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Abstract

The proposed game is a natural extension of the Shapley and Shubik Assign-
ment Game to the case where each seller owns a set of different objects instead of
only one indivisible object. We propose definitions of pairwise stability and group
stability that are adapted to our framework. Existence of both pairwise and group
stable outcomes is proved. We study the structure of the group stable set and we
finally prove that the set of group stable payoffs forms a complete lattice with one

optimal group stable payoff for each side of the market.
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1 Introduction

We study the interaction of a finite number of sellers and buyers in a market, with the
characteristic that each seller owns a set of possibly different objects and each buyer wants
to buy, at most, one object. The fact that agents in these markets belong, from the outset,
to one of two disjoint sets, sellers and buyers, and the bilateral nature of exchange that

exists, allows us to study them as “two-sided matching markets”.

The worth of a potential transaction is given by a nonnegative real number associated
with each possible pair of a buyer and an object. An outcome of the game specifies a
matching between buyers and sellers and the price that each buyer pays to the owner
of the object she is buying.! Therefore, we study a many-to-one matching model with
money, in which each buyer is matched with at most one seller, but each seller can be
matched with as many buyers as objects he owns, and prices are determined as part of the
outcome of the game. This is a natural extension of the one-to-one Shapley and Shubik

[9] Assignment Game, also studied in Roth and Sotomayor [8].

Two natural questions are what partnerships we can expect to observe in the market
and how the agents will divide their gain. The answers to these questions involve the
choice of an appropriate concept of equilibrium that in this class of games is called stabil-
ity. There are two different ways of defining stability in a many-to-one matching model:
considering deviations only of pairs of agents (pairwise stability) or deviations of groups
of agents (group stability). We say that an outcome is pairwise stable if it is individually
rational and there is no partnership and a price so that, at this price, both buyer and
seller are better off under this partnership than under the previous outcome. If such a
pair exists, we say that it blocks the outcome. A group stable outcome is one that is
not blocked by any possible coalition of players. In the one-to-one Shapley and Shubik
Assignment Game these two concepts coincide, since the only sensible coalition that can
block a given outcome is formed by, at most, two agents. Sotomayor [11] studies a special
case of our model for the case where all the objects that a seller owns are equal (in her
model the set of sellers is seen as a set of firms with a number of equal vacancies and the
set of buyers as workers). In her framework, the set of pairwise stable outcomes also co-
incides with the set of group stable outcomes. However, in our case, this equivalence does
not hold, since group stability is a sufficient, but not a necessary condition for pairwise
stability. This relationship has to do with the fact that the total gain that a seller and a

I The set of sellers in our model can also be seen as multiproduct firms or as multidivisional firms with
one vacancy per division, and the set of buyers as workers, where the salaries are determined explicitly
in the model.



buyer can share is not always the same, but depends on the object bought.

Shapley and Shubik [9] show that every Assignment Game (or one-to-one buyer-seller
market) has at least one stable outcome, and that the set of stable outcomes is the Carte-
sian product of the set of stable payoffs and the set of optimal matchings. They further
prove that every one-to-one buyer-seller market has a seller-optimal stable payoff and a
buyer-optimal stable payoff. For the many-to-one case in which all the objects owned by
a seller are equal, the existence of stable outcomes and of an optimal stable payoff for
each side of the market is also proved (see Sotomayor [10]). Sotomayor [11] proves that

these optimal stable payoffs are unique.

We also show existence of the group stable (and hence the pairwise stable) set in our
model. We then focus the study on the analysis of the structure of the group stable set,
since it is a more adequate concept of stability for our framework. We prove that any
matching which is compatible with a given group stable payoff is optimal in the sense that
it maximizes the gain of the whole set of players. On the other hand, the set of group
stable outcomes is the Cartesian Product of the set of group stable payoffs and the set
of optimal matchings. That is, for any group stable payoff and any optimal matching,
there exists a vector of prices that makes the outcome group stable. Moreover, it forms a
complete lattice with an optimal group stable payoff for each side of the market. We also
study the set of competitive equilibria and prove that it is a proper subset of the group

stable set, while these two sets coincide in the Assignment Game.?

The paper is organized as follows: Section 2 presents the formal model. Section 3
defines the concept of pairwise stability and group stability and establishes their relation-
ship. Section 4 connects our model with the Assignment Game and proves existence of
stable outcomes, and Section 5 studies the structure of the group stable set. Section 7
concludes.

2 The model

We consider a buyer-seller market consisting of m buyers and ¢ sellers. Each seller owns

a number of possibly different objects, and each buyer wants to buy at most one object.

2Pérez-Castrillo and Sotomayor [6] have proposed a simple sequential mechanism to implement the
sellers’ optimal payoff in the Assignment Game, using the fact that the stable set is equivalent to the set
of competitive equilibria. For other mechanisms to implement stable solutions in matching markets with
money see also Demange et al. [2], Kameche [4] and Alcalde et al. [1].



