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1 Introduction

In operations research, sequencing situations are characterized by a finite number of jobs lined up in
front of one (or more) machine(s) that have to be processed on the machine(s). A single decision maker
wants to determine a processing order of the jobs that minimizes a cost criterion and takes into account
possible restriction on the jobs (e.g. due dates, precedence constraints, etc.) This single decision maker
problem can be transformed into a multiple decision maker problem by taking agents into account who
own at least one job. In such a model a group of agents (coalition) can save costs by cooperation. For the
determination of the maximal cost savings of a coalition one has to solve the combinatorial optimization
problem corresponding to this coalition.

This approach has been taken first in Cuetedl. (1989). They introduce sequencing games, which
arise from one-machine sequencing situations, and showed that these games are convex, and thus, bal-
anced. Moreover, they introduce and characterize an allocation rule that divides the maximal cost savings
that can be obtained by complete cooperation.

The paper by Curiedt al. (1989) has inspired researchers to study the interaction between scheduling
theory and cooperative game theory. Hanetial. (1996) and Van Velzen and Hamers (2002) investigate
the class of sequencing situations as in considered Catrigl (1989). The first paper focuses on the
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structure of a subset of the core, the split core, and the second paper introduces new classes of balanced
sequencing games.

Van den Nouwelanet al. (1992), Hamerst al. (1999) and Callejat al. (2002) investigate se-
guencing games that arise from multiple-machine sequencing situations. These papers focus on the
balancedness of the related sequencing games.

In the class of sequencing situations considered in Cetial. (1989) no restrictions like ready
times or due dates are imposed on the jobs. Hameeed. (1995) included ready times (or release
dates) on the one-machine sequencing situations considered by €uaiel(1989). In this case the
corresponding sequencing games are balanced, but are not necessarily convex. For a special subclass,
however, convexity could be established. Similar results are also obtained in @ain (2002), in
which due dates are imposed on the jobs.

This paper is in the same line as Hametsal. (1995) and Borret al. (2002). Here, precedence
relations are imposed on the job in one-machine sequencing situations. Precedence relations prescribe
an order in which jobs have to be processed. More specifically, some jobs can only be processed if some
other job(s) have already been processed. In practice many examples can be found where precedence
relations play a role. For example, scheduling programs on a computer. In many cases one program
needs the output of another program as input data. Another situation where precedence relations are
involved is in the manufacturing of a car. Before you can paint the car you need to have the chassis,
before you can place the wheels you need already the axles, etc. In this paper we establish a convexity
result for sequencing games that arise from sequencing situations in which chain precedence relations
are involved.

There are several arguments to ask for convexity. Convex (or supermodular) games are known to
have nice properties, in the sense that some solutions concepts for these games coincide and others have
intuitive descriptions. For example, for convex games the core is the convex hull of all marginal vectors
(cf. Shapley (1971) and Ichiishi (1981)), and, as a consequence, the Shapley value is the barycentre of
the core (Shapley (1971)). Moreover, the bargaining set and the core coincide, the kernel coincides with
the nucleolus (Maschlest al. (1972)) and the-value can easily be calculated (Tijs (1981)).

The paper is organized as follows. In Section 2 we introduce one-machine precedence sequencing
situations and the related precedence sequencing games. We present our convexity result in Section 3.
In the Appendix we prove rather technical lemmata needed for the convexity result of Section 3.

2 Precedence sequencing situations and games

In this section we describe a one-machine sequencing situation in which precedence relations hold for
the jobs. Moreover, we define the corresponding sequencing games.

In a one-machine precedence sequencing situation there is a queue of agents, each with one job,
before a machine (counter). Each agent (player) has to process his job on the machine. The finite set
of agents is denoted hy, and its cardinality byN| = n. A processing order is defined by a bijection
o: N — {1,...,n}. Specifically,o(i) = k means that playeris in positionk. A precedence relation
P on the jobs of the players is defined as follows(:ifj) € P then the job of playef has to precede
the job of player;. Obviously, for anyP we have that ifi, j) € P then(j,4) ¢ P. A processing order
is calledfeasible with respect t® if for all (i,7) € P it holds thati precedeg in that order. The set
of all feasible processing orders df with respect tdP is denoted bylI(V, P). The processing timg;
of the job of ageni is the time the machine takes to handle this job. We assume that every agent has a
linear cost functiory; : [0,00) — R defined byc;(t) = a;t with «; > 0. Further it is assumed that



there is an initial feasible order, : N — {1,...,n} on the jobs of the players before the processing of
the machine starts.

