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Abstract We study the assignment of indivisible objects with quotas (universities, jobs, or
offices) to a set of agents (students, job applicants, or professors). Each agent receives at most
one object and monetary compensations are not possible. We characterize efficient priority rules
by efficiency, strategy-proofness, and reallocation-consistency. Such a rule respects an acyclic
priority structure and the allocations are determined using the deferred acceptance algorithm.
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1 Introduction

We study a basic indivisible-objects model with a finite number of object types and a finite
quota of available objects of each type. Examples are the determination of access to education,
allocation of graduate housing, offices, or tasks. Agents have strict preferences over object types
and remaining unassigned. An assignment is an allocation of the objects to the agents such that
every agent receives at most one object and quotas are binding. A rule associates an assignment
to each preference profile. When the quota of each object type is one, this problem is known as
house allocation. A number of recent papers studied the house allocation problem (for example,
Abdulkadiroğlu and Sönmez, 1999; Svensson, 1999; Pápai, 2000; Ergin, 2000; Bogomolnaia
and Moulin, 2001; Ehlers, 2002; Ehlers and Klaus, 2003; Ehlers, Klaus, and Pápai, 2002; and
Kesten, 2003,2004).1

Typically, in house allocation it is assumed that agents’ preferences over objects are strict.
Therefore, any two available objects are non-identical. However, there are many real life as-
signment problems where the quota of some object types is greater than one. For instance,
in university choice each university has a number of slots and students report rankings over
universities only (i.e., every student is indifferent among any two slots at the same university).
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Usually a ranking of the students is obtained through an objective test such as an entry exam at
a university. Then students who achieved higher test scores than others have higher priority in
that university. This situation can be recorded as a strict priority ranking of individuals for each
university (object type). Now, consider a university admissions situation where Anne receives
admission to the Good University and Bob to the Better University. Furthermore, Anne received
a higher entrance exam score for the Better University than Bob. Hence, if Anne prefers the
Better University to the Good University, then she justifiably envies Bob and we say that her
priority for the Better University is violated. A rule respects a priority structure if it never vio-
lates the specified priorities. Gale and Shapley’s (1962) students-proposing deferred acceptance
algorithm is the so-called “best” (efficient) rule respecting a given priority structure. This means
that any assignment, which does not violate any priority of any agent, is Pareto-dominated by
the assignment calculated by the deferred acceptance algorithm. Balinski and Sönmez (1999),
Ergin (2002), and Abdulkadiroğlu and Sönmez (2003) recently studied the students-proposing
deferred acceptance algorithm in university choice and school choice. They convincingly argued
that a priority structure is obtained through an objective test at each university (however, these
tests may contain different questions and thus, may yield different priority rankings) and is not
subject to manipulation. In other words, in university choice the priority structure is fixed. Fur-
thermore, Ergin’s (2002, Theorem 1) main result demonstrates that for the best rule respecting
a fixed priority structure, efficiency, group strategy-proofness2, consistency3, and the acyclicity4

of the priority structure are all equivalent.
In Balinski and Sönmez (1999), Ergin (2002), and Abdulkadiroğlu and Sönmez (2003) a

priority structure is exogenously fixed. We ignore this assumption and allow for all rules. We
say that a rule is a priority rule if there exists an endogenously given priority structure such
that this rule chooses the same allocations that the deferred acceptance algorithm finds using
that priority structure. Our main result is that a rule satisfies efficiency, strategy-proofness,
and reallocation-consistency5 if and only if it is an efficient priority rule (Proposition 2 and
Theorem 1). In other words, any rule satisfying our combination of axioms is a best rule for
an endogenously given acyclic priority structure. Our paper complements the above mentioned
papers in the sense that even if we ignore the priority structure and allow for any rule in
university choice problems, then our three axioms bring us back to a best rule respecting an
endogenously fixed acyclic priority structure. Furthermore, since Ergin’s (2002, Theorem 1)
result remains unchanged when consistency is replaced by reallocation-consistency (i.e., for the
best rule respecting a fixed priority structure, efficiency, group strategy-proofness, reallocation-
consistency and acyclicity of the priority structure are all equivalent), our characterization can
be considered a “partial converse” of his main result.

The paper is organized as follows. Section 2 introduces the model and our axioms. Section 3
defines priority rules and presents the characterization of efficient priority rules. Section 4
contains some concluding remarks.

2Group strategy-proofness means that no group of agents can profit by joint misrepresentation of their pref-
erences such that all members of the group weakly gain and one member of the group strictly gains.

3We discuss consistency in Section 2. More precisely, in his characterization Ergin (2002, Theorem 1) requires
consistency to hold for the so-called extended best rule.

