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Hugo Rodŕiguez Mendizábal
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1. Introduction

This paper tackles the question of the choice of an exchange regime, with a special
focus on target zones. During the nineties, a large amount of literature analyzed
a variety of issues regarding target zones, both from a theoretical perspective
(i.e. mainly the properties of the model proposed by Krugman [15] and of its
variants) as well as from an applied point of view (i.e. mainly the crisis of the
European Monetary System). The creation of the European Monetary Union led
exchange rate researchers to move their interests to other questions apart from the
ones proposed by the target zone literature. Yet, we believe there are still useful
insights to be learnt on target zones. The reasons why we persist are threefold:

1. Target zones have been the predominant exchange rate agreement in the
world throughout contemporary history. Some recent analyses have reclas-
sified exchange rate regimes focusing on what countries actually do rather
than on what they say they do (see Calvo and Reinhart [6], Reinhart [23],
Reinhart and Rogoff [24], Fischer [8] and Levy-Yeyati and Sturzenegger
[17]). This implies a distinction between de jure and de facto typologies.
De jure examples of target zones are numerous: the interwar Gold Stan-
dard, the postwar Bretton Woods regime, the European monetary snake
of 1971, the European Monetary System (EMS) from 1978 to 1998, or the
unilateral target zone of Sweden from August 1977, among others. On the
other hand, the number of de facto examples of target zones is much larger.
The aforementioned literature has stressed the fact that many of the de jure
free floaters strongly intervene to soften the fluctuations of the nominal ex-
change rate. This has been labeled as fear of floating. The recent de facto
classification of Reinhart and Rogoff [24] confirms that most of the major
currencies are traded in an international exchange market characterized by
bands of fluctuations (see their Appendix III). According to these authors,
“...the most popular exchange rate regime over modern history has been
the crawling peg or narrow crawling band, which accounts for over 26 per-
cent of the observations”. In the Western Hemisphere, this accounts for
about a 42 percent of the observations. Their sample consists on market-
determined paralell exchange rates observations of 153 countries from 1946
through 2001.

2. Target zones shall probably be an important exchange rate agreement at least
in the nearby future. As an example, consider the ERM2 which, from Jan-
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uary 1st 1999, is working as a “hub-and-spokes” zone between the euro and
those currencies of the European Union countries not participating in the
Monetary Union (United Kingdom, Denmark and Sweden). Also, accession
countries to the European Union shall commit to a target zone arrangement
during the transition period. Again, many other de facto examples could
be quoted.

3. Any exchange rate regime can be seen as an special case of a target zone.
Pegged rates can be seen as target zones with band widths equal to zero
and pure floating rates are equivalent to fluctuation bands with an infinite
width. In between, dirty floats can be seen as implicit target zones with
finite bands while target zone regimes impose those bands explicitly. The
choice of an exchange regime then consists on deciding how wide should
the bandwidth be. It must be clear that we will not try to give a typology
of exchange regimes alternative to the ones given by Reinhart and Rogoff
[24] or by Levy-Yeyati and Sturzenegger [17]. Instead, what we do is to
construct a general model able to represent any exchange agreement. By
doing so, we can rationalize such a choice.

The need of a more formal target zone model becomes more important given
that the extreme regimes (i.e. the fixed rate and the flexible rate) are only stan-
dard textbook cases. While Obstfeld and Rogoff [22] predicted a world of widely
floating exchange rates, given the removal of controls to international capital mo-
bility, the fear of floating literature has pointed out that countries reveal a prefer-
ence towards smoothing the dynamics of the exchange rate. Intermediate regimes
seem to be defining the current world so that completely fixed or fully flexible rates
(see Fischer [8]) are seldom observed. Pure fixed exchange rate regimes are rarely
used since they compromise a large amount of monetary independence. A mone-
tary commitment that pegs the exchange rate to a low inflation foreign currency
can establish a disciplining effect that motivates a higher degree of credibility and
price stability (see Giavazzi and Pagano [12]). However, given the evidence on the
choice of currency regimes by central banks, it seems that the gains from stability
of fixed exchange rates have not been big enough to dampen the losses from less
monetary independence (see Svensson [30] for a detailed discussion). On the other
hand, pure free floating regimes are not observed either. Monetary authorities use
to play leaning against the wind policies in an attempt to control the exchange
rate around some target level, official or unofficially. Thus, it seems that hybrid
exchange regimes based on target zones have been widely used on the basis that
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it apparently reaps the benefits of both flexible and fixed exchange rates.
Krugman [15] presented the model that has become the standard tool to study

target zones regimes. The dynamics of the exchange rate were derived from a
linear asset pricing relation and an arbitrage condition given by the uncovered
interest rate parity. His model assumed that the central bank intervenes so as
to maintain the exchange rate within the band. In this paper, we look at two
issues. First, we extend Krugman’s model in two directions: (i) we allow the
central bank to perform intramarginal interventions, that is, to use its monetary
policy to affect the exchange rate before it hits the limits of the band and, (ii) we
introduce lack of credibility of the target zone, that is, the perception by market
participants of the possibility that the central bank will not defend the band when
it has to. Unlike the literature following Krugman’s work that has concentrated
on one of these extensions at a time, we show that both features are needed in
order to reconcile the model with data. As a second issue, we use the model to
rationalize the choice of target zones over the rest of regimes: the fixed rate, the
free float and the managed float. It is shown that, by imposing a target zone, the
monetary authority may gain efficiency through reducing volatility of both the
exchange rate and the interest rate simultaneously.
The paper is organized as follows. Section 2 sets up the general model. Sub-

sections 2.2 to 2.4 show how the fixed rate, the managed float and the free float
can be seen as extreme cases of a target zone. Section 2.5 develops the target
zone solution. Section 3 deals with the two questions outlined in the previous
paragraph. The last section concludes.

