
ioms: hiding-proofness, destruction-proofness, and transfer-proofness.
We prove that no rule satisfying efficiency and hiding-proofness (which
implies individual rationality) exists. For two-agent exchange markets
with separable and responsive preferences, we show that efficient,
individually rational, and destruction-proof rules exist. However, for
separable preferences, no rule satisfies efficiency, individual ratio-
nality, and destruction-proofness. In the case of transfer-proofness
the compatibility with efficiency and individual rationality for the
two-agent case extends to the unrestricted domain. For exchange
markets with separable preferences and more than two agents no rule
satisfies efficiency, individual rationality, and transfer-proofness.
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1 Introduction

We consider exchange markets with heterogeneous indivisible objects where
each agent is endowed with a set of objects. As an example, one may think
of markets where people trade collectibles, for instance stamps, Pockeymon
cards, etc.. Other applications (see also Pápai, 2003) are exchanges of equip-
ment or tasks among workers or departments of a firm or an organization.
A well-known special case of our exchange model are so-called housing mar-
kets (Shapley and Scarf, 1974) where each agent is endowed with exactly
one object. For housing markets, the so-called top trading rule that assigns
the unique core allocation to each housing market satisfies many appealing
properties. In particular, the top trading rule is efficient and strategy-proof
[no agent ever benefits from misrepresenting his preferences] (Roth, 1982).
Moreover, it is the only rule satisfying efficiency, strategy-proofness, and
individual rationality [no agent is worse off after trading with other agents]
(Ma, 1994). However, this compatibility result does not extend to “multiple
object” exchange markets (Sönmez, 1999; Klaus and Miyagawa, 2000).1

We are interested in efficient and individually rational exchange rules. In
addition, we do not want any traders to be able to successfully manipulate
the outcome to his advantage by hiding or destroying part of his endowment
or transferring part of it to another trader who experiences the transfer as
endowment improving. We call an exchange rule that is immune to this type
of manipulation hiding-proof, destruction-proof, and transfer-proof, respec-
tively.

In the context of classical exchange economies, Postlewaite (1979) is
the first to introduce and study hiding-proofness and destruction-proofness.
He shows that, when preferences are continuous, strictly increasing and
strictly convex, hiding-proofness is incompatible with efficiency and indi-
vidual rationality. He also shows that destruction-proofness is compatible
with efficiency and individual rationality.2 For reallocation problems with
single-peaked preferences, Klaus, Peters and Storcken (1997) characterize
hiding-proof rules satisfying various fairness and/or consistency properties.
In the context of two-sided matching with endowments, Sertel and Özkal-

1Some recent studies for exchange markets with indivisibilities and multiple assignment
problems without endowments that consider strategy-proofness in combination with other
properties are Ehlers and Klaus (2003), Klaus and Miyagawa (2001), and Pápai (2002,
2003).

2Thomson (1987) strengthens the former result by showing that the incompatibility
persists on the restricted domain of homothetic preferences even if hiding-proofness is
replaced by a weaker notion at which agents can consume only a positive percentage of
what they hide no matter how small that percentage is.
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Sanver (2002) and Fiestras-Janeiro, Klijn and Sánchez (2003) analyze the
manipulability of men- (women-) optimal matching rules via endowments3.
Transfer-proofness is also related to the so-called “transfer paradox” (a
trader can be hurt by accepting a predonation). Leontief (1936) is the first to
demonstrate that the Walrasian rule is not immune to the transfer paradox
for two-agent exchange economies. For two-agent economies, any efficient
rule is transfer-proof if and only if it is immune to the transfer-paradox.

We demonstrate that, similarly as in other models, efficient and individ-
ually rational rules are generally not immune to manipulations via endow-
ments (Theorems 1, 2, and 3). However, we also identify some subclasses of
exchange markets where these incompatibilities do not apply: for two-agent
exchange markets with separable and responsive preferences destruction-
proofness is compatible with efficiency and individual rationality (Proposi-
tion 1), and for two-agent exchange markets with unrestricted preferences,
transfer-proofness is compatible with efficiency and individual rationality
(Proposition 2).