A precedence sequencing situation as described above is dendt®dByo, p, «), whereN is the
set ofn players,P the set of precedence relations,: N — {1,...,n} the initial orderp = (p;)ien €
]Rﬂ\r/ the vector representing the processing times@nrd («;);cn € ]Rf the vector denoting the cost
coefficients.

For an ordefs the set of predecessors of playee N is Pr(o,i) = {j | 0(j) < o(i)}. Then
the completion timeC(o,4) of the job of agent with respect to some feasible orderis equal to
pi + X jepr(o,) Pj- The total costs,(S) of a coalitionS C N is given by

co(S) = Zai(C(a, i)).

ieS

The (maximal) cost savings of a coalitiStdepend on the precedence relat®and the set of admissible
orders of this coalition. We call a processing ordee II(N,P) admissible forS with respect to the
initial order if it satisfies the following condition:

Pr(og,j) = Pr(o,j) forall j € N\S.

This condition implies that the completion time of each agent outside the codiimaqual to his com-
pletion time in the initial order, and that the agentsSadire not allowed to jump over players outsifle
The set of admissible orders for a coalitiSnis denoted by (S, P).

Given a precedence sequencing situatidnP, oq, p, «) the correspondingrecedence sequencing game
is defined in such a way that the worth of a coaliti®is equal to the maximal cost savings the coalition
can achieve by means of an admissible order. Formally we have fa§ anw, S # () that

v(S) = max ){Z(aiC(Uo,i)) - Z(aiC(a, i)}

o€X(SP) s =

A coalition S'is calledconnecteavith respect tar if for all 4, j € Sandk € N, 0¢(i) < oo(k) < 00(j)
impliesk € S. A connected coalitior C 7' is acomponendf 7" if i € T'\S implies thatS U {i} is

not connected. The componentsBfform a partition ofT", denoted byl'/oy. The definition of an
admissible order of a coalitiof says the players of are not allowed to jump over players outside the
coalition. This implies that an optimal order is such that the players in each component are rearranged
optimally. Hence, for any coalitiof,

o(T) = Z v(9). 1)

SeT /oo
The following example illustrates a precedence sequencing game in case the precedence relation is a tree.

Example 2.1 Let (N, P, 09, p, o) be a precedence sequencing situation, wiére {1,2,3,4}, P =
{(1,2),(2,4),(1,3)},00 = (1,2,3,4),p = (1,1,1,1) anda = (1,2,3,4). Then the worth of the
connected coalitions is({i}) = 0fori = 1,2,3,4,v({1,2}) = 0, andv(S) =1 if S ={2,3},{3,4},
{1,2,3},{2,3,4},{1,2,3,4}. o



Note that (1) implies that precedence sequencing gamesyatemponent additive games, and, thus,
balanced (cf. Curie¢t al. (1994)). Recall that a ganéV, v) is called balanced if its core is non-empty.

The core consists of all vectors that distributgV), i.e., the revenues incurred when all playersvin
cooperate, among the players in such a way that no subset of players can be better off by seceding from
the rest of the players and acting on their own behalf. That is, a veatoR” is in the core of a game
(Ny0)if 3 ey oy =v(N)andy ;g x; > v(S) forall S C N.

3 Convexity of precedence sequencing games

In this section we will establish the convexity of the precedence sequencing games corresponding to situ-
ations in which the precedence relations consist of parallel chains and the initial order is a concatenation
of these chains.

The following example shows that precedence sequencing games that arise from a sequencing situ-
ation in which the precedence relation is a tree need not be convex. Recall that & gamés called
convexf foranyi,j € N,i # j and anyS C N\{i, j} it holds

v(SU{i, j}) —o(SU{i}) —v(SU{j}) +v(S) = 0. (2
Example 3.1 Consider the precedence sequencing game of Example 2.1. Then

v({2,3,4}) —v({2,3}) —v({3,4}) + v({3}) = -1 <0,
which implies thai NV, v) is not convex. o

Let (IV, P, 00, p, ) be a precedence sequencing situation. TReB said to be anetwork of parallel
chainsif each player precedes at most one player and is preceded by at most one player, i.e., for each
i€ Nitholdsthat{j € N : (i,j) € P} <land|{j € N: (j,i) € P}| < 1. Achainis an ordered

set of playergiy, . .., i) for which (¢;,4;11) € P for eachl € {1, ...,k — 1} and for which there does

not exist a playeyj € N such thatj,i;) € P or (ix, j) € P.

