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Abstract

The Hausman (1978) test is based on the vector of differences of two esti-

mators. It is usually assumed that one of the estimators is fully efficient, since

this simplifies calculation of the test statistic. However, this assumption limits

the applicability of the test, since widely used estimators such as the generalized

method of moments (GMM) or quasi maximum likelihood (QML) are often not

fully efficient. This paper shows that the test may easily be implemented, using

well-known methods, when neither estimator is efficient. To illustrate, we present

both simulation results as well as empirical results for utilization of health care

services.
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1 Introduction

The Hausman test (Hausman, 1978) is based on the idea that the difference between

two consistent estimators tends to zero. One of the estimators, say θ̂1, is consistent

under the null of correct specification, but inconsistent under the alternative. The other

estimator, say θ̂2, is consistent under both the null and the alternative hypotheses.

Under the alternative hypothesis of misspecification, θ̂1 will no longer be consistent,

but θ̂2 will remain so. In this case the difference vector ∆ � θ̂2
� θ̂1 will have a nonzero

probability limit, which will cause the test statistic to ultimately reject the null of

correct specification.

Hausman’s paper, and most subsequent research, has concentrated on the case that

θ̂1 is fully efficient when the associated model is correctly specified. In this case,

the asymptotic variance of ∆, V∆, is simply the asymptotic variance of the inefficient

estimator minus that of the efficient estimator. With this simplification, the test is easily

implemented using consistent estimators of the two asymptotic variances.

This paper addresses the case where neither of the two estimators is fully efficient.

For the purposes of this paper, it bears emphasizing that widely used estimators such

as quasi maximum likelihood (QML) and the generalized method of moments (GMM)

are not fully efficient, in general. When performing a Hausman test comparing two

inefficient estimators, V∆ will involve the asymptotic covariance of the estimators. It

will not cancel out as in the case analyzed by Hausman.

Some previous research has examined special cases of pairs of inefficient estima-

tors. Ruud (1984) considers the case where a likelihood function may be factored as

the sum of two likelihoods. The obvious example is a split sample. When observations

are independent, the sample may be split into two equal parts, and each part may be

used separately to calculate the two estimators. Sample splitting leads to an impor-

tant loss of power, since the asymptotic variances of the estimators are twice as large

as when the full sample is used. Nor is it a general solution, since it will not solve

the problem of correlation between the estimators when the observations are not in-
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dependent of one another. The idea of sample splitting has been further pursued in

the context of QML estimation by de Luna and Johansson (2001). Newey (1985) also

presents Hausman tests based on inefficient estimators. He considers GMM estimators

defined by different linear combinations of a given vector of moment conditions. The

major limitation of these authors’ results is that their frameworks are very specific and

are highly restrictive in terms of the pairs of estimators that may be considered.

In the empirical literature, Windmeijer and Santos Silva (1997) perform a Haus-

man test based on Poisson QML and GMM estimators. Since neither the QML nor

the GMM estimator is efficient, the authors use a split sample Hausman test, following

Ruud (1984) and Browning and Meghir (1991). In their application, Windmeijer and

Santos Silva find that this version of the test does not reject exogeneity. One wonders

whether the reason for non-rejection might be the loss of power entailed by splitting

the sample.

This paper re-examines the Hausman test when neither estimator is efficient. We

find that the standard full sample Hausman test is simple to apply in the general case,

since accounting for the covariance of the estimators is not at all difficult, and may be

done using standard methods. The result is simple, but it appears to have been over-

looked, and it does have practical importance. The result also immediately suggests

some closely related tests. Simulation results are provided that show that the standard

Hausman test may be misleading when it is calculated using a pair of inefficient es-

timators, and that the modified test performs properly under the same circumstances.

We apply the test to data on demand for health care visits and private health care in-

surance. We find strong evidence that health care insurance is an endogenous variable

in explaining demand for certain forms of health care.

In the next section we present the main results of the paper. The third section

presents the simulation results and the fourth section contains the empirical results.
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2 Theory

Hausman (1978) recognized from the beginning that the essential problem in basing a

test on estimators that may not be efficient is that the covariance between the estima-

tors must be estimated. In this section we show that methods that have since become

standard allow this covariance to be estimated without difficulty. The argument is a

straightforward application of existing results on extremum estimators, so results are

stated without proof or explicit regularity assumptions. Gallant (1987), Chapter 3, for

example, gives regularity conditions and formal proofs of the results that are used here.

Newey and West (1987a) and Davidson and MacKinnon (1993, pp. 616-619) present

results that are suggestive of those presented here, but which do not explicitly discuss

the Hausman test.

