
APPENDIX

1. Comparative figures

Figures A.1-A.6 compare our current attainment estimates with those of Cohen and Soto (2001)

and Barro and Lee (2000). Figures A.1 and A.2 show pairwise scatter diagrams in levels and in growth

rates for the entire sample. Figures A.3-A.6 show comparative time profiles for each country. Figure

A.3 plots the three series of average years of schooling, and Figures A.4-A.6 compare this paper and

Barro and Lee (2000) in terms of the evolution of primary, secondary and university attainment in

each country. This last set of figures does not include Cohen and Soto's estimates because they do not

provide the necessary information. The data on years of schooling refers to the population aged 25

and over in B&L and in our data, and to the population aged 15 to 64 in Cohen and Soto.

Figures A.7-A.9 compare our current estimates of average years of schooling and secondary and

higher attainment rates with those from the previous version of this data set (D&D, 2000). The use of

the newly available national data has resulted in significant changes in our estimates for average years

of schooling in Canada, Switzerland, Germany, Finland, Denmark and Norway. In the last two cases

the change is due mostly to the important reduction in our estimate of primary attainment. Our

estimate of years of schooling in the US changes because we have changed the assumed duration of L1

and L2.1 to make it compatible with our cutoffs for these levels.

2. Estimation of the stock of physical capital

We construct series of physical capital stocks in the OECD for the period 1950-97 using a perpetual

inventory procedure with an assumed annual depreciation rate of 5%. To estimate the initial capital

stock we modify the procedure proposed by Griliches (1980) to take into account the fact that the

economies in our sample may be away from their steady states.

The growth rate of the stock of capital, gk, can be written in the form

gk = 
I
K

   - 

where I is investment,  the depreciation rate and K the stock of physical capital. Solving this

expression for K and assuming that the growth rate of investment is a good approximation to the

growth rate of the capital stock (i.e. gI ≅ gk), we obtain an expression that can be used to estimate the

initial capital stock using data on investment flows:

(A.1) K = 
I

gk + 
   ≅  

I

gI + 
  .

When implementing this approach, it is common to use the level of investment in the first year in

the sample period and the growth rate of the same variable over the entire period. In our case,

however, this does not seem to be the best way to proceed because i) investment may be subject to

transitory disturbances that make it dangerous to rely on a single observation and ii) rates of
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Figure A.1: Average years of schooling
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Figure A.2: Annual growth rate of average years of schooling

a. B&L (2000) vs. D&D (2002)
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investment and factor accumulation will tend to vary over time in a systematic way as countries

approach their steady states.

To try to control for these factors, we use the growth rate of investment over the period 1950-60

and the HP-filtered level of investment in 1955. Hence, our version of equation (A.1) is of the form:

(A.2) K55 ≅  
Ihp55

gI,50-60 + 0.05
         ,

where Ihp is the Hodrick-Prescott trend of investment (with a smoothing parameter = 10). We use

1955 as the base year instead of 1950 because it is known that this filter may displays anomalies at

sample endpoints.1 Our investment data are corrected for differences in PPP and are taken from the

OECD's National Accounts and Economic Outlook for the period starting in 1960. Prior to that date, we

use IMF data and price deflators and, for some countries where no information is available, we

extrapolate investment backward using the growth rate of the capital stock provided in Summers and

Heston's PWT 5.6.

3. Miscellaneous results

Tables A.1 and A.2 give further details on some results that are mentioned in the text. Table A.1

replicates Table 9 in the text using a Mincerian specification. As noted, this involves replacing logs of

H by their levels, so that equation (10) in the text, for instance, becomes

qit =  + i + t + zit + Hit  - eit + it  .

The coefficient of years of schooling in this modified production function, which is denoted by , is

sometimes called the Mincerian return to schooling. This parameter measures the percentage increase

in output that would follow from an increase of one year in average attainment. The results given in

Table A.1 are somewhat worse than those reported in the text for a standard Cobb-Douglas

specification but continue to display a clear positive correlation with the relevant reliability ratios.

Table A.2 gives the results obtained with some selected specifications of the growth equation when

the growth rate of years of schooling is instrumented by the initial (log) stock of the same variable.

Comparing these results with those in panels c and e of Table 9, we see that the use of instruments

considerably increases the size of the estimated human capital coefficient for most equations in

growth rates and for those catch-up specifications that are estimated with early data sets. In this

second case, however, the estimates obtained with our series or with Cohen and Soto's is not very

sensitive to the change in the estimation procedure. One possible interpretation is that instrumenting

serves to mitigate the measurement error problem in the earlier series. In addition, the pattern of

results suggests that there is little danger of an upward bias arising from reverse causation.

1 Due to data limitations and other anomalies we have used a different base year for some countries. In particular,
we use 1953 for Canada and Norway and 1960 for the UK, Greece and Ireland.
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Table A.1: Alternative Mincerian specifications

a. Log levels (without fixed country effects)
_________________________________________________________________

[a1] [a2] [a3] [a4] [a5] [a6] [a7] [a8]
H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02

0.581 0.585 0.528 0.530 0.496 0.454 0.465 0.459
(19.82) (15.44) (15.58) (17.49) (16.57) (14.98) (16.69) (14.30)

0.007 0.026 0.021 0.023 0.036 0.051 0.047 0.044
(1.18) (2.60) (3.34) (4.06) (5.75) (7.27) (8.03) (6.38)

-0.255 -0.230 -0.330 -0.374 -0.452 -0.636 -0.551 -0.602
(2.63) (2.65) (3.45) (4.36) (5.40) (7.21) (6.93) (6.62)

adj. R2 0.879 0.878 0.888 0.900 0.909 0.919 0.924 0.913
std. error reg. 0.1300 0.1027 0.1249 0.1203 0.1143 0.1082 0.1050 0.1118
no. of observ. 126 95 126 147 147 147 147 147
_________________________________________________________________

b. Log levels with fixed country effects
_________________________________________________________________

[b1] [b2] [b3] [b4] [b5] [b6] [b7] [b8]
H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02

0.542 0.538 0.553 0.552 0.556 0.562 0.553 0.551
(19.03) (15.72) (19.47) (20.18) (20.33) (21.18) (20.05) (20.90)

0.005 0.009 0.020 0.001 0.013 0.072 -0.002 0.069
(0.45) (1.03) (2.11) (0.00) (1.18) (3.01) (0.10) (3.01)

adj. R2 0.978 0.980 0.979 0.976 0.976 0.978 0.976 0.978
std. error reg. 0.0558 0.0427 0.0547 0.0587 0.0584 0.0566 0.0587 0.0566
no. of observ. 126 95 126 147 147 147 147 147
_________________________________________________________________

c. Growth rates
_________________________________________________________________