Let (N, P,00,p, ) be a precedence sequencing situation wiRries a network of parallel chains,
1,...,C say. The set of players in chain= 1, ..., C is denoted by’ (c). The set¥(c) (c=1,...,C)
define a partition ofV. We assume that, is some concatenation of these chains, ¢, is connected
forallc =1,...,C. Without loss of generality we assume that the order of the chaihs is, C. The
following example illustrates a concatenation of chains.

Example 3.2 Let (N, P, 00, p, @) be a precedence sequencing situation, whére- {1,2,3,4,5,6},
P={(1,2),(3,4),(4,5),(5,6)},p=(1,1,1,1,1,1), anda = (2,5,6,6,3,6). The only two possible
initial orders are1,2,3,4,5,6) and(3,4,5,6,1,2), because’(1) = {1,2} andP(2) = {3,4,5,6}. <

For determining the precedence sequencing game corresponding to a sequencing situation in which
the precedence relation is a concatenation of chains, we need an optimal order for each coalition. There-
fore, we need the following additional notations and definitions. Forfany N, T' # (), we define

a(T
o)=Y an p(0)=Yp  u(1) = 2D

ieT ieT p(T)



whereu(T) is called theurgency indexf coalitionT'.

By the component additivity of the precedence games (see (1)), we can restrict ourselves to calculat-
ing the worth of connected coalitions. L&the a connected coalition. Then there are chaiasdc + k
suchthatSN P(c+1) #(foralll =0,...,kandSNP(c—1) = SN P(c+k+1) = 0. Forany
1=0,....k letchy(S) = SN P(c+1) = {i,...,i,} be the (non-empty) intersection Sfwith the

players of chain: + . Eachch;(S) owns in a natural way the ordering induceddy i.e., forch;(S) it
holds thato(i}) < o9(ib) < ... < oo(il,, ). Note thatchy(S) = P(c+1) foralll =1,...,k — 1.

Before stating Sidney’s algorithm, we introduce the concepts of heads and taileadtof a chain
¢ = (i1,...,ig) isasetl’ C P(c) such thatl’ = {iy,...,4}. Similarly, atail of cis a setl’ C P(c)
such thatl’ = {i, ..., i }.
Now Sidney’s algorithm provides a way to calculate an optimal order of the membérgiven
precedence relations that consist of parallel chains and an initial order that is a concatenation of chains.

Procedure: Optimal order of connected S

Step 1: Construction of Sidney-components

For everyl = 0,..., k, find the following coalitions:

T = {it, ... ’iiﬁ}’ the largest head efy;(.S) that satisfies

u({z’ll,...,iill}) = max u({i\,...,i\}).

1<g<n
Form > 1
T = {i'lfinfﬁl’ . ’iiirl}’ the largest head e, (S)\ (U ' T}) that satisfies
u({iglmﬂ, iy }) = tin,lrf?%{qs?u u({iiinilﬂ, i)

Let m; be the number of sets we obtain in this way. Thepﬂ?._,,mlT,f = chy(5). The setsT,f
((=0,....,kandr =1,...,m;) are called th&idney-components &f

Step 2: Ordering Sidney-components

Order the Sidney-components 8fin weakly decreasing order with respect to their urgency indices.

The following theorem follows from Sidney (1975).

Theorem 3.3 An orders® that results from the procedure is admissible and optimalStor

Example 3.4 Let (N, P, 00, p, ) with o9 = (1,2,3,4,5,6) be defined as in Example 3.2. Lét=
{2,3,4,5,6}. Thencho(S) = {2} andchi(S) = {3,4,5,6}. Following the first step of Sidney’s
algorithm we obtairilY = {2}, Tl = {3,4} andT} = {5,6}, with u({2}) = 5, u({3,4}) = 6 and
u({5,6}) = 43, respectively. From the second step of the algorithm and Theorem 3.3 it follows that
processing the jobs in the orde? = (1,3,4,2,5,6) is optimal for coalitionS given the precedence
relationP.