An extremum estimator ψ̂ may be defined as

ψ̂ � arg max
ψ � Ψ

sn
�
ψ � Zn � �

where Zn is the data. Extremum estimators encompass minimum distance estimators,

defined in terms of

sn
�
ψ � Zn � �

1
n

n

∑
t � 1

st
�
ψ � zt � �

where zt is the data for one observation, and method of moments estimators, defined

in terms of

sn
�
ψ � Zn � � mn

�
ψ � Zn ��� Wnmn

�
ψ � Zn � �

where Eψmn
�
ψ � Zn � � 0 and Wn is a matrix with a finite, positive definite almost sure

limit. An extremum estimator will, given some regularity conditions, have an almost

sure limit, say ψ0, and will be asymptotically normally distributed:

�
n
�
ψ̂ � ψ0 � d� N 	 0 � V∞ 


where V∞ � J∞
�
ψ0 ��� 1I∞

�
ψ0 � J∞

�
ψ0 ��� 1. Here, J∞

�
ψ0 � is the almost sure limit of
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Jn
�
ψ0 � �

∂2

∂ψ∂ψ � sn
�
ψ � � ψ0

, and I∞
�
ψ0 � � limn � ∞ Var

�
ngn

�
ψ0 � , where we use the nota-

tion gn
�
ψ0 � �

∂
∂ψ sn

�
ψ � � ψ0

.

To test a hypothesis of the form H0 : Rψ0 � 0 � q � 1 � , the Wald statistic

W � nψ̂ � R �
�
R �VR �	� � Rψ̂ � (1)

where �V is a consistent estimator of V∞, is asymptotically distributed as a χ2 � r � random

variable, where r is the rank of RV∞R � .
Now, turning to the Hausman test, we assume that both estimators are extremum

estimators, defined by

θ̂1 
 argmax
θ � Θ

s1
n

�
θ � Zn � (2)

θ̂2 
 argmax
θ � Θ

s2
n
�
θ � Zn � � (3)

where Θ � ℜk � If we define ψ ��
 θ �1 θ �2 � ��� Θ � Θ, it is clear that the omnibus

estimator

ψ̂ 
 arg max
ψ � Θ � Θ

sn
�
ψ � � s1

n
�
θ1 � Zn ��� s2

n
�
θ2 � Zn � (4)

will lead to the same values for the estimators as in equations 2 and 3. That is, ψ̂ 
�
θ̂ �1 � θ̂ �2 � � . It bears noting that the omnibus estimator is an extremum estimator, and the

theory reviewed above will apply, given regularity conditions. Define ψ0 �
�
θ �A � θ �0 � �

as the almost sure limit of ψ̂. Under the null hypothesis of correct specification, so

that both estimators are consistent, � θA
� θ0 � � 0, so Rψ0 � 0 � k � 1 � . When the first

estimator is inconsistent due to misspecification, � θA
� θ0 ���� 0.

Now, if the dimension of θ is k, say, then we can define the matrix

R ��� Ik
� Ik � � (5)

When θ̂1 is asymptotically efficient, the Wald test, in equation 1, of the restriction

Rψ � 0 is asymptotically equal to the standard Hausman test, and it is the Hausman
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test if the variance estimator that is used, V̂ , incorporates the information that θ̂1 is

efficient.1 The advantage of putting the problem into the framework of extremum

estimation is that it is immediately clear how a Hausman-type test may be performed

when neither of the estimators is fully efficient. Since the two sub-objective functions

that define the omnibus estimator share no parameters, the Hessian matrix J∞
�
ψ0 �

is simply the block-diagonal matrix formed by the limiting Hessians of the separate

estimators defined by equations 2 and 3:

J∞
�
ψ0 � ����� J1

∞
�
θA � 0k � k

0k � k J2
∞
�
θ0 �

���� �
These components may be estimated as usual. The matrix I∞

�
ψ0 � may be written as

I∞
�
ψ0 � ����� I1

∞
�
θA � I12

∞
�
ψ0 �� I2

∞
�
θ0 �

���� �
Without full efficiency of the first estimator, the off-diagonal covariance term will not

cancel out of the test statistics as it does in the standard case, and it will be necessary

to define a consistent estimator. While the on-diagonal blocks may be estimated by

whatever means are appropriate given the way the estimators are defined, we will

discuss means of estimating the entire matrix.