2 The Model

2.1 Exchange Markets with Indivisible Objects

Let K be a set of heterogeneous objects containing at least two objects (we
allow |K| = ∞). Let 2K denote the set of all (possibly empty) subsets of K.
To simplify notation, we omit the brackets when denoting subsets of K and
write, for instance, xyz instead of {x, y, z}. Let N ≡ {1, . . . , n} be a finite
set of agents containing at least two agents. Each agent i ∈ N is endowed
with a finite (possibly empty) set of objects Ei ∈ 2K . No two agents own the
same object(s). So, an endowment distribution E ≡ (E1, . . . , En) is defined
by (i) for all i ∈ N , |Ei| < ∞, (ii)

⋃n
i=1 Ei ∈ 2K , and4 (iii) if i, j ∈ N

are such that i 6= j, then Ei ∩ Ej = ∅. We denote the set of all endowment
distributions by E .

Each agent i ∈ N has complete and transitive preferences Ri over 2K .
The associated strict preference relation is denoted by Pi. Moreover, pref-
erences are strict, that is, for all distinct subsets S, S′ ∈ 2K , either S Pi S′

or S′ Pi S. Thus, S Ri S′ means that either S Pi S′ or S = S′. Agent i’s
preferences are separable whenever he prefers x to nothing if and only if
for any set S not containing x he prefers S ∪ x to S: for all S ⊆ K and

3Their non-manipulability by predonation corresponds to our transfer-proofness con-
dition.

4Note that
Sn

i=1 Ei  K is possible.
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all x ∈ K \ S, x Pi ∅ ⇔ (S ∪ x) Pi S. Together with strictness and com-
pleteness of preferences, this implies that for all S ⊆ K and all x ∈ K \ S,
∅ Pi x ⇔ S Pi (S ∪ x).5 Let Rs be the set of separable preference relations
over 2K . At various points, we also consider the following three domains
of preferences: the (unrestricted) domain of all strict preferences Ru; the
domain of separable and responsive6 preferences Rsr; and the domain of
additive7 preferences Ra. Clearly, Ra ( Rsr ( Rs ( Ru. Whenever we
introduce notation or concepts that apply to all preference domains, we use
the generic preference domain R. We denote a typical preference profile by
R = (R1, R2, . . . , Rn) and the set of preference profiles by RN .

Thus, given a preference profile R ∈ RN and an endowment distribution
E ∈ E , we denote an exchange market (with indivisible objects) by (R, E).
An allocation for an exchange market (R,E) ∈ RN × E is a list (S1, . . . , Sn)
such that (i) each agent i ∈ N receives some subset Si ⊆

⋃n
i=1 Ei and (ii)

no two agents receive the same object: if i, j ∈ N are such that i 6= j, then
Si ∩ Sj = ∅. Note that we allow for free disposal, that is,

⋃n
i=1 Si  

⋃n
i=1 Ei

is possible. All our results remain valid without free disposal.

2.2 Exchange Rules and their Properties

An (exchange) rule is a function ϕ that associates with each exchange market
(R,E) ∈ RN × E an allocation ϕ(R, E) = (Si)i∈N . Given i ∈ N , we call
ϕi(R, E) the allotment of agent i at ϕ(R, E).

We assume that a rule only chooses (Pareto) efficient allocations: for
all (R, E) ∈ RN × E there is no allocation (Si)i∈N such that for all i ∈ N ,
Si Ri ϕi(R,E), with strict preference holding for some j ∈ N .

To express voluntary participation or individual rationality, we assume
that agents find their allotments at least as good as their endowments: for
all (R, E) ∈ RN × E and all i ∈ N , ϕi(R, E) Ri Ei.

For all (R, E) ∈ RN × E , we denote the set of efficient allocations by
P(R, E), the set of individually rational allocations by I(R, E), and the set
of efficient and individually rational allocations by PI(R, E).

5For the notion of separability we use here, we refer to Barberà, Sonnenschein and
Zhou (1991).

6Agent i’s preferences are responsive if, for any two sets that differ only in one object,
agent i prefers the set containing the more preferred object: for all S ⊆ K and all x, y ∈
K \ S, x Pi y ⇒ (S ∪ x) Pi (S ∪ y). Roth (1985) introduces this notion of responsiveness
for college admission problems.