Formally, there are two finite disjoint sets of players, P and S, containing m and ¢ play-
ers, respectively, and a set @ of n objects. Let P = {p1,po, ..., pm} be the set of buyers.
Generic buyers will be denoted by p; and pg. The payoff of buyer p; € P will be denoted
by u;. Let S = {s1, So, ..., S¢} be the set of sellers. Generic sellers will be denoted by s, and
sq, and the payoff of seller s, € S by w,. Let Q@ = {q1, ¢, ---, gn} be the set of indivisible
objects. Generic objects will be denoted by ¢; and g, and the price of object g; € @) by v;.

We also define a function f : @ — S that assigns each object to the seller who
owns it, i.e., f(g;) = s, if and only if seller s, owns object g;. We denote by @, =
{g; € Q : f(gj) = s.} the set of objects that seller s, owns, and by |Q,| the quota of seller
sy, that is, the number of objects he owns.

Associated with each possible pair (p;, ¢;) € P x @ there is a nonnegative real number,
o;j, which denotes the maximum price that buyer p; is willing to pay for object g;, that
is, her reservation value. We may interpret it as if she had in hand an offer of «;; from
a client who will purchase the object from the buyer at that price. For simplicity, we
assume w.l.o.g. that the reservation price of seller s, for every object ¢; € @, is zero
(that is, if the seller offers any of his objects to an outside party, he will obtain zero).
Therefore, o;;, denotes the potential gains from trade between the buyer p; and the seller
[ (g;) if the object sold is g;. We will denote by a the m X n matrix (;);_; nic1 -
We also assume that there are no monetary transfers among agents of the same side,
which is a natural assumption since we are studying a buyer-seller market, so the model
allows only the conventional transfer of the purchase price from the successful buyer to
the seller. Thus, if buyer p; buys the object g; at a price v; then the resulting payoffs
are u; = ay; — v; for the buyer and v; for seller s, = f (g;). The total payoff of seller s,,
denoted by w,, is the sum of all the prices of the objects he sells.> Agents’ preferences
are concerned only with their monetary payoffs. That implies that for any pair of objects
and a buyer, there is a pair of prices that makes the buyer indifferent between purchasing
either of the objects.

Therefore, a market M is determined by (P, S, Q, f,a). We call it the Generalized

Assignment Game.

3If we allowed to have reservation prices of sellers different from zero, say, ¢; for object g; € @, then
the potential gains from trade would be: max {0, a;; — ¢;}. Like this, we are normalizing each seller’s
utility of keeping one of his own objects g; to zero rather that c;.



3 Feasibility and stability

In this section we define what is a feasible outcome of this game. Our main concern is to
predict which of those outcomes are likely to occur and which are not. For that purpose,

we define an appropriate concept of stability.

For technical convenience, we introduce one artificial null object, ¢, and one dummy
player, seller so. Several buyers may buy this null object. This convention allows us to
treat a buyer p; that does not buy any object as if she bought ¢;. We assume that
f(q0) = so, (and Qo = {qo}), so p; will be matched to the dummy player sq if she buys no
object. We also assume that the value «;q is zero to all buyers, and the price of the object

Qo is always zero, vy = 0. Hence, if buyer p; buys ¢ she obtains a utility u; = a;o —vg = 0.

3.1 Feasibility

An outcome of this game specifies a matching between buyers and sellers and the price
that each buyer pays to the owner of the object she is buying. First, we define a feasible
matching as a function that matches buyers with objects, with the possibility that some
object remains unsold. We also define a correspondence associated with each feasible
matching, that matches buyers and sellers with an agent from the opposite side of the
market, with the characteristic that each seller can be matched with as many buyers as

objects he owns.

Definition 1 A feasible matching u for a market M = (P,S,Q, f,«) is a function
from the set P UQ into the set PUQ U {qo} such that:

(i) For any p; € P, pu(p;) € QU {q} -

(it) For any q; € Q, either u(q;) € P or pu(q;) = g;.

(iit) For any (pi,q;) € P x Q, p(pi) = ¢; if and only if u(g;) = ps.

We say that buyer p; is unmatched if j(p;) = qo. Similarly, we say that object q; is
unsold if 1 (q;) = g;.

Definition 2 For any given feasible matching pu, we define its associated matching
as a correspondence from the set PU S into the set of subsets of PUSU{so}, such that:

(1) g (pi) = f (q;) if and only if pu(p;) = g;
(II) Hs (ST) = {pz epP: M(pz) € Qr} :



Given a feasible matching p, a vector (u,w,v) € R? x R}, x R? of utilities for the
players and prices is compatible with p if:*

(i) ui = Qip(p;) — Vu(py), for every p; € P, and

@) w,= Y vi= Y (Cug)j — Uug,)), for every s, € S.
quQT quQT
n(gj)ep ulgj)ep

Definition 3 A feasible outcome, denoted by (u,w,v;p), is a vector of utilities (or
payoff vector) (u,w) € R} x Ri, a price vector v € R, and a feasible matching u, such
that the wvector (u,w,v) of utilities and prices is compatible with u. If (u,w,v;p) is a

feasible outcome, then (u,w) is called a feasible payoff.
Note that a feasible outcome is always individually rational.