Recall that

I∞
�
ψ0 � � lim

n � ∞
Var

�
ngn

�
ψ0 �

� lim
n � ∞

nE 	 gn
�
ψ0 � gn

�
ψ0 � ��
 � lim

n � ∞
nE � gn

�
ψ0 ��
 E 	 gn

�
ψ0 � ��



 A∞
�
ψ0 � � B∞

�
ψ0 � �

In general, it is not possible to estimate B∞
�
ψ0 � consistently. However, it is commonly

the case that B∞
�
ψ0 � � 0. For example, this will hold for a minimum distance estimator

1The asymptotic efficiency of θ̂1 implies that the asymptotic covariance between θ̂1 and θ̂2 is equal
to the asymptotic variance of θ̂1 (see Hausman, 1978, Lemma 2.1) . This is what causes the asymptotic
covariance to cancel out of the formula for the standard Hausman test.
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if Eψgt
�
ψ � � E

�
Dψst

�
ψ � � 0 ��� t. This will be the case for QML estimators when the

data are independently and identically distributed, for example. It also holds for a

method of moments estimator if the moment conditions are of the form mn
�
ψ � Zn � �

1
n ∑n

t � 1 mt
�
ψ � zt � and Eψmt

�
ψ � zt � � 0 ��� t. We will assume henceforth that we are in a

situation such that B∞
�
ψ0 � � 0.

With this, for minimum distance estimators,

I∞
�
ψ0 � � lim

n � ∞
Var

1�
n ∑

t
gt

�
ψ0 � 
 Ω∞

�
ψ0 � �

and for method of moments estimations,

I∞
�
ψ0 � � lim

n � ∞
Var

�
2Mn

�
ψ0 � Wn

1�
n ∑mt

�
ψ0 ���


 4M∞
�
ψ0 � W∞Ξ∞

�
ψ0 � W∞M∞

�
ψ0 � � �

where Mn
�
ψ � � Dψmn

�
ψ � � , M∞

�
ψ0 � is its almost sure limit, evaluated at ψ0, and

Ξ∞
�
ψ0 � � lim

n � ∞
Var

1�
n ∑

t
mt

�
ψ0 � � (6)

The remaining problem, as the case may be, is the estimation of Ω∞
�
ψ0 � or Ξ∞

�
ψ0 � .

These matrices are the asymptotic covariances of vector valued processes. A number

of estimators are available. With dependent observations, the estimators of Newey

and West (1987b), Gallant (1987, pg. 533), and Andrews and Monahan (1992) are

possibilities. With independent observations

�
Ω∞

�
ψ0 � �

1
n

n

∑
t � 1

gt
�
ψ̂ � gt

�
ψ̂ � � (7)�

Ξ∞
�
ψ0 � �

1
n

n

∑
t � 1

mt
�
ψ̂ � mt

�
ψ̂ � � (8)

will provide consistent estimators, in many cases.

We have now seen how to implement the standard Hausman test when neither esti-

mator is efficient. But the above suggests two additional ways to test correct specifica-
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tion, one which is well-known, and the other which is new. For clarity, the presentation

will be done in terms of GMM estimators. Consider the omnibus estimator when both

estimators can be put in the GMM form. In this case we can define the two GMM

estimators as

θ̂1 
 argmax
θ � Θ

s1
n
�
θ � Zn � � m1

n
�
θ1 � Zn � � W 1

n m1
n
�
θ1 � Zn � � (9)

θ̂2 
 argmax
θ � Θ

s2
n
�
θ � Zn � � m2

n
�
θ2 � Zn ��� W 2

n m2
n
�
θ2 � Zn � � (10)

We can define the omnibus moment condition mn
�
ψ � � � m1

n

�
θ1 � Zn � � m2

n

�
θ2 � Zn � � � � ,

and the omnibus GMM estimator

ψ̂ 
 arg max
ψ � Θ � Θ

sn
�
ψ � � mn

�
ψ � � ��� W 1

n 0pq

0qp W 2
n

���� mn
�
ψ � � (11)

where p is the number of moment conditions that defines θ̂1 and q is the number of

moment conditions that defines θ̂2. That is, the omnibus estimator also has a GMM

representation. Now, since the estimators will be correlated when neither is efficient,

it is clear that the weighting matrix that defines this (equation 11) GMM estimator is

not the efficient weight matrix, even if W1
n and W 2

n are the efficient weight matrices for

the two separate estimators. A different Hausman test may be based on the omnibus

GMM estimator that uses the overall efficient weight matrix (the inverse of a consistent

estimator of the overall covariance of the moment conditions, in equation 6). One may

use the Wald test for the hypothesis θ1 � θ2. This test should be more powerful than

the usual Hausman test, since it is based upon a more efficient estimator.