7Agent i’s preferences are additive if there exists a function ui : K → R such that for
all S, S′ ∈ 2K , S Ri S′ ⇔P

k∈S ui(k) ≥Pk∈S′ ui(k).
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Given that individual endowments are private information, an agent may
manipulate the outcome to his advantage by hiding, destroying, or transfer-
ring part of his endowment.

Given an endowment distribution E ∈ E , an agent i ∈ N , and a subset
E′

i ( Ei, we obtain the new endowment distribution (E′
i, E−i) where agent

i hides part of his endowment by replacing agent i’s endowment Ei with E′
i.

Let (R, E) ∈ RN × E . We denote the economy that is obtained after agent
i hides part of his endowment by (R, (E′

i, E−i)).

First, we consider hiding-proofness: if agent i hides part of his endow-
ment Ei and pretends to only own E′

i ( Ei, then he finds his original allot-
ment ϕi(R,E) at least as good as the set of objects ϕi(R, (E′

i, E−i))∪(Ei\E′
i)

he finally can consume.

Hiding-Proofness: For all (R, E) ∈ RN × E , all i ∈ N , and all E′
i ( Ei,

ϕi(R, E) Ri [ϕi(R, (E′
i, E−i)) ∪ (Ei\E′

i)].

Since an agent could hide all of his endowment (E′
i = ∅), we deduce the

following:

Lemma 1. Efficiency and hiding-proofness imply individual rationality.

Lemma 1 applies to any preference domain, particularly to Ra, Rsr, Rs,
and Ru. Also, Lemma 1 holds without efficiency (that is, hiding-proofness
implies individual rationality) if each object is desirable for each agent, that
is, for all i ∈ N , and all x ∈ K, x Pi ∅.8

Second, we consider destruction-proofness: if an agent i destroys part of
his endowment Ei, thereby reducing it to E′

i ( Ei, then he finds his original
allotment ϕi(R,E) at least as good as his new allotment ϕi(R, (E′

i, E−i)).

Destruction-Proofness: For all (R, E) ∈ RN × E , all i ∈ N , and all
E′

i ( Ei, ϕi(R, E) Ri ϕi(R, (E′
i, E−i)).

Given an endowment distribution E ∈ E , agents i, j ∈ N , and a subset
E′

i ( Ei, we obtain the new endowment distribution (E′
i, E

′
j , E−ij) where

agent i transfers part of his endowment, namely Ei\E′
i, to agent j by re-

placing agent i’s endowment Ei with E′
i and agent j’s endowment Ej with

E′
j ≡ Ej ∪ Ei\E′

i. Let (R, E) ∈ RN × E . We denote the economy that is
obtained after agent i transfers Ei\E′

i to agent j by (R, (E′
i, E

′
j , E−ij)).

8If each object is desirable to each agent, separability is equivalent to monotonicity,
that is, for all i ∈ N , and all S, S′ ∈ 2K , if S ! S′, then S Pi S′. In fact, “hiding-proofness
implies individual rationality” is a model-free observation if preferences are monotonic.
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Third, we consider transfer-proofness: if agent i transfers part of his
endowment Ei to another agent, say agent j, who experiences the transfer
as endowment improving, thereby reducing his endowment to E′

i ( Ei, and
expanding agent j’s endowment to E′

j ) Ej such that E′
j Rj Ej , then agent

i finds his original allotment ϕi(R,E) at least as good as his new allotment
ϕi(R, (E′

i, E
′
j , E−ij)).

Transfer-Proofness: For all (R, E) ∈ RN × E , all i, j ∈ N , all E′
i ( Ei,

and E′
j ≡ Ej ∪ Ei\E′

i, if E′
j Rj Ej , then ϕi(R, E) Ri ϕi(R, (E′

i, E
′
j , E−ij)).

As the following examples demonstrate, no direct relationship exists be-
tween hiding-proofness, destruction-proofness, and transfer-proofness.