Definition 4 A feasible matching i is optimal for a market M if it mazimizes the gain

of the whole set of players. That is, if for all feasible matchings (' we have:

Z CMUZ Z Q.

piEP piEP
g5=nu(p:) g;=n'(pi)

3.2 Stability

A feasible outcome is pairwise stable if there is no pair that can block the outcome, that
is, there is no pair of a seller and a buyer that can generate together a gain from trade
that leaves both of them better off.

Definition 5 A feasible outcome (u,w,v; ) is pairwise stable if:
(i) For any (pi,q;) such that f (¢;) # f (pr (p:)) we have:
u; +vj > aij, if p(gg) € P
U 2> Qj, if u(a) =4
(ii) For any (pi,q;) such that f (g;) = f (1 (p:)) we have:
Qip(py) + Vj 2 Quj, i pu(g;) € P
Qip(p;) = Qi if nig) =g

“We sometimes abuse notation by writing a;,(,,) instead of a;j, where ¢; = p(p;). Similarly for

QXu(gs)j-



Condition (i) is the usual requirement for pairwise stability in every matching market.
Note that in our case it is a sufficient condition for all pairs formed by a buyer and an
object, but it is not necessary for those pairs where the object and the mate of the buyer
belong to the same seller. For these pairs we need condition (ii). This is due to the fact
that a partnership formed by a buyer and a seller can generate different gains depending
on the object sold. Therefore, condition (ii) implies that each buyer is buying the object

that maximizes the gain that she can share with the seller she is matched with.

For an outcome to be group stable, we do not only require the non-existence of blocking
pairs, but also of blocking coalitions. We denote by 7" a coalition of agents, and 75 and
T, will denote the sets of S— and P— agents in T, respectively, (i.e., the intersection of
the coalition 7" with S and P, respectively).

Definition 6 A feasible outcome (u,w,v; u) is group stable if it is not blocked by any
coalition. That is, if there does not exist any coalition T' = T,UT, of agents that, by match-

ing among themselves, according to, say, yi', and setting a price vj for every q; € U Q-
sr€Ts
such that p(q;) € T, all members of T prefer this new assignment to pu.

Note that in this definition we allow each seller in T to still sell some of his objects
to buyers outside 7" at the same prices as before. We can include these buyers in the
blocking coalition 7', if the seller they are buying from transfers them money by reducing
the price at €. The only case in which we must leave one of these buyers indifferent is
when the price she was paying was zero. Therefore, it is clear that the set of group stable

outcomes corresponds to the core of the game.

In particular, we are interested in outcomes that are not blocked by any coalition

formed by one seller and a set of buyers. We call this concept restricted group stability.

Definition 7 A feasible outcome (u,w,v;u) is restricted group stable if it is not
blocked by any coalition formed by a single seller and a set of buyers, that is, if there does
not exist any coalition T = s, UT, with s, € S and T,, C P, and any feasible matching 1i,
such that

Z Q5 > Wy + E Uj
ApiETp piETp
w(pi)=q;

QjeQr



We prove that the previous two concepts coincide.

Proposition 1 Given a market M, the set of group stable outcomes coincides with the

set of restricted group stable outcomes.

Proof. It follows directly from Definitions 6 and 7, and taking into account that we

do not allow for side payments among agents in the same side of the market. m

Given the definitions of pairwise and group stability, it is clear that if an outcome
is group stable for a given market then it is pairwise stable, that is, group stability is
a sufficient condition for pairwise stability. However, both definitions do not coincide in
general. The following example shows that group stability is not a necessary condition
for pairwise stability.

Example 1:

Let M = (P,S,Q, f,a), with S = {s1}, Q = Q1 ={q1,¢}, P = {p1,p2}, and a1 =
age = 10, gy = ag; = 8. Taking (u,w,v; p) = ((2,2),12,(6,6); 1 (q1) = p2, 12 (q2) = p1)
is pairwise stable (17 = age = 10 < 8 + 6 = ays + v1 = g1 + ve, see Definition 5).
But it is not group stable. Indeed the grand coalition 7" = {s1,p1,p2} can be matched
as follows: u'(g1) = p1, 1 (g2) = pe2, and by setting, for example, v} = v, = 7, all agents
win more than in outcome (u,w,v; u) since the new payoffs are: (v',w’) = ((3,3),14) >
((2,2),12) = (u,w).

We have proven that, given a market M, the set of group stable outcomes can be
strictly contained in the set of pairwise stable outcomes, that is, group stability is a
stronger condition than pairwise stability. This result differs from the usual one found
for the many-to-one models previously studied, where group stability was equivalent to
pairwise stability. The difference is due to the fact that we allow the objects to be dif-
ferent. If all the objects a seller owns were equal, that is, a;; = oy if f(g;) = f(qk),
group stability and pairwise stability would be equivalent (see Sotomayor [11]). In that
case, if an outcome (u,w,v; u) is not group stable, it means that there exists a coalition
of a seller, say s,, and a set of buyers that blocks it, and for sure that at least one of the
buyers, say p;, is not buying from s, under p. But this means that u; + v; < a;; for some
¢; € Q- and p(g;) € P, or u; < o for some ¢; € @, unsold, because otherwise there is no
additional gain that the coalition can share. But then outcome (u,w, v; i) is not pairwise
stable.