4A formal definition of acyclicity is given in Section 3.
5Reallocation-consistency requires that when a set of agents leaves with their allotments, their assignments

should remain unchanged when applying the same rule to the reallocation problem that consists of these agents
and their allotments.
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2 Object Allocation with Quotas

Let N denote the finite set of agents. Let A denote the finite set of indivisible object types.
Given object type a ∈ A, let qa ≥ 1 denote the number of available objects, or quota, of type a.
Let q ≡ (qa)a∈A. Let 0 represent the null object. Not receiving any object is called “receiving
the null object”. The null object does not belong to A and is available in any economy.

Each agent i ∈ N is equipped with a strict preference relation Ri over A ∪ {0}. In other
words, Ri is a linear order6 over A∪{0}. Given x, y ∈ A∪{0}, xRi y means that agent i weakly
prefers x to y under Ri and x Pi y means that agent i strictly prefers x to y under Ri. Let R
denote the set of all linear orders over A∪{0}. Let RN denote the set of all (preference) profiles
R = (Ri)i∈N such that for all i ∈ N , Ri ∈ R. Given R ∈ RN and M ⊆ N , let RM denote the
restriction of R to M . We also use the notation R−i = RN\{i}. For example, (R̄i, R−i) denotes
the profile obtained from R by replacing Ri by R̄i.

An economy consists of a set of agents N ′ ⊆ N , their preferences R′ ∈ RN ′
, and a vector

of quotas q′ = (q′a)a∈A such that for all a ∈ A, qa ≥ q′a ≥ 0. We suppress the set of agents and
denote this economy by (R′, q′). Note that any economy specifies agents’ preferences over all
object types including those with quota 0.

When allocating objects each agent either receives an object of type a ∈ A or the null
object. The null object can be assigned to several agents without any restriction, but for all
other objects the associated quota is binding. Formally, given an economy (R′, q′), an allocation
for (R′, q′) is a list α = (αi)i∈N ′ such that for all i ∈ N ′, αi ∈ A ∪ {0}, and for all a ∈ A,
|{i ∈ N ′ : αi = a}| ≤ q′a. Note that not all available objects need to be assigned. Given i ∈ N ′,
we call αi the allotment of agent i at α. An unrestricted (allocation) rule is a function ϕ that
assigns to each economy (R′, q′) an allocation ϕ(R′, q′) for (R′, q′).

We are only interested in economies where all agents are present and all objects are available
with quotas q and all economies that result as reallocation problems from those economies.7

Therefore, we restrict any unrestricted rule to these economies. The set of admissible economies
with agent set N is EN = {(R, q) : R ∈ RN}.

Given an unrestricted rule ϕ, we consider situations where, departing from an economy
in EN , some agents may want to reallocate the objects assigned to them under ϕ. Given
R ∈ RN and N ′ ( N , let rϕ

N ′(R, q) denote the reallocation problem that the agents N ′ face
after having left the economy (R, q) with their allotments at ϕ(R, q). Formally, rϕ

N ′(R, q) denotes
the economy (RN ′ , q′) where q′a = |{i ∈ N ′ : ϕi(R, q) = a}| for all a ∈ A. Note that in a
reallocation problem there are at most as many objects available as agents are present. Given
an unrestricted rule ϕ, the set of admissible economies (or reallocation problems) with agent set
N ′ ( N is EN ′

ϕ = {rϕ
N ′(R, q) : R ∈ RN}. Slightly abusing notation, we write EN

ϕ instead of EN .
Starting from an unrestricted rule ϕ, we consider the restriction of ϕ to all its admissible

economies. Again slightly abusing notation, we use the same symbols for the restricted and
the unrestricted rule. An (allocation) rule is a function ϕ that assigns to all N ′ ⊆ N and
all admissible economies (R′, q′) ∈ EN ′

ϕ an allocation ϕ(R′, q′) for (R′, q′). Note that different

6A linear order is a complete, reflexive, transitive, and antisymmetric binary relation.
7We restrict our analysis to the class of economies that are “reallocation-connected” for two reasons. First, we

want to follow a parallel framework to Ergin (2002) in order to complement his result. Second, we want to keep
notation as simple as possible. The unrestricted domain of economies can be divided into reallocation-connected
subdomains that partially overlap. Clearly, all our results extend to each of these subdomains and in order to
obtain results for the unrestricted domain we would have to ensure compatibility of results for each intersection
of subdomains.
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unrestricted rules may induce the same rule.
Next, we introduce our main properties for rules. First, a rule chooses only (Pareto) efficient

allocations.

Efficiency: For all R ∈ RN , there is no allocation α = (αi)i∈N for (R, q) such that for all i ∈ N ,
αi Ri ϕi(R, q), and for some j ∈ N , αj Pj ϕj(R, q).

Second, no agent ever benefits from misrepresenting his preference relation.

Strategy-Proofness: For all R ∈ RN , all i ∈ N , and all R′
i ∈ R, ϕi(R, q) Ri ϕi((R′

i, R−i), q).