Example 1. No-Trade Rule
On Ra, Rsr, Rs, and Ru, the no-trade rule that assigns to each agent his en-
dowment is hiding-proof and individually rational, but neither destruction-
proof, nor transfer-proof, nor efficient.9 ¦
Example 2. Serial Dictatorship Rule
OnRa,Rsr, andRs, any serial dictatorship rule that assigns to each agent in
a serial way his most preferred set of objects (among the remaining objects)
is destruction-proof, transfer-proof, and efficient, but neither hiding-proof,
nor individually rational.10 ¦

Example 3. Conditional Serial Dictatorship Rule ϕcsd(x,E)

A conditional serial dictatorship rule ϕcsd(x,E) is defined as follows: Let
x ∈ K and ϕd, ϕd′ be serial dictatorship rules such that for ϕd lower-indexed
agents come first and for ϕd′ higher-indexed agents come first. For all E such
that x ∈ ⋃

i∈N Ei, let ϕcsd(x,E)(R, E) ≡ ϕd(R, E). For all E such that x /∈⋃
i∈N Ei, let ϕcsd(x,E)(R, E) ≡ ϕd′(R,E). On Ra, Rsr, and Rs, ϕcsd(x,E) is

efficient and transfer-proof, but neither hiding-proof (individually rational),
nor destruction-proof. ¦

9Since later we show that no rule satisfying efficiency and hiding-proofness exists, it
is not possible to find an example of independence satisfying efficiency, hiding-proofness,
but not destruction-proofness or transfer-proofness.

10We refer to Klaus and Miyagawa (2001) for a precise definition of serial dictatorship
rules. On preference domainRu a serial dictatorship may not satisfy destruction-proofness
(e.g., destroying an object may cause a predecessor to abstain from consuming other
objects that he considers complementary to the destroyed one).
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Example 4. Conditional Serial Dictatorship Rule ϕcsd(x,E1)

A conditional serial dictatorship rule ϕcsd(x,E1) is defined as follows: Let
x ∈ K and ϕd, ϕd′ be serial dictatorship rules such that for ϕd lower-
indexed agents come first and for ϕd′ higher-indexed agents come first. For
all E such that x ∈ E1, let ϕcsd(x,E1)(R, E) ≡ ϕd(R, E). For all E such
that x /∈ E1, let ϕcsd(x,E1)(R, E) ≡ ϕd′(R, E). On Ra, Rsr, and Rs, if
n ≥ 3, ϕcsd(x,E1) is efficient and destruction-proof, but neither hiding-proof
(individually rational), nor transfer-proof.11 ¦

3 Results

Throughout this section, whenever R is fixed, we simply denote an exchange
market by its endowment distribution E.

3.1 Hiding-Proofness

Theorem 1. For exchange markets with additive preferences, no rule is
efficient and hiding-proof.

Theorem 1 holds on any domain that includes the domain of additive pref-
erences Ra. In particular, Theorem 1 applies to Ra, Rsr, Rs, and Ru.

Proof: Suppose that ϕ is efficient and hiding-proof. Hence, by Lemma 1,
ϕ is individually rational. Let N = {1, 2}, E = (E1, E2) such that E1 = ab,
E2 = cd, and (R1, R2) ∈ RN

a with utility representation

u1(a) = 5, u2(a) = 6,
u1(b) = 2.1, u2(b) = 3,
u1(c) = 3, u2(c) = 1.1,
u1(d) = 4, u2(d) = 4.

The only efficient and individually rational allocations are A = (ac, bd)
and B = (bcd, a). Hence, ϕ(E) ∈ {A,B}.
Case 1: ϕ(E) = A. If agent 1 hides object b, the endowment distribution
becomes E1 = (a, cd) and the only efficient and individually rational allo-
cation for the resulting exchange market is A1 = (cd, a). So, ϕ(E1) = A1.
Hence, agent 1 consumes bcd, which he prefers to ac, his allotment at A, in
violation of hiding-proofness. Thus, ϕ(E) 6= A.

11If n = 2, ϕcsd(x,E1) is transfer-proof as well.
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Case 2: ϕ(E) = B. If agent 2 hides object d, the endowment distribution
becomes E2 = (ac, c) and the only efficient and individually rational allo-
cation for the resulting exchange market is B1 = (ad, b). So, ϕ(E2) = B1.
Hence, agent 2 consumes bd, which he prefers to bc, his allotment at B, in
violation of hiding-proofness. Thus, ϕ(E) 6= B.
Cases 1 and 2 together show that for n = 2, efficiency and hiding-proofness
are incompatible. For n > 2, we simply add agents who prefer their endow-
ments to any possible trade. Since only agents 1 and 2 trade with each other
as specified above, the incompatibility of efficiency and hiding-proofness per-
sists for n > 2. 2

3.2 Destruction-Proofness

If we replace hiding-proofness by destruction-proofness, compatibility with
efficiency and individual rationality is possible for two-agent exchange mar-
kets with separable and responsive preferences.