[c1] [c2] [c3] [c4] [c5] [c6] [c7] [c8]
H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02

0.509 0.387 0.513 0.492 0.495 0.493 0.489 0.493
(10.34) (6.43) (10.40) (10.48) (10.60) (10.47) (10.44) (10.51)

-0.006 0.016 0.007 0.006 0.013 0.017 -0.026 0.026
(0.44) (1.83) (0.87) (0.59) (1.36) (0.47) (0.86) (0.77)

adj. R2 0.656 0.446 0.658 0.630 0.634 0.629 0.631 0.629
std. error reg. 0.0093 0.0086 0.0093 0.0096 0.0095 0.0096 0.0096 0.0096
no. of observ. 105 74 105 126 126 126 126 126
_________________________________________________________________
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Table A.1: Alternative Mincerian specifications (continued)

d. Growth rates with technological diffusion and fixed country effects
_________________________________________________________________

[d1] [d2] [d3] [d4] [d5] [d6] [d7] [d8]
H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02

0.387 0.398 0.430 0.328 0.329 0.361 0.374 0.366
(5.23) (4.87) (6.21) (3.89) (3.92) (4.40) (4.62) (4.50)

-0.030 0.001 0.006 -0.007 -0.005 0.036 0.047 0.047
(2.45) (0.21) (0.92) (0.63) (0.62) (1.09) (2.27) (1.67)

0.094 0.144 0.096 0.069 0.069 0.076 0.076 0.078
(6.83) (9.66) (6.28) (5.60) (5.52) (5.41) (5.77) (5.74)

adj. R2 0.839 0.834 0.833 0.814 0.814 0.815 0.818 0.816
std. error reg. 0.0072 0.0068 0.0074 0.0076 0.0076 0.0076 0.0076 0.0076
no. of observ. 105 74 105 126 126 126 126 126
_________________________________________________________________

e. Growth rates with technological diffusion and significant country dummies
_________________________________________________________________

[e1] [e2] [e3] [e4] [e5] [e6] [e7] [e8]
H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02

0.470 0.433 0.499 0.350 0.322 0.411 0.476 0.470
(7.85) (6.52) (8.68) (5.44) (5.68) (6.58) (9.68) 9.78

-0.011 -0.002 0.008 -0.009 -0.009 0.065 0.054 0.058
(2.11) (0.27) (1.27) (0.98) (1.19) (7.52) (8.45) (8.23)

0.106 0.144 0.092 0.064 0.060 0.085 0.088 0.093
(7.78) (7.37) (7.50) (10.36) (10.35) (7.07) (6.88) (6.93)

adj. R2 0.842 0.845 0.840 0.821 0.819 0.821 0.823 0.822
std. error reg. 0.0072 0.0066 0.0072 0.0075 0.0075 0.0075 0.0075 0.0075
no. of observ. 105 74 105 126 126 126 126 126
_________________________________________________________________

f. Averages across specifications
_________________________________________________________________

[f1] [f2] [f3] [f4] [f5] [f6] [f7] [f8]
H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02

-0.007 0.010 0.012 0.003 0.010 0.048 0.024 0.049

(t) (-0.67) (1.08) (1.70) (0.61) (1.30) (3.87) (3.56) (4.01)

_________________________________________________________________
   Notes:
- All  equations include period dummies.
- White's heteroscedasticity-consistent t ratios in parentheses below each coefficient.
- The average value of t shown in block f is computed respecting the sign of the t ratios obtained for the different
specifications; i.e. for this computation we assign to each t ratio the same sign as the corresponding coefficient
estimate.
-  is the coefficient of the human capital variable.
- Key: NSD = Nehru et al (1995); KYR = Kyriacou (1991); B&L = Barro and Lee (various years); C&S = Cohen and
Soto (2001); D&D = de la Fuente and Doménech (various years), D&D02 refers to this paper.
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Table A.2: Instrumental variable estimates for selected specifications

a. Growth rates
_________________________________________________________________

[c1] [c2] [c3] [c4] [c5] [c6] [c7] [c8]
H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02

0.516 0.566 0.521 0.493 0.498 0.464 0.446 0.463
(7.82) (5.93) (7.52) (5.90) (6.00) (6.24) (8.27) (6.56)

0.223 -0.040 0.247 0.439 0.536 1.069 1.217 1.558
(1.24) (0.33) (1.60) (2.05) (2.77) (3.02) (2.71) (3.35)

adj. R2 0.703 0.672 0.679 0.637 0.597 0.703 0.696 0.699
std. error reg. 0.0098 0.0096 0.0102 0.0107 0.0112 0.0096 0.0098 0.0097
no. of observ. 105 74 105 126 126 126 126 126
_________________________________________________________________

b. Growth rates with technological diffusion and significant country dummies
_________________________________________________________________

[e1] [e2] [e3] [e4] [e5] [e6] [e7] [e8]
H data from: NSD KYR B&L93 B&L96 B&L00 C&S D&D00 D&D02

0.669 0.650 0.571 0.580 0.552 0.388 0.640 0.538
(16.28) (10.00) (10.14) (7.58) (6.71) (6.43) (13.20) (11.98)

0.091 0.384 0.111 0.087 0.121 0.292 0.337 0.471
(1.94) (2.91) (2.47) (1.55) (1.77) (4.30) (5.60) (7.31)

0.094 0.120 0.102 0.093 0.098 0.092 0.090 0.103
(6.41) (5.12) (7.75) (7.08) (7.51) (7.40) (8.13) (7.64)

adj. R2 0.807 0.679 0.834 0.810 0.812 0.821 0.808 0.824
std. error reg. 0.0079 0.0095 0.0073 0.0077 0.0077 0.0075 0.0078 0.0074
no. of observ. 105 74 105 126 126 126 126 126
_________________________________________________________________

   Notes:
- All  equations include period dummies.
- White's heteroscedasticity-consistent t ratios in parentheses below each coefficient.
- The instrument for h   it is the value of hit at the beginning of the current subperiod, with both variables taken
from the same source.

4. Correcting for correlated measurement error

In this section we develop an extension of the classical errors-in-variables model that will be used

to construct refined estimates of reliability ratios for the different schooling series (allowing for

measurement error to be correlated across data sets and with the remaining regressors of the growth

model) and to obtain a meta-estimate of     corrected for attenuation bias. To simplify the notation, we

will assume that the distributions of the variables of interest are known, so that we can work directly

with population moments. The results obtained in this manner will then apply to finite samples as

probability limits. It will also be assumed throughout that all the variables have zero means, so that

regression constants vanish. This assumption involves no loss of generality and is, in any event,

satisfied in our case, as the inclusion of time dummies in all our growth specifications is equivalent to

removing period means.
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We will write the model we want to estimate (the different versions of the growth equation) in the

generic form

(1)  Q = H  + X  + u

where H is the true stock of human capital, X = (X , X , ..... XN) a row vector of other regressors and 

a column vector of coefficients.

