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Unitat de Fonaments de l�Anàlisi Economica and CODE
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coincide with own past consumption, and the external habit formation (or catching-
up with the Joneses) model, where habits arise from the average past consumption
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1 Introduction

Several recent papers have introduced habit formation in the agents� utility function
in order to explain some empirical facts that cannot be reconciled with the traditional
models displaying time-separable preferences. Examples of this strand of the literature
are the papers of Abel (1990, 1999), who provides a possible explanation of the equity
premium puzzle; Lettau and Uhlig (2000), who try to Þt some stylized facts of business
cycles; Ljungqvist and Uhlig (2000), who examine the effects of Þscal policy under habit
formation; Fuhrer (2000), who studies the implications of habit formation for monetary
policy; and Carroll et al. (1997, 2000) and Shieh et al. (2000), who study how the
patterns of growth are modiÞed when habits are present.

The aim of the present paper is twofold. First, to characterize the equilibrium path of
a class of endogenous growth models under habit formation and, second, to characterize
the optimal tax rates that solve the inefficiencies brought about by the habits associated
with the average past consumption of the economy. In order to allow for sustained
growth, we will assume that the production function is asymptotically linear in capital
in spite of potentially exhibiting diminishing returns with respect to capital (as in Jones
and Manuelli, 1990). This type of �Sobelow� production function constitutes one of the
main differences of our analysis with the related literature. On the one hand, Carroll et
al. (1997, 2000) characterize the equilibrium path when the production function is linear
in capital and, hence, transitional dynamics is driven only by habits. In contrast, in our
paper, transitional dynamics is driven by both habit formation and diminishing returns to
scale. We show that this difference modiÞes the patterns of growth along the transition.
On the other hand, Fisher and Hof (2000) analyze the optimal tax policy in a model
without habit formation where agents are exposed to contemporaneous consumption
spillovers. Therefore, unlike in our model, transitional dynamics is driven only by the
neoclassical production function they consider, which in turn prevents the economy from
exhibiting sustained growth.

In our model we will assume that consumers� utility depends both on own current
consumption and a reference level. This reference is a standard of living determined
by the own past consumption and by the past average consumption of the economy.
While the isoelastic functional form for the individuals� instantaneous utility has been
extensively used in the literature, two alternative forms have been used to introduce
habits. One form is the �additive� one, according to which habits play in fact the role
of a minimum level of consumption. The other functional form is the �multiplicative�
one, where consumers� utility depends on their current level of consumption relative to
a reference level determined by habits. Both functional forms exhibit some technical
problems. On the one hand, Carroll (2000) points out that the additive model may give
rise to a not well deÞned utility in stochastic economies under plausible calibrations.
On the other hand, we argue in this paper that the instantaneous utility function is
not concave under our multiplicative formulation for internal habits. In this case, the
convexity of the consumers� maximization problem is not ensured and the optimal path
chosen by consumers might fail to be interior. However, we provide a set of assumptions
under which the standard Þrst order conditions characterize interior equilibrium paths.
We also show that those assumptions are met by two famous models, which are in
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fact extreme cases of our original model: the internal habit formation model, where the
reference variable coincides with own past consumption, and the external habit formation
(or �catching-up with the Joneses�) model, where the reference is an externality accruing
from the average past consumption in the economy.1

We also characterize the equilibrium path of the previous two extreme models and
show that in both cases the dynamic equilibrium converges asymptotically to a balanced
growth path, along which output, consumption and capital grow at a common constant
rate. We show that the introduction of habits increases this long run rate of growth
because it raises the consumers� willingness to shift consumption from the present to the
future. We also prove that the growth rates of both models exhibit a monotonic behavior
along the transition when the production function is linear in capital, whereas they could
exhibit a non-monotonic behavior when the production function has diminishing returns
to scale with respect to capital. In the latter case, we show that the transitional dynamics
depends on the values of both capital and the reference level of consumption, whereas the
transition only depends on the ratio of capital to the reference level of consumption when
the production function has constant returns to scale. This means that the speciÞcation
of the production function has interesting implications on cross-country convergence.