Let N = {1, 2} and (R,E) ∈ RN
sr×E . In order to present a rule satisfying

the properties listed above, we introduce some notation. First, for i ∈ N
we obtain Ēi by discarding all undesirable objects x, that is, objects x ∈ Ei

such that ∅Pi x. Second, in order to preserve efficiency, we define the set Ẽi

by adding to Ēi all objects that agent j 6= i discarded, and that agent i likes,
that is, Ẽi = Ēi ∪ {x ∈ Ej\Ēj : x Pi ∅}. Note that PI(R, Ẽ) ⊆ PI(R, E).

Example 5. Restricted Dictatorship Rule12 ϕrd(i)

Let N = {1, 2} and i ∈ N . For all (R,E) ∈ RN
sr × E , ϕrd(i) picks the unique

best allocation for agent i in PI(R, Ẽ). We call agent i the dictator. By
construction, ϕrd(i) is efficient and individually rational. ¦

Next, we show that when preferences are separable and responsive, ϕrd(i)

is destruction-proof.13

12For n > 2 we can define restricted serial dictatorship rules ϕ̃rd(π), where π denotes
the ordering of “dictators.” Similarly as before, we can derive an economy (R, Ẽ) by
first letting all agents discard of undesirable objects and then distributing them among
the agents who would like to consume them (this distribution can, for instance, be done
sequentially using π). Then, for all (R, E) ∈ RN

sr × E , the first dictator restricts the set
PI(R, Ẽ) to all allocations where he receives his best allotment. Next, if several allocations
are left over, the second dictator restricts the remaining set to all allocations where he
receives his best allotment, etc.. In order to adjust restricted serial dictatorship rules if
free disposal is not allowed, we simply assume that an agent has to keep any object that
is undesirable for all agents.

13One can easily show that ϕrd(i) does not satisfy hiding-proofness.
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Proposition 1. For two-agent exchange markets with separable and respon-
sive preferences, restricted dictatorship rules are destruction-proof.

Proposition 1 only remains valid on Ra and Rsr, but not on Rs and Ru (see
Theorem 2).14

Proof: Let N = {1, 2}, ϕr = ϕrd(1), and (R,E) ∈ RN
sr × E . Note that by

definition, no agent i can benefit by destroying an undesirable object x ∈ Ei.
Hence, it is without loss of generality to assume that (R,E) = (R, Ẽ). We
prove that neither agent can benefit from destroying one of his objects.
The proof that neither agent can benefit from destroying several objects
follows by applying the “one-object-argument” for each object and invoking
transitivity of preferences.
Case 1: Agent 1 destroys x ∈ E1. Let A = ϕr(E) and B =
ϕr(E1\x,E2). Suppose B1 P1 A1. Note that by separability, (B1 ∪ x) P1 B1

and (B1 ∪ x,B2) ∈ I(E). Hence, there exists C ∈ PI(E) such that
C1 R1 (B1 ∪ x). Thus, C1 P1 A1, which contradicts the assumption that
A is the best allocation for agent 1 in PI(E).
Case 2: Agent 2 destroys x ∈ E2. Let A = ϕr(E) and B = ϕr(E1, E2\x).
Suppose B2 P2 A2. If x ∈ A2, then B = (A1, A2\x) and A2 P2 B2; a
contradiction. Thus, x ∈ A1. Since A ∈ P(E), A1 P1 (B1 ∪ x). By
responsiveness, A1\x P1 B1. Note that (A1\x, A2) ∈ I(E1, E2\x). Hence,
there exists C ∈ PI(E1, E2\x) such that C1 P1 B1, which contradicts the
assumption that B is the best allocation for agent 1 in PI(E1, E2\x). 2

The class of rules that are efficient, individually rational, and
destruction-proof for two-agent exchange markets with separable and re-
sponsive preferences is very large. The following example serves to illustrate
the largeness of this class of rules.