Note that as in Ergin (2002) we only require efficiency and strategy-proofness when all
agents belonging to N are present and all objects are available with their maximal quotas in the
economy.

Our last property is a stability condition for the allocations chosen by the rule when all agents
are present. Suppose after the objects have been allocated, some agents decide to reallocate their
allotments among themselves. What if the same rule is applied to the “reallocation problem”?
The rule is “unstable” if its assignment to the agents in the reallocation problem differs from
its original allotments to them. Here we are only interested in reallocation problems that are
derived from economies in which all agents are present and all objects are available with quotas q.

Reallocation-Consistency: For all R ∈ RN , all N ′ ( N , and all i ∈ N ′, ϕi(R, q) =
ϕi(r

ϕ
N ′(R, q)).

At first glance one may think that reallocation-consistency is equivalent to the “generic”
consistency property for this model defined as follows: Suppose a group of agents leave with
their allotments. Then the reduced economy consists of the remaining agents and the remaining
resources (the allotments of the remaining agents and all unassigned objects). A rule is consistent
if the allotments to the remaining agents do not change when the rule is applied to the reduced
economy.8 In a reduced economy there may be some unassigned objects in addition to the
remaining agents’ allotments – an incidence that cannot occur in a reallocation problem where
agents can only reallocate their allotments among themselves.9 In models where always all
resources are assigned, both properties are indeed equivalent.

When considering efficiency, strategy-proofness, and reallocation-consistency in their present
form, we can only derive conclusions for economies with agent set N and full quotas q and for all
reallocation problems that are induced from these economies by the unrestricted rule. We do not
require strategy-proofness for reallocation problems since agents revealed their preferences before
reallocation and it is not possible for them to change them. For instance, our axioms do not
impose any requirements on any economy in which not all agents are present and more objects
are available than agents. This is why we restricted the domain of a rule to all its admissible
economies. In the same vein as Ergin (2002) we require that when all agents are present, all
objects are available with quotas q. For example, for a serial dictatorship where agent 1 is the
first dictator, it is not meaningful to consider (sub)economies as reallocation problems in which
agent 1 is present but the quota of his favorite object type is 0. Such economies simply do not
arise as reallocation problems for this rule (and our axioms do not impose any requirements on
them).

8Consistency: For all R ∈ RN , all N ′ ( N , and all i ∈ N ′, ϕi(R, q) = ϕi(RN′ , q̄) where q̄a = qa − |{j ∈
N\N ′ : ϕj(R, q) = a}| for all a ∈ A.

9Ergin (2000) studies consistency for the house allocation problem in various combinations with efficiency,
converse consistency, neutrality, and anonymity.
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3 Priority Rules

Given a ∈ A, let Âa denote a linear order over N . We call Âa a priority ordering for object
type a. A priority structure is a profile Â = (Âa)a∈A specifying for each object type a priority
ordering. Given N ′ ⊆ N , an economy (R′, q′), i ∈ N ′, a ∈ A, and a priority structure Â, an
allocation α for (R′, q′) violates the priority of i for a if there exists j ∈ N ′ such that αj = a,
i Âa j, and a Pi αi (i.e., i has higher priority for object type a than j but j receives a and
i envies j). A rule ϕ respects a priority structure Â if for all N ′ ⊆ N and all (R′, q′) ∈ EN ′

ϕ ,
ϕ(R′, q′) does not violate the priority of any agent for any object type.10

Given a priority structure Â and R ∈ RN , Balinski and Sönmez (1999, Theorem 2) show
that the students-proposing deferred acceptance (DA) algorithm applied to Â and (R, q) yields
the best allocation among all allocations which do not violate the priority of any agent for
any object type. In other words, if an allocation respects Â at the economy (R, q), then it is
Pareto-dominated by the allocation calculated by the DA-algorithm. Let fÂ denote the deferred
acceptance rule with priority structure Â. We also call fÂ the best rule respecting the priority
structure Â. Note that under fÂ the agents propose to object types and, using Âa, object type
a rejects agents once the quota is filled. Formally, given N ′ ⊆ N and an economy (R′, q′) with
agent set N ′, the allocation fÂ(R′, q′) is determined as follows:

• At the first step every agent in N ′ proposes to his favorite object type in A ∪ {0}. For
each object type a, the q′a applicants who have the highest priority under Âa (all if there
are fewer than q′a) are placed on the waiting list of a, and the others are rejected.

• At the lth step every newly rejected agent proposes to his next best object type in A∪{0}.
For each object type a, the q′a applicants who have the highest priority under Âa (all if
there are fewer than q′a) among the new applicants and those on the waiting list are placed
on the new waiting list and the others are rejected.

• The algorithm terminates when every agent belongs to a waiting list. Then object a ∈ A
is assigned to the agents on the waiting list of a.

