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Abstract

Ever since the appearance of the ARCH model [ Engle(1982a) |, an
impressive array of variance specifications belonging to the same class of
models has emerged [ i.e. Bollerslev’s (1986) GARCH; Nelson’s (1990)
EGARCH ]. This recent domain has achieved very successful develop-
ments. Nevertheless, several empirical studies seem to show that the
performance of such models is not always appropriate [ Boulier(1992) ].

In this paper we propose a new specification: the Quadratic Moving
Average Conditional heteroskedasticity model. Its statistical properties,
such as the kurtosis and the symmetry, as well as two estimators (Method
of Moments and Maximum Likelihood) are studied. Two statistical tests
are presented, the first one tests for homoskedasticity and the second
one, discriminates between ARCH and QM ACH specification. A Monte
Carlo study is presented in order to illustrate some of the theoretical
results. An empirical study is undertaken for the DM — US$ exchange
rate.

Keywords: Conditionally heteroskedastic models, Quadratic Moving Aver-
age Conditionally heteroskedasticity model, Homoskedasticity tests, Volatility,
Truncated Volterra developments.
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1 Introduction

The ARCH class models, introduced by Engle(1982a), quickly became an im-
portant domain in the econometric literature because of their potential useful-
ness in financial applications. During the last twenty years, a vast quantity of
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ARCH type models appeared, some of them possessing statistical properties
extremely appealing to financial econometrics. Among them, Bollerslev’s (1986)
G ARC H model, Engle Lilien and Robins(1987) ARC H — M and Nelson’s(1990)
EGARCH have succeeded in generalizing ARC H models, incorporating the
volatility of a variable in its value equation and taking into account asymmet-
ric effects respectively. Other ARC H-class models, more recent, seem very
promising, such as QGARCH [Sentana(1995)], the GJR — GARCH [Glosten,
Jagannathan and Runkle(1993)], and the LSTGARCH [Hagerud(1997) and
Gonzalez-Rivera(1998)] but are still to recent to be sure.

The evolution of the ARCH models seems to follow a pattern. Each new
specification tries to incorporate more characteristics typical of financial series
such as leptokurticity, asymmetry, and different kinds of non-linearity. Such
progress is made at a cost of increasing complexity. The latter eventually makes
some of the specifications to appear as having little robustness in empirical
studies. The infamous GARCH(1,1) model remains one of the best options
for practitioners of financial econometrics. Yet, some studies, such as the one
carried out by Boulier(1994), indicate that this class of models doesn’t always
perform well when dealing with forecasts.

When dealing with conditionally heteroskedastic models, the accent has al-
ways been put in Autoregressive specifications, neglecting the potential use-
fulness of Moving Average type specifications (although some models, such as
GARCH can be reinterpreted as very particular moving average specifications).
In that sense, Robinson(1977) proposed a Non-Linear Moving Average model
(NLMA) inspired by a truncated version of a Volterra development. He also
gave some of the statistical properties of such model as well a several properties
of a maximum likelihood estimator. Sadly, he did not present an empirical ap-
plication of the NLM A and did not consider it a practical model for financial
variables. NLM A models are nowadays seen as being ineffectual for empiri-
cal purposes [e.g. Tong(1990), Guégan(1994) and Granger(1998)]. Among its
defects, non-invertibility and difficulties in estimation are widely known.

By using the same source of inspiration (Volterra developments) but de-
veloping it within an ARCH framework, we define a different specification;
the Quadratic Moving Average Conditionally heteroskedastic model, QM ACH.
This specification can reproduce several of the typical characteristics of financial
variables, such as leptokurticity, asymmetric effects of shocks, and, of course,
heteroskedasticity. It is not necessary to impose conditions on the parameters
to ensure the existence of all moments.

The QM ACH can be easily estimated. We present two different estimators;
a Method of Moments estimator and a Maximum Likelihood estimator, the
latter being the better one. We also propose two statistical tests. The first
one is based on the classic Likelihood Ratio test and discriminates between
homoskedasticity and QM AC H-type heteroskedasticity. The second one is also
a LR test with an artificially-nested null hypothesis. Tt distinguishes between
ARC H-type heteroskedasticity and QM AC H-type heteroskedasticity. Using
Monte Carlo simulations, we present evidence that both the estimators and the
specification tests perform well.