Example 6. Let N = {1, 2}, E = (E1, E2) such that E1 = abc, E2 = d,
and (R1, R2) ∈ RN

a with utility representation

u1(a) = 1, u2(a) = 1,
u1(b) = 3, u2(b) = 3,
u1(c) = 5, u2(c) = 5,
u1(d) = 10, u2(d) = 0.1.

14For Ru, it is easy to see that destroying an object which is considered complemen-
tary by a previous dictator, may induce this dictator to choose for a trade that is more
advantageously for the agent who destroyed the object.
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The only efficient and individually rational allocations are A = (bcd, a),
B = (acd, b), C = (cd, ab), D = (abd, c), F = (bd, ac), G = (ad, bc), and H =
(d, abc). If agent 1 is the dictator, then the restricted dictatorship rule picks
allocation A. If agent 2 is the dictator, then the restricted dictatorship rule
picks allocation H. Moreover, allocations B and C cannot be manipulated
by destruction. Hence, a destruction-proof rule can pick any of the four
allocations A, B, C, and H. Therefore, many destruction-proof rule can be
easily constructed. ¦

The next example demonstrates that for exchange markets with more
than two agents, a restricted (serial) dictatorship rule may be manipulable
by destruction. This manipulability result holds for any subdomain of Rs

that includes the domain of additive preferences Ra, in particular Ra, Rsr,
and Rs (recall that our definition of a restricted (serial) dictatorship rules
only applies to separable preferences so that we cannot make any statements
on Ru).

Example 7. Let N = {1, 2, 3}, E = (E1, E2, E3) such that E1 = a, E2 = bc,
E3 = de, and (R1, R2, R3) ∈ RN

a with utility representation

u1(a) = 1, u2(a) = 5, u3(a) = 7,
u1(b) = 8, u2(b) = 4, u3(b) = 6,
u1(c) = 5, u2(c) = 2, u3(c) = 1.1,
u1(d) = 10.5, u2(d) = 8, u3(d) = 3,
u1(e) = 0.1, u2(e) = 1.5, u3(e) = 2.3.

If agent 1 is the dictator, then the restricted (serial) dictatorship rule
picks (cd, ae, b). However, if agent 3 destroys object e, in the resulting
economy the restricted (serial) dictatorship rule picks (bc, d, a). Hence,
agent 3 consumes a, which he strictly prefers to b, in violation of destruction-
proofness. ¦

The previous example demonstrates that for exchange markets with more
than two agents, restricted (serial) dictatorship rules may not be destruction-
proof. At this moment, it is an open question whether for more than two
agents with either additive, or separable and responsive preferences, a rule
satisfying efficiency, individual rationality, and destruction-proofness exists.
If preferences are “only” separable, then we can establish the incompatibility
of efficiency, individual rationality, and destruction-proofness for exchange
markets with any number of agents.
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Theorem 2. For exchange markets with separable preferences, no rule sat-
isfies efficiency, individual rationality, and destruction-proofness.

Theorem 2 holds on any domain that includes the domain of separable pref-
erences Rs. In particular, Theorem 2 applies to Rs and Ru.

Proof: Suppose that ϕ is efficient, individually rational, and destruction-
proof. Let N = {1, 2}, E = (E1, E2) such that E1 = ab, E2 = cde, and
(R1, R2) ∈ RN

sr be such that

R1 R2

bcde bde
cde bd
ace ab
ac a
ab cde

Note that R1, R2 can be completed in a separable way. The only efficient
and individually rational allocations are A = (bcde, a), B = (cde, ab), C =
(ac, bde), and D = (ace, bd). Hence, ϕ(E) ∈ {A,B, C,D}.
Case 1: ϕ(E) ∈ {A,B}. If agent 2 destroys object e, the endowment
distribution becomes E1 = (ab, cd) and the only efficient and individually
rational allocation for the resulting exchange market is A1 = (ac, bd). So,
ϕ(E1) = A1. Hence, agent 2 consumes bd, which he prefers to a, his allotment
at A and ab, his allotment at B, in violation of destruction-proofness. Thus,
ϕ(E) /∈ {A,B}.
Case 2: ϕ(E) ∈ {C, D}. If agent 1 destroys object b, the endowment
distribution becomes E2 = (a, cde) and the only efficient and individually
rational allocation for the resulting exchange market is C1 = (cde, a). So,
ϕ(E2) = C1. Hence, agent 1 consumes cde, which he prefers to ac, his
allotment at C and ace, his allotment at D, in violation of destruction-
proofness. Thus, ϕ(E) /∈ {C, D}.
Cases 1 and 2 together show that for n = 2, efficiency, individual ratio-
nality, and destruction-proofness are incompatible. For n > 2, we simply
add agents that prefer their endowments to any possible trade. Since only
agents 1 and 2 trade with each other as specified above, the incompatibility
of efficiency, individual rationality, and destruction-proofness persists for
n > 2. 2
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3.3 Transfer-Proofness