Finally, the previous test is based upon the unrestricted estimator, where the two

parameter vectors are not restricted in estimation. If we take the previous moment

condition but impose the restriction that the two estimators be equal, then we have ψ �

θ, and the moment condition becomes mn
�
ψ � � � m1

n
�
ψ � Zn � � m2

n
�
ψ � Zn � � � � . This

leads to an new overidentified GMM estimator, based upon pooling the moments that

define the separate estimators to define a single estimator. Now we may apply GMM

8



using the optimal weighting matrix, estimated by whatever means are appropriate.

We have overidentification, and standard results tell us that the GMM criterion test

statistic nsn
�
ψ̂ � is asymptotically central chi-square with p � q � k degrees of freedom

when the moment conditions are correctly specified. The GMM criterion test statistic

is essentially a score test applied to the omnibus model, while the Hausman test is a

Wald test.

In this section we have defined three test statistics. The first is the standard Haus-

man test, but with the covariance between the estimators taken into account at the point

of testing, but not when estimating. This can be thought of as a Wald test applied to

an inefficient GMM estimator. We will refer to this as the H1 test. The second is the

same test, but using the covariance between the estimators to improve the efficiency of

estimation. This will be referred to as the H2 test. The final GMM criterion test with

pooled moments and the restriction imposed will be referred to as the CRIT test. The

original, uncorrected Hausman test, which is not asymptotically valid in the general

case, will be referred to as the H0 test.

The H1 and H2 tests are Wald tests applied to unrestricted GMM estimators. Burn-

side and Eichenbaum (1996) find that the true size of such Wald tests often exceeds the

nominal size, especially when a number of restrictions are tested jointly. They find that

using a covariance estimator calculated using the formulae for the unrestricted estima-

tor, but evaluated at the restricted estimator (that used for the CRIT test) can improve

the small sample performance of Wald tests. In what follows we will report results

based upon covariance estimators calculated using both the unrestricted and restricted

estimators.

Finally, a Hausman test may be based upon the entire vector of differences, or

on a sub-vector, where some of the rows of the matrix R in equation 5 are dropped.

In what follows we will present results both for the full version where equality of all

parameters is tested, and a version of the test where equality of a single parameter is

tested. To explain the notation that is used to describe the tests, an “f” means that the

full set of restrictions that all parameters are equal is tested, while an “s” means that
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a single restriction is tested. The notation “be” means that the Burnside-Eichenbaum

suggestion for estimating the covariance is used, otherwise the standard estimator for

a Wald test is used. For example, “H2(sbe)” means the H2 test of a single restriction,

with the Burnside-Eichenbaum suggestion. H0(f) is the standard Hausman test, using

all restrictions.

3 Simulations

In this section we examine two simple situations that illustrate the problems one may

encounter when using the standard Hausman test with inefficient estimators, and that

examine the performances of the alternative tests.

3.1 A linear model

Consider a linear model with heteroscedastic errors and a potentially endogenous re-

gressor, generated by random sampling from the following model:

y � 0 � z � ησ������ z

η

w

������� � N

�����
�
������ 0

0

0

������� � ������ 1 ρ1 ρ2� 1 0� � 1

�������
������
�

σ �
�
1 � z �

Thus, z will be an endogenous regressor when ρ1 �� 0. We may use w as an instrument

for z. Since the errors are heteroscedastic, the OLS estimator will not be efficient (it is

a QML estimator), and the standard Hausman will not be valid. It can be shown that

the test statistics are invariant to a scalar multiple of σ.

To investigate size, we set n � 100 � ρ1 � 0 � ρ2 � 0 � 5, and we perform 10,000 repli-

cations.2 Since ρ1 � 0, z is exogenous. We use the OLS and IV estimators of the model

2All results in this paper were obtained using GNU Octave (www.octave.org). All data and estimation
programs needed to replicate the results in this paper are available upon request from the author.
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y � β1 � β2z � ε to calculate the test statistics. The instruments used to calculate the

IV estimator are � 1 � w� w2 
 . The full (“f”) tests are based upon equality of the OLS and

IV estimators of both β1and β2, while the single (“s”) tests check equality of β2, the

coefficient of the potentially endogenous regressor. Table 1 presents the results for the

various tests. We see that the standard Hausman test (H0) has serious size distortions

in both the full and single restriction versions of the test. The CRIT test performs quite

well. The H1 and H2 tests perform quite well, except for the H1(f) and H2(f) tests,

which under-reject. The “be” versions of the H1 and H2 tests all have true size close

to nominal size.