Therefore, in the Generalized Assignment Game, if an outcome (u, w, v; ) is pairwise

stable but not group stable it is because there exists a coalition, formed by a seller and the

9



buyers buying form him under y, that can reorganize themselves in a strictly profitable
way for all of them. Then, we can state the following proposition.

Proposition 2 Given a market M, an outcome (u,w,v; u) is group stable if and only if
the following two properties hold:

(a) (u,w,v; u) is pairwise stable, and

(b) the set of buyers buying from the same seller are optimally allocated, i.e., for every

seller s, € S, the buyers buying from him, P,, are such that Y. ;> >, o, for
piEPy piEP:
a;=u(ps) aj=u'(p:)

all feasible matchings p'.

Proof. The only if part trivially holds good.

For the if part, just note that the only cases in which a pairwise stable outcome is
not group stable is when a group of buyers buying from the same seller are not optimally
allocated. m

4 Connection with the Assignment Game

Given a market M = (P, S,Q, f,«), we can define the “one-to-one” market (an Assign-
ment Game), M' = (P, S, Q, f',a), as follows:

Q ={q1,92, - qn}, set of objects
S' = {8}, 85, ..., 5,,} , set of sellers with f'(g;) = s} , for all j = 1,...,n.

ey O

P ={p1,p2,...,Pm}, set of buyers.

Given a feasible outcome (u,w, v; 1) in the Generalized Assignment Game, the trans-

formed outcome in the Assignment Game is given by (u,w', v; u) with:

W = Vj, ifM(Qj) er
! 0, if u(g;) = g,

forall j=1,...,n.

We can define feasibility and stability for these transformed markets in the same way
as before, since they are a subset of our generalized markets. Note that the pairwise
stable set and the group stable set coincide in the one-to-one market, but the concept
of pairwise stability used is different to that used for the many-to-one market, since now
condition (i) in Definition 5 is needed for all pairs (p;,¢;) € P X Q.

10



The following proposition states the relationship between group stable outcomes of a
given market M and (pairwise) stable outcomes in the corresponding Assignment Game
M.

Proposition 3 Take a market M, and its corresponding one-to-one market M'. If the
outcome (u,w', v; ) is (pairwise) stable for M', then (u,w,v; u) is a group stable outcome
for M, where w, = Y. v, for every s, € S.
QjEQr
u(gj)er
Proof. By contradiction, suppose that the outcome (u, w,v; ) is not group stable for
market M. We prove that the outcome (u,w’,v; ) is also not (pairwise) stable for M.
Since (u,w,v; p) is not group stable, there exists a coalition 7" formed by, say, seller

s, and a subset of buyers 7}, and a feasible matching 4/, such that, w,. > w,, i.e.,

Yoo Y v

QjeQr quQT
u'(g;)€EP u(g;)EP

and
iy (ps) — Vi (py) > Ci(pi) — Up(ps)» 0T every p; € T,

where v’ is the new vector of prices.

This means that there exists ¢; € Q, with u'(g;) € T, such that, either v; > 0 and
w(g;) = gj, or v; > wj, u(q;) € P, and p'(g;) # p(g;). In both cases, we must have
!

Uy () > U (q5)- Therefore, in M, the pair (' (g;), ¢;) blocks the outcome (u,w’,v; ). m

Proposition 3 proves that (pairwise) stability in the Assignment Game is a sufficient
condition for group stability. We show that, in general, it is not a necessary condition

with the following example:

Example 2:

Take market M = (P, S,Q, f,a) with S = {51}, @ = Q1 = {q1, ¢}, P = {m}, and
aj1; = b, ajs = 4. (Note that in this case, pairwise and group stable outcomes coincide since
there is only one seller and one buyer.) The outcome (u, w,v; u) = (1,4, (4,0); 1 (p1) = ¢1)
is pairwise stable (a2 = 4 < ay; = 5, see Definition 5) but the corresponding one-to-
one outcome (u,w',v;u) = (1,(4,0),(4,0); 1 (p1) = ¢1), is blocked by the pair (p1, ) =
(p1, %) since u; = 1 < ag = 4, so there exist a price for ¢y, for example, v), = 1, that

gives a utility of 3 > 1 to buyer p; and a utility of 1 > 0 to seller s}.

11



The importance of Proposition 3 is the following theorem that proves the existence of
group stable outcomes for any given market M. Taking into account that existence in the
Assignment Game is proved (see Shapley and Shubik [9]) we can say the following:

Theorem 1 A group stable outcome exists for every given market M = (P, S, Q, f, a) .