2. Set up of the Model

2.1. General assumptions

The model represents a highly stylized dynamic stochastic general equilibrium
economy. It can be thought of as a reduced form version of more complicated
fully optimizing models. Time is discrete. First, consider an equation specifying
equilibrium in the money market:

mt − pt = ϕyt − γit + ξt, (2.1)

where mt is money supply, pt is the domestic price level of yt, a tradable good,
it is the domestic interest rate of a one period of maturity bond, and ξt is some
shock to money demand. They are all expressed in logs, with the exception of
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the interest rate. Parameters ϕ and γ are both positive: money demand increases
with output because of a transaction motive and there is an implicit liquidity
preference behavior, meaning that money can be a substitute for a bond that
returns a nominal interest it.
Let xt be the log of the nominal exchange rate, expressing the price of one

unit of foreign currency in terms of domestic currency. The (log) real exchange
rate is given by

qt = xt − pt + p∗t , (2.2)

where p∗t is the foreign price (variables with star will denote the foreign analogue).
Call dt ≡ it−i∗, the interest rate differential, where i∗ is the foreign (constant)

rate, and assume perfect capital mobility, risk aversion and the uncovered interest
rate parity condition (UIP)

dt = Et {xt+1 − xt}+ rt, (2.3)

where Et is the expectation operator conditional on information available at time
t. Thus, the expected rate of depreciation must compensate for the interest rate
differential plus the foreign premium, rt. We assume the variable rt to be exoge-
nous and governed by a first order Markov process

rt = rt−1 + εt. (2.4)

The white noise {εt} is supposed to be Gaussian, εt ∼ N (0,σ2), for convenience.1
Using (2.2), (2.3) and (2.1) one obtains

xt = ft + γEt {xt+1 − xt} , (2.5)

ft = mt + vt,

vt = θt + γrt,

θt = qt − p∗t − ϕyt + γi∗ − ξt.

1The foreign risk premium plays a key role in the current paper. In general, the UIP does not
hold (see Ayuso and Restoy [1]). Conventional target zone models consider that deviations from
UIP are negligible in target zones (see Svensson [28]). A common practice in some credibility
tests of target zones relies in this idea (v.g. the simplest test, see Svensson [25], and the drift
adjustment method of Bertola and Svensson [5]). However, Bekaert and Gray [3] find that the
risk premia in a target zone are sizable and should not be ignored. They argue that this might
be the reason of why the credibility tests run on EMS at the beginning of the nineties failed in
anticipating the 1992-93 turbulences.
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Total fundamentals ft amount to an endogenous process, mt, plus an exogenous
process, vt. By iterating forward on xt we have that

xt = (1− ν)
∞X
τ=0

ντEtft+τ = (1− ν)
∞X
τ=0

ντEt {mt+τ + vt+τ} , (2.6)

with ν ≡ γ (1 + γ)−1. The forward looking behavior from UIP implies that the
value of asset xt is the present discounted value of the future stream of funda-
mentals. Notice that (1− ν)

P∞
τ=0 ν

τ = 1, thus, if mt+τ were orthogonal to vt+τ
for all t and τ , the long run effect of an increase in mt is to impulse xt by an
equal amount. We assume that both the central bank and traders can observe
the realization of θt and rt.
The monetary authority must choose the path for money {mt} so to maximize

its preferences subject to the evolution of {vt} and the exchange rate regime.
The objective is to set up these preferences to capture the degree of monetary
independence that arises under alternative exchange rate regimes. As in Svensson
[29], the concept of monetary independence is associated with the interest rate
variability. At one extreme, and in the absence of realignments, a fixed rate
eliminates monetary independence. At the other extreme, a managed float regime
provides the highest degree of independence. In between, a target zone gives some
scope to focus the monetary policy on domestic problems. To capture this idea,
the central bank (henceforth, CB) preferences are modeled to evaluate the trade-
off between interest rate variability versus exchange rate variability

J =
1

2
Et

( ∞X
τ=0

βτ
£
d2t+τ + λ (xt+τ − ct)2

¤)
. (2.7)

The long run desirable target for the interest rate differential is zero. The target
for the exchange rate is the central parity ct around which deviations are punished
by the relative penalty λ. The factor β ∈ (0, 1) is a time discount rate.
We think of a very short maturity term for the bond in the UIP, say a few

days, a week or a month at most. The idea is that the CB controls some monetary
aggregate {mt} to target {dt, xt}. Output realizations and real fluctuations are
observed with some delay, and not available by the time monetary policy is decided
so the only available information at any period is {θt, rt}. From (2.3) and (2.5) it
is easy to show that mt will respond one to one to the shock θt and the problem
reduces to deciding how to split the shock rt between dt and xt. Thus, the CB
just needs to choose dt and xt every period given the value of rt to minimize
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(2.7) subject to (2.3), (2.4) and the exchange regime which restricts the policies
available to the CB.
In what follows, any of the exchange rate regimes can be characterized by the

triple {λ, w,α}. The first element is related to the preferences. The number w
is the band width. The last term α is the probability that the CB defends the
currency when it is outside the band and measures the credibility of the exchange
regime. This triple will adopt particular values for any of the exchange regimes
considered.

2.2. The fixed exchange rate

Consider first a CB that can credibly commit to fix the exchange rate to ct = c.
This regime appears as a particular case of the target zone when w = 0 and α = 1.
Given the forward looking restriction of (2.3) and the pure random walk exhibited
by rt, the solution for dt and xt is

dt = rt and xt = c. (2.8)

That is, under a fixed exchange rate regime the nominal interest rate absorbs the
whole variability of rt. The expected value of the game under this regime is

Jc (rt) =
1

2

µ
1

1− β

¶·
r2t +

β

1− β
σ2
¸
. (2.9)

The variability of the interest rate is a source of time inconsistency. If the
CB can commit to a rule like (2.8), it must exhibit a stronger response to the
risk premium shock in an attempt to content the exchange rate at the central
parity. However, there arises the possibility of deviating from this simple rule in
order to reduce interest rate variability. If this temptation is captured by market
participants, the simple rule will no longer be credible. Hence, (2.8) would be
time inconsistent.

2.3. The managed float

This regime is a particular case of the target zone when {λ > 0, w→∞,α = 1}.
The solution is related to a managed or dirty floating rate where the CB exploits
the trade-off between the variability of the exchange rate and the interest rate
every period. After the shock rt is realized and agents have formed their expec-
tations on future values for the exchange rate, the CB must set the two target
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variables {dt+τ , xt+τ}∞τ=0 with one instrument {mt+τ}∞τ=0, to minimize the loss
(2.7) subject to the arbitrage condition (2.3) and the relation in (2.4). Notice the
exchange regime does not impose additional restrictions.
The optimality condition is given by the difference equation

xt = c+
rt
λ
+
1

λ
Et {xt+1 − xt} . (2.10)

The central parity is constant here since, with an infinitely-wide band, there will
be no realignments. Forward iteration yields

xt = c+
1

1 + λ
Et

∞X
τ=0

rt+τ
(1 + λ)τ

. (2.11)

It is useful to compare expression (2.11) to (2.6): the optimal exchange rate is
equal to the central parity plus the present discounted value of the future stream of
foreign risk premia which is the only fundamental shock that affects the exchange
rate. From (2.4), a linear closed form solution of (2.11) is

xt = c+
rt
λ
. (2.12)