Finally, we present an empirical study of the DM — US$ exchange rate. We
adjust two models, the QM AC H (1) model, and also the GARCH(1,1). Several
statistics, aimed at evaluating intra-sample forecasts as well as the adjustment,
are calculated in order to compare the models.

This paper is divided in five sections. The second introduces the QM AC H (1)
model and some of its statistical properties. Section three deals with the esti-
mation problem; two statistical tests are also proposed to identify heteroskedas-
ticity. The fourth section presents the empirical study. Conclusions appear in
section five.

2 The QMACH model

2.1 The specification

As it has been already said, the QM ACH model is inspired by the Volterra
expansion which can be expressed as:
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Such an expansion can be truncated in order to make it feasible. Robinson’s
(1977) model, NLM A and, indeed, the QM ACH can be encompassed by the
following equation, proposed by Guégan(1994):

P P q
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=0
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These model have several properties, among which non-invertibility
[Granger(1998)] and high non-linearity [Guégan(1994)] stand out. We shall
concentrate on a particular version of (2) which is different from the one devel-
oped by Robinson(1977) but still possesses some very appealing characteristics;
the QM ACH(1):

X, = Vh?
hy = (Jo+8Vio1)?
& Vi + ViV 3)

Vi ~ 4aN(0,1)

Asg can be inferred from (3), the QM ACH(1) is a particular case of (2). Yet,
it is presented in the usual ARCH style, so that its conditional heteroskedas-
ticity stands out. Figure (1) shows a simulation of this process.
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Figure 1: A, = 1.00 + 0.34V, 4 n = 500

2.2 Distribution of the first-order QMACH process

The QM ACH (1) has the advantage of being a very simple specification. Most
of its properties can be inferred easily. In order to make a brief comparison
with the ARCH(1), we present the first two -unconditional and conditional-
moments of the process:

E(Xy) = 0
82 +82 forj=0
E(XiXi—j) = { 00 ' otherwise @
Et 1(Xt) = 0
E 1 (X2) = 8242606 Vi1 +6V2,

It can be seen that, contrary to most of the specifications of conditionally
heteroskedastic models, there are not conditions for the existence of the second
moment. The previous results let us conclude that the QM ACH(1) is weackly
stationary. We have calculated the autocorrelation function of the process,
which is: g,(z) = 62 + 62. The invertibility problems appears now clearly, since
there are four distinct QM ACH (1) process that satisfy this function having
each one the following parameters: dg,d1; dp, —01; —dp, 01 and ;—8g, —d;. Such
problem could be seen as a major one when estimating the process, but, it will
be seen in the next section that it is not.

We have calculated also the autocorrelation function of the squared process,
which is:

35(35+463) .
pi = { wrsalerrasy Jori=1 (5)
0 Vi>1

The form of the autocorrelation function seems to differ greatly from the one
proposed by the stylized facts in finance theory, where the autocorrelations de-



cay slowly and not abruptly as in the QM AC H(1) process. This limitation can
be tackled by different means. The first one could be the use of a QM ACH (q)
where g > 1. This case is studied below. The second alternative is to generalize
the process by including lags of h; in the conditional variance specification. By
doing this we could eventually insert an exponential decay of the autocorrela-
tions. this idea is currently being developped succesfully in a not yet published
working paper.

Contrary to ARC'H processses, the determination of the conditions that ren-
der the QM AC H process stationary does not, need a recursive argument. The
symmetry of the normal distribution makes all the odd moments zero. In the
case of even moments, there are no conditions for their existence:

theorem 1 For integer r, the 2rth moment of a first-order QM ACH process
exists always and it’s equal to:
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The even moments of the QM ACH (1) process can be defined as follows:
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By using the Newton’s formulae, we can develop the most-right expectation,
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Recognising that the expectations of odd powers are zero, we simplify the ex-
pression by omitting such cases:
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Which is the expression given in the statement of Theorem 1.
Q.E.D.