 It will be assumed that the error term u  satisfies all the standard assumptions of the linear

regression model (and is, in particular, uncorrelated with the regressors) so that the estimation of (1)

by OLS with the correctly measured stock of human capital will be consistent. Hence, the probability

limit of the OLS estimator of   will be equal to the true value of the coefficient when H is correctly

measured, i.e.

(2) plim  
ˆ 

H  
EH'Q - EH'X(EX'X)- EX'Q

EH'H - EH'X(EX'X)- EX'H
 = 

In practice, of course, we do not observe H but only a number of noisy proxies for it,

(3) Pj = H + j

with j = 1,..., J where  j is a measurement error term. We want to calculate the bias in that arises

when equation (1) is estimated using Pj instead of H, and to estimate the reliability ratio of Pj, which is

defined as

(4) rj  
 EH

EPj
  .

We will assume that the measurement error terms, j, have the following structure:

(5) j = j + j  + X j

where j is an idyosincratic error component and j a coefficient that measures the extent to which

data set j amplifies or dampens a common source of error which is captured by an iid disturbance, .

We also allow the error term to be correlated with the components of X, as indicated by the last term

of (5), where j is a column vector of coefficients. Finally, it will be assumed that both the common and

the idyosincratic components of measurement error are uncorrelated with each other and with H and

X, i.e. that

(6) EH  = EH j = E j  = E j k = EXn  = EXn j = 0

for all j and k j and for all components Xn of X.

a. Some preliminary calculations

In this section we will gather a number of results and calculations that will be useful below.

i. Assume for the time being that H can be observed and consider the following ("forward" and

"backward") regressions

(7a) H = X  + u

(7b) Xn = nH + un     for  n = 1,..., N
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where the disturbances u  and un   are assumed to satisfy the assumptions required for OLS to yield

consistent estimates. It is easy to show that the probability limits of the OLS estimators of  and  =

( , , ...)' (which will be equal to the true parameter values) will be given by:

(8)  = (EX'X)- EX'H      and

(9)   =  
1

EH
  EX'H.

The plim of the R2 of equation (7a) will be given by

ERH  plim R2(H X)  plim 
 Explained SS

 Total SS
 = 

E(X )'(X )

EH'H
 = 

'(EX'X)

EH'H
 .

Using (8) in the numerator of this expression, we have

'(EX'X)  = [(EX'X)- EX'H]'(EX'X) (EX'X)- EX'H =

=  EH'X[(EX'X)']- EX'H = EH'X (EX'X)- EX'H

(where we have made use of the fact that EX'X is a symmetric matrix) and therefore

(10) ERH  =  
EH'X (EX'X)- EX'H

EH'H
 .

Using (8) and (9), this becomes

 (10') ERH  =  
EH'X (EX'X)- EX'H

EH'H
 =  

EH'X  

EH'H
 = '  .

ii. Assumptions (5) and (6) above imply

(11) E j' k = E( j  + j + j'X') ( k  + k + X k) = j kE + j'(EX'X) k

(12) E j' j = E( j  + j + j'X') ( j  + j + X j) = j E  + E j + j'(EX'X) j

(13) E j'H = E( j  + j + j'X')H  = j'EX'H

(14) E j'X = E( j  + j + j'X')X  = j'EX'X

Using these results, we have:

(15) EPj'Pk =E(H' + j')(H + k) = EH'H + EH' k + E j'H + E j' k =

= EH'H +  k'EX'H + j'EX'H +  j kE + j'(EX'X) k

= EH'H +  j kE + ( k+ j)'EX'H + j'(EX'X) k

(16) EPj'Pj =E(H' + j')(H + j) = EH'H + EH' j + E j'H + E j' j =  EH'H + 2EH' j + E j' j

=  EH'H + j E  + E j + 2 j'EX'H + j'(EX'X) j

(17) EPj'Xn = E(H' + j')Xn = EH'Xn + E j'Xn = EH'Xn + j'EX'Xn

(18) EPj'X = E(H' + j')X = EH'X + E j'X = EH'X + j'EX'X

(19) EPj'Q = E(H + j)'Q = EH'Q + E j'Q =  EH'Q + E( j + j  + j'X')Q=

=  EH'Q + j'EX'Q

To rewrite some of these expressions in a way that will be convenient below, we define

(20) ej  j
E

EH  

(21) Uj   
E j

EH  
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and

(22) Cjk  
j'(EX'X) k

EPj
 .

Factoring out EH  (= EH'H) in (15) and (16) and recalling (4) and (9), we have:

(23) EPj'Pk = EH'H +  j kE + ( k+ j)'EX'H + j'(EX'X) k

= EH   






1 + ejek  + ( k+ j)' 
EX'H

EH
 + 

j'(EX'X) k

EPj
 
EPj

EH

= EH   



1 + ejek  + ( k+ j)'  + Cjk  

1
rj

(24) EPj'Pj = EH'H + j E + E j + 2 j'EX'H + j'(EX'X) j

= EH   






1 + ej  + Uj  + 2 j' 
EX'H

EH
 + 

j'(EX'X) j

EPj
 
EPj

EH

= EH   



1 + ej  + Uj   + 2 j'  + Cjj 

1
rj

.

iii. Let us define ERj  as the probability limit of  the coefficient of determination of a regression of

Pj on the vector X, R2(Pj X).  By analogy with (10), we have

(25) ERj    plim R2(Pj X) =  
EPj'X(EX'X)- EX'Pj

EPj'Pj
 .