To examine power, we repeat the simulation, with everything as above but setting

ρ � 0 � 3. The results are reported in Table 2. Of the tests that were found to have proper

size, the H2(sbe) test is the most powerful, though the H1(sbe) test is a close second.

3.2 A count data model with a latent variable

Consider a count data model with a normally distributed latent variable that is poten-

tially correlated with an observed regressor, generated by random sampling from the

following model:

������ z

η

w

������� � N

�����
�
������ 0

0

0

������� � ������ 1 ρ1 ρ2� 1 0� � 1

�������
������
�

y � Poisson
�
λ �

λ � ez � η � 1 � 2

The two estimators used to perform the Hausman test are the Poisson QML estima-

tor that is defined assuming y � Poisson
�
λ � where λ � exp

�
β1 � β2z � (i.e., the latent

variable is ignored) and the nonlinear instrumental variables (NLIV) estimator sug-

gested by Mullahy (1997), which uses the residual function exp
�

� β1
� β2z � y � 1 and

the instruments � 1 � w� w2 
 . Again, z will be an endogenous regressor when ρ1 �� 0, so
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the Poisson QML estimator will not be consistent in this case. The IV estimator is

consistent. Neither estimator is efficient in either case.

First we set n � 500 � ρ1 � 0 � ρ2 � 0 � 5 � In this case the latent variable is uncor-

related with the regressor, so both the NLS and the NLIV estimators are consistent.

We use 10,000 replications. Table 3 presents rejection frequencies for the 10%, 5%

and 1% significance levels, respectively. We see that the standard (H0) test presents

very serious size distortions in both the full and single restriction version. The CRIT

test also seriously over-rejects. The “f” versions of the H1 and H2 tests also seriously

over-reject, and the “fbe” versions over-reject, too, though not as seriously. The H1(s),

H2(s) and H2(sbe) tests all have true size almost equal to nominal size. The “be”

version slightly under-rejects, while the other two over-reject slightly.

Next, to check power, we repeat the above scenario, but setting ρ1 � 0 � 3, so that

z is endogenous. Table 4 reports the results. The H1(s) and H2(s) are more powerful

than the H2(sbe) test. This is perhaps expected, since the results on size indicate that

the H2(sbe) test is the most conservative of the three. We do not comment on the power

of the other tests, since they were found to have serious size distortions.

In summary, these simulation results show that the standard Hausman test can

suffer from serious size problems when neither of the estimators it is based upon is

efficient. The CRIT test for the overidentifying restrictions of the pooled GMM esti-

mator also can be seriously distorted. Of the tests proposed in this paper, the single

restriction tests appear to be quite reliable, especially when the Burnside-Eichenbaum

covariance estimator is used.

4 Demand for health care and insurance coverage

Much research effort has investigated the determinants of health care usage, with a

small sample of papers being Pohlmeier and Ulrich (1995); Gurmu (1997) and Deb and

Holmes (2000). Variables such as private insurance coverage or self-reported health

status may be jointly determined with variables related to usage of health care services
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(Cameron et. al., 1988; Windmeijer and Santos Silva, 1997; Vera-Hernández, 1999).

For example, if both usage and the decision to purchase private insurance are in part

determined by an unobservable personal characteristic such as health status, then there

will exist a problem of endogeneity in the estimation of the usage model, if usage

depends upon insurance status.

Currently, the most common means of estimating a model for count data while

taking into account endogeneity is apply a GMM estimator (Windmeijer and Santos

Silva, 1997; Mullahy, 1997; Terza, 1998; Vera-Hernández, 1999). Another possibility

is to estimate a bivariate model for both endogenous variables by maximum likelihood

(ML), using a sufficiently flexible bivariate density (Terza, 1998; Van Ophem, 2000,

Romeu and Vera-Hernández, 2001). This idea is incompletely developed at present,

due to the difficulties involved in finding a computationally tractable bivariate density

that is sufficiently flexible to warrant the assumption of correct specification. Under

the more traditional approach, when facing the choice between using an estimator that

ignores endogeneity and a GMM estimator that accounts for it, a Hausman test of

the type presented in this paper will be a useful tool. The modified version of the

Hausman test will be needed when the estimator that is based upon the assumption of

exogeneity cannot be assumed to be a ML estimator, perhaps because of unmodeled

latent variables or other reasons.