The discretionary rate is then equal to the fixed rate plus a depreciation bias.
Forming a one-period ahead expectation yields

Etxt+1 = c+
rt
λ
= xt, (2.13)

so, from (2.3), the target variable dt is

dt = rt. (2.14)

A shock to the risk premium impulses exchange and interest rates in the same
direction. Combining (2.12) and (2.14), a linear control condition is given by

dt = λ (xt − c) , (2.15)

meaning that the interest rate differential is proportional to the depreciation (or
appreciation) bias with respect to the central parity. This is just a leaning against
the wind policy, where the interest rate differential is positive when the currency
is above the target and negative below. Under the uncovered interest rate parity,
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conditional on xt, the risk premium has a positive relation with dt. Similarly,
conditional on dt, rt has also a positive relation with xt. Therefore, a central bank
that is concerned about the volatility of interest rate differentials and of exchange
rates will optimally split the variation of rt between dt and xt. This results in a
regime of intra-marginal interventions or managed float. The higher the value of
λ, the smaller the variance for the exchange rate is.
The explicit form for the expected value of the game under the discretionary

managed float is calculated as

Jmf (rt) =
1 + λ

2λ

µ
1

1− β

¶·
r2t +

β

1− β
σ2
¸
. (2.16)

It is straightforward to see that the previous fixed rate regime is a first best. There
is no trade-off between the exchange rate and the interest rate. The attempt of
the CB in giving the interest rate a lower volatility by trading with the exchange
rate variance is a vain effort. It results in a discretionary time consistent solution,
where the volatility of the interest rate is unaffected and the exchange rate begins
to float. The CB is worse off.
Finally, once the target variables have been determined, equation (2.5) gives

us the optimal level for the monetary instrument. From (2.5), the CB will expand
or absorb mt, according to

mt = c+ (1 + γλ)
rt
λ
− θt . (2.17)

2.4. The pure free float

Consider now the case where the CB announces that the risk premium shocks will
not be dampened over the exchange rate, whatever the preference parameter λ is.
That means

xt = c+ rt. (2.18)

This is a laissez faire solution. The slope of the exchange rate function with
respect to the fundamental is one. According to the UIP (2.3), the interest rate
differential is again given by

dt = xt − c = rt.
Is it a time consistent result? As with the fixed rate, the CB is not deciding

its monetary policy rule to optimize (2.7) and this may be a source of time in-
consistency. The result in this regime, depends on the value of λ, though. For
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the particular case λ = 1, free and managed float solutions are identical and
consistency over time is therefore preserved. However, for values of λ 6= 1, the
market will perceive that CB’s incentives to trade volatility of the exchange rate
for volatility of the interest rate are different than 1 and the announcement of
the free float will be no longer credible. Notice, that the relevant regime to be
compared with the target zone is the managed float.
For the sake of completeness, we can compute the indirect value function for

the free float:

Jff (rt) =
1

2

µ
1 + λ

1− β

¶·
r2t +

βσ2

1− β

¸
. (2.19)

The relation between the values for the fixed, the managed and the free float rates,
can be written as

Jff = λJmf = (1 + λ)Jc,

for any rt, see expressions (2.9), (2.16) and (2.19), respectively. Differences among
regimes will have to be found in the exchange rate dynamics since they imply the
same process for the interest rate differential. Clearly, the fixed rate is preferred
over the two other regimes, although it is time inconsistent. The ordering of the
losses for the free float and the managed float will depend upon the value of λ
with respect to 1. If λ < 1, the CB is better off with the free float. Otherwise,
for λ ≥ 1, managed float is a better regime.

2.5. The target zone

In this case, the regime is characterized by {λ ≥ 0, w ≥ 0,α ∈ [0, 1]}. The first
element is related to the preferences in (2.7). The number w is the band width.
The last term α is the probability that the CB defends the currency when it
is outside the band and measures the credibility of the exchange regime. We
suppose that, within the bands, the CB defends the currency with probability 1.
As stated in the introduction, the purpose is to construct a model able to generate
a consistent target zone solution, in the sense that the CB finds it optimal to
defend the target zone at the margins by probability α. There are not further
incentives to renege from the target zone ex-post.
From the previous discussion, both the exchange rate and the interest rate

differential will be functions of the shock rt. So, the timing of events at any time
t will be as follows:
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1. The shock rt is realized.

2. If the realization of the shock makes the exchange rate be within the target
zone, the CB solves a minimization problem. The process is as follows:

• The central parity from last period is left unaltered: ct = ct−1.

• Forward looking agents form expectations Etxt+1.

• For given {Etxt+1, rt, ct}, the CB chooses {xt, dt} by minimizing the
loss (2.7) subject to the arbitrage condition (2.3), the relation in (2.4)
and the additional restriction imposed by the target zone system.

3. If for that value of the shock the exchange rate should be outside a band
[ct − w, ct + w], for instance, say it is above the upper limit ct + w, the CB
can do any of two actions:

• It defends the currency with probability α. This means that the ex-
change rate is pegged at the edge of the band, xt = ct + w, and the
central parity is not altered, ct = ct−1.

• It realigns the currency with probability (1− α). In this case, the
central bank devalues the central parity by µ ≥ w, i.e. ct = ct−1 + µ,
and situates the exchange rate at xt = ct.

4. Finally, for a given shock θt in the money demand equation (2.5), the CB
supplies the optimal quantity of money mt supporting the pair {xt, dt}.

To understand the way this economy works consider the following. Assume
the risk premium starts from r0 = 0. The CB can set the exchange rate at
x0 = 0 and a target zone of width w around c0 = 0. Because of the symmetry
of the forcing process, the interest rate differential is d0 = 0, which equals the
target value for that variable. As time progresses, the risk premium wanders
around and the exchange rate moves away from its center c0 = 0. Given that the
exchange rate is a function of the shock rt, the foreign risk premium must also be
fluctuating within a symmetric zone with center ρ0 = 0. This zone is denoted as
[ρ0 − r, ρ0 + r]. How far the exchange rate wanders from the center of its band
should be a function of the distance between the risk premium and ρ0. So, for the
periods before the first realignment, we could write

xt = c0 + u(rt − ρ0),
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where u(rt − ρ0) is the function linking the exchange rate to the fundamental
process rt within the band.
Imagine that at time t = τ , one of the limits of the exchange rate band is

reached. This means that rτ = ρ0 ± r two level conditions must be satisfied
u (−r) = −w, (2.20)

and

u (r) = w. (2.21)

When exchange rate is at the boundaries of the target zone, the CB could keep xt
at the edge of its band. In such a case, all movements in rt will be transferred to the
interest rate differential. The other possibility implies the central bank realigning
the target zone. In such a case, the exchange rate jumps to cτ = cτ−1+µ, and the
center of the band for the risk premium moves to ρτ = rτ . After the realignment
takes place, the behavior of the exchange rate band within the target zone is again
governed by the function u so we can write in general

xt = ct + u(rt − ρt).