The unconditional variance of the QM ACH (1) model can be easily gener-
alized for the QM ACH (q):

X, = Vih?
q 2

hy = (50+Z<Sivu> (7)
=1

Vi ~ wN(O,1)

The unconditional variance is:

E(X}) = Z 52 (8)

In particular, we have also calculated the autocorrelation function of a
squared QM ACH (2) [X; = Vi (8o + 51Vi—1 + 62V;_2)] process:
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Where,
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Tt can be seen that the order of the QM ACH((q) process, ¢, can be in-
ferred by means of its squared autocorrelation function in exactly the same
way a Moving-Average model is identified with its autocorrelation function. A
theorem, as well as a proof of the latter statement can be constructed as follows:

theorem 2 Let Xy be a QM ACH (q) process such as the one indicated in (7).
For any integer k > q, the kth autocovariance of the squarred procces is equal to
zero:

BI(X - BOR) (Xe4 - BXZ)] =0 Vk>q  (10)



proof.
Knowing that:
E[(X? - B(XD) (X2, - EQX2)] = E(X2X72,) - [E(x7)] (1)

The first element in the right term of equation (11) can be developed, when
k > ¢, as follows:
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This expression can be simplified because of the independence between V;_;
and V;tfkfi.

E(X2X2,) = (i: 53) ~ (Xq: 6?) (12)

The second element in the right term of equation (11) can also be developed,
by using the equation (8):

q q
Ee - (20 (L)
=1 =1
Since both terms are identical, equation(11) is equal to zero.

Q.E.D.



2.3 Relevant statistical properties for financial applica-
tions

Several characteristics shared by many financial variables have been identified.
In this section we deal with two of the most prominent ones; leptokurticity and
asymmetry. We show that the QM AC H(1) can encompass such characteristics.
To study the first one, we calculate the theoretical value of the kurtosis coefli-
cient (K) of a QM ACH((1) distribution and we compare it to the one yielded
by a normal distribution. For asymmetry, defined as the difference in effects of
positive and negative shocks on conditional volatility,we use the News Impact
Curve (NIC), introduced by Pagan and Schwert(1990). The NIC measures
how new information is incorporated into volatility, e.g. the relationship be-
tween V; and hyyq [see Franses and van Dijk(2000)].

The fourth Central moment of the QM ACH (1) is:

E(X}) = 3-[d +606507 + 367 (13)
Which yields a kurtosis of,

3 [62 + 65262 + 362
o= 310+ 630t +357] (14)
(6 +67)

K is always greater than 3 and so the QM ACH (1) distribution is leptokur-
tik.
proof.
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The latter expression is always true unless 67, is equal to zero.

The QM ACH (1) model possesses a particular NIC curve. Contrary to
that of an ARC H-type model, the QM ACH (1)’s NIC' is not centered at zero.
It’s this characteristic that produces an asymmetry effect. GQARCH models,
proposed by Sentana(1995) has the same property. Restating expression (3), we
obtain:

28061
Vit

hy = &+ ( + 6%) V2, (15)

this expression shows that the impact of V2 ; on h; is equal to (% + 6%)
If 6,00 < 0, the effect of negative shocks on h; will be larger than the effect of a
positive shock of the same size. Additionally, the effect depends on the sign of
the shock. By taking the partial derivative of h; on V;_; and setting it equal to
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Which is the point around which the effect of shocks on the conditional variance
is symmetric. We can now build the NIC curve for the QM ACH (1) model:

NIC(X;) = 62+28001Vie1 +03V2, (17)

Figure(2) shows a tipical example of a QM ACH (1) NIC curve.
In the last ten years, a number of ARC H-class models have been proposed to

NIC:parameters of different sign NIC:parameters of the same sign
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Figure 2: The center of symmetry in the QMACH(1) NIC curve is —g—(l’, and
depends of the sign of the parameters.