4.1 Data

We use the 1996 Medical Expenditure Panel Survey (MEPS) data, which contains six

different measures of annual health care usage3. These are office-based doctor visits

(OBDV), outpatient visits (OPV), emergency room visits (ERV), inpatient visits (IPV),

dental visits (DV), and number of prescription drugs taken (PRESCR). In order to

obtain a simple model that can pass specification tests, we limit the sample to people of

age between 40 and 65 years, inclusive, and we estimate separate models for men and

women. The explanatory variables are months of private insurance coverage during

3The raw data (file HC-012) is available at www.meps.ahrq.gov, and the programs used to prepare the
data, the prepared data, and the estimation routines are available from the author.
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the year (PRIV), months of public insurance coverage during the year (PUB), age

(AGE), years of schooling (EDUC), and family income (INC). All the variables with

the exception of INC are directly available. INC was constructed by summing the

incomes of all members of the family. Observations for which any family member’s

income was “hot decked” were dropped.4 There are 984 observations (men) and 1117

observations (women) for which all needed variables are available.

We do not condition on any measure of health status. The health status measures

available in the MEPS data are either perceived health status, sometimes self-reported,

sometimes reported by other family members, and objective measures that are quite

specific and that may not be good indicators of overall health. As such, health status

is treated as a purely latent variable. The fact that both health care usage and private

insurance status are likely to depend upon health status is the reason that one suspects

endogeneity of private insurance status in a model of health care usage. We assume

that public insurance status is exogenous in a model of health care usage. While there

may be some grounds for questioning this assumption, it appears to be reasonable for

this data set in light of the specification test results reported below.

Let η be a latent index of health status that has expectation equal to unity.5 We

suspect that η and PRIV may be correlated, but we assume that η is uncorrelated with

the other regressors. For each of the health care usage measures, represented as y in

the following equation6 , we assume that

E
�
y
�
PUB � PRIV � AGE � EDUC � INC � η �

� exp
�
β1 � β2PUB � β3PRIV � β4AGE � β5EDUC � β6INC � η �

4“Hot decking” is a term used in the MEPS documentation to describe a method of replacing missing
data with conditional or unconditional means of the variable. See the documentation for the HC-012 file,
available at www.meps.ahrq.gov, for more details.

5A restriction of this sort is necessary for identification.
6The regression coefficients are assumed to vary according to the usage measure, but this is suppressed

in the notation for readability.
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We use the Poisson QML estimator of the model

y � Poisson
�
λ �

λ � exp
�
β1 � β2PUB � β3PRIV � β4AGE � β5EDUC � β6INC � � (12)

Since much previous evidence indicates that health care services usage is overdis-

persed7 , this is almost certainly not an ML estimator, and thus is not efficient. How-

ever, when η and PRIV are uncorrelated, this estimator is consistent for the β i param-

eters, since the conditional mean is correctly specified in that case.

When η and PRIV are correlated, Mullahy’s (1997) NLIV estimator that uses the

residual function

ε �
y
λ

� 1 �

where λ is defined in equation 12, with appropriate instruments, is consistent. As

instruments we use all the exogenous regressors, as well as the cross products of PUB

with the variables in Z � � AGE � EDUC � INC 
 . That is, the full set of instruments is

W � � 1 PUB Z PUB � Z 
 �
Since PUB is rather strongly negatively correlated with PRIV (ρ � � 0 � 485 � , and since

the coefficient of determination when PRIV is regressed by ordinary least squares on

the instruments, W , is R2
� 0 � 40, we conclude that the instruments are reasonably

strong. There are 8 instruments and 6 parameters to estimate.

Neither the the QML nor the NLIV estimators are efficient, which suggests that

the standard Hausman test may give misleading results. In order for the results of any

Hausman-type test to be convincing, we should have evidence that the NLIV estimator

is in fact consistent. To check the correctness of the specification of the conditional

mean and the validity of the instruments, we put the NLIV estimator in the GMM

form, and report the omnibus specification test nsn
�
θ̂ � where sn

�
θ̂ � is the GMM cri-

7Overdispersion exists when the conditional variance is greater than the conditional mean. If this is
the case, the Poisson specification is not correct.
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terion function using the optimal weighting matrix. Table 5 presents the marginal

significance level at which the null hypothesis of correct specification may be rejected,

for each of the use measures, and for men and women. In only one case do we reject

at a level below 10%. Given that this sort of test often over-rejects in finite samples

(Hansen and Heaton, 1996), we conclude that the fairly simple model seems to be an

adequate specification of the conditional mean.