Let x(rt) be the function relating the exchange rate to the risk premium at
any time, that is, within as well as outside the target zone. This function satisfies

x (rt) = ct


+µ if rt > ρt + r with probability 1− α
+w if rt > ρt + r with probability α
+u (rt − ρt) if rt ∈ [ρt − r, ρt + r]
−w if rt < ρt − r with probability α
−µ if rt < ρt − r with probability 1− α.

(2.22)

The unknown continuous function u (rt − ρt) represents the CB’s best response
when the risk premium lies within its band [ρt − r, ρt + r]. To find it, we use the
first order condition for values of rt ∈ [ρt − r, ρt + r],

(1 + λ) [u (rt − ρt)− ct] = rt +Et [x (rt+1)] . (2.23)

Outside of the band, condition (2.23) does no longer hold and the trade-off is not
optimal. In order to find out the particular form of the function u (rt − ρt), the
band for the fundamental [−r, r] must be computed, given the level conditions
(2.20) and (2.21). Forward recursion is used to solve for u (rt) with the first
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order condition (2.23) subject to (2.22). Appendix A provides all the details for
computation of the solution.
From condition (2.23) and (2.3), it is straightforward to see that the model

produces a positive relation between the exchange rate of depreciation within the
band and the interest rate differential:

dt = λ [u (rt − ρt)− ct] + ρt, (2.24)

outside the bands, the trade-off is not optimal and expression (2.24) does not
hold.

3. Results

Before we start with the computations, let us first remind the reader about the
implications derived from the main features of Krugman’s model: the honey moon
and the smooth pasting effects (see Svensson [27] and Krugman and Miller [16]).
The first means that the response of the exchange rate to changes in fundamentals
is smaller than the response under the free floating regime. That is, as compared to
a free floating, the band works as an exchange rate stabilizer. The smooth pasting
implies that the response of the exchange rate tends to zero as it approaches the
edges of the band. This is because agents are forward looking and anticipate the
intervention by the central bank when the exchange rate gets close to the limit of
the band.
Svensson [27] has summarized the testable implications of Krugman’s model.

First, the distributions of both the exchange rate and the interest rate are U -
shaped. That is, the exchange rate tends to live close to the limits of the band.
Second, there is a negative and deterministic relation between the exchange rate
and the interest rate differential. This relation is given by the uncovered interest
rate parity. Finally, the exchange rate exhibits a non-linearity in its univariate
forecasting equation, which is a consequence of the smooth pasting effect. How-
ever, empirical tests have challenged these predictions. The distribution of the
exchange rate has been observed to be hump-shaped rather than U -shaped, so the
exchange rate accumulates probability around the center of the band. Secondly,
the relationship between the exchange rate and the interest rate is positive rather
than negative. Finally, it seems that the effects of the smooth pasting condition
are not as relevant as predicted by theory and exchange rates are linear functions
of the fundamentals.
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In what follows we calibrate our model and compare its predictions with the
data. Furthermore, we compute the losses (2.7) under different regimes and pro-
vide a rationale as of why target zones may be widely used as an exchange rate
system.

3.1. Parameters

The following values for the parameters are used in the numerical exercises of this
section. We think of a week as the time frequency. As in Svensson [29], the time

discount factor is set to β = 0.90
1
52 . We use this value to ease the calculations

but the main results of the paper do not hinge on it.
The selection of a standard deviation for the shock to the risk premium, σ, is a

troublesome task. Bekaert [2] reports an unconditional variance for a time invari-
ant risk premium of 10.6222, for the Dollar/Yen rate. This figure yields a weekly
standard deviation of about σ = 0.002 basis points per week. Unfortunately,
we have not found an estimation of a time varying risk premium governed by a
random walk structure, as assumed throughout this paper. As an approximation,
we have used the ARCH-in-mean estimation by Domowitz and Hakkio [7], for
monthly observations 1973:6-1982:8, of the British Pound, the French Franc, the
Deustche Mark, the Japanese Yen and the Swiss Franc, all against the US Dollar.
A Montecarlo simulation has been run in order to calculate this moment. Table
1 reports the standard deviations for a first difference of rt. The Swiss Franc
presents a time invariant risk premium. Hence, it seems reasonable to assume an
a priori value σ = 0.002, as in Bekaert [2].
Two bands are chosen, w = ±2.25% and ±6.00%, the widths experienced in

the ERM. The value of the constant µ is estimated depending on the band width
w. Tables 2 collects data of realignment rates for the currencies participating in
the ERM of the EMS, except for the Dutch Guilder. From this table it seems that
realignment rates of ±4.5% and ±6.3% for widths of ±2.25 and ±6%, respectively,
are consistent with the EMS history
Since there is no prior for the relative weight of the exchange rate variability

in the preferences of the CB, we use a wide range of values within which the
parameter λ is thought to be about. These values are λ = 0.2, 0.5, 1.0, 2.0 and
5.0.

Tables 1 and 2 about here
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3.2. Nonlinearities in the exchange rate function

Let us start examining the degree of nonlinearities in the exchange rate function
predicted by our model.2 Figures 1 to 3 plot the function u (rt) for probabilities of
defense α = 0, 1

2
, and 1, together with the managed float and the free float. The

three figures differ on the value of λ which are 0.5, 1, and 2, respectively. The 45
degree line corresponds to the free float. The other linear solution is the managed
float. We can see that the relative slopes of these two solutions depend on the
value of λ. Among the nonlinear solutions, the flattest function corresponds to
α = 1, the target zone regime under perfect credibility. On the other extreme,
the most sloping curve corresponds to the case where the currency is realigned for
sure at margins, that is, α = 0. We can see that the degree of nonlinearity of the
target zone solutions to be very small. Furthermore, as the value of λ increases,
the target zone solutions get closer to the managed float which is the relevant
regime to be compared with. This later result is independent of the credibility of
the target zone.
We also observe that the slope of the function u(rt) changes with r and this

change depends on the value of α. To make this result clearer, Figure 4 plots
u0 (rt) for λ = 1 and for values of α equal to 0, 14 ,