Note that any agent who proposes to the null object is immediately accepted. Although the
DA-algorithm calculates for each economy the best allocation among the allocations that respect
the priority structure, the deferred acceptance rule may not be efficient.11 Ergin (2002) identifies
a necessary and sufficient condition on a priority structure such that the deferred acceptance
rule yields an efficient allocation for all economies with agent set N .

Given a priority structure Â, a cycle constitutes of distinct a, b ∈ A and i, j, k ∈ N such that
the following are satisfied

(C) Cycle condition: i Âa j Âa k and k Âb i and

(S) Scarcity condition: there exist (possibly empty) disjoint sets Na, Nb ⊆ N\{i, j, k} such
that Na ⊆ {l ∈ N : l Âa j}, Nb ⊆ {l ∈ N : l Âb i}, |Na| = qa − 1, and |Nb| = qb − 1.

A priority structure is acyclic if no cycles exist.
10Ergin (2002) uses the expression “a rule adapts to a priority structure” instead of “a rule respects a priority

structure”.
11See Roth and Sotomayor (1990, Example 2.31).
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If quotas are all equal to 1, then the scarcity condition is automatically satisfied. For other
quotas, the scarcity condition limits the definition of a cycle to cases where there indeed exist
economies in EN such that agents i, j, and k actually compete for objects a and b (in the
absence of this competition, e.g., because the quotas in fact do not limit the access of the agents
to objects a and b, a cycle will not lead to the violation of either efficiency or the given priorities
– see Ergin (2002) for further discussion).

Proposition 1 (Ergin, 2002, Theorem 1). Let Â be a priority structure. Then fÂ is efficient if
and only if Â is acyclic.

We say that a rule ϕ is a priority rule if there exists a priority structure Â such that ϕ = fÂ.
We call a rule ϕ an efficient priority rule if there exists an acyclic priority structure Â such that
ϕ = fÂ.

Proposition 2. Any efficient priority rule satisfies efficiency, strategy-proofness, and
reallocation-consistency.

Proof. Let ϕ be an efficient priority rule. Then there exists an acyclic priority structure Â such
that ϕ = fÂ. Since any deferred acceptance rule is strategy-proof it follows that ϕ is strategy-
proof. To show reallocation-consistency, let R ∈ RN . Because Â is acyclic, fÂ is efficient. Thus,
for all a ∈ A, if |{i ∈ N : fÂi (R, q) = a}| < qa, then for all i ∈ N , ϕi(R, q)Ri a. For all a ∈ A, let
q′a ≡ |{i ∈ N : ϕi(R, q) = a}|. Note that in the DA-algorithm the number of applicants on the
waiting list of an object type never decreases from one step to the next. Thus, when calculating
fÂ(R, q) the waiting list of any object type contains at any step at most q′a applicants. Thus,
applying the DA-algorithm to (R, q′) yields fÂ(R, q). Hence,

fÂ(R, q′) = fÂ(R, q). (1)

By definition of q′, at fÂ(R, q′) all objects are assigned. Because Â is acyclic, fÂ is consistent
(Ergin, 2002, Theorem 1). Now for all N ′ ( N and all i ∈ N ′,

ϕi(R, q) = fÂi (R, q) = fÂi (R, q′) = fÂi (rϕ
N ′(R, q)) = ϕi(r

ϕ
N ′(R, q)),

where the first and the last equality follow from ϕ = fÂ, the second from (1), and the third
from the facts that at fÂ(R, q′) all objects are assigned and fÂ is consistent.12 Hence, ϕ
satisfies reallocation-consistency. ¤

While Ergin (2002) focuses on the best rule respecting an exogenously given priority struc-
ture, we consider all rules. Our main result shows that if a rule satisfies efficiency, strategy-
proofness, and reallocation-consistency, then it is a best rule for an endogenously given acyclic
priority structure. Hence, by Proposition 2, efficient priority rules are the only rules satisfying
efficiency, strategy-proofness, and reallocation-consistency.

Theorem 1. Let ϕ be an efficient, strategy-proof, and reallocation-consistent rule. Then there
exists an acyclic priority structure Â such that ϕ = fÂ.

12By consistency, for all i ∈ N ′, fÂi (R, q′) = fÂi (RN′ , q̄) where q̄a = q′a − |{j ∈ N\N ′ : fÂj (R, q′) = a}| for all
a ∈ A. Note that rϕ

N′(R, q) = (RN′ , q̂) where q̂a = |{i ∈ N ′ : fÂi (R, q) = a}| for all a ∈ A. So, by construction,
for all a ∈ A, q̄a = q̂a. Thus, (RN′ , q̄) = rϕ

N′(R, q) and fÂi (R, q′) = fÂi (rϕ
N′(R, q)).
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Remark 1. As the careful reader may check, Ergin’s result (2002, Theorem 1) remains un-
changed when consistency is replaced by reallocation-consistency, i.e., for the best rule respect-
ing a fixed priority structure, efficiency, group strategy-proofness, reallocation-consistency and
acyclicity of the priority structure are all equivalent.13 From this result it follows that if ϕ = fÂ

and Â is acyclic, then ϕ is efficient, (group) strategy-proof, and reallocation-consistent. Hence,
Theorem 1 establishes the converse of this implication of Ergin’s Theorem 1.