When testing exogeneity of private insurance status, we hypothesize that endo-

geneity is most likely to be present when the level of use of a type of care is to a large

degree under the control of the patient. Office-based visits (OBDV) and dental visits

(DV) seem to be the two clearest cases. While the practitioner certainly can influence

the number of visits of these types, the patient also has a good degree of control, since

the patient initiates the visits. On the other hand, outpatient visits (OPV) and inpatient

visits (IPV) require a physician’s intervention for a usage event to occur. Emergency

room visits are due to accidents or unexpected illnesses that are (at least usually) se-

vere enough that immediate care is necessary, and are thus unlikely to be strongly

influenced by private insurance status. The number of prescription drugs taken (PRE-

SCR) is an unclear case, since a physician must prescribe the drugs, but the patient can

initiate visits with a number of physicians. In sum, we expect that endogeneity may

be a problem when analyzing the OBDV and DV measures of use. Private insurance

status seems unlikely to be endogenous in models for OPV, IPV and ERV. We have no

strong prior opinion in the case of PRESCR.

Tables 6 and 7 present the marginal significance levels (p-values) at which exo-

geneity of PRIV may be rejected, for all of the tests and for each of the usage vari-

ables, for men and women, respectively. The simulation results in Section 3.2, which

are for a model similar to that estimated here, suggest that the most reliable test is the

H2(sbe) tests, so those are the results we focus on for the purpose of testing exogeneity.

All of the single restriction tests are calculated using the difference of the estimated

coefficents of PRIV.

In Tables 6 and 7, the H2(sbe) test gives strong evidence that private insurance
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status is endogenous in the cases of the OBDV and PRESCR usage measures, for both

men and women. The case of DV, for men, is the only other measure for which the

H2(sbe) p-value approaches conventional levels for rejection. The other tests that were

found to work reasonably well in the simulations (the H1(s), H1(sbe), and H2(s) tests)

all give similar results, except that exogeneity is questionable in the case of IPV for

men. It is worth noting that the conventional Hausman test gives a p-value of one

in a number of cases. This is because the test statistic took on a negative value in

those cases. This occurs since the difference of the estimated covariance matrices of

the GMM and GML estimators is not necessarily positive semidefinite. None of the

different versions of the H1 and H2 tests are affected by this problem, since taking the

covariance between the estimators into account causes the overall estimated covariance

matrix to be positive semidefinite.

In summary, private insurance status appears to be endogenous for the OBDV and

PRESCR usage measures, for both men and women. This is not unexpected in the case

of OBDV, but the case of PRESCR is perhaps surprising. The unobserved factors that

lead to higher than average consumption of prescription drugs appear to be correlated

with those that lead to seeking private insurance coverage. The effect of unobserved

health status could very plausibly explain this phenomenon. The factors that lead

physicians to prescribe drugs could also be of some importance.

5 Conclusions

This paper has presented several modified versions of the Hausman test that may be

used when neither of the estimators is efficient. The standard Hausman test is not valid

in this case, as has been illustrated using simulation. The simulation results illustrate

the fact, already known in the literature (e.g. Hansen and Heaton, 1996), that the

CRIT test, while asymptotically valid, can suffer from serious size distortions. The

simulations, within their limited scope, show that the single restriction versions of the

H1 and H2 tests performs quite well. We do not attempt a broader Monte Carlo study
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simple since the number possibilities to investigate is overwhelming. When we turn

to an empirical investigation, we find that the new tests gives results that are plausible,

given prior beliefs regarding the determinants of health care visits.

An empirical result that should be highlighted is that, for health care usage, exo-

geneity seems to be a fairly innocuous assumption in certain situations. When this is

the case, univariate maximum likelihood methods, which have been extensively devel-

oped in recent research, may be safely used, with the resulting efficiency. On the other

hand, the results strongly indicate that endogeneity is a problem for certain usage mea-

sures. In these cases GMM estimation seems to be the best alternative, at least until the

multivariate ML approach is better developed. In this study, public insurance coverage

is available, and provides a strong instrument for private insurance coverage. In other

studies, for example, that of Vera-Hernández (1999), where all individuals have public

coverage, such an instrument is not available, and the GMM estimates suffer from im-

precision. This is the sort of situation that might motivate additional work on flexible

multivariate densities, in order to deal with endogeneity while retaining efficiency.
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Table 1: Frequency of Rejections, Linear Model, True Null Hypothesis

10% 5% 1%
H0(f) 0.0622 0.0431 0.0229
H0(s) 0.2467 0.1798 0.0993
CRIT 0.1064 0.0489 0.0081
H1(f) 0.0435 0.0157 0.0014
H1(fbe) 0.0970 0.0435 0.0071
H1(s) 0.0843 0.0354 0.0032
H1(sbe) 0.1049 0.0494 0.0087
H2(f) 0.0282 0.0117 0.0012
H2(fbe) 0.0970 0.0435 0.0071
H2(s) 0.0990 0.0435 0.0065
H2(sbe) 0.1122 0.0580 0.0108