Notice that, using (18), the numerator of this expression can be written

EPj'X(EX'X)- EX'Pj = (EH'X + j'EX'X) (EX'X)-  (EX'H + EX'X j) =

= EH'X (EX'X)- EX'H + EH'X (EX'X)-  EX'X j + j'EX'X(EX'X)- EX'H + j'EX'X(EX'X)-  EX'X j

= EH'X (EX'X)- EX'H + EH'X j + j'EX'H + j'(EX'X) j

= EH'X (EX'X)- EX'H + 2 j'EX'H + j'(EX'X) j

Substituting this expression into (25), and using (4) , (9), (10) and (22), we have:

ERj  = 
EH'X (EX'X)- EX'H

EH'H
 
EH'H
EPj'Pj

 + 
2 j'EX'H

EH'H
 
EH'H
EPj'Pj

 + 
j'(EX'X) j

EPj'Pj

= ERH rj + 2 j' rj + Cjj

or

(26) ERj  = rj (ERH  + 2 j' ) + Cjj.

b. Measurement error bias

Consider now what happens when we estimate the growth equation given in (1) using an

imperfect proxy Pj for the stock of human capital. By analogy with (2), the probability limit of the

resulting OLS estimator, ˆ 
j , is given by

(27) plim ˆ 
j  =   

EPj'Q - EPj'X(EX'X)- EX'Q

EPj'Pj - EPj'X(EX'X)- EX'Pj

=  
EPj'Q - EPj'X(EX'X)- EX'Q

EH'H - EH'X(EX'X)- EX'Hj
 * 

EH'H - EH'X(EX'X)- EX'H

EPj'Pj - EPj'X(EX'X)- EX'Pj
  A*B.
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We will now consider in turn each of the two factors in the last expression. Using (19) and (2) in the

first term, we have:

A =  
EPj'Q - EPj'X(EX'X)- EX'Q

EH'H - EH'X(EX'X)- EX'H
 =  

(EH'Q + j'EX'Q) - (EH'X + j'EX'X)(EX'X)- EX'Q

EH'H - EH'X(EX'X)- EX'H

=  
EH'Q + j'EX'Q - EH'X (EX'X)- EX'Q -  j'EX'X(EX'X)- EX'Q

EH'H - EH'X(EX'X)- EX'H

=  
EH'Q + j'EX'Q - EH'X (EX'X)- EX'Q -  j'EX'Q

EH'H - EH'X(EX'X)- EX'H

=  
EH'Q  - EH'X (EX'X)- EX'Q

EH'H - EH'X(EX'X)- EX'H
  = 

Next, we divide all terms of B by EPj'Pj and use the definition of rj given in (4), the expression for

ERH  given in equation (10), and the analogous expression for ERj  given in (25) to obtain

B = 
EH'H - EH'X(EX'X)- EX'H

EPj'Pj - EPj'X(EX'X)- EX'Pj
 = 

EH'H
EPj'Pj

 -  
EH'X(EX'X)- EX'H

EPj'Pj

1 - 
EPj'X(EX'X)- EX'Pj

EPj'Pj
 

 =

= 
rj -  

EH'X(EX'X)- EX'H

EH'H
 * 

EH'H
EPj'P

1 - ERj
  = 

rj -  ERH rj

1 -ERj
  = 

rj (1-  ERH )

1 - ERj
   .

Collecting results, we arrive at the following formula, which shows the attenuation effect as a

function of Pj's reliability ratio, rj,  ERH and ERj  .

(28) plim ˆ 
j  = 

rj (1-  ERH )

1 - ERj
     aj

where aj is the attenuation coefficient for series Pj.

This expression can be used to obtain a meta-estimate of   that will be clean of measurement error

bias. For this, we need a consistent estimate of aj or, equivalently, of rj, ERH and ERj . We will see

below how these can be obtained. Before doing so, however, we will reformulate equation (28) in an

equivalent way that is written in terms of an adjusted reliability ratio which is somewhat more

convenient than the one we have been using so far.

Adjusted reliability ratios and an alternative bias formula

The reliability ratio for the series Pj has been defined in (4). Using equation (24), this definition

implies that

rj  
EH

EPj
  =  

EH

EH   



1 + ej  + Uj   + 2 j'  + Cjj

1
rj

from where

rj



1 + ej  + Uj   + 2 j'  + Cjj

1
rj

 = 1

or
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(29) rj = 
1 - Cjj

1 + ej  + Uj   + 2 j'  
.

Notice that, under the classical asumption that measurement error is uncorrelated with X (i.e. when j

= 0 which in turn implies Cjj = 0), rj must be a number between zero and one. When this assumption is

relaxed, however, this need no longer be the case as rj may exceed one if j'  is negative and

sufficiently large. In addition, the value of rj may be a misleading indicator of the information content

of the series and can be difficult to compare across data sets because it depends on their correlation

with X, which as we will show below can be "cleaned off" and does not therefore necessarily raise a

serious problem.

In view of this, we define for each series Pj an adjusted reliability ratio, rj', as the (standard)

reliability ratio of the series Pj' = Pj - X j that is obtained by removing the component of measurement

error that is correlated with X. That is,

(30) rj' = 
EH

E(Pj - X j)'(Pj - X j)
  =  

EH

EH   ( )1 + ej  + Uj    
 = 

1

1 + ej  + Uj

which  will always lie between zero and one.

To relate rj' to rj, notice that

rj = 
1 - Cjj

1 + ej  + Uj   + 2 j'  
  = 

1 - Cjj
1
rj'

  + 2 j'  

from where

(31)  
1
rj'

  + 2 j'   = 
1 - Cjj

rj

or

(32) rj' = 
1

1 - Cjj
rj

 - 2 j'
 = 

rj
(1 - Cjj) - 2 j' rj

 .

We can now rewrite the attenuation coefficient that appears in (28) in terms of rj'. Using (26) and

(31), we have

aj = 
rj (1- ERH )

1 - ERj
  =  

rj (1- ERH )

1 - Cjj - rj (ERH  + 2 j' )
   =  

(1- ERH )

1 - Cjj
rj

 - (ERH  + 2 j' )

=  
(1- ERH )

1
rj'

  + 2 j'  - (ERH  + 2 j' )
  =  

(1- ERH )

1
rj'

  - ERH

 =   
(1- ERH )rj'

1 - ERH rj'

or

(33) plim ˆ 
j  =  aj  =  

(1- ERH )rj'

1 - ERH rj'
 

which is equation (17) in the text.
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c. Estimating reliability ratios with correlated errors

This section discusses the two-stage procedure used to obtain our "consistent" estimates of the

reliability ratio.

First-stage OLS regressions

The first step involves regressing the different schooling series on each other and on the remaining

explanatory variables of the growth model. First, we fix some data set Pj and use it to try to explain

the remaining data sets k j as well as the other growth regressors contained in the vector X. Hence,

for each j we estimate by OLS the following set of equations:

(34) Pk = rjk Pj + ujk     for  k = 1..., J  with k j  and

            (35) Xn =  jn Pj + ujn   for n = 1,..., N

where the u's are disturbance terms, J the number of alternative proxies for H that are available and N

the number of explanatory variables of the growth model, excluding the stock of human capital. This

yields (inconsistent) estimates of rj and n that we will denote by 
  
ˆ r jk  and 

  
ˆ jn  (hats will be used

throughout to indicate first-stage OLS estimates and tildes will be reserved for consistent estimates of

various quantities). In addition to the J systems of the form given in (34)-(35), we also estimate by OLS

all the "reverse" regressions of Pj on X,

(36) Pj = X j + uxj

to obtain coefficient estimates we will denote by 
    
ˆ 

j . In this way we obtain J*(J-1) + 2N*J first-stage

OLS estimates that will be functions of J+2N true parameters (rj,  and ) and the coefficients that

describe the structure of the error terms (ej, j and the variances of j and ). If J is sufficiently large,

we will have enough degrees of freedom to estimate all the parameters of interest.