Remark 2. Proposition 2 and Theorem 1 provide the first characterization in the indivisible-
objects model with quotas when objective indifferences and all rules are allowed. All other papers
rule out objective indifferences (i.e., qa = 1 for all a ∈ A) or consider the (students-proposing)
DA-algorithm for a fixed priority structure.

Before proving Theorem 1 we establish the independence of the axioms. The rule that
assigns the null object to all agents for all admissible economies satisfies strategy-proofness and
reallocation-consistency, but not efficiency.

Let Â denote the priority structure such that for all a ∈ A, 1 Âa 2 Âa · · · Âa |N |. Let Â′
denote the priority structure such that for all a ∈ A, 2 Â′a 3 Â′a · · · Â′a |N | Â′a 1. Given b ∈ A,
let ϕb be the rule such that for all N ′ ⊆ N and all (R′, q′) ∈ EN ′

ϕb , (i) if 1 ∈ N ′ and b P ′
1 0,

then ϕb(R′, q′) ≡ fÂ(R′, q′) and (ii) otherwise ϕb(R′, q′) ≡ fÂ′(R′, q′). Note that any reduced
economy in which agent 1 is present specifies agent 1’s preference over all object types including
those with quota 0 (and rules are allowed to depend on these preferences). Then ϕb satisfies
efficiency and reallocation-consistency, but not strategy-proofness.

Given Â and Â′ as above, define ϕ as follows: (i) for all R ∈ RN , ϕ(R, q) ≡ fÂ(R, q) and
(ii) for all N ′ ( N and all (R′, q′) ∈ EN ′

ϕ , ϕ(R′, q′) ≡ fÂ′(R′, q′). Then ϕ satisfies efficiency and
strategy-proofness, but not reallocation-consistency.

Proof of Theorem 1

Let ϕ be a rule satisfying efficiency, strategy-proofness, and reallocation-consistency. First we
construct for each object type a priority ordering. Second we show that the constructed priority
structure is acyclic. Third we prove that ϕ and the best rule respecting the constructed priority
structure coincide.

Given x ∈ A∪{0}, fix Rx ∈ RN such that for all i ∈ N and all y ∈ (A∪{0})\{x}, xRx
i 0Rx

i y.
Given a ∈ A, we define Âa inductively as follows:
Step 1: For all i, j ∈ N , (a) if ϕi(Ra, q) = a 6= ϕj(Ra, q), then i Âa j, and (b) if ϕi(Ra, q) =
a = ϕj(Ra, q) and i < j, then i Âa j.

If qa ≥ |N | − 1, then for all distinct i, j ∈ N we have i Âa j or j Âa i and Âa is completely
defined. If qa < |N | − 1, then it is possible that for distinct i, j ∈ N , ϕi(Ra, q) = 0 = ϕj(Ra, q).
To define Âa in these cases, we extend the definition inductively.

13The proof is identical to Ergin’s (2002) proof. It is easy to see that his proof “(i) Efficiency⇒ (iii) Consistency”
shows “(i) Efficiency ⇒ (iii) Reallocation-consistency” and “(iii) Consistency ⇒ (iii) Acyclicity of Â” shows
“(iii) Reallocation-consistency ⇒ (iii) Acyclicity of Â”. Thus, by Ergin (2002, Theorem 1), efficiency, group
strategy-proofness, consistency, reallocation-consistency and acyclicity of the priority structure are all equivalent
for the best rule respecting a fixed priority structure.
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Step 2: Suppose qa < |N | − 1. Because qa ≥ 1 and ϕ is efficient, Step 1 determines an agent
l1 ∈ N such that both ϕl1(R

a, q) = a and for all i ∈ N\{l1}, l1 Âa i. Then for all i, j ∈ N\{l1},
if ϕi((R0

l1
, Ra

−l1
), q) = a 6= ϕj((R0

l1
, Ra

−l1
), q), then i Âa j. If qa ≥ |N | − 2, then for all distinct

i, j ∈ N we have i Âa j or j Âa i.
Step 3: Suppose qa < |N | − 2. Because qa ≥ 1 and ϕ is efficient, Step 2 determines an agent
l2 ∈ N\{l1} such that both ϕl2((R

0
l1
, Ra

−l1
), q) = a and for all i ∈ N\{l1, l2}, l2 Âa i. Then for

all i, j ∈ N\{l1, l2}, if ϕi((R0
{l1,l2}, R

a
N\{l1,l2}), q) = a 6= ϕj((R0

{l1,l2}, R
a
N\{l1,l2}), q), then i Âa j;

etc.
After at most |N | − 1 inductive steps (if qa = 1), Âa is completely defined, i.e., for any

distinct i, j ∈ N we have i Âa j or j Âa i.