deal with asymmetric effects on variance. Among them, Engle’s AGARCH [see
Engle an Ng(1993)], GJRGARCH, proposed by Glosten, Jagannathan and
Runkle(1993), the LSTGARCH presented by Hagerud(1997) and Gonzalez-
Rivera(1998) and the QGARCH [see Sentana(1995) [stand out. Several variants
of the LSTGARC H have appeared, but the latter seems to be the most success-
ful specification. It has to be said that, the AGARCH and the QGARCH have
roughly the same structure of asymmetry than the QM ACH ; the LSTGARCH ,
on the other hand, possesses a more sophisticated asymmetric mechanism, con-
sisting basically in a threshold model that allows the parameters shift depending
on the sign of the shock. Although it can’t be denied this strategy offers a more
versatile asymmetric structure than QM ACH does, we should have in mind
the fact that the latter could easily incorporate the same kind of asymmetry
by transforming it the same way, LSTGARCH transforms GARCH . Several



advantages could be found by doing so, among which, the absence of stationar-
ity and positiveness conditions are important. In the figure (3), we present the
NIC curve of the RCH as well as the one yielded by an LSTGARCH.

NIC:GARCH model NIC:GJRGARCH model
14 14
V4 T2
10 10
8 8
6 6
4 4
2 2
% 0 5 % 0 5

Figure 3: NIC curves for the GARCH model and for the GIRGARCH model:
It can be noted the lack of asymmetry in the first one.

3 Estimation of the first-order QM ACH and sta-
tistical inference

3.1 Estimation of the QM ACH(1)

Once the main statistical properties established, next step is estimation. The
QM ACH(1) estimation is simple despite the fact of being a highly non-linear
model. Its non-invertibility property doesn’t interfere significantly and can be
practically neglected. In order to show this, we present first a very simple
estimator, based in the Method of Moments (MOM). With this method, we
can estimate consistent estimators of the two parameters but the estimates
are ineflicient relative to the Maximum Likelihood (M L) estimates, our second
estimating technique.

For the MOM , we present, the two empirical moments used to compute the
estimated parameters. This two-equation system is rather too complicated to
be solved analytically, so we let an ordinary gradient algorithm solve it for us.

The theoretical moments used to match the empirical ones are the second and
the fourth central moment, appearing in equations (4) and (13). The MOM
procedure allows for consistent parameters estimates. The GM M technique
should be able to improve these results, but we rather prefer the M L estimator.
In the case of the MOM estimator, it has to be said that, although numerical
precision of the estimated parameters is good, their sign can be wrong (the
problem of invertibility). If all the parameters are of the opposite sign there

10



is no problem since the volatility equation is squared and provides exactly the
same result. This is why, when studying the precision and accuracy of parameter
estimates by means of a Monte Carlo experiment, we take the absolute value,
in order to not bias the results .

The M L technique works in the same way as with ARC H models. Letting
¥, be the information set available at time #, we can use conditional densities:

thdj ~ N(Ovht)

This property can be used to define the loglikelihood function:

1T
l:?;lt
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The ML estimators can be obtained by maximizing this function. We use
a gradient algorithm to do so. Initial values for the procedure can be the
MOM estimates. The underlying theory of the (pseudo) M L estimator allows
us to infer the asymptotic variance of the parameters. Under some regular-
ity conditions [Gallant(1987), Gourieroux-Monfort(1989), Gourieroux-Monfort-
Trognon(1984) and White(1981)], this estimator is consistent, and asymptoti-
cally Normal. Its asymptotic Covariance matrix is:

)

Ly =

T,
P dlogl, dlogl,
0 o8 o9’

Where 6 = [g‘;] and g is the expectance under the true distribution.

In the case of the QM ACH (1), the first derivative of the log likelihood of the
tth observation is:

Ologly 1 1
9 = 3 Vi

And the outer-product information matrix estimate is:

dlogly Ologl, 111 Vit
80 00 T k| Vi V2

1 Another solution, that offered excellent results can be sumarized as follows: once the the
MOM estimation done, create three combinations of the obtained parameters, by changing the
signs of either one or both parameters. Evaluate its likelihood and choose the one maximising
it.

11



The information matrix, which is the expectation of the outer-product matrix,
can be replaced by its empirical counterpart:

T

~ 1 171 Viyq

Lo = Tzht[vt—l Vf_l] (19)
=1

Expression (19) allows us to perform inference on the estimated parameters, by
t statistics, for instance.