We will now compute the probability limits of the first-stage OLS estimators. Starting with

equation (36), equation (8) with Pj replacing H yields

plim 
    
ˆ 

j  = (EX'X)- EX'Pj =  (EX'X)-  [EX'H + (EX'X) j] =  (EX'X)- EX'H + (EX'X)- (EX'X) j

where the second equality makes use of the transpose of (18). By (8), this reduces to

(37) plim 
    
ˆ 

j  =   + j.

Turning to (34), the plim of the pairwise estimator of rj using series Pk as a reference,
  
ˆ r jk , is given

by

plim 
  
ˆ r jk  =  

EPj'Pk

EPj
   =  

  EH   



1 + ejek  + ( k+ j)'  + Cjk  

1
rj

    

EPj
  = rj



1 + ejek  + ( k+ j)'  + Cjk  

1
rj

where the second equality makes use of (23), or

(38)   plim 
  
ˆ r jk  = rj[1 + ejek  + ( k+ j)' ] +  Cjk.

Finally, for equation (35), equation (9) with Pj replacing H implies, using (17) and (4), that

plim 
  
ˆ jn  =  

EPj'Xn 

EPj
   =  

EH

EPj
 
 EH'Xn

EH
 +  

j'EX'Xn

EPj

or, by (9),
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(39) plim 
  
ˆ jn  = rj n + Cjn

where

(40) Cjn  
j'EX'Xn

EPj
 .

Second-stage equations

The second-stage equations we estimate to recover the parameters of interest are obtained from

equations (38) and (39) by replacing the probability limits on the left-hand side and any population

moments that appear in the equation by their corresponding sample estimates (denoted by tildes) and

adding a disturbance term ( ) to capture random deviations from the expected asymptotic relations.

Hence, for each series j we have two sets of equations of the form:

(41)  
  
ˆ r jk  = rj[1 + ejek  + ( k+ j)' ] +  

  
˜ C jk + jk for k  j, k = 1... J

(42)  
  
ˆ jn  = rj n + 

  
˜ C jn  + jn for n = 1,..., N

as well as the relation derived above

(37) plim 
    
ˆ 

j  =   + j.

To construct consistent estimators of rj, ej, n,   and j, we proceed as follows.

1) As noted in the text, equation  (37) implies that the estimation of equation (36) yields consistent

estimates of j "up to a constant." We can use this information to significantly reduce the number of

parameters to be estimated. For this, we take a specific data set (D&D02) as a reference, denote the

corresponding value of j  by , define j by

j    j - 

and obtain a consistent estimate of its value as

(43) 
    
˜ 

j  = 
  
ˆ 

j  -     
ˆ 

DD02 .

This leaves us with only the N components of   to be estimated in the second stage. Once this has

been done, we can go back to (37) and obtain an estimate of   as

(44)    ̃  =     
ˆ 

DD02  -   ̃  

where   ̃   is the second-stage estimate of   whose construction will be discussed below.

2) Next, we use equations (41) and (42) to obtain estimates of rj, e j, n, and . For this, we use the

estimated values of 
    
˜ 

j  and rewrite (41) and (42) as functions of .

To proceed with the necessary calculations, we will make our notation a bit more specific. In all the

cases we consider, X is a vector of two variables: the capital labour ratio (z) and the employment ratio

(e). Hence,   and are 2-vectors:

(45)  = ( z, e)'   and   = ( z, e)'

and V = EX'X is a (symmetric) 2 by 2 matrix which can be consistently estimated by the sample

variance-covariance matrix of the components of X, which will be denoted by     ̃  V  and writen it in the

form
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(46) 
    

˜ V =
˜ V zz

˜ V ze

˜ V ze
˜ V ee

 

 
 
 

 

 
 
 

= ˜ V z , ˜ V e( )

where    
˜ V n is its n-th colum. Finally, the terms 

  
˜ d jk  and 

  
˜ d jn are defined as

(47)   
˜ d jk   

    
˜ 

j ' ˜ V ̃  
k      and    

  
˜ d jn  

    
˜ 

j ' ˜ V n

and can be computed using information known at this stage.

Using this notation, we can now write the terms 
  
˜ C jk , 

  
˜ C jn  and ( k+ j)' that appear in equations

(41) and (42) as explicit functions of the parameters to be estimated and of quantities that can be

consistently estimated using previous results.

Using (43), we can write

j'  = ( + j)'  = ( z+ jz, e+ je) 



z

e

 = ( z+ jz) z + ( e+ je) e

from where

(48) ( k+ j)'   = ( z z  + e e+ kz z + ke e) + ( z z  + e e+ jz z + je e)

= 2( z z  + e e) + ( kz + jz) z + ( ke + je) e .

Recalling (22), Cjk can be written in the form

(49) Cjk  
j'(EX'X) k

EPj
   

1

EPj
 cjk

where

 (50) cjk = j'(EX'X) k =  j'V k = ( '+ j')V( + k) = 'V  + 'V k + j'V + 
  j 'V k

= 'V  + ( j+ k)'V + djk

Consider now the first two terms in this expression. The first one can be written

(51) 'V   =  ( z, e)  



Vzz Vze

Vze Ve e
 



z

e

 =  ( z, e) 



Vzz z Vze e

Vze z Ve e e
  =

z(Vzz z+Vze e) + e(Vze z+Vee e) = Vzz z  + 2Vze z e + Vee e

As for the second one,

( j+ k)'V  = j'V  + k'V  ,

notice that we can write

j'V  = j'(Vz, Ve)  =  ( j'Vz, j'Ve) 



z

e

  =

= j'Vz z  + j'Ve e = djz z + dje e

Hence

(52) ( j+ k)'V  = (djz + dkz) z  + (dje + dke) e

Substituting (51) and (52) back into (50), we have

 cjk = 'V  + ( j+ k)'V + djk

Vzz z  + 2Vze z e + Vee e  +  (djz + dkz) z  + (dje + dke) e + djk

and therefore

(53) Cjk =  
1

EPj
 {djk + Vzz z  + 2Vze z e + Vee e  + (djz + dkz) z  + (dje + dke) e}
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Finally, recalling (40), Cjn  can be written in the form

(54) Cjn  
j'EX'Xn

EPj
  

1

EPj
 cjn

where

 cjn = j'EX'Xn

for n = z, e. Notice that

EX'Xz = E



X z

Xe

Xz =  




EXz

2

EXe X z

 = 



Vzz

Vze
 = Vz    and

EX'Xe = 



Vze

Ve e

 = Ve,

where the subindex in Vn indicates the column of matrix V we are taking. Hence,

cjn = j'Vn =  ( '+ j')Vn = 'Vn + j'Vn =  'Vn + djn

=  ( z, e) 



Vnz

Vne

  + djn = Vnz z + Vne e +  djn.

and therefore

(55) Cjn  
1

EPj
 (Vnz z + Vne e +  djn).