Note that we also have existence of pairwise stable outcomes using Proposition 3 and
our previous result that the set of group stable outcomes is contained in the set of pairwise
stable outcomes for any given market M. With both we have that the set of pairwise
stable outcomes for a market M contains the set of stable outcomes for the transformed
market M'. Hence, we have the following corollary:

Corollary 1 A pairwise stable outcome exists for every given market M = (P, S, Q, f,a) .

5 Structure of the group stable set

We are particularly interested in matchings that maximize the gain of the whole set of
agents, that is, optimal matchings as defined in Definition 4. Therefore, it is clear that
the optimal matchings for a given market M coincide with the optimal matchings for the

transformed one-to-one market M.

Next proposition is the first step in the characterization of the mathematical structure
of the set of group stable payoffs. It shows that, at any group stable outcome, the
associated matching is optimal. This property is also shared with the Assignment Game
(see Shapley and Shubik [9]), and with the case where each seller owns a set of equal
objects studied in Sotomayor [11].

Proposition 4 Let (u,w,v; i) be a group stable outcome for a given market M. Then, u
s an optimal matching.

Proof. By contradiction, suppose p is not optimal. Then, there exists a feasible
matching ' such that:

Z Otij> Z aij:Zui+Zwr

piEP pEP pEP srE€S
aj=H'(ps) a;=u(ps)

Rewrite:

Z Ofij:z Z Qg

pieP sr€S p;EP
g;=w (pi) w(pi)=q;
q; €Qr

12



and

Zui—f—ZwT:Z Wy + Z u; | + Z Uj.

p;EP s$r€S sr€S pi€P pieP
w (pi)=q; W (pi)=qo
q;€EQr

Then,

S Y | > |wt D ow| A+ D w2 wet+ >y

sr€S p,EP sr€S p,EP pEP SrES pEP
b (pi)=g; ' (pi)=a; u(pi)=g0 b (pi)=a;
i €EQr g €EQr 4G EQr

and this implies that there exists a seller sy such that > a4 >wp+ >, u;. But

pEP pEP
' (pi)=a; v (pi)=q;
q; €EQ7 4 E€EQF

this means that the coalition formed by sz and those buyers matched under p' with an
object in Q)7 can gain more by reorganizing among themselves. Therefore, (u,w,v; p) is

not group stable and we have a contradiction. m

This is an important result for the model. Now we can concentrate on optimal match-
ings, since there is no vector of prices that can support any not optimal matching as a

group stable outcome.

Remark 1 Pairwise stability does not imply efficiency as group stability does. See Ex-

ample 1.

In the Assignment Game (see Shapley and Shubik [9]) the set of (pairwise) stable
outcomes is the Cartesian product of the set of (pairwise) stable payoffs and the set of
optimal matchings. This means that if we take a (pairwise) stable payoff, in the sense
that there exist a feasible matching that makes the outcome (pairwise) stable, then the
same is true for any optimal matching. In the following proposition we prove that the
result for the Assignment Game is also true in the Generalized Assignment Game, and
therefore the set of group stable outcomes is the Cartesian Product of the set of group
stable payoffs and the set of optimal matchings, for a compatible price vector. This
implies, as we will see later, that the group stable set forms a complete lattice, which is a
nice structure to deal with. Our proofs differ technically from the Shapley and Shubik’s
[9] and Sotomayor’s [11] proofs. They base their results in the Duality Theorem and in

13



a central theorem [11, Theorem 1], respectively, that has no parallel in our model, since
they depend critically on the fact that the object (s) a seller owns is (are) equal.

Definition 8 A payoff vector (u,w) is group stable for a market M if there erists a
vector of prices v € R and a feasible matching p such that (u,w,v; p) is a group stable

outcome.

Proposition 5 Take any group stable payoff (u,w) and any optimal matching p'. Then

there exists a vector of prices v’ such that (u,w,v"; ') is a group stable outcome.

Proof. Since (u,w) is a group stable payoff, there exists a vector of prices v and a
feasible matching p such that (u, w,v; u) is group stable. By Proposition 4 we know that
this matching u is optimal. Since both p and p’ are optimal,

z Qi = z ozij=Zui+Zwr. (1)

piEP piEP piEP spES
gi=u'(ps) g;=n(p;)
Define v' as follows:
= ajj — u;, if p' (g;) = pi, and

To check whether (u,w,v’; 1) is a group stable outcome, we first check its feasibility

v

v

LLs S

(see Definition 3). By definition of v', u; + v} = ayj, if 1’ (p;) = ¢;. Then, the only thing
left to check is whether w, = ) v, for every seller s, € S. By feasibility of (u,w,v;u),

9; €Qr
we know that w, = }_ v;. Denote w, = »_ vj. We want to prove that w, = wy;, for
q; EQr q; €Qr
every s, € S. We prove it by contradiction.