We compare the two different estimation methods of the parameters. The
comparison is performed through a Monte Carlo study with the real parameters
being d9 = 0.8 and &g = 0.34; there are 10,000 replications. The number of
observations is T = 200. Table (1) gives the empirical mean and the standard
deviation for each of these estimators. For both, the finite sample bias is small
but it has to be said that maximum likelihood performs much better. efficiency
gain, on the other side is rather small.

| Estimator | dp mean | dp st. Deviation | 6; mean | 4; st. Deviation |

MOM 0.7730 0.1592 0.3209 0.1605
ML 0.8060 0.1705 0.3428 0.1505

Table 1: Monte Carlo Simulation of estimates perfomance

3.2 Statistical inference: specification tests

The QM ACH (1) specification’s statistical properties and estimation perfor-
mance can be considered as evidence of the viability of the model. Neverthe-
less, the huge availability of alternative specifications for the volatility makes it
necessary to propose tools to discriminate among different models, in particu-
lar, among existing specifications and the QM ACH (1) specification. For this
purpose, we propose two tests. The first one, constructed as a likelihood rate,
allows one to discriminate between a white noise process and a conditionally
heteroskedastic process of type QM ACH(1). The second test is a non-nested
hypothesis test and allows one to distinguish between a QM ACH (1) DGP and
an ARCH (1) DGP.

3.2.1 The white noise test

The test is constructed as a likelihood ratio (LR). It can be developed as follows.
According to the null, in expression (3) the parameter 6; = 0, and thus, we have:

FOx) = e [ 2]
= x
t/ V0 27‘{'(50 p 268
T
1 e
Ly = ——— :
' @m)ep P L; 262 ]
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On the other side, under the alternative hypothesis, §; # 0, we have:

We have only to calculate the likelihood ratio, take the logarithm and multiply
by minus two, in order to obtain the statistic test:

T

T
82 —h
A = 2Tlog(dg) — g log(h¢) — 5 Xt( 062htt> (20)
t=1

t=1

Al o~ X%d.f. under Hg

A Monte Carlo study has been carried out in order to measure the power-level
relationship. The latter tell us if the test is not biased (against this particular
alternative hypothesis) and, in a certain manner, how good is it. As shown in
figure (4), where 10, 000 replications of samples including 300 observations have
been simulated,the curve ”sticks” close to the axes, which tells us that the test
is not, biased.

Figure(5) shows the same relation power-level, but estimated with bigger

size—power curve
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Figure 4: Monte Carlo Simulation: 10,000 replications of T = 300 Power is
measured in the y-axis and level in the x-axis

samples containing each one 600 simulated observations. The improvement, of
the power-lever relationship. The test has a 98% power for almost any level.

3.2.2 The QMACH(1)-ARCH(1) test

The aim of the test, as has already been said is to distinguish between a
QMACH(1) process and an ARCH (1) process. Following Pollak and Wales
(1991), the test is based on the LR test statistic theory. Comparing loglike-
lihoods values of competing models is an attractive idea. The first step is to

13
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Figure 5: Monte Carlo Simulation: 10,000 replications of T = 600 Power is

measured in the y-axis and level in the x-axis

construct a general model embedding both specifications, which is done as fol-
lows: We specify both the QM ACH(1) and the ARCH (1) models as:

o QM ACH(1) specification:

Xy = Vi(do+61Vio1)
= Vi-Hy

o ARCH(1) specification:

ol

X, = Vt(ao—l—althfl)
= Vi, -Hy

Then, we construct this artificial general model:

X, = ViHf-Hy* (21)

_ {VtHlt if ¢=1
B VilHy if ¢=0

As can be seen, the general model reduces to a QM ACH(1) if ¢ = 1 and to
an ARCH(1) if ¢ = 0. Since we know that the embedding model (21) must
fit at least as well as whichever of ARCH(1) and QM ACH(1) fits best, the
unrestricted maximum of the loglikelihood function must be at least as great as
the greater loglikelihood between the specifications. Thus an LR test statistic
of the hypothesis yielding the lower loglikelihood (null hypothesis) against the

14



embedding model (alternative hypothesis) must be not less than:

Ao = =2 =)
~ X%d.f_under"ﬂo

= 1y, : greatestloglikelihood
=1 : lowest loglikelthood

This feature of the LR test is very convenient. The LR test allows one to put
a lower bound on the test statistic without estimating the unrestricted model.
This test is consistent with the classical statistical approach. Pollak and Wales
(1991) define it in terms of a fictive experiment in wich the two competing
hypotheses are nested in a composite. It must be said however that, if one of the
specifications performs well, we are allowed to reject the other one, but nothing
can said about the former. It might well be rejected too if we tested it against
the embedding model. The null hypothesis of the test must be established a
posteriori, after the estimations of both models. Of course, there is always
the possibility of finding the opposite result of what it should be. In order to
investigate such possibility, we performed two Monte Carlo experiments. In
the first one, we simulated both DPG’s, the QM ACH(1) and the ARCH(1)
(number of replications:10, 000, containing individually 300 observations) and
we calculated the test statistic in both cases. Table (2) shows the percentage
of "wrong decisions?” made by comparing the test statistic to a x7, 5. (the
asymptotic distribution of the test statistic) at a 5% level: In table (3), the very

| True DGP | Percentage of correct decisions |

QMACH(1) 97.24%
ARCH(1) 81.44%

Table 2: Monte Carlo Simulation of test power. n = 300

same experiment but made with samples containing 500 observations, is carried
on. The improvement of the test statistic is notorious in both cases:

| True DGP | Percentage of correct decisions |

QMACH(1) 99.17%
ARCH(1) 95.37%

Table 3: Monte Carlo Simulation of test power. n = 500

2This means that if, based on the test statistic, we reject the true DGP, the test fails.
When the estimated model, made under the asumption of the right DGP, yields a loglikelihood
inferior to the one yielded by the other model, we asume the test statistic makes an Type-1
error.
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4 Empirical application: the D.Mark-U.S. Dol-
lar exchange rate

The theoretical results presented so far let us think of the QM ACH (1) model
as a rather attractive one. Nevertheless, its empirical application should be seen
as the most important proof of the viability of the specification. The critical
aspect is, of course, the comparison of its performance with the most popular
available models. When dealing with conditionally heteroskedastic models, the
GARCH(1,1) specification is a benchmark.

Empirical exchange rate model are known to fail to adjust adequately during
long periods. This temporal inconsistency of the models in the explanation of
floating rates may be provoked by a number of structural changes, which sug-
gests dividing the sample into subperiods. For the DM — US$ rate Goldberg
and Frydman(2001) found evidence of seven structural breaks during the period
1973 — 1998. Most important, they also find evidence that the models used to fit
the DM — US8$ rate have residuals which are non-normal and heteroskedastic.
In this section, we adjust the QM ACH (1) model and the GARCH (1, 1) model
to the DM — U S$ rate 3. The test statistics proposed in section four, as well as
the Augmented Dickey-Fuller unit root test (ADF) are performed in order to
elucidate the properties of the variable and its DG P. Finally, several statistics
aiming to evaluate intra-sample forecasts are presented. Table (4) presents the
results of the ADF applied to the DM — US$ rate. As can be seen, there is no
evidence (at a 5% level) to reject the presence of a unit root. Since both mod-

| Test Equation | no lag. change | I lag. change | Crit. Values |
No constant -1.6738 -1.4642 -1.9639
Constant -2.3935 -2.4951 -2.8628
Const. plus trend -1.3655 -2.0890 -3.4200

Table 4: ADF test

els, QMACH(1) and GARCH(1,1) require stationarity, we transformed the

variable using the relation X; = 100 - [log(DM — US$;) — log(DM — US$;_1)].

The evolution of this variable during the studied period is shown in figure (6).
When we perform the homoskedasticity test proposed in section??, we have

no evidence, at a 5% level, to reject the null hypothesis (/\1 =21242;x3 ;5 = 3.841).