Let (IV,v) be the precedence sequencing game correspondiig ®8, o, p, «). It follows from (1)
and the optimality o6 € (S, P) thatv(S) = (2% 5+3%6+4%6 +5%3+6%6) — (26 + 3 %
6+4%x5+5%x34+6%6)=2. o

The following lemmata describe relations between urgency indices, which facilitate the proof of our
main result.

Lemma 3.5 Let S, T C N be disjoint and non-empty. #(S) > w(7T), thenu(S) > u(SUT) > u(T).
If u(S) =wu(T), thenu(S) = u(SUT) = u(T).

\/v

Proof. Supposes(S) > u(T). It holds that (( )) u(S) > uw(T) = "‘((T Thereforea(S)p(T) >
a(T)p(S). Addinga(S)p(S) ora(T)p(T) to both sides gives(S) (p(S)+p(T)) > (a(S)+a(T))p(S
and (a(S) + a(T))p(T) = a(T)(p(S) + p(T)), respectively. Hencey(s) = 25} > a(Ezall) -
u(SUT) andu(S U T) = 2820 > A0 — (7).

Now suppose:(S) = u(T). Then it holds thaty(S)p(T) = a(T)p(S). Adding a(S)p(S) to both
sides givesy(S)(p(S) + p(T")) = (a(S) + a(T))p(S), and equivalentlyy(S) = w(SUT). O

—

Lemma 3.6 LetS, T, W C N be disjoint and non-empty. #(1W) > u(T) > u(S), then
u(SUTUW) >u(SUT).

Proof. Because.(T) > u(.S) it follows from Lemma 3.5 that(7) > (S UT) > u(S), and therefore
u(W) > u(SUT). Applying Lemma 3.5 again givag W) > «(SUTUW) > u(SUT). O

Lemma3.7 LetT C N, T # § and letT},... ,T,ﬁn be the Sidney-componentsToffor some chain.
Thenu(T}) > w(T4) > -+ > u(Tﬂnl).

Proof. Follows immediately from the definition of the Sidney-components and Lemma&i3.5.

To prove our main result we need the following notation. For two coalitiaid C N withUNV =
0, we definé

9(U, V) == (a(V)p(U) = a(U)p(V)).-
Note thatg(U, V') > 0. For any two non-empty set§ V' C N it holds thatg(U, V') > 0 if and only if

u(V) > u(U). Extending to two collection&,V C 2V with U NV = () for eachU € U,V € V, we
define

GU, V)= > gUV). (3)

veu,vey

Theorem 3.8 Let(N, P, 09, p, «) be a precedence sequencing situation wifere a network of parallel
chains andr a concatenation of chains. Then the corresponding precedence sequencing/jame
is convex.

2Forz ¢ R we writez; = max{0,2}.



Proof. The initial order is a concatenation of chains. Without loss of generality we assume that the order
of the chains i4, 2, ..., C. We have to show that (2) holds for every € N,i # j andS C N\{i,j}.

First suppose that and j are in different components &f U {i,j}. Then applying (1) implies 2).
Therefore we only consider situations in whicand; are in the same component®fJ {i, j}. Because
precedence games arg-component additive, it is sufficient to consider situations where {i, j} is
connected. Without loss of generality assume thdt) < oy(j). Now define (see Figure 1 for an
illustration)

S1 = {keS:o9k) <oo(i)},
Sy = {keS:o0(i) <op(k) <oo(4)},
Sy = {keS:00(j) <oo(k)}.

S, S, S,

Figure 1: The sets}, Sz, andSs

We distinguish between two cases.

CAsel: S;US3 =0,i.e.,S = 5,.
Suppose that and; are in the same chain. In that case no reordering of the players is admissible,
and therefore(SU {i,j}) = v(SU{j}) = v(SU{i}) = v(S) = 0 and (2) holds. So now suppose that
1 is an element of chaid® andj is an element of chaid*, wherec* < d*. For convenience we introduce
the following sets.

ForV = Su{i,j}, Su{i} letCi (V) be the collection of Sidney-componentsiothat are contained
in ¢* and that are not Sidney-componentssafl {j}. Note thatC, (S U {7, j}) = C1(S U {i}), because
P(c* )N (Su{i,j}) = P(c*) N (SU{i}).

ForV =S U{j}, SletCi(V) be the collection of Sidney-componentsiothat are contained ia*
and that are not Sidney-componentsSof {i, j}. Note thatC; (S U {j}) = C1(95).