Eq. (1) implies that ) w, = > w!. Suppose that there exist seller s, and s; such
sr€S srE€S
that w, < w, and w), > wy. Then seller s; can form a coalition with the buyers buying

from him under 4’ (we call this group of buyers T, ), and be all strictly better off than

under (u,w,v; ) :

! ’
Wy = Z v; = Z O (gi)j — Z Uy (q;) > Wy.
g;€Qq

4 €EQ4 4 €Qa

Then,

Z Qij = Z (U;+Uu'(qj))=w&+2ui>wd+Zui.

pi€Tp 4 €Qq pi€Tp pi€Tp
' (pi)=g; u'(g;)eP
4 €Q4

14



But this means that (u,w, v; u) is not group stable so we have the contradiction.
Now that we know that (u,w,v'; ') is feasible, we prove that there is no blocking
coalition. We do it by contradiction. Suppose that there exists a coalition T' = sz U T},

and a feasible matching 7 such that

Z Qg > wp + Z Uj.
ApiETp Di ETp
u(pi)=gq;
4 €Qr
But this means that (u,w, v; u) is also blocked by coalition 7', which is a contradiction.
A similar argument can be used to prove that the prices v; we have defined are greater
or equal to zero for every object. If one of these prices was negative, the seller that owns

that object could form a blocking coalition by not selling that object. ™

We provide the following example to show that we can not state a similar result as in

Proposition 5 if we not only specify the payoff vector but also a vector of prices.

Example 3:

Let M = (P,S,Q, f,a) be S ={s1}, Q = Q1 = {q1, 0}, P = {p1,p2}, and ay; =
(12 = Qg9 = g1 = H. The outcome (u, w,v; u) = ((2,3),5, (3,2); 1 (p1) = q1, 1 (P2) = ¢2)
is group stable. Take p’ such that p' (p1) = ¢, ¢’ (p2) = ¢1. Both y' and u are optimal
matchings, but (u, w, v; i') is not group stable since it is not feasible: u;+ve =4 < 5 = a1
and ug +v; = 6 > 5 = ag;. We need to set v] = 2 and vy = 3, and then (u,w,v'; ') is
group stable.

In what follows, we analyze the lattice structure of the group stable set. A lattice
is a partially ordered set any two of whose elements have a (least) upper bound and a
(greatest) lower bound in the set. When each of the possible subsets of the set has a
(least) upper bound and a (greatest) lower bound in the set, we say that the lattice is

complete.

Let us define the partial orders >p and >g: for any two group stable payoffs (u,w)
and (v, w'), (u,w) >p (v',w') if u; > u} for all p; in P, and (u,w) >g (v',w") if w, > w.
for all s, in S.

From now on we concentrate on those stable outcomes where the unsold objects have
zero price. We start with the following definition.

Definition 9 Take (u,w) and (u',w') group stable payoffs. We define u and w(u) as

follows:
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(i) for every p; € P, u; = max {u;, u}} .

(i1) for every s, € S, w, (n) = > (min {'Uj, v;}) , where v; and vj are, respectively,
’IjEQ'r
the compatible prices for (u,w) and (u',w') for the optimal matching p. °

Similarly, we define u and w.

Proposition 6 Let (u,w) and (u',w') be two group stable payoffs. Then, the payoffs
(@, w (1)) and (u,w (u)) defined for an optimal matching p are group stable.

Proof. Take the optimal matching 1 and the vector of prices v such that v; =
min {vj,v;}, where v and v’ are the compatible price vectors for (u,w) and (u',w'),
respectively. We prove that (@, w (u),v; u) is a group stable outcome. First, in (a), we
prove that it is a feasible outcome, using the fact that (u,w,v;u) and (v',w’,v'; u) are
feasible since they are group stable by Proposition 5. Then, in (b), we prove that the
outcome cannot be blocked.

(a) For every (pi,q;) such that u(p;) = g;, either u; = u; or u; = u}. In the first case,
by feasibility of (u,w,v;u) and (v',w',v'; ) , u; +v; = uj + v; = ;. Therefore, u; > u;
implies that v; < v;-, and we must have v; = v;. Hence, u; +v; = ui +v; = . The proof
for the second case is similar.

(b) For every s, € S, w, (u) = > (min{v;,vj}) = 3 w;, by definition. Now we

g EQr 4 €Qr
check that there does not exist any coalition that blocks the outcome (@, w (1) ,v; p) . By

Proposition 2, an outcome is group stable if and only if it is pairwise stable and the clients
of the same seller are optimally allocated. The second condition holds since (u,w, v; u)
and (u',w',v'; u) are group stable by Proposition 2. Therefore, the only property left to

prove is that (@, w () ,v; p) is pairwise stable. Following Definition 5:
(i) For every (i ;) with £ (¢;) # / (1 (p2), cither

Ui—f—ﬂj IU,'—{—U]' > U; + v > Qg
where the last inequality is due to the pairwise stability of (u,w,v; ), or
Uy + vy = U; + v > uj +v; > i,

where the last inequality is due to the pairwise stability of (u/,w’,v"; u).
(i) For every (pi, ;) with f () = f (1 (ps)), either

Qip(pi) T V5 = Qip(pi) + v = Qg
where the last inequality is due to the pairwise stability of (u,w,v; ), or

Qip(p;) T V5 = Qiy(p;) T U;' 2 iy,

5We will prove later (Lemma, 1) that this sum of prices coincides for any optimal matching.
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where the last inequality is due to the pairwise stability of (u',w',v"; 1) .