Lemma 1. Âa is a well-defined linear order.

Proof. First we show that Âa is well-defined. Suppose that for some i, j ∈ N we have both
i Âa j and j Âa i. Obviously, i Âa j and j Âa i cannot be defined in the same inductive step.
Thus, in particular, qa < |N | − 1. Without loss of generality, let i Âa j be defined first.

Because j Âa i there is some t ∈ {1, . . . , |N |−1} such that for Lt = {l1, . . . , lt} we have i, j ∈
N\Lt and ϕj((R0

Lt
, Ra

N\Lt
), q) = a 6= ϕi((R0

Lt
, Ra

N\Lt
), q). By efficiency, ϕi((R0

Lt
, Ra

N\Lt
), q) = 0.

Let qa denote the profile of quotas such that qa
a = 1 and for all b ∈ A\{a}, qa

b = 0. Then
rϕ
{i,j}((R

0
Lt

, Ra
N\Lt

), q) = (Ra
{i,j}, q

a). By reallocation-consistency,

ϕj(Ra
{i,j}, q

a) = a. (2)

Because i Âa j is defined before j Âa i, either
(a) there exists L ( Lt such that i, j ∈ N\L and ϕi((R0

L, Ra
N\L), q) = a 6= ϕj((R0

L, Ra
N\L), q) or

(b) ϕi(Ra, q) = a = ϕj(Ra, q) and i < j ((b) in Step 1).
If (a), then by efficiency, ϕj((R0

L, Ra
N\L), q) = 0. Then rϕ

{i,j}((R
0
L, Ra

N\L), q) = (Ra
{i,j}, q

a).
By reallocation-consistency,

ϕi(Ra
{i,j}, q

a) = a. (3)

By (2) and (3),

|{k ∈ {i, j} : ϕk(Ra
{i,j}, q

a) = a}| = |{i, j}| = 2 > 1 = qa
a,

which contradicts the fact that ϕ(Ra
{i,j}, q

a) is an allocation for (Ra
{i,j}, q

a).

If (b), then by efficiency, there exists k ∈ N such that ϕk(Ra, q) = 0 and
ϕk((R0

Lt
, Ra

N\Lt
), q) = a. Hence, by reallocation-consistency and by similar arguments as for

(a), ϕi(Ra
{i,k}, q

a) = a and ϕk(Ra
{i,k}, q

a) = a. Similarly as in (a) this yields a contradiction.
Completeness and transitivity of Âa follow straightforwardly from the inductive definition. ¤
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Lemma 2. The priority structure Â ≡ (Âa)a∈A is acyclic.

Proof. Suppose that Â contains a cycle. Then there are a, b ∈ A and i, j, k ∈ N such that (C)
i Âa j Âa k and k Âb i and (S) there exist (possibly empty) disjoint sets Na, Nb ⊆ N\{i, j, k}
such that Na ⊆ {l ∈ N : l Âa j}, Nb ⊆ {l ∈ N : l Âb i}, |Na| = qa − 1, and |Nb| = qb − 1.

Let R ∈ RN be such that

• for all l ∈ Na, Rl = Ra
l ,

• for all l ∈ Nb, Rl = Rb
l ,

• for all l ∈ N\(Na ∪Nb ∪ {i, j, k}), Rl = R0
l ,

• Rj = Ra
j and for all c ∈ A\{a, b}, b Pi a Pi 0 Pi c and a Pk b Pk 0 Pk c.

We now calculate ϕ(R, q). By efficiency, |{l ∈ N : ϕl(R, q) = a}| = qa and |{l ∈ N : ϕl(R, q) =
b}| = qb. Because |Na ∪ Nb ∪ {i, j, k}| = qa + qb + 1, by efficiency there exists a unique agent
l̂ ∈ Na ∪Nb ∪ {i, j, k} such that ϕl̂(R, q) = 0.