1
2
, 3
4
and 1. First, we see that for

α smaller than 3
4
, the slope tends to increase as the exchange rate approaches the

limits of its band and we obtain the inverted S-curve as in Bertola and Caballero
[4]. The opposite occurs when α is above 3

4
. However, even in the fully credible

case, the slope does not reach zero at the edges, that is, there is no smooth
pasting condition. Violation of smooth pasting in the standard model implied a
discontinuity jump in the expected rate of depreciation function. In our model,
continuity of functions u (rt) and Etxt+1 is preserved under the level condition
u (r) = w, and the former arbitrage arguments do not apply here (see Appendix

2The empirical literature finds that the effects of the non-linearities from the smooth pasting
condition are not as much important as predicted. See, for example, Meese and Rose [21] for
three alternative regimes, the ±1% band of the Bretton Woods system, the gold standard for
the British Pound, the French Franc and the Deustche Mark (versus the US Dollar), and third,
the EMS regime for the Dutch Guilder and the French Franc cases (versus the Deustche Mark).
The null hypothesis of non linearities is rejected for the three regimes. Lewis [18] runs a variety
of tests for the G-3 case (US, Germany and Japan) in order to check for possible non linearities
arising from implicit target bands and from the intervention policy. In all the cases, the exchange
rate seemed to be a linear function of the estimated fundamentals. Evidence on rejection of this
hypothesis is also reported in Lindberg and Söderlind [19] for Swedish data. Flood, Rose and
Mathieson [9] do not either find relevant evidence of the smooth pasting for three alternative
methods (graphical examination, parametric tests and forecasting analysis).
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B for a detailed explanation justifying this non smooth pasting result).

Figures 1, 2, 3, 4 about here

3.3. U-shaped versus hump-shaped distributions

In the standard model, the U-shaped distribution is implied by the perfect cred-
ibility assumption. Since the exchange rate function flattens near the edges, a
considerable mass of probability will be concentrated at the margins. However,
the empirical literature has pointed out that the distribution of the exchange rate
is hump-shaped rather than U -shaped.3

Figures 5, 6 and 7 plot the ergodic probabilities of different depreciation rates
within the band for λ = 2 and for three different values of α: 1, 0.8 and 0. As
suggested before, figure 5 shows that for the particular case of α = 1, the exchange
rate distribution displays a U-shaped distribution. On the contrary, figures 6 and
7 show that for α different than 1, the distribution is hump-shaped. This occurs
even for values of α close to 1. The explanation is twofold. The first reason is
related to the value of α. For low values of α, continuous realignments move
the exchange rate to new central parities, that is, to new centers of new bands.
Additionally, lack of credibility implies that the slope of exchange rate function
increases at margins, as we have shown in the previous subsection. Thus, stability
is higher around the centers. This helps to accumulate probability mass at the
interior of the bands. The second reason has to do with the value of λ. If this
parameter is high, the central bank will have incentives to further stabilize the
exchange rate.

Figures 5, 6, 7 here

3See, for example, Bertola and Caballero [4] for the French Franc against the Deustche
Mark exchange rate case during 1979-87; and Lindberg and Söderlind [19], [20], for the Swedish
unilateral target zone with a vast set of daily data covering from 1982 to 90. The work of Flood,
Rose and Mathieson [9] also finds hump-shaped histograms for EMS exchange rates. They use
daily data for eight EMS currencies and the British Pound (during its pre EMS membership)
over 1979-90, weekly data from the classical gold standard (UK, US, France and Germany), and
monthly data from the Bretton Woods regime.

16



3.4. The relation between exchange rates and the interest rate differ-
entials

Empirical observations have shown the existence of a positive relationship between
the exchange rate and the interest rate differential.4 Bertola and Svensson [5]
suggest that incorporating a realignment risk premium may alter the sign of the
covariance between these two variables from negative to positive.
In our model, this relation has always a positive sign, regardless the value of

the parameters. This is a consequence of intramarginal interventions, summarized
by the first order condition (2.15). Both the interest rate and the exchange rate
are driven by the same variable, namely, the risk premium. The central bank
decides at each period how to distribute the shock on rt between xt and dt. Ex-
pression (2.15) tells us that it is always optimal to move both variables on the
same direction with λ being the ratio between the two. This gives rise to a posi-
tive linear relationship between the two variables. Hence, the honey moon effect
is also transmitted to the interest rate smoothing.

3.5. On the choice of a target zone regime

In this subsection, we estimate the loss functions for the four regimes using the set
of parameters early stated. Losses for the fixed rate, the managed float and the
free float are given by expressions (2.9), (2.16) and (2.19). The target zone loss is
numerically computed. We consider a starting point r0 = 0, and a time horizon of
2000 periods. This time length accumulates a 91.2% from the total accruing value
and does not alter the ordinality of values for the exchange regimes. Calculations
of the indirect costs are reported in table 3 for w = ±2.25% and table 4 for
w = ±6%. In each table, the first row refers to the cost of the fixed rate regime,
Jc, and the following five rows represent the costs of a target zone for α = 0,
1
4
, 1
2
, 3
4
, and 1, respectively. The seventh and eighth rows collect the managed

float costs, Jmf , and the free float costs, Jff . From these tables we highlight the
following results.
First, as it was mentioned above, the fixed rate is the regime with the lowest

value for the loss function.
Second, with respect to the target zone regime, the closer α is to 1, the smaller

the losses are. This represents the gain from credibility of commitment to a zone.
The slopes of both the exchange rate function and the interest rate differential

4See Svensson [26], Flood, Rose and Mathieson [9], Lindberg and Söderlind [19], and Bertola
and Caballero [4].
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flatten for α approaching to 1. When market traders perceive that the CB will
defend the zone with a high probability, the realignment risk will be low and the
exchange rate responses to changes in the foreign risk premium will be soft. In
turn, this perception will contribute to smooth the expected rate of depreciation.
Hence, the outcome is that the interest rate differential will be more stable as
well.
Third, for target zones very close to being credible (α close to 1), the present

value of the costs of a target zone are smaller than the costs of a managed float.
Notice that, unlike the previous literature that used the free floating as an alter-
native, the right regime to be compared with is the managed float. As with the
second result, forward looking agents help stabilize the rate without pressuring
the interest rate, due to the honey moon effect.
To make this point clearer, figures 8, 9 and 10 represent the contributions to

the loss functions due to the variability of the exchange rate and the interest rate
for all the regimes and values of λ equal to 0.5, 1, and 2, respectively. The circle
corresponds to the fixed rate, the square to the managed float and the triangles
are the target zones for different values of α. It is clear that there must be an
interval for α close to 1 that reduces the volatility of both the exchange rate and
the interest rate with respect to the managed float.