Similarly, we can prove the properties for (u,w (1),7; ). m
The following lemma shows that the definition of w, (u) for any two group stable

payoffs does not depend on the matching.

Lemma 1 Take any two group stable payoffs, (u,w) and (v',w'), and any two optimal
matchings, p and fi. Let v and v' be the respective compatible prices for (u,w) and (u', w'")

given i, and let v and v’ denote the same for 1. Then, for every seller s, in S,

S (min {uy, 1)) = 3 (min {3, 7))

QjeQr quQT

and

> (max{u;,v3}) = > (max {5;,7})

g EQr g EQr

Proof. Denote w! = 222 (min {v]-,v}}) and w! = 222 (min {'17],'173}) Following the
4 EQLr q;EQr
proof of Proposition 6, (u,w’,v™; u) and (u,w"”,v™; ) are group stable outcomes, with

v™ = min {v;, vj} and 7™ = min {7;,7}}. Also, by Proposition 5, there exists a vector of
prices v* such that (u,w’,v*; 1) is group stable. But by feasibility of 7, it must be that
U = Qip(p;) — Uz(pi), for every p; € P. This implies that v; = @;" for every ¢; € @, and
therefore, w!. = w' for every s, € S.

Similarly, we can prove the property for the maximum prices. m

Now, for any two group stable payoffs (u,w) and (u', w'), we can properly denote by w,
the minimum gain that seller s, can get at any optimal matching, and by u; the maximum
payoff for buyer p;.

The previous properties allow us to state the main result of the paper in the following
theorem.

Theorem 2 The set of group stable payoffs forms a complete lattice under the partial
orders >p and >g .

Proof. By Proposition 6, every two group stable payoffs (u,w) and (u',w'), have a
supremum, denoted (%, w), and an infimum, denoted (u,w), under the partial order >p,
and (u,w) and (@, w), respectively, under the partial order >g . This directly proves that
the set of group stable payoffs is a lattice under the partial orders >p and >g . To prove
that it is a complete lattice, we show that this set is convex and compact. By Proposition
5, the set of group stable payoffs is the same for any optimal matching. Let u be an
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optimal matching. The set of group stable payoffs is the solution of a system of linear non
strict inequalities associated with p, so it is closed and convex. That it is bounded follows
from the fact that for all matched pairs (p;, ¢;) under p, 0 < u; < o5 and 0 < v; < @y
Hence, the set of group stable payoffs is convex and compact, and therefore it forms a
complete lattice under the partial order >p, dual to the complete lattice with ordering
>g . ®

Definition 10 A group stable payoff is called a P-optimal group stable payoff if
every player in P weakly prefers it to any other group stable payoff. Similarly, we define
an S-optimal group stable payoff.

Proposition 7 There exists one and only one P-optimal group stable payoff (u*, w.) with
the property that for any group stable payoff (u,w), u* >p u and w, <g w. There exists

one and only one S-optimal group stable payoff (u., w*) with symmetrical properties.

Proof. The proof is direct using the fact that every complete lattice has one and
only one maximal element and noting the duality of both partial orders >p and >g. This
duality comes from the definition of (u,w) and (u,w) for any two group stable payoffs

(u,w) and (v/,w'). m

Finally, we relate the optimal group stable payoffs for each side of the market in
the Generalized Assignment Game with the optimal stable payoffs in the corresponding
Assignment Game. At first, it is intuitive to think that the P-optimal group stable payoff
for a market M will coincide with the P-optimal stable payoff in the corresponding one-
to-one market M', and that this will not be the case, in general, for the S-optimal group
stable payoff, since the sellers gain market power in the Generalized Assignment Game.
We prove in the following remark that, there exist markets, where neither of the optimal
group stable payoffs for each side of the market in the Generalized Assignment Game,
coincide with the optimal stable payoff in the corresponding Assignment Game. We think
that this can be due to the fact that sellers not only gain market power, but they also

lose blocking power when we have markets with more than one seller.

Remark 2 The P-optimal (S-optimal) group stable payoff for a given market M does
not coincide, in general, with the P-optimal (S-optimal) stable payoff in the corresponding

one-to-one market M'.