Our analysis shows that the introduction of a consumption externality makes the
equilibrium of the catching-up with the Joneses model inefficient during the transition
towards the balanced growth path. In order to prove this result, we use the fact that the
equilibrium solution of the internal habit formation model corresponds to the efficient
solution of the catching-up with the Joneses model. Then, we show that the equilibrium
solutions obtained in the two models coincide in the long run, whereas these two solutions
are different during the transition. Inefficiency arises because the consumers� willingness
to substitute consumption across periods in the catching-up with the Joneses model is
not optimal. This source of inefficiency can be corrected by means of an appropriate
tax policy and, in particular, we show that either a consumption tax or an income
tax may restore efficiency. If the consumers� willingness to shift present consumption
to the future is suboptimally low, then the optimal Þscal policy will consist of either
a decreasing sequence of consumption taxes or a subsidy on income (or output). A
decreasing sequence of consumption taxes implies that future consumption purchases
will be cheaper. Therefore, this Þscal policy increases consumers� willingness to postpone
consumption. A subsidy on output also corrects the inefficiency because it encourages
consumers to shift consumption from the present to the future. Conversely, either
an increasing sequence of consumption taxes or a tax on income will be the optimal
Þscal policies when consumers� willingness to shift present consumption to the future is
suboptimally large.

Finally, we show that if the marginal productivity of capital is constant during the
transition, which occurs when the production function is of the Ak type, then the optimal
tax rates will depend only on the initial value of the ratio of capital to habits. However,
if the marginal productivity of capital is changing during the transition, then the value
of the optimal tax rates will depend on the particular initial values of capital and habits
and not only on their ratio. In this case, the optimal path of tax rates could exhibit a
non-monotonic behavior along its transition.

The characterization of the optimal income tax rate highlights the dynamic nature
of the inefficiency, which affects the willingness to substitute consumption across periods

1This is in contrast to the �keeping-up with the Joneses� model, where the externality accrues from
average current consumption (see Gaĺõ, 1994)
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and, thus, modiÞes the pattern of capital accumulation. In this respect, let us mention
that Ljungqvist and Uhlig (2000) have also analyzed the inefficiency accruing from
external habits. However, they consider a model without capital accumulation where
the externality distorts the intratemporal choice between consumption and leisure and,
thus, their efficiency analysis cannot be extended to a growth model like ours.

The rest of the paper is organized as follows. Section 2 describes the model and
provides conditions that guarantee the existence of interior equilibria characterized by
standard Þrst order conditions. Section 3 and 4 characterize the equilibrium path of
the internal habit formation model and of the catching-up with the Joneses model,
respectively. Section 5 shows that the equilibrium of the latter model is inefficient and
derives the optimal tax policy aimed at restoring efficiency. Section 6 concludes the
paper. Some lengthy proofs appear in the Appendix.

2 The Model

Consider an economy in discrete time populated by identical dynasties facing an inÞnite
horizon. The members of each dynasty are also identical. We assume that population
grows at a constant exogenous rate n > −1. We also assume that consumers� utility in
period t depends both on consumption ct and on a variable vt representing a standard of
living that it is used as a reference with respect which present consumption is compared
to. This standard of living is determined by the past consumption experience. Following
Abel (1990), we assume that

vt = c
θ
t−1c

1−θ
t−1 , (1)

where θ ∈ [0, 1], ct−1 is the own consumption in period t − 1, and ct−1 is the average
consumption of the economy in period t−1. When θ = 1 this formulation coincides with
that of the internal habit formation (IH) model, where the reference is just the own past
consumption. On the contrary, the case where θ = 0 corresponds to the catching-up with
the Joneses (CJ) model, where consumers� utility depends both on present consumption
and on an externality accruing from the others� past consumption. Following Abel
(1990) and Carroll et al. (1997), we introduce multiplicatively the reference variable.
This means that consumers� utility depends on own current consumption relative to the
standard of living summarized by the variable vt. Accordingly, the instantaneous utility
function takes the following functional form:

ut =
1

1− σ
µ
ct
vγt

¶1−σ
, with σ > 0 and γ ∈ (0, 1) , (2)

where γ is a parameter measuring the importance of the consumption reference and σ
coincides with the inverse of the elasticity of intertemporal substitution of consumption
when γ = 0. The assumption γ > 0 agrees with our notion of a reference for consumption,
whereas we must impose that γ < 1 since, otherwise, the utility function would not be
strictly increasing in consumption along a balanced growth path. Note that if γ = 0
the utility function u is time-independent and concave. However, when γ > 0 the utility
function is time-dependent and it is not jointly concave with respect to the two variables
ct and vt. In fact, the necessary conditions for joint concavity are 1 + γ(1− σ) ≤ 0 and
γ + σ(1− γ) ≤ 0 . Obviously, the latter inequality cannot hold under our parametric
assumptions.
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Each consumer is endowed with kt units of capital that are used to produce a certain
amount of output according to the following Sobelow gross production function per
capita:

f(kt) = Akt +Bk
β
t , (3)