Using (48), (53) and (55), equations (38) and (39) can be rewritten in the form

(56)  plim 
  
ˆ r jk  = rj[1 + ejek  +  2( z z  + e e) + ( kz + jz) z + ( ke + je) e] +

+  
1

EPj
 {djk + Vzz z  + 2Vze z e + Vee e  + (djz + dkz) z  + (dje + dke) e}

(57) plim 
  
ˆ jn  = rj n +  

1

EPj
 (Vnz z + Vne e +  djn)  .

Finally, we proceed as above to obtain the appropriate small sample expressions to be estimated.

Using the sample variance of schooling series j (denoted by svar Pj)  to estimate EPj  we have

(56')  
  
ˆ r jk  = rj[1 + ejek  +  2( z z  + e e) + 

  
( ˜ 

jz + ˜ 
kz ) z + 

  
( ˜ 

je + ˜ 
ke ) e] +

+  
1

svar Pj  
 ˜ d jk + ˜ V zz z

2 +2 ˜ V ze z e + ˜ V ee e
2 + ˜ d jz + ˜ d kz( ) z + ˜ d je + ˜ d ke( ) e{ }+ jk

(57') 
  
ˆ jn  = rj n +  

1
svar Pj

 
  

˜ d jn + ˜ V nz z + ˜ V ne e{ } + jn

where tildes denote consistent sample estimates of different variables. Notice that the only unknown

quantities in these expressions are the coefficients to be estimated: rj and ej for j = 1...J, z, e, z and e.

We estimate (56') and (57') jointly by "stacking them" so that, for each j, the first J observations of

the dependent variable (one of which will be missing as k must be different from j) correspond to the

first-stage pairwise estimates of the reliability ratio of Pj, and the last two to the first-stage estimates,

  
ˆ jn . Notice that the resulting system is non-linear and requires heavy use of dummy variables for its

estimation. The following section contains a detailed discussion of the estimation procedure and can

be skipped without great loss.
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d. Further details on the estimation of the second-stage equations

This section describes how equations (56') and (57') are estimated using Eviews. We have eight

different schooling data sets, so J = 8 and, as noted above N = 2. We will estimate a system of 8

equations (one for each data set) with 10 observations, one of which will be missing.

We begin by reading the first-stage estimates 
  
ˆ r jk  and 

  
ˆ jn  and

    
˜ 

j  into a spreadsheet along with

other quantities of interest, such as the variances and covariances of the components of X (i.e. the

entries of the matrix     ̃  V ) and the (inverses of the) variances of the (appropriately transformed)

schooling series, which we denote by INVVARj. We then construct in the same spreadsheet the

dependent variable yj and a set of dummy variables for the "reference variable" used in each case (Ri

for i = 1 to 8, Rz, Re and Rp) as follows:

(58) 

    

y jk =

ˆ r jk       for k = 1 to 8,  k ≠ j

n.a.   for k = 1 to 8,  k = j

ˆ jz      for k = 9

ˆ je      for k = 10

 

 

 
 

 

 
 

             (59) 
    
Rik =

1      for k = 1 to 8,  k = i

0       otherwise     

 
 
 

  

(60) 
    
Rzk =

1      for k = 9

0       otherwise     

 
 
 

  
(61) 

    
Rek =

1      for k = 10

0       otherwise     

 
 
 

  

(62) 
  
Rpk = Rik

i =1

8

∑
Hence, yj "stacks"  

  
ˆ r jk  and 

  
ˆ jn  into a single dependent variable, Ri identifies those pairwise reliability

ratio estimates where the schooling series Pi is the reference variable, Rz and Re  identify the 
    
ˆ jz  and

    
ˆ je  observations, and Rp all the 

  
ˆ r jk  observations.

We copy all these variables into an Eviews workfile and place a "matrix" whose columns are the

estimated vectors 
    
˜ 

j  into a group called GROUPDELTA. The Eviews program shown in Box 1 then

calculates

(47)   
˜ d jk   

    
˜ 

j ' ˜ V ̃  
k      and    

  
˜ d jn  

    
˜ 

j ' ˜ V n

and constructs a set of artificial variables that correspond to the coefficients of z, e, z and e in

equations (56') and (57') and to the constants of the form 
  
˜ d jk and 

  
˜ d jn  that enter the second term of each

equation. These variables are called Xmuzj, Xmuej, Xdeltazj, Xdeltaej and Xdj and are defined as follows:

(63) 

  

Xmuzjk =

˜ 
jz + ˜ 

kz      for k = 1 to 8

1                  for k = 9

0                 for k = 10

 

 
  

 
 
 

             (64) 

  

Xmuejk =

˜ 
je + ˜ 

ke   for k = 1 to 8

0               for k = 9

1               for k = 10

 

 
  

 
 
 

(65) 

  

Xdeltazjk =

˜ d jz + ˜ d kz    for k = 1 to 8

˜ V zz             for k = 9

˜ V ez             for k = 10

 

 
  

 
 
 

             (66) 

  

Xdeltaejk =

˜ d je + ˜ d ke  for k = 1 to 8

˜ V ze           for k = 9

˜ V ee            for k = 10

 

 
  

 
 
 

(67) 

  

Xdjk =

˜ d jk    for k = 1 to 8

˜ d jz  for k = 9

˜ d je    for k = 10

 

 
  

 
 
 
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Next, we estimate the system of second-stage equations. It will be formed by 8 equations, one for

each data set. In the notation of this section, the equation for data set j will be of the form:

(68)  yj = rj








1*RP + ej*

  

Riei
i =1

8

∑
 

 
  

 

 
  + 2*RP*( z z  + e e) + z *Xmuzj + e*Xmuej 

+  INVVARj * {Xdj + RP*
  

˜ V zz z
2 +2 ˜ V ze z e + ˜ V ee e

2( ) + z*Xdeltazj + e*Xdeltaej}

We estimate equation (68) and a restricted version of the same equation where we impose the

assumption that measurement error is not correlated with the components of X (but continue to allow

for correlation across data sets). For the Eviews NLS algorithm to start iterating, non-zero initial values

must be assigned to at least some of the parameters. We set initial values by estimating a log-linear

approximation to the restricted version of equation (68). We have also repeated the estimation in

RATS and obtained very similar results.