ForV = Su{i,j}, SU{j} letC4(V) be the collection of Sidney-componentsiothat are contained
in d* and that are not Sidney-componentsSafl {i}. Note thatCy(S U {i,j}) = C4(S U {j}).

ForV = S U {i}, S let C4(V) be the collection of Sidney-componentsiofvhich are contained in
d* and which are not Sidney-componentsSafl {, j}. Note thatCy (S U {i}) = C4(S).

See for an example Figure 2. Note that the end’pfand the beginning o’y coincide in all four

situations. This follows straightforwardly from Lemma A.1 of the Appendix.
Moreover from Lemma A.2 it follows that

v(SU{i,j}) —v(SU{i}) —v(SU{j}) +v(S)
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Figure 2: The set€’;(.) up toCy(.)
= G(C1(SU{i,j}), Ca(S Ui, j})) — G(CL(S U{i}), Ca(S U {i}))
—G(CL(SU{3}), Ca(SU{j})) + G(C1(S), Cu(S)) (4)

From Lemma A.1 it follows thaC (S U {7, j}) and C4(S U {¢,7}) contain only one element (i.e.,
Sidney-component). Lét* be the unique element @f, (S U {i,j}) and letV* be the unique element
of C4(S U {i,j}). Substituting this in (4) we obtain

v(SU{E 7)) —v(SU{i}) —o(SU{j}) +0(S)
= GUUL{V"H - G{U™}, Ca(S U{i}))
—G(CL(SU DAV} + G(C1(S), Cu(S))

= gU V- Y gUnY)
VeCy(Su{i})
UeC1(Su{j}) UeC1(S),VeC4(S)

where the second equality holds by (3). Hence, (2) is satisfied if expression (5) is nonnegative.

Subcase la: Supposg(U*,V*) = 0, i.e.,u(U*) > u(V*). Becausd/* is a Sidney-component,
it follows from the definition of Sidney-components thgd’*) > u(V7), whereV; is the first Sidney-
component inCs(S U {i}). Hence,u(U*) > u(V1), andg(U*, Vi) = 0. From Lemma 3.7 it follows
that >y co,supy 9(U™ V) = 0. Similarly, it can be shown that®; ., (sug;y) 9(U, V™) = 0 and
Yvecy(s),vecu(s) 9(U, V) = 0, and therefore expression (5) is nonnegative.

Subcase 1b: Supposeg/(U*,V*) > 0,i.e.,u(V*) > u(U*). Define



V*(a) == Uvec,(sufi):g=v)>oV
V(b) = VAV (a).

From Lemma 3.7 it follows that*(a) is a head oft’* that consist of the players of those Sidney-
components of’y(S U {i}) with higher urgency index thati*. Note thatj € V*(b), and therefore
V*(b) # 0. Similarly we define

U*(b) := Uyec, (suij}):g,v+)>oU

U*(a) == U\U*(b).

From Lemma 3.7 it follows that/*(b) is a tail of U* that consist of the players of those Sidney-
components of”; (S U {;j}) with lower urgency index thai*. Note thati € U*(a) and therefore
U*(a) # (). Rewriting the first two terms of (5) we obtain

g(U* v — > gUV)
VeCy(SU{i})
= g(U*v‘/*)_ Z g(U*,V)
VeCy(SU{i}):VCV*(a)
= a(VI)p(U") —a(U")p(V") — > (a(V)p(U*) — a(U7)p(V))

VEC,(SU{i}):VCV*(a)
= a(V)p(U") —a(U)p(V") = a(V*(a))p(U") + a(U")p(V*(a))
= a(V*(0)p(U") — a(U")p(V*(b)), (6)

where the second equality follows from{V*) > w(U*) andu(V) > w(U*) forall V- € Cy(S U {i})
with V' C V*(a). Rewriting the last two terms of (5) we obtain

Z g(U, V*) - Z g(Uv V)

UeC:(Su{j}) UeC1(S),VeCy(S)

< 3 g(U, V*) — > 9(U,V)
U€eC (SU{j}):UCU*(b) U€eC(S),VEC(S):UCU*(b),VCV*(a)

< > (a(V*)p(U) — a(U)p(V"))

UE€C1(SU{j}):UCU*(b)
- S (a(V)p(U) = a(U)p(V))
UEC1(S),VEC(S):UCU*(b),VCV*(a)
= a(VI)p(U" (b)) = a(U"(6))p(V") — a(V'(a))p(U" (b)) + (U™ (0))p(V*(a))
= a(V7(0)p(U" (b)) — a(U"(b))p(V*(b))- (7)
The first inequality follows from the definition éf*(b). The second inequality follows frog(U, V') >
a(WVu(U) — a(U)p(V) forall U,V C N.