Table 4 and 5 here
Figures 8, 9 and 10 here

4. Conclusions

This paper presents a target zone model based on two extensions of Krugman’s
[15] model. These extensions are the introduction of intramarginal interventions
and the lack of credibility of the target zone. These two features had been ana-
lyzed separately by the literature. Here, we show that both extensions are needed
to reconcile the model with the data. The leaning against the wind policy derived
from the time-consistent intramarginal intervention produces a positive relation
between exchange rates and interest rates differentials as we observe in the data
as well as is behind the almost linear relation between exchange rates and fun-
damentals. Furthermore, lack of credibility is responsible for the hump-shape
distribution of exchange rates.
As a second application, the model provides a framework in which to evaluate

why target zones seem to be the dominant exchange rate regime in contemporary
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history. First, we argue that target zones should be compared with the managed
float which is the other time consistent exchange arrangement. For this compar-
ison, we show that even not perfectly credible target zones may improve with
respect to the managed float in terms of reducing simultaneously the volatility of
both exchange rates and interest rates differentials. In this way, we operationalize
the common view that target zones are preferred because they reap the benefits
of both flexible and fixed exchange rates, by stabilizing the exchange rate without
loosing monetary independence. These two benefits are explicitely included in the
model and are a result of the interaction between the preferences of the central
bank and the credibility of its monetary policy.
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A. Solution of the Target Zone

In this appendix we show how to make the computations for the solution of the
target zone regime. Forward recursion in the first order condition (2.23) is used
to solve for u (rt) subject to (2.22). Let the expected rate of depreciation out of
the band be given by

δτ ,τ−1 = αw [Pr (rt+τ > r|rt+τ−1)− Pr (rt+τ < −r|rt+τ−1)]
+ (1− α)

Z −r

−∞
µ (rt+τ )φ (rr+τ |rt+τ−1) drt+τ

+(1− α)

Z ∞

r

µ (rt+τ )φ (rr+τ |rt+τ−1) drt+τ .

Forward iteration of (2.23) leads to the following general solution

u (rt) =
rt

1 + λ
+

1

1 + λ

∞X
τ=1

F [rt+τ |Fτ ]

(1 + λ)−τ
+

∞X
τ=1

F [δτ ,τ−1 |Fτ−1 ]
(1 + λ)−τ

, (A.1)

where the sequence Fτ≥0 represents filtered information sets of the next form:

F0 = {rt} , (A.2)

Fτ≥1 = {{rt+n ∈ [−r, r]}τn=1 , rt} . (A.3)
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On the other hand, the components in (A.1) are given by:

F [δ1,0 |F0 ] = αw [Pr (rt+1 > r|rt)− Pr (rt+1 < −r|rt)] (A.4)

+ (1− α)

Z −r

−∞
µ (rt+τ)φ (rt+1|rt) drt+1

+(1− α)

Z ∞

r

µ (rt+τ)φ (rt+1|rt) drt+1

F [rt+1 |F1 ] =
Z r

−r
rt+1φ (rt+1|rt) drt+1, (A.5)

for τ = 1, and

F [δτ ,τ−1 |Fτ−1 ] =
Z r

−r
...

Z r

−r
δτ ,τ−1φ (rt+τ−1, ..., rt+1|rt) drt+τ−1...drt+1, (A.6)

F [rt+τ |Fτ ] =

Z r

−r
...

Z r

−r
rt+τφ (rt+τ , ..., rt+1|rt) drt+τ ...drt+1, (A.7)

for τ = 2, 3, ..., where

φ (rt+τ , ..., rt+1|rt) =
¡
2πσ2

¢−τ/2
exp

"
−1
2σ2

τX
n=1

(rt+n − rt+n−1)2
#
. (A.8)

This general solution is consistent with (2.23) and (2.22). In order to determine
a particular solution, it is necessary to identify the value of r for which u (r) = w.

A.1. A numerical approximation

The general solution (A.1) involves a collection of integrals where only (A.4) and
(A.5) enjoy an explicit form. Numerical solutions are requested for the remaining
ones. Here, we propose a method that discretizes variable rt on K values (K ≥ 3
odd) within the interval [−r, r] as

r = r1, r2, ..., rK , (A.9)

r1 = −r,
rk = rk−1 + h, (A.10)

h = 2r/ (K − 1) > 0, (A.11)

rK = r,

rK+1
2

= 0,
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Let P, Q, R, S and T be row vectors (1×K), adopting the following form

P1 = Φ

µ−r + h/2− rt
σ

¶
− Φ

µ−r − rt
σ

¶
(A.12)

Pk = Φ

µ
rk + h/2− rt

σ

¶
− Φ

µ
rk − h/2− rt

σ

¶
PK = Φ

µ
r − rt
σ

¶
− Φ

µ
r − h/2− rt

σ

¶
with rt given and

Qk = 1− Φ

µ
r − rk
σ

¶
− Φ

µ−r − rk
σ

¶
, (A.13)

Rk =

·
Φ

µ
r − rk
σ

¶
− Φ

µ−r − rk
σ

¶¸
rk + σ

·
φ

µ−r − rk
σ

¶
− φ

µ
r − rk
σ

¶¸
,(A.14)

Sk =

Z ∞

r

µ (s)φ (s|rk) ds+
Z −r

−∞
µ (s)φ (s|rk) ds, (A.15)

for k = 1, 2, ..., K, and

T = αwQ+ (1− α)S, (A.16)

where φ and Φ represent, respectively, the Gaussian pdf and cdf.
For the first period ahead, and only for this period, integrals (A.4) and (A.5)

have explicit form:

E [δ1,0 |F0 ] = αw

·
1− Φ

µ
r − rt
σ

¶
− Φ

µ−r − rt
σ

¶¸
+(1− α)

Z ∞

r

µ (rt+1)φ (rt+1|rt) drt+1

+(1− α)

Z −r

−∞
µ (rt+1)φ (rt+1|rt) drt+1,

E [rt+1 |F1 ] =
·
Φ

µ
r − rt
σ

¶
− Φ

µ−r − rt
σ

¶¸
rt

+σ

·
φ

µ−r − rt
σ

¶
− φ

µ
r − rt
σ

¶¸
.
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For the second period ahead, a numerical approximation is given by

E [δ2,1 |F1 ] = TP 0,

E [rt+2 |F2 ] = RP 0.