To see that the P-optimal group stable payoff in the Generalized Assignment Game
does not necessarily coincide with the P-optimal stable payoff in the corresponding As-

signment Game, take the following example:
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Example 4:
Let M = (P: Sa Qaf’ Of) with § = {SlaSQ}a Q = {qlaq23q3}a Ql = {qlaQZ}:QQ = {C]3}=

Q11 Q. O3 12 10 4
P = {plap2,p3}, and o = Q91 Qg (93 = 10 13 4
Q31 Q39 (33 18 12 12

In this market the only optimal matching is u(p1) = ¢1, u(p2) = ¢ and u(p3) = g¢s.
The payoff vector (u,w) = ((6,10,12), (9, 0)) is group stable (it is pairwise stable and the
buyers p; and p, are optimally allocated with s;), but it is not stable in the one-to-one
case, since u; + vy < aqo. We can prove that it is not possible to find a payoff vector that
gives more or equal utility to all the buyers and that can be sustained as a stable outcome
in the one-to-one market. Suppose we leave p; and p; with the same utility level (note
that p3 could never obtain more) and make py better off. For this, it is necessary to set
vy = Qoo — Uy < vy. But again v} + v) = uy + v§ < uy + vy < a9, so it is not stable in
the one-to-one market. If we try to make po and (or) p; better off it is necessary to set
v] = aq1 — ug < vy, and now u} + v} = uz + v} < uz + v; = as1, so they form a blocking
coalition and it is not pairwise stable.

To check that the S-optimal group stable payoff also does not coincide with the S-
optimal stable payoff in the one-to-one market, see the following example:

Example 5:

Let M = (P,S,Q, f,a) with S = {s1}, Q@ = Q1 = {q1, %2}, P = {p1}, and a3; = 5,
a9 = 4. For M the set of group stable payoffs is G = {(ul, wy) € R Jus +wy = 5} , and
the seller’s optimal is (0,5). But (0,5) is not a stable payoff in the one-to-one market
M'" as defined in Section 3. In fact, the set of stable payoffs in M’ are all feasible payoffs
where v; € [0, 1], and the seller’s optimal is v; = 1.

To end up this section, we comment on the relationship between the set of stable
outcomes and the set of competitive equilibria. This relationship has been often studied
in matching markets. In particular, for the Assignment Game, the set of (pairwise) stable
allocations coincides with the set of competitive equilibria. Moreover, the two extreme
allocations (the sellers’ optimal stable payoff and the buyers’ optimal stable payoff) corre-
spond to the maximum and to the minimum equilibrium prices, respectively. Since in our
model we allow each seller to have a set of different objects, we do not have this equiva-
lence between the set of group stable outcomes and the set of competitive equilibria that
is usual in matching markets. To study this relationship we briefly define a competitive
equilibrium following the definition used for the Assignment Game.

Let D;(v) denote the demand set of buyer p; given a vector of prices v € R, de-
fined as the non empty set of all objects that maximize p;'s utility given v, that is,
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D;(v) = {g; € Q; ij — vj > qin — vn, Vagn € Q} .

The price vector v € R} is competitive if each buyer can be matched with an object
in her demand set, that is, if there exists a feasible matching p such that u(p;) € D;(v)
for all p; in P. Such a matching y is said to be competitive for the prices v.

The pair (v, 4) is a competitive equilibrium if v is competitive, u is competitive

for v, and v; = 0 for any unsold object g;. We call v an equilibrium price vector.

Following the result of the Assignment Game that the (pairwise) stable set coincides
with the set of competitive equilibria, we can say the following in our Generalized As-
signment Game. Given a market M and its corresponding one-to-one market M’, to each
competitive equilibrium (v, ;1) we can associate a (pairwise) stable outcome in M’. Then,
by Proposition 3, the set of competitive equilibria is contained in the set of group stable
outcomes for a given market M. In particular, by Remark 2, the optimal group stable

payoffs for each side of the market are not competitive in general.

6 Concluding Remarks

We have proposed a Generalized Assignment Game, that is, a many-to-one matching
market with money. This market is composed by heterogeneous buyers and sellers, where
each seller owns a set of possibly different objects and each buyer wants to buy, at most,
one of the objects. This is a generalization of the case where each seller owns a single
indivisible object (Shapley and Shubik [9] Assignment Game). The main difference with
the many-to-one models studied in the literature is that the gain that a seller and a buyer
can share is not independent on the object bought. The extension also applies to sit-
uations like a labor market with multidivisional firms with one (or more) vacancies per
division, or the labor market for medical interns where each hospital has a number of

different internships to offer.

We propose appropriate definitions of pairwise and group stability for these markets
and prove the existence of both sets of outcomes. We concentrate on the group stable set,
since it is a more adequate concept of stability for this model, and we study its structure.
We prove that the set of group stable payoffs forms a complete lattice with one optimal
group stable payoff for each side of the market. We observe a polarization of interests
between the two sides of the matching within the set of group stable payoffs. We show
that the optimal group stable payoff for each side of the market in the Generalized As-
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signment Game does not coincide, in general, with the respective optimal payoffs in the
Assignment Game. Moreover, the set of competitive equilibria is a proper subset of the
set, of group stable allocations.

The extension of the model to a many-to-many market, where each buyer can buy
more than one object, is a topic subject to further research. The fact that a seller and
a buyer can share different gains depending on the object(s) bought remains, but the

analysis of the stable set becomes more complicated and it is not a direct generalization.
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