Substituting (6) and (7) in (5) we obtain



v(S UL, g}) —v(SU{i}) —o(SU{j}) +v(S)
= a(V*(0)p(U(a)) — (U (a))p(V*())- (8)

To show that expression (8) is nonnegative, we will prove th@t* (b)) > w(V*) andu(U*) >
u(U*(a)). This implies, using the assumptiai{V*) > u(U*), thatu(V*(b)) > w(U*(a)). As a
result expression (8) is nonnegative.

Suppose that'*(a) = ), thenV*(b) = V* and hence(V*(b)) = w(V*). So suppose thdtf*(a) # 0
and suppose that(V*(a)) > u(V*(b)). Then using Lemma 3.5 it follows thatV*(a)) > u(V*) >
u(V*(b)). This implies thatV* is not a Sidney-component of U {3, j}, which is a contradiction.
Hence,u(V*(b)) > u(V*(a)) and using Lemma 3.5 it follows thatV*(b)) > u(V*). The proof that
w(U*) > u(U*(a)) runs similarly.

CASE 2: S1 U S3 # (.

First suppose the = S, U S, i.e.,S1 = 0. Let S3 = {h1,..., he} Whereog(hy) < --- < oo(hg).
Then

v(SU{i,j}) —v(SU{i}) —v(SU{j}) +v(S)
= v(SoUS3U{i,j}) —v(SauUS3U{i}) —v(S2US3U{j}) +v(S2U S3)
= v(S2US3U{i,j}) — (v(S2U{i}) +v(S3)) —v(S2 U Ss U {j}) + (v(S2) + v(S3))
= v(S2US3U{i,j}) —v(SeU{i}) —v(SaUS3U{j}) + v(S2)
= v(S2U{i,j}) —v(S2U{i}) —v(S2 U {j}) + v(52) ©)
+ v(S2US3U{d, j}) —v(S2U{d, j}) —v(S2US3U{j}) +v(S2U{j}) (10)

where the second equality holds becatise) S3 U {i} andS, U S5 are disconnected. We will show that
expression (9) as well as expression (10) is nonnegative.

From Case 1 it follows that
v(S2 U{i, j}) —o(S2 U{i}) —v(S2 U{j}) +v(S2) =0,
which shows that expression (9) is nonnegative.

Now letT} = So U {j}, and forl € {2,...,q} letT; = So U {j, hi1,...,hj—1}. From Case 1 it follows
that for eacll € {1,...,q}

o(T U {i, e}) = o(T U {i}) — o(Ty U {u}) + o(Ty) > 0.

Now it holds that

S (0T fis hed) — T3 U i) = o(T; U {ha}) + o(T)
=1

10



- i (100 {6 had) — o(Ty U i)+ S (—olT3 U () + o(Th)
=1 =1

0Ty U {isha}) — o(T3 U Li1) = (—o(Ty U (g }) + (1)
= 0(SU85U{i,7}) — (2 U{ig}) — 0(S2USs U {j}) + (82U {j}) > 0

which shows that expression (10) is nonnegative. Hence (2) holsls 4 () and.S; = 0. A similar
argument shows that (2) holdsSf andSs are both non-empty

Finally we illustrate that convexity is lost if the initial order is not a concatenation of chains.

Example 3.9 Let us consider the precedence sequencing situaNo®, o, p, «) givenbyN = {1, 2,3},
P={(1,3)},00=1(1,2,3),p=(1,1,1),anda = (1, 2, 3). Hencepy is not a concatenation of chains.
Let (N, v) be the corresponding precedence sequencing game. It can easily be verified that

v({1,2,3}) — v({2,3}) —v({1,2}) + v({2) =1 —1—1+0 < 0.

So (N, v) is not convex. o

Appendix

LemmaA.1l Let (N, P, 00, a,p) be a precedence sequencing situation witta network of parallel
chains and letry be a concatenation of chains. The sétgS U {7, j}) and C4(S U {3, j}) contain
precisely one element (i.e., Sidney-component).