This implies that the value of the integrals at t+2 is determined for any possible
mean at t+1, rt+1 ∈ [−r, r], and any of these means is weighted by a probability
P , given a starting value rt at t.
The loop becomes harder as the period ahead increases over three. In order

to solve this problem, we develope a backward recursion algorithm, for which the
last period integral is firstly solved and then proceed backward up to the first one.
Thereby, consider the following non negative matrix M ∈ RK×K

M1,l = Φ

µ−r + h/2− rl
σ

¶
− Φ

µ−r − rl
σ

¶
,

Mk,l = Φ

µ
rk + h/2− rl

σ

¶
− Φ

µ
rk − h/2− rl

σ

¶
,

MK,l = Φ

µ
r − rl
σ

¶
− Φ

µ
r − h/2− rl

σ

¶
,

for k, l = 1, 2, ...K, with the following properties: the sum over each column gives
a row vector mc ∈ R1×K , with all its components lying within the (0, 1) interval

mc (l) =
KX
k=1

Mkl =

Z r

−r
φ (s|rl) ds ∈ (0, 1) (A.17)

for l = 1, 2, ..., K. The proof follows. This property is sufficient to verify the
Hawkins-Simon condition (Brauer-Solow Theorem).
Matrix M contains the transition probabilities in the intermediate periods

from τ up to τ + 1, within the interval [−r, r] and for any mean belonging to
[−r, r]. Thus, the solution for the third period is given by

E [δ3,2 |F2 ] = TMP 0,
E [rt+3 |F3 ] = RMP 0.

Again, the value of the integrals are first determined at t + 3 for any possible
mean at t + 2, rt+2 ∈ [−r, r], given by the columns of M . The vector P closes
the calculation for any possible mean at t+ 1, rt+1 ∈ [−r, r], for given a starting
value rt.
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For τ = 2, 3, ..., further generalization gives a sequence:

E [δτ ,τ−1 |Fτ−1 ] = TMτ−2P 0,

E [rt+τ |Fτ ] = RM τ−2P 0.

Plugging these values into (A.1), one obtains

u (rt) =
rt

1 + λ
+
E [rt+1 |F1 ]
(1 + λ)2

+
E [δ1,0 |F0 ]
1 + λ

(A.18)

+
1

1 + λ

∞X
τ=2

RM τ−2P 0

(1 + λ)τ
+

∞X
τ=2

TM τ−2P 0

(1 + λ)τ
.

Let the vector of eigenvalues be given by η (M), and call η∗ (M) the Frobenius
root, i.e. the maximum eigenvalue. From (A.17) we know that mc (l) < 1, this
is a sufficient condition to verify the Hawkins-Simon condition (see Brauer-Solow
Theorem). In turn, verification of the Hawkins-Simon condition implies that
η∗ (M) < 1, (see Hawkins and Simon [14] and [13]). Then, matrix (I −M)−1
exists, it is non negative and can be written as

(I −M)−1 =
∞X
j=0

M j

This gives rise to a convenient simplification

M =
∞X
τ=2

(1 + λ)−τ M τ−2 =
1

1 + λ
[(1 + λ) I −M ]−1 .

The general solution becomes

u (rt) =
Ω (rt)

1 + λ
+∆ (rt) , (A.19)

with

Ω (rt) ≡ rt + E [rt+1 |F1 ]
1 + λ

+RMP 0,

∆ (rt) ≡ E [δ1,0 |F0 ]
1 + λ

+ TMP 0.
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Application of level conditions (2.20) and (2.21) gives the particular solution

Ω (r)

1 + λ
+∆ (r) = w.

Finally, the exchange rate expectation (B.1) is

Etxt+1 =
∞X
τ=1

F [rt+τ |Fτ ]

(1 + λ)τ
+ (1 + λ)

∞X
τ=1

F [δτ ,τ−1 |Fτ−1 ]
(1 + λ)τ

,

or using the previous approximation

Etxt+1 = Ω (rt) + (1 + λ)∆ (rt)− rt. (A.20)

Once we know the expression for the exchange rate and the expectation, the
interest rates differential is obtained from the uncovered interest parity condition
as

dt = Ω (rt) + (1 + λ)∆ (rt)− xt (A.21)

B. Smooth Pasting Revised

In this appendix we show how the smooth pasting condition does not have to hold
in this model. Consider a center ρt = 0 and parity c = 0. First of all, by use of
(2.22) one can compute the one period ahead exchange rate expectation as

Etxt+1 = αw [Pr (rt+1 > r|rt)− Pr (rt+1 < −r|rt)] (B.1)

− (1− α)

Z −r

−∞
µφ (rt+1|rt) drt+1

+(1− α)

Z ∞

r

µφ (rt+1|rt) drt+1

+

Z r

−r
u (rt+1)φ (rt+1|rt) drt+1,

where φ (rt+1|rt) represents the Gaussian density of rt+1 given the current level
rt. The last term in this expression determines the expected exchange rate within
the band, under an optimal trade-off.
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A second order expansion of u (rt+1) around a value of rt ∈ [−r, r], gives

u (rt+1) ' u (rt) + u0 (rt) (rt+1 − rt) + 1
2
u00 (rt) (rt+1 − rt)2 + o (rt+1) . (B.2)

Weighting this expression by φ (rt+1|rt) and integrating for rt+1 ∈ [−r, r], yieldsZ r

−r
u (rt+1)φ (rt+1|rt) drt+1 = u (rt) p (rt; r) + u

0 (rt)S1 (rt; r) (B.3)

+
1

2
u00 (rt)S2 (rt; r) ,

where

p (rt; r) = Pr [rt+1 ∈ [−r, r] |rt] (B.4)

= Φ

µ
r − rt
σ

¶
− Φ

µ−r − rt
σ

¶
,

which represents the probability the risk premium wanders between [−r, r] for
the next period, given the present level rt, and function S1 (rt; r) represents the
expected change of the risk premium:

S1 (rt; r) = p0 (rt; r) (B.5)

= σ

·
φ

µ−r − rt
σ

¶
− φ

µ
r − rt
σ

¶¸
= p (rt; r)E [(rt+1 − rt) |rt+1 ∈ [−r, r] , rt] .

Function S2 (rt; r) represents the expected quadratic change of the risk premium:

S2 (rt; r) = p (rt; r)

·
1 +

p00 (rt; r)
p (rt; r)

¸
σ2 (B.6)

= σ2p (rt; r)− σ

·
φ

µ−r − rt
σ

¶
(r + rt) + φ

µ
r − rt
σ

¶
(r − rt)

¸
= p (rt; r)E

£
(rt+1 − rt)2 |rt+1 ∈ [−r, r] , rt

¤
.