where A > 0, B ≥ 0 and β ∈ (0, 1) . This production function allows for sustained growth
provided the asymptotic marginal productivity A of capital is sufficiently high (Jones
and Manuelli, 1990). The output may be used either for consumption or for investment
in new capital. Thus, the resource constraint per capita is given by

f(kt) ≥ ct + (1 + n) kt+1 − (1− δ) kt, for all t = 0, 1, .... (4)

where δ ∈ [0, 1] is the depreciation rate of capital.2
The objective of each dynasty is to maximize the discounted sum of utilities of each

of its identical members,
∞X
t=0

µ
1

1 + ρ

¶t
ut, (5)

where ρ > 0 is the subjective discount rate. At time t = 0, each dynasty chooses
{ct, kt+1}∞t=0 to maximize (5) subject to (4), taking as given the path of average
consumption {c̄t}∞t=−1 and the two initial conditions on capital k0 > 0 and past
consumption c−1 > 0. Both ct and kt are restricted to be non-negative in all periods.
Note that in this dynamic optimization problem kt and vt are the state variables. While
the former variable is only affected by the individual decisions of consumers, the latter is
determined by both individual decisions and the exogenous path of average consumption.

The Lagrangian associated with the dynasty problem is

L(c, k,λ) =
∞X
t=0

µ
1

1 + ρ

¶t
ut +

∞X
t=0

λt [f(kt)− ct − (1 + n) kt+1 + (1− δ) kt] , (6)

where c = {ct}∞t=0 , k = {kt}∞t=0 and λ = {λt}∞t=0 are non-negative paths, and the average
consumption path {c̄t, }∞t=−1 is taken as given. Computing the derivative of the previous
Lagrangian with respect to ct, we obtain the following necessary Þrst order conditions
for optimality:

∂L

∂ct
=

µ
1

1 + ρ

¶t ∂ut
∂ct

+

µ
1

1 + ρ

¶t+1 ∂ut+1
∂vt+1

∂vt+1
∂ct

− λt ≤ 0, (7)

with ct ≥ 0, and
∂L

∂ct
· ct = 0. (8)

The corresponding transversality condition is

lim
t→∞

(µ
1

1 + ρ

¶t ∂ut
∂ct

− λt
)
≤ 0, (9)

with

lim
t→∞

("µ
1

1 + ρ

¶t ∂ut
∂ct

− λt
#
ct

)
= 0. (10)

2From now on, the expression �for all t = 0, 1, ...� will be skipped as long as the meaning is clear.
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Differentiating (6) with respect to kt+1, we also get the following necessary Þrst order
conditions:

∂L

∂kt+1
= −(1 + n)λt +

£
1 + f 0(kt+1)− δ

¤
λt+1 ≤ 0, (11)

with kt+1 ≥ 0, and
∂L

∂kt+1
· kt+1 = 0. (12)

The corresponding transversality condition is

lim
t→∞ {−(1 + n)λt} ≤ 0, (13)

with
lim
t→∞ {−(1 + n)λtkt+1} = 0. (14)

Finally, by taking the derivative of (6) with respect to the Lagrange multiplier λt, the
solution to the optimization problem involves also to satisfy the resource constraint (4) ,
and

λt · [f(kt)− ct − (1 + n) kt+1 + (1− δ) kt] = 0, (15)

with λt ≥ 0.
The following lemma provides a necessary condition to be satisÞed by an interior

solution to this dynamic optimization problem:

Lemma 1 If the path {ct, kt+1}∞t=0 chosen by a dynasty is strictly positive, then the
following condition must be satisÞed:

1

1 + ρ

 ∂ut+1∂ct+1
+
³

1
1+ρ

´³
∂ut+2
∂vt+2

´ ³
∂vt+2
∂ct+1

´
∂ut
∂ct
+
³

1
1+ρ

´
∂ut+1
∂vt+1

∂vt+1
∂ct

 = 1 + n

1 + f 0 (kt+1)− δ . (16)

Proof. Since, by assumption, ct > 0 and kt > 0, for all t, (8) implies that (7) holds with
equality, and similarly (12) implies that (11) also holds with equality. From combining
the Þrst order conditions (7) and (11) , it is straightforward to obtain the equation (16).