For two-agent exchange markets transfer-proofness is compatible with effi-
ciency and individual rationality. In fact, restricted serial dictatorship rules
(defined in the previous section on the domain of separable and responsive
preferences) satisfy transfer-proofness. We first extend the definition of re-
stricted serial dictatorship rules to the domain of unrestricted preferences
Ru.

Let N = {1, 2} and (R, E) ∈ RN
u ×E . In order to adjust restricted serial

dictatorship rules to the domain Ru, for j ∈ N , Ēj is the most preferred
subset of Ej for agent j, that is, for all S ⊆ Ej , Ēj Rj S.

Example 8. Restricted Dictatorship Rule ϕrd(i)

Let N = {1, 2} and i ∈ N . For all (R, E) ∈ RN
u × E , ϕrd(i) picks the unique

best allocation for agent i in PI(R, E) that is individually rational for agent
j 6= i with respect to Ēj , that is ϕ

rd(i)
j (R, E) Rj Ēj . By construction, ϕrd(i)

is efficient and individually rational. ¦
Next, we show that ϕrd(i) is transfer-proof.

Proposition 2. For two-agent exchange markets with unrestricted prefer-
ences, restricted dictatorship rules are transfer-proof.

Proposition 2 remains valid on Ra, Rsr, Rs, and Ru.

Proof: Let N = {1, 2}, ϕr = ϕrd(1), and (R, E) ∈ RN
u × E . We prove that

neither agent can benefit from transferring one of his objects to the other
agent. The proof that neither agent can benefit from transferring several
objects follows by applying the “one-object-argument” for each object and
invoking transitivity of preferences.
Case 1: Agent 1 transfers x ∈ E1 to agent 2 such that E′

2 ≡ (E2∪x)R2 E2.
Let A = ϕr(E) and B = ϕr(E1\x,E′

2). Suppose B1 P1 A1. Note that by
individual rationality, B2 R2 Ē′

2 R2 E′
2. Note that Ē′

2 R2 Ē2. Then, by
transitivity, B1 P1 Ē1 and B2 R2 Ē2. Hence, by individual rationality, there
exists C ∈ PI(E) such that C1 R1 B1 and C2 R2 B2. Thus, C1 P1 A1 and
C2 R2 Ē2, which contradicts the assumption that A is the best available
allocation for agent 1 at (R, E).
Case 2: Agent 2 transfers x ∈ E2 such that (E1 ∪x)R1 E1 and E′

2 ≡ E2\x.
Let A = ϕr(E) and B = ϕr(E1 ∪ x, E′

2). Suppose B2 P2 A2. Then, by
efficiency, A1 P1 B1. Note that by individual rationality, B1 R1 (E1 ∪ x).
By the definition of ϕr, A2 R2 Ē2 R2 E′

2. Note that Ē2 R2 Ē′
2. Then, by

transitivity, A1 P1 (E1 ∪ x) and A2 R2 Ē′
2. Hence, by individual rationality,
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there exists C ∈ PI(E1 ∪ x,E′
2) such that C1 P1 B1 and C2 R2 Ē′

2, which
contradicts the assumption that B is the best available allocation for
agent 1 at (E1 ∪ x,E′

2). 2

The following is an example of a rule that is efficient, individually ratio-
nal, and transfer-proof, but not destruction-proof.