If l̂ ∈ Na ∪ {j}, then by efficiency, ϕk(R, q) = a. Thus, by strategy-proofness,
ϕk((Ra

k, R−k), q) = a and for some l̃ ∈ Na∪{j}, ϕl̃((R
a
k, R−k), q) = 0. By reallocation-consistency

and rϕ

{k,l̃}((R
a
k, R−k), q) = ((Ra

k, R
a
l̃
), qa),

ϕk((Ra
k, R

a
l̃
), qa) = a and ϕl̃((R

a
k, R

a
l̃
), qa) = 0. (4)

On the other hand, since by (C) j Âa k, Na ∪ {j} ⊆ {l ∈ N : l Âa k}. Thus, l̃ Âa k and by
definition of Âa either
(a) there exists L ⊆ N such that l̃, k ∈ N\L, ϕl̃((R

0
L, Ra

N\L), q) = a 6= ϕk((R0
L, Ra

N\L), q) or

(b) ϕl̃(R
a, q) = a = ϕk(Ra, q) and l̃ < k ((b) in Step 1).

If (a), then by reallocation-consistency and rϕ

{k,l̃}((R
0
L, Ra

N\L), q) = ((Ra
k, R

a
l̃
), qa),

ϕk((Ra
k, R

a
l̃
), qa) = 0 and ϕl̃((R

a
k, R

a
l̃
), qa) = a. (5)

Now (4) and (5) contradict the fact that qa
a = 1.

If (b), then, because |Na ∪ {j, k}| = qa + 1, there exists l′ ∈ (Na ∪ {j}) \ {l̃} such that
ϕl′(Ra, q) = 0. Thus, by the definition of Âa, k Âa l′. This contradicts l′ ∈ Na ∪ {j} ⊆ {l ∈ N :
l Âa k}.

Recall that so far we have assumed that ϕl̂(R, q) = 0 for l̂ ∈ Na ∪ {j}. If l̂ ∈ Nb ∪
{k}, then by l̂ /∈ Na ∪ {j} we have for all l ∈ Na ∪ {j}, ϕl(R, q) = a. Thus, by efficiency,
ϕi(R, q) = b. Then, by strategy-proofness, ϕi((Rb

i , R−i), q) = b, and, by efficiency, there exists
a unique agent l̃ ∈ Na ∪ Nb ∪ {j, k} such that ϕl̃((R

b
i , R−i), q) = 0. We have already shown

that l̃ ∈ Na ∪ {j} yields a contradiction. Hence, l̃ ∈ Nb ∪ {k}. If l̃ = k, then by strategy-
proofness, ϕk((Rb

i , R
b
k, R−i,k), q) = 0, and, by efficiency, ϕi((Rb

i , R
b
k, R−i,k), q) = b. Thus, for

the case l̃ = k we have rϕ

{i,l̃}((R
b
i , R

b
k, R−i,k), q) = ((Rb

i , R
b
l̃
), qb) and for the case l̃ ∈ Nb we have

rϕ

{i,l̃}((R
b
i , R−i), q) = ((Rb

i , R
b
l̃
), qb). By reallocation-consistency, in both cases we have

ϕi((Rb
i , R

b
l̃
), qb) = b and ϕl̃((R

b
i , R

b
l̃
), qb) = 0. (6)
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On the other hand, since by (C) k Âb i, Nb ∪ {k} ⊆ {l ∈ N : l Âb i}. Thus, l̃ Âb i. Now,
similarly as before, we derive a contradiction using (6) and the definition of Âb.

Finally, if l̂ = i, then for all l ∈ Na ∪ {j}, ϕl(R, q) = a. In particular, ϕj(R, q) = a. By
strategy-proofness and efficiency, ϕi((Ra

i , R−i), q) = 0 and ϕj((Ra
i , R−i), q) = a. By reallocation-

consistency and rϕ
{i,j}((R

a
i , R−i), q) = ((Ra

i , R
a
j ), q

a),

ϕj((Ra
i , R

a
j ), q

a) = a and ϕi((Ra
i , R

a
j ), q

a) = 0. (7)

On the other hand (C) i Âa j. Now, similarly as before, we derive a contradiction using (7) and
the definition of Âa. ¤

Lemma 3. ϕ = fÂ.

Proof. By Lemma 2, Â is acyclic. Thus, fÂ is efficient and reallocation-consistent. Because ϕ
is reallocation-consistent, in showing ϕ = fÂ it suffices to show that for all R ∈ RN , ϕ(R, q) =
fÂ(R, q). First we show the following claim.

Claim: If ϕ 6= fÂ, then there exists R ∈ RN such that ϕ(R, q) 6= fÂ(R, q) and for all i ∈ N
with ϕi(R, q) 6= fÂi (R, q), Ri ∈ {Rx

i : x ∈ A}.
Proof of Claim: Suppose ϕ 6= fÂ. Let R ∈ RN be such that ϕ(R, q) 6= fÂ(R, q). Let i ∈ N
be such that ϕi(R, q) 6= fÂi (R, q) and Ri /∈ {Rx

i : x ∈ A}. Without loss of generality, suppose
ϕi(R, q) Pi fÂi (R, q) (for the case fÂi (R, q) Pi ϕi(R, q) simply interchange the roles of ϕ and
fÂ). By efficiency, ϕi(R, q) ∈ A. Let ϕi(R, q) = a. Because both ϕ and fÂ are strategy-proof
and efficient, we have ϕi((Ra

i , R−i), q) = a and fÂi ((Ra
i , R−i), q) = 0. Thus, ϕ((Ra

i , R−i), q) 6=
fÂ((Ra

i , R−i), q) and i’s preference relation belongs to {Rx
i : x ∈ A}. Continuing this procedure

yields the desired profile specified in the Claim.