The optimality condition (16), dubbed the Keynes-Ramsey equation, equates the
marginal rate of substitution of consumption between periods t and t + 1 (MRSt, t+1,
henceforth) with the corresponding marginal rate of transformation (MRTt, t+1, hence-
forth). Note that the MRSt, t+1 depends on the own consumption and on the externali-
ties arising from average past consumption.3 More precisely, the MRSt, t+1 is a function
of ct−1, ct, ct+1, ct+2, and of the average consumptions ct−1, ct and ct+1. Since the path
{ct, kt+1}∞t=0 chosen by a dynasty is a function of the average consumption path {c̄t}∞t=−1,
the next deÞnition makes clear the Þxed point nature of a competitive equilibrium:

DeÞnition 1 An equilibrium path {ct, kt+1}∞t=0 is a solution to the dynastic optimization
problem when c̄t = ct, for all t.

3It should be pointed out that, if σ = 1, then the MRSt,t+1 does not depend on the externalities, so
that average past consumption does not modify the path chosen by the dynasty.
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From the previous deÞnition, it follows that along the equilibrium path theMRSt, t+1
depends only on ct−1, ct, ct+1 and ct+2. Note that this equilibrium MRSt, t+1 differs
from the MRSt, t+1 appearing in standard models of capital accumulation because here
consumers take into account the effect that present consumption has in setting the
reference for next period consumption. Because of the dependence of the MRSt, t+1 on
consumption in different time periods, the analysis of the equilibrium is simpliÞed by
introducing the following transformed variables: xt =

ct
ct−1 , ht =

ut+1
ut
, zt =

kt
ct−1 , and

mt =
f(kt)
kt
. Note that the average productivity mt of capital and the ratio zt of capital

to the reference level of consumption are the state variables, whereas the gross rate xt
of consumption growth and the gross rate ht of growth of the utility are the control
variables. Note also that, for given values c−1 and k0 of initial past consumption and
initial capital, respectively, there is a one-to-one correspondence between the equilibrium
values of the original variables ct and kt and the values of the transformed variables mt,
xt, zt and ht. Thus, given the initial conditions m0 = f (k0)/ k0 and z0 = k0/ c−1 , we
can rewrite the equilibrium path in terms of the transformed variables.

We deÞne a stationary path in terms of the previous transformed variables as follows:

DeÞnition 2 A stationary path {xt, ht, zt,mt}∞t=0 is a path along which xt, ht, zt and
mt are all constant.

From the previous deÞnition and that of zt, it follows that along a stationary
path consumption and capital grow at the same constant growth rate. Note that no
equilibrium condition is imposed in the deÞnition of a stationary path.

DeÞnition 3 A balanced growth path (BGP) {xt, ht, zt,mt}∞t=0 is an equilibrium path
that is stationary.

Note that from the deÞnition of the variable mt, a BGP involves a constant marginal
productivity of capital. It is then obvious from the functional form of the production
function (3) that a BGP is never reached in Þnite time when B > 0 and β > 0. However,
we will say that a path {xt, ht, zt,mt}∞t=0 converges to a BGP when

lim
t→∞ xt = x , lim

t→∞ ht = h , lim
t→∞ zt = z , and lim

t→∞ mt = m ,

where x, h, z and m are the BGP values of xt, ht, zt and mt, respectively.
Let us deÞne the following parameters:

ε ≡ γ

1 + ρ
,

∆ ≡ γ + σ (1− γ) ,
and

ϕ ≡ 1 +A− δ
(1 + n) (1 + ρ)

.

Our next proposition presents necessary conditions to be satisÞed by an interior
equilibrium path converging towards a BGP with positive growth.

Proposition 1 Let ϕ > 1. Assume that, for given initial values z0 > 0 and m0 > 0,
there is only one strictly positive equilibrium path {xt, ht, zt,mt}∞t=0 and that this path
converges to a strictly positive BGP. Then,
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(a) the following conditions are satisÞed along the equilibrium path:

zt+1 =

µ
zt
xt

¶µ
mt + 1− δ
1 + n

¶
− 1

1 + n
, (17)

xt+1 = (ht)
1

1−σ (xt)
γ , (18)

mt+1 = A+ (mt −A)
µ

1

1 + n

¶β−1 µ
mt + 1− δ − xt

zt

¶β−1
, (19)

and µ
1

1 + ρ

¶µ
ht
xt+1

¶µ
1− θεht+1
1− θεht

¶
=

1 + n

1 +A (1− β) + βmt+1 − δ ; (20)

(b) the strictly positive BGP which the equilibrium path converges to satisÞes

x = ϕ
1
∆ > 1 , (21)

m = A , (22)

z =
x

(1 +A− δ)− (1 + n)x , (23)

and
h = ϕ

1−∆
∆ . (24)

Proof. See the Appendix.