Box 1: Eviews program for constructing variables (63) to (67)
____________________________________________________________________________
' The matrix MDELTACAPnj will contain the j's estimated in the first stage

' each j vector is a column of the matrix.

' we read it from a preexisting group imported from Excel called GROUPDELTA
MATRIX(2,8) MDELTACAPnj
MDELTACAPnj=@CONVERT(GROUPDELTA)

'Read in V = EX'X (note: these values are for the data in levels)
MATRIX(2,2) V
V(1,1)=0.1413
V(1,2)=3.44158E-04
V(2,1)=V(1,2)
V(2,2)=0.01418

' Declare auxiliary vectors that will be used in the computations
VECTOR(2) DELTAj
VECTOR(2) DELTAk
VECTOR(2) Vn

'The matrix MDjk will contain the djk and djn terms to be calculated below
MATRIX(8,10) MDjk

'Compute djk
FOR !J=1 TO 8
   DELTAj=@COLUMNEXTRACT(MDELTACAPnj,!J)
   FOR !K=1 TO 8
      DELTAk=@COLUMNEXTRACT(MDELTACAPnj,!K)
      MATRIX MTEMP1=@TRANSPOSE(DELTAj)*V*DELTAk

MDjk(!J,!K)=MTEMP1(1,1)
   NEXT
NEXT

____________________________________________________________________________
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Box 1: Eviews program for constructing variables (63) to (67), continued
____________________________________________________________________________
'Compute djn
FOR !J=1 TO 8
   DELTAj=@COLUMNEXTRACT(MDELTACAPnj,!J)
   FOR !N=1 TO 2

Vn=@COLUMNEXTRACT(V,!N)
      MATRIX MTEMP2=@TRANSPOSE(DELTAj)*Vn

MDjk(!J,8+!N)=MTEMP2(1,1)
   NEXT
NEXT

' We now construct the regressors given in (63) to (67). Notice that they are constructed so as to reduce
' the need for dummies in the equation to be estimated.

'Construct variables Xdj(k)  containing the terms djk and djn
FOR !J=1 TO 8
    SERIES XD{!J}
    FOR !K=1 TO 10
         XD{!J}(!K)=MDjk(!J,!K)
    NEXT
NEXT

'Construct variables Xmuzj and Xmuej
FOR !J=1 TO 8

SERIES XMUz{!J}
SERIES XMUe{!J}

    FOR !K=1 TO 8
        XMUz{!J}(!K)=MDELTACAPnj(1,!J)+MDELTACAPnj(1,!K)
         XMUe{!J}(!K)=MDELTACAPnj(2,!J)+MDELTACAPnj(2,!K)
    NEXT

XMUz{!J}(9)=1
XMUz{!J}(10)=0
XMUe{!J}(9)=0
XMUe{!J}(10)=1

NEXT

'Construct variables Xdeltazj and Xdeltaej
FOR !J=1 TO 8
    SERIES XDELTAz{!J}

SERIES XDELTAe{!J}
    FOR !K=1 TO 8
        XDELTAz{!J}(!K)=MDjk(!J,9)+MDjk(!K,9)
         XDELTAe{!J}(!K)=MDjk(!J,10)+MDjk(!K,10)
    NEXT

XDELTAz{!J}(9)=V(1,1)
XDELTAz{!J}(10)=V(1,2)
XDELTAe{!J}(9)=V(2,1)
XDELTAe{!J}(10)=V(2,2)

NEXT
____________________________________________________________________________
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e. Adjusted reliability rates and attenuation coefficients

  Once we have estimated the system, we recover the adjusted reliability ratios, rj', and construct

estimates of  and ERH  using equations (32), (44)  and (10') respectively.2 With these variables, we

construct the attenuation coefficients given in equation (33). The Eviews programshown in Box 2

performs these calculations.

Box 2: Eviews program for constructing the adjusted reliability ratios and attenuation coefficients
____________________________________________________________________________
' Execute this program after having estimated the system given in (68).

' Read estimated coefficients into vectors
' Read z and e into vector MU

VECTOR(2) MU
MU(1)=C(9)
MU(2)=C(10)

'Read z and e into vector VDELTAMIN

VECTOR(2) VDELTAMIN
VDELTAMIN(1)=C(29)
VDELTAMIN(2)=C(30)

'Read z  and e into vector PHI

' Note: these values are for the levels specification
VECTOR(2) PHI
PHI(1)=0.574
PHI(2)=1.470

'Calculate ERH
VECTOR(1) VTEMP5=@TRANSPOSE(MU)*PHI
SCALAR ER2H=VTEMP5(1)

'Read reliability ratios (rj) into coefficient vector RR
COEFFICIENT(8) RR
FOR !J=1 TO 8
    RR(!J)=C(20+!J)
NEXT

'Construct matrix containing vectors j =   + j
MATRIX(2,8) MDELTAMINnj
FOR !J=1 TO 8
   MDELTAMINnj(1,!J)=MDELTACAPnj(1,!J)+VDELTAMIN(1)
   MDELTAMINnj(2,!J)=MDELTACAPnj(2,!J)+VDELTAMIN(2)
NEXT
____________________________________________________________________________

2 In the case of the fixed effects specification, the estimated value of ERH   is a (very small) negative number. We

assume ERH   = 0 to construct the attenuation coefficients.
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Box 2: continued
____________________________________________________________________________

'Construct matrix containing the adjustment factors Cjk
MATRIX(8,8) Cjk
FOR !J=1 TO 8
   DELTAj=@COLUMNEXTRACT(MDELTAMINnj,!J)
   FOR !K=1 TO 8
      DELTAk=@COLUMNEXTRACT(MDELTAMINnj,!K)
      MATRIX TEMP1=@TRANSPOSE(DELTAj)*V*DELTAk
     Cjk(!J,!K)=TEMP1(1,1)*INVVAR{!J}(1)
   NEXT
NEXT

'Compute the adjusted reliability ratios, rj' and attenuation coefficients, aj
' put them into coefficient vectors called RRPRIME and ATT

COEFFICIENT(8) RRPRIME
COEFFICIENT(8) ATT
FOR !J=1 TO 8
   DELTAj=@COLUMNEXTRACT(MDELTAMINnj,!J)
   VECTOR TEMPV6=@TRANSPOSE(DELTAj)*MU
    SCALAR DENOM=(1-Cjk(!J,!J))-2*TEMPV6(1)*RR(!J)
    RRPRIME(!J)=RR(!J)/DENOM
    ATT(!J)=RRPRIME(!J)*(1-ER2H)/(1-ER2H*RRPRIME(!J))
NEXT
____________________________________________________________________________

f. Detailed results

Tables A.3 and A.4 show the detailed results of the second-stage estimation. Table A.3 gives the

results of equation (36) which yields estimates of j. Table A.4 shows the estimated values of the

raw ("consistent") reliability ratios, rj, and the coefficients ej, ,  ,  and ERH . For each growth

specification (levels, fixed effects and differences), we show results for a restricted model where we

impose the assumption that j  = 0 and for the full model developed above where we estimate j. In

the first case, the estimates of  are also obtained from a restricted version of equation (36), where we

impose a common coefficient for all data sets. See the discussion in the text about the estimation of

ERH , which is generally based on (10').