Example 9. Restricted Conditional Dictatorship Rule ϕrcd(x,Ẽ)

Let N = {1, 2} and x ∈ K. For all (R, E) ∈ RN
sr × E such that x ∈⋃

i∈N Ẽi, ϕrcd(x,Ẽ)(R,E) = ϕrd(1)(R, E). For all (R, E) ∈ RN
sr × E such that

x /∈ ⋃
i∈N Ẽi, ϕrcd(x,Ẽ)(R, E) = ϕrd(2)(R, E). Then, ϕrcd(x,Ẽ) is efficient,

individually rational, and transfer-proof, but not destruction-proof. ¦
The next example demonstrates that for exchange markets with more

than two agents, a restricted (serial) dictatorship rule may be manipulable
by transfers. This manipulability result holds for any subdomain of Ru that
includes the domain of additive preferences Ra, in particular Ra, Rsr, Rs,
and Ru.

Example 10. Let N = {1, 2, 3}, E = (E1, E2, E3) such that E1 = a,
E2 = bc, E3 = de, and (R1, R2, R3) ∈ RN

a be the same as in Example 7.
If agent 1 is the dictator, then the restricted (serial) dictatorship rule

picks (cd, ae, b). However, if agent 3 transfers object e to agent 2, in the
resulting economy the restricted (serial) dictatorship rule picks (bce, d, a).
Hence, agent 3 consumes a, which he prefers to b, in violation of transfer-
proofness. ¦

We next prove that for three or more agents with separable preferences
efficiency, individual rationality, and transfer-proofness are not compatible.
At this moment, it is an open question whether for more than two agents
with either additive, or separable and responsive preferences, a rule satisfy-
ing efficiency, individual rationality, and transfer-proofness exists.

Theorem 3. For exchange markets with separable preferences and at least
three agents, no rule is efficient, individual rational, and transfer-proof.

Theorem 3 holds on any domain that includes the domain of separable pref-
erences Rs. In particular, Theorem 3 applies to Rs and Ru.

Proof: Suppose that ϕ is efficient, individually rational, and transfer-proof.
Let N = {1, 2, 3}, E = (E1, E2, E3) such that E1 = ab, E2 = cd, E3 = ef ,
and (R1, R2, R3) ∈ RN

s be such that
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R1 R2 R3

df bf cd
abe acd cef
de ab bc
ef ae ac
ab cd ef
b d f

Note that R1, R2, R3 can be completed in a separable way. The only
efficient and individually rational allocations are A = (df, ae, bc), B =
(de, bf, ac), and C = (ef, ab, cd). Hence, ϕ(E) ∈ {A,B, C}.
Case 1: ϕ(E) = A. If agent 2 transfers object c to agent 3, the endowment
distribution becomes E1 = (ab, d, cef) and the only efficient and individually
rational allocation for the resulting exchange market is C. So, ϕ(E1) = C.
Hence, agent 2 consumes ab, which he prefers to ae, his allotment at A, in
violation of transfer-proofness. Thus, ϕ(E) 6= A.
Case 2: ϕ(E) = B. If agent 3 transfers object e to agent 1, the endowment
distribution becomes E2 = (abe, cd, f) and the only efficient and individually
rational allocation for the resulting exchange market is A. So, ϕ(E2) = A.
Hence, agent 3 consumes bc, which he prefers to ac, his allotment at B, in
violation of transfer-proofness. Thus, ϕ(E) 6= B.
Case 3: ϕ(E) = C. If agent 1 transfers object a to agent 3, the endowment
distribution becomes E3 = (b, acd, ef) and the only efficient and individually
rational allocation for the resulting exchange market is B. So, ϕ(E3) = B.
Hence, agent 1 consumes de, which he prefers to ef , his allotment at C, in
violation of transfer-proofness. Thus, ϕ(E) 6= C.
Cases 1, 2, and 3 together show that efficiency, individual rationality, and
transfer-proofness are incompatible for exchange economies with three
agents. For n > 3, we simply add agents that prefer their endowments to
any possible trade. Since only agents 1, 2, and 3 trade with each other as
specified above, the incompatibility of efficiency, individual rationality, and
transfer-proofness persists for n > 3. 2

As in Example 9, one can condition any rules that are transfer-proof
on the set of objects collectively owned by the agents. Any such rule is
transfer-proof. Hence, the class of rules that are efficient, individually ratio-
nal, and transfer-proof for two-agent exchange markets with separable and
responsive preferences is very large.

14



References
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