Equation (21) tells us that the equilibrium path exhibits sustained growth in the long
run. Note that the value of the parameter ϕ is crucial for the existence of positive growth,
that is, for x > 1. Equation (17) follows from the budget constraint and states that it is
binding along the equilibrium path. In fact, this equation is the budget constraint deÞned
in terms of the transformed variables. Equation (18) follows from the deÞnition of the
transformed variable ht and equation (19) follows from the deÞnition of the transformed
variable mt. Finally, (20) is the Keynes-Ramsey equation in equilibrium deÞned in terms
of the transformed variables. The left hand side of this equation corresponds to the
MRSt,t+1 and the right hand side is the MRTt,t+1.

Proposition 1 establishes the necessity of equations (17)-(20) in order to obtain a
strictly positive equilibrium path converging to a BGP exhibiting sustained growth.
If the consumers� maximization problem were convex, these four equations and the
corresponding initial and transversality conditions would not be only necessary but
also sufficient for obtaining that equilibrium path when ϕ > 1. Given the assumption
of non-increasing returns to scale, the resource constraint (4) deÞnes a convex set of
feasible solutions. Thus, the consumers� problem would be convex if the objective
function (5) were concave. Stokey et al. (1989, ch. 4) have shown that concavity
of the instantaneous utility function is a sufficient, although not necessary, condition
that guarantees the concavity of the objective function. However, as follows from our
previous discussion, the instantaneous utility function is not concave in this model when
θ 6= 0. Therefore, since the convexity of the consumers� maximization problem is not
guaranteed, the equilibrium path could be non-interior (i.e., not strictly positive) and,
in this case, the system of difference equations (17)-(20) would not characterize that
equilibrium path. The following propositions provide conditions aimed at ensuring the
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existence of an interior equilibrium path characterized by the previous dynamic system.
We start by imposing a restriction on the values of σ compatible with the existence of
an interior (i.e., strictly positive) equilibrium path.4

Proposition 2 Let θ > 0 and assume that there exists a strictly positive equilibrium
path {xt, ht, zt,mt}∞t=0 for given z0 > 0 and m0 > 0. Then, σ ≥ 1.

Proof. We proceed by contradiction and assume that σ < 1. In this case, it is easy
to check that ut+1 =∞ when ct = 0 and ct+1 > 0 , since then vt+1 = 0. Moreover,
ut = 0 when ct = 0 and ct−1 = ct−1 > 0. This implies that paths for which consumption
and the gross rate xt of consumption are equal to zero in some, but not all, periods
deliver higher discounted utility than any strictly positive path. Note that to achieve
zero consumption in some periods is always feasible (see (4)).

In view of Proposition 2, if σ < 1 the solution to the dynamic optimization problem
cannot be interior when θ > 0.5 The following proposition provides sufficient conditions
for an interior equilibrium path:

Proposition 3 Let σ ≥ 1 and ϕ > 1. Assume that, for all initial values z0 > 0 and
m0 > 0, there is only one path {xt, ht, zt,mt}∞t=0 solving the system of difference equations
(17)-(20), and that this path is strictly positive and converges to a strictly positive
stationary path. Then, the path {xt, ht, zt,mt}∞t=0 is an equilibrium path. Moreover,
the stationary path given by expressions (21)-(24) is the unique strictly positive BGP of
the economy.

Proof. See the Appendix.

The previous proposition tells us that, when σ ≥ 1 and ϕ > 1, an equilibrium path
that converges to an interior BGP is fully characterized by the dynamic system composed
by the difference equations (17)-(20), together with the initial conditions, for any value of
the parameter θ in the closed interval [0, 1]. In particular, we will use the previous system
of equations to characterize the equilibrium dynamics corresponding to the following two
extreme models, which are commonly found in the literature: the IH model and the CJ
model. We will see that both models exhibit saddle path stability towards a unique BGP
and, thus, the assumptions in Proposition 3 are clearly met. According to the results of
this section, we will maintain the assumptions σ ≥ 1 and ϕ > 1 throughout the rest of
the paper.

Concerning the properties of the BGP, note that the stationary rate x of economic
growth given in (21) increases with the value of the parameter A measuring total factor
productivity (TFP, henceforth) in the long run. The intuition behind this result can be
obtained from the Keynes-Ramsey equation (16). From that equation we observe that an
increase in TFP reduces the cost of shifting resources to future periods and, thus, drives
the price of future consumption in terms of present consumption down. This encourages
consumers to shift present consumption to the future and, thus, the rate of economic
growth must increase.

4Note that, if we had assumed that γ < 0, the instantaneous utility function could be concave and
the consumers� maximization problem would be convex. In this case, the condition stated in Proposition
2 is not required to guarantee an interior equilibrium path.