Notice that the hypothesis that  = 0 cannot be rejected for the data in differences (see the first

panel of Table A.4). For the data in levels, however, e is significantly lower than zero, indicating a

negative correlation between measurement error and the employment ratio for the D&D02 data set.

Since the estimated values of j are considerably lower for manyof the remaining data sets (see the

first panel of Table A.3), the correlation appears to be even stronger in these cases.
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Table A.3: Estimates of equation (36)

a. levels
________________________________________________________________

NSD Kyr B&L93 B&L96 B&L00 C&S D&D00 D&D02
Z 0.127 0.275 0.551 0.470 0.465 0.358 0.339 0.374

(2.21) (6.37) (8.07) (7.88) (8.71) (9.70) (8.74) (10.48)

E -0.022 -0.259 0.371 0.365 0.547 0.656 0.633 0.778
(0.12) (2.26) (1.66) (1.94) (3.25) (5.63) (5.17) (6.90)

 Rj
2 0.0397 0.3306 0.3720 0.3317 0.3982 0.4944 0.4450 0.5511

________________________________________________________________

b. fixed effects
________________________________________________________________

NSD Kyr B&L93 B&L96 B&L00 C&S D&D00 D&D02
Z 0.010 0.139 0.0898 0.114 0.079 0.047 0.072 0.055

(0.28) (2.36) (1.65) (3.40) (2.33) (2.67) (5.45) (4.11)

E -0.092 -0.881 0.195 -0.011 -0.007 -0.213 -0.027 -0.139
(0.63) (4.15) (0.84) (0.07) (0.05) (2.71) (0.46) (2.32)

 Rj
2 0.0397 0.2767 0.0231 0.0841 0.0413 0.1271 0.1972 0.1784

________________________________________________________________

c. differences
________________________________________________________________

NSD Kyr B&L93 B&L96 B&L00 C&S D&D00 D&D02
Z 0.029 0.222 -0.004 0.041 0.008 0.037 0.034 0.023

(0.63) (1.89) (0.03) (0.55) (0.13) (1.57) (1.80) (1.27)

E -0.102 -0.115 -0.042 -0.226 -0.181 -0.026 0.053 0.027
(0.98) (0.47) (0.15) (1.31) (1.19) (0.48) (1.25) (0.64)

 Rj
2 0.0165 0.0542 0.0002 0.0237 0.0153 0.0304 0.0402 0.0178

________________________________________________________________
- Note: t ratios below each coefficient.
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Table A.4: "Consistent" reliability ratio estimates. Detailed results
__________________________________________________________

                                                     levels                             fixed effects                      differences         .
restricted unrestr. restricted unrestr. restricted unrestr.

rj
NSD 0.186 1.407 0.117 0.135 0.086 0.142

[0.098] [0.304] [0.053] [0.051] [0.062] [0.063]

KYR 0.379 2.934 0.197 0.032 0.056 0.028
[0.196] [0.710] [0.072] [0.030] [0.070] [0.050]

B&L93 0.116 0.730 0.095 0.051 0.057 0.046
[0.059] [0.151] [0.041] [0.022] [0.035] [0.028]

B&L96 0.143 0.902 0.221 0.112 0.150 0.119
[0.073] [0.188] [0.061] [0.041] [0.068] [0.059]

B&L00 0.157 0.994 0.240 0.135 0.177 0.155
[0.080] [0.208] [0.063] [0.048] [0.073] [0.069]

C&S 0.272 1.752 0.591 0.403 0.729 0.633
[0.140] [0.365] [0.079] [0.076] [0.079] [0.068]

D&D00 0.263 1.752 0.914 0.332 0.570 0.432
[0.135] [0.362] [0.094] 0.125 [0.085] [0.083]

D&D02 0.255 1.669 0.959 0.643 0.818 0.772
[0.131] [0.347] [0.095] [0.099] [0.087] [0.078]

ej
NSD 0.912 -0.381 0.741 0.383 0.341 -0.149

[0.470] [0.049] [0.399] [0.297] [0.402] [0.253]

KYR 0.633 -0.039 -0.033 0.502 -0.998 -0.967
[0.386] [0.027] [0.286] [0.442] [0.400] [0.409]

B&L93 2.590 -0.813 2.020 3.148 2.250 2.830
[0.720] [0.087] [0.550] [0.729] [0.706] [0.892]

B&L96 2.301 -0.737 1.657 2.341 2.306 2.622
[0.690] [0.079] [0.493] [0.648] [0.748] [0.902]

B&L00 2.322 -0.706 1.152 1.654 1.209 1.274
[0.693] [0.076] [0.388] [0.496] [0.454] [0.475]

C&S 1.479 -0.371 0.209 0.214 -0.028 0.018
[0.564] [0.043] [0.157] 0.127 [0.082] [0.071]

D&D00 1.495 -0.374 -0.288 -0.061 -0.378 -0.240
[0.559] [0.042] [0.110] [0.132] [0.135] [0.115]

D&D02 1.540 -0.348 -0.200 -0.186 -0.257 -0.194
[0.575] [0.041] [0.101] [0.075] [0.092] [0.075]

__________________________________________________________
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Table A.11: "Consistent" reliability ratio estimates. Detailed results (continued)
__________________________________________________________

                                                     levels                             fixed effects                      differences         .
restricted unrestr. restricted unrestr. restricted unrestr.

z -0.200 0.049 0.014
[0.165] [0.010] [0.015]

e -0.691 -0.212 0.038
[0.295] [0.166] [0.069]

z 3.456 0.910 2.580 0.801 1.301 0.755
[1.774] [0.132] [0.258] [0.653] [0.184] [0.583]

e 0.340 0.249 -0.353 -0.340 0.037 -0.216
[0.249] [0.084] [0.160] [0.517] [0.160] [0.530]

z 0.278 0.574 0.052 0.00622 0.029 0.009

e 0.319 1.469 -0.081 0.07336 0.033 -0.011

ERH 1.069 0.887 0.163 -0.020 0.039 0.009

__________________________________________________________
Notes:

- Standard errors in brackets below each coefficient
- The restricted model assumes j  = 0.
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