Proof. We will show thatC (S U {3, j}) contains a single element. dfis the only player inP(c*) N
(Su{i,j}), thenCi(SU{i,5}) = {{i}}. So assume thatis not the only player irP(c*) N (SU{3,j})
and suppose that the Sidney-componentaf {i, j} containing: is {i} uf;;l A; U B, whereA; is
a Sidney-component of U {j} for eachl € {1,...,m} and whereB is a proper head ofi,,, i.e.,
B # (andB # A,,. Then it holds that({i} U™, A, U B) > u({i} U";' 4;). Now suppose that
u(B) < u({i} U A;). Then from Lemma 3.5 it follows that({i} U™ " A4, U B) < u({i} U A)),
which is a contradiction. Hence(B) > u({i} U™ ,* A)).

Because4,, is a Sidney-component &f U {j}, it holds thatu(A4,,\B) > u(B). Hence, we have
u(Am\B) > u(B) > u({i} U",' A;). From Lemma 3.6, by usin§ = {i} U";' 4, T = B and
W = A,\B, we obtain that({i} U™, A;) > u({i} U";' A; U B), which is a contradiction to
the assumption that the Sidney-componentaf {i, j} containingi is {:} u;’;;l A; U B. Therefore,
the Sidney-component o U {i,j} containing: is of the form{:} U”, A4;, and we conclude that
C1(S U{i,j}) contains a single element. Similarly it can be shown thgtS U {i, j}) contains one
element.0

LemmaA.2 Let (N, P, 00, a,p) be a precedence sequencing situation wWitta network of parallel
chains letoy be a concatenation of chains. L&V, v) be the corresponding precedence sequencing
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game. It holds that

o(SU{i,j}) —o(SU{i}) —u(SU{j}) +v(S)
= G(C1(SU{i,g}), Ca(S U{i, j})) — G(CL(S U{i}), Cu(S U{i}))
—G(C1(SUA{j}), Ca(S U{F})) + G(C1(S), Cu(S)).

Proof. Besides the already introduced sétgV) andC4(V'), whereV = Su{i, j}, Su{i}, SU{j}, S,
we introduce the following collections of Sidney-components (for an illustration see Figure 2). For
V =5SU{i,j}, Su{i}letCy(V) be the collection of Sidney-componentsiothat are contained i
and that are also Sidney-components$af {;}.

ForV = S U {j},S let Co(V) be the collection of Sidney-componentsiéfthat are contained in
¢* and that are also Sidney-componentsSof) {i,j}. Note thatCa(S U {i,j}) = Ca(S U {i}) =
Ca(S U {j}) = Ca(9).

ForV = Su{i, j}, SU{j} letC5(V) be the collection of Sidney-componentsiothat are contained
in d* and that are also Sidney-componentsaf {i}.

ForV = S U {i}, S let C3(V) be the collection of Sidney-componentsiofthat are contained in
d* and that are also Sidney-componentsSaf {i,j}. Note thatCs(S U {i,j}) = C3(S U {i}) =
C3(SU{j}) = C3(9).

Forl € {c* +1,...,d* — 1} let D; be the collection of Sidney-components that are contained in
chainl.

Finally, for V=S U {3, j},SU{i},SU{j}, S letCi2(V) = C1(V) U Co(V) and letCs4 (V) =
C3(V)U Cy(V).

ForT =SuU{i,j},SuU{i},SU{j}, S itholds that

o(T) = Z G(C12(T), Dy) + G(C12(T), C34(T))]
d*—1
+ > G(Di, D)+ > G(Dy, Css(T)).
Ime{c*+1,...,d*—1}:l<m l=c*+1

Now it is straightforward, using12(S U {4, 5}) = C12(S U {i}), C12(S U {j}) = C12(S),
034(5 U {Z,]}) = 034(5 U {]}) and034(S U {Z}) = 034(5), to show that

v(S UL, 1) —v(SU{i}) —o(SU{j}) +0(S)

= G(Cra(SU{i,j}), C3a(S Ui, j})) — G(Cra(S U {i}), Caa(S U {i}))
—G(Cr2(SU{j}), C3a(S U{j})) + G(Cr2(5), Csa(5))-

= G(CL(SU{i,j}), Ca(S Ui, j})) = G(CL(S U {i}), Cu(S U {i}))
—G(C1(SU{j}), Ca(S U{7})) + G(C1(S), Cu(S)),

which proves the lemmad
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