5Note that the arguments to rule out the case σ < 1 do not apply when the reference variable does
not depend on own past consumption (θ = 0). Thus, in the caching-up with the Joneses model, the
equilibrium could be characterized by (17)-(20) even if σ < 1.
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Note also that, if habits become more important (which amounts to an increase in
the value of the parameter γ), then the growth rate goes up when σ > 1. Moreover,
the effect on the growth rate of an increase in TFP becomes larger for higher values of
γ.6 This occurs because the introduction of habits makes the intertemporal elasticity of
substitution larger and this accelerates economic growth as the ratio of present to past
consumption is forced to increase.7 This result is in stark contrast to that obtained by
Shieh et al. (2000), where the introduction of internal habits could deter growth in some
cases. This difference arises because Shieh et al. (2000) did not introduce conditions
that guarantee the existence of interior solutions.8

3 Equilibrium under Internal Habits (IH)

In this section we assume that consumers view only their own past consumption as the
standard of living to be used as a reference. Therefore, we impose θ = 1 in expression
(1) and, thus, the reference variable becomes simply vt = ct−1. In this case the Keynes-
Ramsey equation (20) simpliÞes toµ

1

1 + ρ

¶µ
ht
xt+1

¶µ
1− εht+1
1− εht

¶
=

1 + n

1 +A (1− β) + βmt+1 − δ , (25)

where the left hand side of the equation is the marginal rate of substitution in the internal
habit formation model (MRSIHt,t+1, henceforth).

Given the initial conditions m0 = f (k0)/ k0 and z0 = k0/ c−1 , we can thus deÞne an
interior equilibrium path of the IH model as a strictly positive path {mt, xt, zt, ht}∞t=0
satisfying the difference equations (17), (18), (19) and (25), and the corresponding
transversality conditions. The BGP of the IH model is given by the expressions (21)-(24),
since these expressions do not depend on the value taken by the parameter θ.

The next two propositions characterize the transitional dynamics of the economic
system in the neighborhood of the BGP. This transitional dynamics was already
established by Carroll et al. (1997) when the technology is represented by an Ak
production function. We extend the analysis to the Sobelow production function, where
the marginal productivity of capital is time-varying.

Proposition 4 The BGP of the IH model is saddle path stable.

Proof. See the Appendix.

Propositions 3 and 4 allow us to conclude that, for a given pair of initial conditions
z0 and m0 sufficiently close to the stationary values z and m, respectively, there is a
unique equilibrium path. Moreover, this equilibrium path is the saddle path converging
to the BGP.

Proposition 5 Given the initial conditions z0 > 0 and m0 > 0, the following holds for
the IH model:

6Observe that ∂x
∂γ
> 0 and ∂x

∂A∂γ
> 0 when σ > 1.

7Note that, if we deÞne the stationary intertemporal elasticity of substitution as the elasticity of the
stationary rate of growth with respect to the asymptotic return to capital, this stationary elasticity is
given by the value of 1/∆. Clearly, this elasticity is strictly increasing in γ when σ > 1.

8In their paper, the introduction of habits may reduce the long run growth rate because they do
not assume that σ ≥ 1. In our paper, this assumption is required to rule out corner solutions yielding
unbounded utility.
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(a) If B = 0 then the variables xt and ht will both exhibit a monotonic behavior along
the transition towards the BGP. In particular, if z0 < z (z0 > z), then the variables xt
and ht will increase (decrease) toward their respective stationary values.

(b) If B > 0 then the variables xt and ht could exhibit a non-monotonic behavior
along the transition towards the BGP.

Proof. See the Appendix.

When B = 0 the technology is characterized by an Ak production function and,
hence, mt = A. In this case, there is only one state variable, zt, and the behavior of xt
and ht only depends on the initial value z0 of the state variable. However, when B > 0
there are two state variables, zt and mt, and the transition of xt and ht depends on
the particular initial values of these two variables. This transition could then be non-
monotonic. Hence, our model could give rise to a transitory non-monotonic behavior of
the growth rate.9 Therefore, while Carroll et al. (1997) have shown that the consumption
growth rate in a model with an Ak production function displays a monotonic convergence
towards the BGP when preferences are not time-separable, we show that this convergence
could be non-monotonic when the production function exhibits diminishing returns to
scale. In this case, a reduction in the stock of capital may cause either an increase
or a decrease in the consumption growth rate depending on the initial stock of habits.
In contrast, Carroll et al. (1997) have shown that a reduction in the stock of capital
causes an unambiguous reduction in the consumption growth rate when the production
function exhibits constant returns to scale. The intuition behind our result lies in the
fact that, when the capital stock becomes smaller, the return on investment increases
under diminishing returns to scale and this has a positive effect on the growth rate.
However, the reduction in the capital stock makes the amounts of both capital and
output small relative to the consumption reference, so that agents would be forced to
choose a consumption level so large that it would not be sustainable in the long run.
Therefore, such a consumption level will have to decrease in the future. This means that
habits make the growth rate decrease as a response to a reduction in the capital stock,
while diminishing returns account for the opposite effect. Obviously, these two opposite
forces explain both the ambiguity of the response of the growth rate to changes in the
stock of capital and the non-monotonic behavior during the transition.