Table 2: Frequency of Rejections, Linear Model, False Null Hypothesis

10% 5% 1%
H0(f) 0.1166 0.0834 0.0442
H0(s) 0.4356 0.3631 0.2439
CRIT 0.3123 0.1957 0.0552
H1(f) 0.1995 0.1017 0.0190
H1(fbe) 0.2992 0.1841 0.0481
H1(s) 0.3577 0.2170 0.0483
H1(sbe) 0.3881 0.2606 0.0851
H2(f) 0.1852 0.0974 0.0213
H2(fbe) 0.2992 0.1841 0.0481
H2(s) 0.3607 0.2290 0.0567
H2(sbe) 0.3890 0.2635 0.0907
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Table 3: Frequency of Rejections, Count Model, True Null Hypothesis

10% 5% 1%
H0(f) 0.0946 0.0766 0.0567
H0(s) 0.2094 0.1479 0.0743
CRIT 0.1911 0.1168 0.0412
H1(f) 0.2096 0.1438 0.0685
H1(fbe) 0.1319 0.0781 0.0326
H1(s) 0.1168 0.0617 0.0166
H1(sbe) 0.1164 0.0634 0.0208
H2(f) 0.1911 0.1277 0.0576
H2(fbe) 0.1095 0.0611 0.0236
H2(s) 0.1108 0.0565 0.0158
H2(sbe) 0.0913 0.0422 0.0103

Table 4: Frequency of Rejections, Count Model, False Null Hypothesis

10% 5% 1%
H0(f) 0.3495 0.3141 0.2560
H0(s) 0.4692 0.4087 0.3021
CRIT 0.6820 0.5664 0.3438
H1(f) 0.8236 0.7698 0.6499
H1(fbe) 0.4280 0.2761 0.0902
H1(s) 0.5663 0.4610 0.2588
H1(sbe) 0.3870 0.2409 0.0724
H2(f) 0.8312 0.7739 0.6520
H2(fbe) 0.4038 0.2464 0.0743
H2(s) 0.5653 0.4558 0.2569
H2(sbe) 0.3897 0.2312 0.0525

Table 5: p-value of GMM Specification Test, NLIV Estimator

Men Women
OBDV 0.758 0.738
OPV 0.419 0.161
IPV 0.119 0.802
ERV 0.934 0.073
DV 0.347 0.374
PRESCR 0.731 0.588
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Table 6: Specification test p-values, Men

OBDV OPV IPV ERV DV PRESCR
H0(f) 1.000 1.000 1.000 0.988 0.000 1.000
H0(s) 0.000 0.666 0.005 0.411 0.003 0.000
CRIT 0.000 0.935 0.008 0.669 0.058 0.000
H1(f) 0.000 0.956 0.002 0.678 0.000 0.000
H1(fbe) 0.000 0.743 0.000 0.000 0.000 0.000
H1(s) 0.000 0.721 0.008 0.487 0.001 0.000
H1(sbe) 0.005 0.736 0.221 0.542 0.174 0.031
H2(f) 0.000 0.980 0.001 0.470 0.000 0.000
H2(fbe) 0.000 0.415 0.000 0.000 0.000 0.000
H2(s) 0.000 0.728 0.008 0.494 0.001 0.000
H2(sbe) 0.006 0.741 0.260 0.550 0.154 0.015

Table 7: Specification test p-values, Women

OBDV OPV IPV ERV DV PRESCR
H0(f) 0.000 1.000 1.000 0.892 0.956 0.000
H0(s) 0.000 1.000 0.468 0.493 0.846 0.000
CRIT 0.000 0.001 0.530 0.036 0.187 0.001
H1(f) 0.000 0.003 0.636 0.383 0.432 0.000
H1(fbe) 0.000 0.000 0.462 0.000 0.070 0.000
H1(s) 0.000 0.149 0.590 0.517 0.855 0.000
H1(sbe) 0.043 0.134 0.684 0.533 0.852 0.048
H2(f) 0.000 0.902 0.501 0.042 0.313 0.000
H2(fbe) 0.000 0.775 0.007 0.000 0.054 0.000
H2(s) 0.000 0.938 0.618 0.527 0.848 0.000
H2(sbe) 0.046 0.945 0.700 0.541 0.844 0.047
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