Suppose ϕ 6= fÂ. Then by the Claim there exists R ∈ RN such that ϕ(R, q) 6= fÂ(R, q)
and for all i ∈ N with ϕi(R, q) 6= fÂi (R, q), Ri ∈ {Rx

i : x ∈ A}. Thus, by ϕ(R, q) 6= fÂ(R, q)
and efficiency of ϕ and fÂ, there exists j ∈ N such that fÂj (R, q) Pj ϕj(R, q) and fÂj (R, q) ∈ A.
Let fÂj (R, q) = a. By our choice of R and ϕj(R, q) 6= fÂj (R, q), we have Rj = Ra

j . Hence,
ϕj(R, q) = 0 and by efficiency, |{i ∈ N : ϕi(R, q) = a}| = qa. Thus, there exists k ∈ N such that
ϕk(R, q) = a 6= fÂk (R, q). But then again by our choice of R we have Rk = Ra

k and fÂk (R, q) = 0.
Thus, rϕ

{j,k}(R, q) = ((Ra
j , R

a
k), q

a). By ϕk(R, q) = a and reallocation-consistency,

ϕk((Ra
j , R

a
k), q

a) = a. (8)

On the other hand fÂ respects Â. Thus, by fÂj (R, q) = a, fÂk (R, q) = 0, and a Pk 0, we have
j Âa k. Hence, by definition of Âa either
(a) there exists L ⊆ N such that j, k ∈ N\L, ϕj((R0

L, Ra
N\L), q) = a 6= ϕk((R0

L, Ra
N\L), q) or

(b) ϕj(Ra, q) = a = ϕk(Ra, q) and j < k ((b) in Step 1).

If (a), then by reallocation-consistency and rϕ
{j,k}((R

0
L, Ra

N\L), q) = ((Ra
j , R

a
k), q

a),

ϕj((Ra
j , R

a
k), q

a) = a. (9)

Now (8) and (9) contradict the fact that qa
a = 1.
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If (b), then by efficiency, there must exist l ∈ N such that ϕl(Ra, q) = 0 and ϕl(R, q) =
a. Thus, j Âa k Âa l. If fÂl (R, q) = a, then by fÂk (R, q) = 0, k Âa l, and Rk = Ra

k,
fÂ(R, q) does not respect Â, a contradiction. Hence, fÂl (R, q) 6= ϕl(R, q) and by construction,
Rl = Ra

l and fÂl (R, q) = 0. Thus, by reallocation-consistency and rϕ
{j,l}(R, q) = ((Ra

j , R
a
l ), q

a),
ϕl((Ra

j , R
a
l ), q

a) = a. Since ϕl(Ra, q) = 0 and ϕj(Ra, q) = a, rϕ
{j,l}(R

a, q) = ((Ra
j , R

a
l ), q

a). Thus,
by reallocation-consistency for rϕ

{j,l}(R
a, q), ϕj((Ra

j , R
a
l ), q

a) = a. This and ϕl((Ra
i , R

a
l ), q

a) = a
contradict the fact that qa

a = 1. This finishes the proof. ¤

4 Concluding Remarks

We have shown that any rule satisfying efficiency, strategy-proofness, and reallocation-
consistency is an efficient priority rule. For a mechanism designer, who wishes to implement
a rule satisfying these properties, this means that he must choose an acyclic priority structure
and determine the allocations using the deferred acceptance algorithm and the chosen priority
structure.

Our formulation of the axioms is identical with the one by Ergin (2002) – efficiency and
strategy-proofness are only required for all economies with agent set N and quotas q and
reallocation-consistency only needs to hold for all reallocation problems arising from such
economies. If we defined our axioms for all economies, then the characterized (unrestricted)
rules are priority rules such that the associated priority structure does not satisfy the cycle
condition (C). In other words the scarcity condition (S) becomes redundant. This is because
when considering the full domain, economies are admissible in which each object type is avail-
able with quota one or zero. The same is true for Ergin’s (2002, Theorem 1) main result. If all
economies are considered, then for the best rule respecting a fixed priority structure, efficiency,
group strategy-proofness, reallocation-consistency, consistency, and the priority structure not
satisfying (C) are all equivalent.
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Abdulkadiroğlu, A., Sönmez, T., 1999. House allocation with existing tenants. J. Econ. The-
ory 88, 233-260.
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