The previous result has also implications for the cross-country convergence. Consider
the original model in terms of the variables ct and kt. When B > 0 the transitional
dynamics of the growth rate depends on the particular initial values of both the capital
level and the reference level of consumption. This means that, under diminishing
returns to capital, two economies with different initial capital stocks will follow different
equilibrium paths for xt even if they share a common initial value of the ratio zt of
capital to consumption reference. On the contrary, when the production function is
Ak, the transitional dynamics of the growth rate xt only depends on the initial value
of the ratio zt. In this case, two economies with the same initial value of zt will follow
equilibrium paths with identical growth rates regardless of their initial levels of capital.
It follows that cross-country differences in the growth rate can only be explained by
differences in the ratio zt when the production function is Ak, whereas they can be
explained by differences on the values of both the stock of capital and the reference level
of consumption when the production function exhibits diminishing returns to scale.

9In the proof of Proposition 5 we provide an example of an economy exhibiting such a non-monotonic
behavior.
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4 Equilibrium under Catching-up with the Joneses (CJ)

In this section we make θ = 0 in expression (1). This means that the average aggregate
consumption of the previous period is now the reference level of consumption, that is,
vt = ct−1. Therefore, the model displays the typical �catching-up with the Joneses�
feature, since average past consumption enters into the consumers� utility as a negative
externality.

We next derive the equations characterizing the dynamic equilibrium of this
particular model. Since θ = 0, the Keynes-Ramsey equation (20) is simplyµ

1

1 + ρ

¶µ
ht
xt+1

¶
=

1 + n

1 +A (1− β) + βmt+1 − δ , (26)

where the left hand side of equation (26) is the marginal rate of substitution in the
catching-up with the Joneses model (MRSCJt,t+1, henceforth). Using the deÞnition of ht
introduced in Section 2, (26) becomes

xt+1 = x
γ(σ−1)

σ
t

µ
1 +A (1− β) + βmt+1 − δ

(1 + n) (1 + ρ)

¶ 1
σ

. (27)

In contrast to the IH model, the equilibrium is now fully described by only three
variables: zt, mt, and xt. The Þrst two variables are the state variables, whereas the
third one is the control variable. Hence, given the initial conditions m0 = f (k0)/ k0
and z0 = k0/ c−1 , we deÞne an equilibrium path of the CJ model as a strictly positive
path {mt, xt, zt}∞t=0, satisfying the difference equations (17), (19) and (27), and the
corresponding transversality conditions. A BGP will be thus an equilibrium path along
which the variables mt, xt and zt are constant. Obviously the gross rate of growth ht
of the instantaneous utility u is also constant along a BGP. It is thus clear from the
expressions appearing in part (b) of Proposition 1 that the BGP of the CJ model is
the same as that of the IH model, since the BGP of the general model of Section 2 is
independent of the parameter θ.

We next discuss the intuition for obtaining identical stationary solutions for both
models. In the CJ model consumers do not internalize the spillovers accruing from the
average past consumption. On the contrary, consumers in the IH model take into account
the future effects of their current decisions on consumption. This difference translates
into differences between the marginal rate of substitution of both models during the
transition, as one can easily see by comparing equations (25) and (26). However, since
the discounted sum of utilities is bounded, the growth rates of both instantaneous utility
and consumption must converge to a constant value. Hence, it is immediate to see from
(25) and (26) that the marginal rates of substitution of both models coincide along a
stationary path (i.e., when xt and ht are constant for all t). The next two propositions
characterize the transitional dynamics of the CJ model in the neighborhood of the BGP:

Proposition 6 The BGP of the CJ model is saddle path stable.

Proof. See the Appendix.

The previous result establishes that the equilibrium path of the CJ model is unique for
a given pair of initial conditions z0 andm0 sufficiently close to their respective stationary
values z and m. Moreover, the equilibrium path converges to the unique BGP.
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Proposition 7 Given the initial conditions z0 > 0 and m0 > 0, the following holds for
the CJ model:

(a) If B = 0 then the variable xt will exhibit a monotonic behavior along the transition
towards the BGP. In particular, if z0 < z (z0 > z), then the variable xt will increase
(decrease) toward its stationary values.