Functions (B.4), (B.5) and (B.6) are all continuous, a property that will result
relevant to deal with the smooth pasting argument.
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Plugging expressions (B.3) and (B.1) into the first order condition (2.23), for
rt ∈ [−r, r] one obtains

(1 + λ)u (rt) = rt + αw [Pr (rt+1 > r|rt)− Pr (rt+1 < −r|rt)] (B.7)

− (1− α)

Z −r

−∞
µφ (rt+1|r) drt+1

+(1− α)

Z ∞

r

µφ (rt+1|r) drt+1
+u (rt) p (rt; r) + u

0 (rt)S1 (rt; r)

+
1

2
u00 (rt)S2 (rt; r) .

Now, we will approximate the particular solutions for the extreme case α = 1.
Under perfect credibility, this model does not exhibit the S-shaped of the standard
model. Let us first briefly remember the foundation of why the standard model is
zero sloped at the edges and, later, see how the smooth pasting condition should
be reinterpreted within our model5.
In the standard model, the exchange rate depends linearly of the fundamen-

tal and the expected rate of depreciation. The fundamental follows a regulated
Brownian motion such that, at margins, monetary policy push it back inside the
band. If the slope of the exchange rate function were strictly positive at these
edges, the expected rate of depreciation would display a discontinuity. Hence, a
sure jump would be given towards the interior of the band, and would provide
safe bets opportunities against the movement of the exchange rate. Therefore,
in order to avoid such a discontinuity jump, arbitrage considerations require that
the slope must be zero at margins.
In our model, expectations are given to the CB and the exchange rate is de-

termined from the first order condition (2.23), subject to (2.22) and the level
conditions (2.20) and (2.21). The risk premium rt is a sufficient statistic to deter-
mine the position of the exchange rate inside the band. The CB cannot govern
this process and must ensure the equilibrium in the money market given in (2.1)
by responding to variations in fundamental. Continuity of functions x (rt) and
Et [xt+1] is not affected, no matter the value of slope u

0 (r).
The aforementioned argument can be developed by proving the continuity of

5The argument provided in this appendix widely follows that of Froot & Obstfeld [11].
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the expectations function for α = 1:

Etxt+1 = w [Pr (rt+1 > r|rt)− Pr (rt+1 < −r|rt)] (B.8)

+u (rt) p (rt; r) + u
0 (rt)S1 (rt; r) +

1

2
u00 (rt)S2 (rt; r) .

This is a sum of continuous functions defined for any rt ∈ R, and therefore function
Et [xt+1] is also continuous. The expected conditional increase, S1 (rt; r), and
the conditional variability S2 (rt; r), are continuous as well, even when rt = ±r.
Continuity is then exhibited by the expectation. Analogously, the expected rate
of depreciation

Etxt+1 − xt,

is also a continuous function, where

xt =

 +w if rt > r
u (rt) if rt ∈ [−r, r]
−w if rt < −r

, (B.9)

and u (r) = w, u (−r) = −w. The smooth pasting condition is not needed for
continuity.
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C. Tables and Figures

Table 1
Estimation of standard deviation (σ)

std (∆rt) ' σ
British Pound 0.0005
French Franc 0.0011
Deustche Mark 0.0025
Japanese Yen 0.0012
Swiss Franc 0

Table 2
Realignment rates in the ERM6

Date FF IRP BF DK ITL SP PE
24-Sep-1979 2.00 2.00 2.00 5.00 2.00

30-Nov-1979 0.14 5.00

23-Mar-1981 -0.14 6.38

5-Oct-1981 8.76 5.50 5.50 5.50 8.76

22-Feb-1982 9.29 3.09

14-Jun-1982 10.61 4.25 4.25 4.25 7.20

21-Mar-1983 8.20 9.33 3.94 2.93 8.20

25-Jul-1985 8.51

6-Apr-1986 6.19 3.00 1.98 1.98 3.00

2-Aug-1986 8.70

12-Jan-1987 3.00 3.00 0.98 3.00 3.00

8-Jan-1990 3.82

14-Sep-1992 7.25

17-Sep-1992 5.26

23-Nov-1992 6.38 6.38

14-May-1993 8.70 6.95

Average 6.46 5.86 3.10 3.84 5.54 6.78 6.67

std 3.39 3.41 3.01 1.26 2.42 1.75 0.40

6In this table, FF stands for French Franc, IRP for Irish Punt, BF for Belgium Franc, DK for
Danish Krona, ITL for Italian Lira, SP for Spanish Peseta and PE for Portuguese escudo. The
ITL participated in the narrow ±2.25% band from 12th-January-1987 until 14th-September-
1992, when it left the ERM.
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Table 3
Loss function for w = 0.0225

λ 0.2 0.5 1.0 2.0 5.0
Jc 0.4444 0.4444 0.4444 0.4444 0.4444
J tz (α = 0) 15.4674 15.1098 4.3379 1.6561 0.6280
J tz
¡
α = 1

4

¢
10.0236 8.3402 3.2813 1.4845 0.6123

J tz
¡
α = 1

2

¢
5.7592 4.9529 2.5509 1.3253 0.5999

J tz
¡
α = 3

4

¢
3.0643 3.0624 2.0009 1.1846 0.5864

J tz (α = 1) 0.4655 0.4919 0.5207 0.5430 0.5244
Jmf 2.6665 1.3333 0.8888 0.6666 0.5333
Jff 0.5333 0.6666 0.8888 1.3333 2.6665

Table 4
Loss function for w = 0.06

λ 0.2 0.5 1.0 2.0 5.0
Jc 0.4444 0.4444 0.4444 0.4444 0.4444
J tz (α = 0) 2.0927 1.3081 0.9428 0.6559 0.5333
J tz
¡
α = 1

4

¢
1.9960 1.2758 0.9403 0.6559 0.5333

J tz
¡
α = 1

2

¢
1.8762 1.2399 0.9301 0.6547 0.5333

J tz
¡
α = 3

4

¢
1.6704 1.1951 0.9102 0.6544 0.5333

J tz (α = 1) 0.5761 0.6778 0.7106 0.6487 0.5333
Jmf 2.6665 1.3333 0.8888 0.6666 0.5333
Jff 0.5333 0.6666 0.8888 1.3333 2.6665
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Figure 5
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Figure 7
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