Such inference does not back up Goldberg and Frydman(2001) evidence. This

seemingly contradictory result should be attenuated because of methodological

differences; the test used here may be committing a type II error. There is more
evidence of the existence of the heteroskedasticity problem in this variable than

3D. Mark/US$ (1971:01-2001:08): Frecuency: Mensual.Average of daily figures, Noon buy-
ing rates in New York City for cable transfers payable in foreign currencies, starting January
1999 derived using the official fixed conversion rates.
Source: Federal Reserve Bank of St. Louis and Federal Reserve Board of Governors
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Figure 6: X; = 100 - [log(DM — US$;) —log(DM — USS%; 1)]

the contrary and we thus decide, despite this result, to continue our empirical
study.

The second test proposed may be seen as more illuminating. Since the
test can be easily adjusted so it compares the QM ACH specification with the
GARCH(1,1) model rather than the ARC H (1) model, we decided to do it so.
As a matter of fact, once the loglikelihoods of both the QM ACH (1) and the
GARCH(1,1) models have been calculated, we can test the null according to
which the underlying DGP is a GARCH(1,1) against the alternative of the
embedding model (21). There is enough evidence to reject the null, so we prefer

the alternative model ()\2 =17,02,x3, ;. = 3.841).

Finally, we present the estimations of the QM AC H(1) and the GARCH (1, 1)
models. Eventually, a QM ACH specification with more lags (QM ACH (q), V
g > 1) should yield better results. In order to verify this assumption, we present
the estimated parameters of a QM ACH(2) specification. Two statistics are
included in order to evaluate the intra-sample conditional variance forecasts
performance: the Mean Square Error (M SE) and the Mean Absolute Error
(M AE). Additionally, we show the loglikelihood so we can compare the adjust-
ment of the models to the data. As can be seen in Table 5, all models have similar
performance, which is extremely encouraging, since the QM ACH (1) specifica-
tion is more parsimonious and easier to estimate than the GARCH (1,1). On the
adjustment side, the GARCH (1, 1) is outperformed by the QM ACH (1), and by
the QM ACH(2) wich offers an attractive alternative. The first two parameters
of the QM ACH (2) are similar to the ones yielded by the QM ACH(1). This
could be seen as a sign of robustness of QM AC H-type specifications. The over-
all performance of QM ACH specifications compares well with the benchmark
model, GARCH(1,1). Yet, a warning should be stated, since the GARCH(1, 1)
autocovariance function is more appropriate when dealing with this kind of
variables. Of course, it must remain clear that this is a specific case; a more
ambitious empirical study would be more conclusive.
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| Model | Const. | 2d par. | 3d par. | MSE | MAE | likel. |
QMACH(1) 2.7217 | -0.1229 133.97 | 7.51 | -551.13
QMACH(2) 2.7210 | -0.1468 | 0.1244 | 133.41 | 7.46 | -550.35
GARCH(1,1) | 1.4936 | -0.4083 | 0.4456 | 149.38 | 8.03 | -559.64

Table 5: Comparation of models

5 Conclusions

This paper has presented a new model, deeply inspired by the Non-Linear Mov-
ing Average models, but with the approach tipically used when dealing with
conditionally heteroskedastic models. The QM ACH does not belong to the
ARCH class model. Tt should indeed be seen as a new instrument to deal
with heteroskedasticity. This paper provides some of the most important tools
for that purpose. On the one hand, the QM ACH(1) model can be consistently
estimated either by MOM or M L and, on the other hand, the theoretical corre-
lation function of the squared process, as well as the two statistical tests, should
facilitate identification, and provide statistical evidence of either the presence
or the absence of QM ACH type variables.

Yet, despite the empirical application presented in this paper, the QM ACH
specification still needs to demonstrate its usefulness in real world. Neverthe-
less, the DM — US$ application lets us know that the QM ACH specification
was able to fit as well as the benchmark model, the GARCH((1,1), but has in
parallel several advantages over the latter, among which stand out the lack of
stationarity conditions, the absence of sign restrictions over the parameters, the
parsimony of the model and the asymmetric treatment of shocks.

This new specification will have to compete with the many variants belong-
ing to the ARCH class. Such competitors vary in complexity and robustness;
the QM ACH model, despite its simplicity, still offers extremely interesting
characteristics. A generalization of this model, similar to the one made by
Bollerslev(1986) for the ARCH model could possibly enhance its robustness,
and thus increase its empirical interest, which has been virtually neglected in
the case of Non-Linear Moving Average models.
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