(b) If B > 0 then the variable xt could exhibit a non-monotonic behavior along the
transition towards the BGP.

Proof. See the Appendix.

Proposition 7 has the same qualitative implications for the transitional dynamics and
the cross-country convergence of the CJ model as those established by Proposition 5 for
the IH model. In other words, the policy functions tracing out the relationship between
the state variables and the optimal value of the control variables in the CJ model are
qualitatively similar to those of the IH model. However, the efficiency analysis of the
next section will show that the relationship between state and control variables differs
quantitatively from one model to the other.10

5 Efficiency and Optimal Policy

The equilibrium of the CJ model could be inefficient because consumers do not internalize
the spillover effects from average past consumption. This source of inefficiency has been
studied by Ljungqvist and Uhlig (2000) in a model without capital accumulation.11

In this section, we extend the efficiency analysis into a growth model with capital
accumulation. To this end, note that the equilibrium of the IH model described in Section
3 coincides with the solution of the CJ model that a benevolent social planner would
implement, since that planner would take into account all the external effects accruing
from average past consumption. This means that, in order to deal with efficiency issues,
we just have to compare the equilibrium solution of the CJ model with that of the IH
model.

The only difference between the equations that characterize the equilibrium paths of
the two models lies in theMRSt,t+1 appearing in the left hand side of the Keynes-Ramsey
equations (25) and (26). Efficiency of the competitive solution of the CJ model requires
that the MRSt,t+1 obtained in the two models be identical, i.e., MRS

CJ
t,t+1 =MRS

IH
t,t+1,

where MRSIHt,t+1 is the efficient MRSt,t+1. Given our assumptions on preferences, the
previous efficiency condition is obviously satisÞed when σ = 1. However, if σ > 1, then
the efficiency condition becomes simply ht+1 = ht. This equality holds along the BGP,
which implies that the equilibrium of the CJ model is asymptotically efficient. This is
consistent with the fact that the CJ and IH models share the same BGP, as shown in
the previous sections. Finally, the dynamic equilibrium of the CJ model is obviously
inefficient during the transition when σ > 1.

In what follows we will show that efficiency can be restored in the CJ model by
means of an appropriate tax policy. We present two alternative tax instruments that

10In the case where the production function is Ak, Carroll et al. (1997) show that the slope of the
equilibrium saddle path (or the policy function) in the CJ model differs from that of the IH model.
11Fisher and Hof (2000) have also analyzed equilibrium efficiency in a neoclassical growth model when

the source of inefficiency is an externality arising from average current consumption. In contrast, in our
paper the externality is associated to the average past consumption level and the results on efficiency are
in stark contrast with those obtained by Fisher and Hof (2000). Actually, Ljungqvist and Uhlig (2000)
have stressed the fact that inefficiency depends on the timing of the consumption externality.
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make identical the two Keynes-Ramsey equations (25) and (26): a tax on net income (or
net output) and a tax on consumption. By using a procedure similar to that of Fisher
and Hof (2000) and Alonso-Carrera et al. (2001), we derive the corresponding optimal
tax rates. We assume that the tax revenues are returned to consumers through a lump-
sum subsidy. This assumption implies that the resource constraint of a representative
dynasty becomes now

(1 + τ ct ) ct + (1 + n) kt+1 − kt = (1− τyt ) [f (kt)− δkt] + Tt, (28)

where τ c and τy are the tax rates on consumption and on net income, respectively, and
Tt is the lump-sum subsidy that satisÞes the following government budget constraint:12

Tt = τ
y
t [f (kt)− δkt] + τ ct ct. (29)

Combining (28) and (29) and using the transformed variables, we obtain the resource
constraint. Therefore, because all the tax revenue is returned to the consumers as a
lump-sum subsidy, the introduction of taxes only modiÞes the Keynes-Ramsey equation
(26). Thus, this equation becomes

µ
1

1 + ρ

¶Ã
hCJt
xCJt+1

!
=

µ
1 + τ ct+1
1 + τ ct

¶Ã
1 + n

1 +
¡
1− τyt+1

¢ £
(1− β)A+ βmCJ

t+1 − δ
¤! , (30)

where the superscript CJ is used to denote the variables of the CJ model. Note that the

LHS of the previous equation is the marginal rate of substitution MRSCJt,t+1

³
hCJt , xCJt+1

´
of the CJ model. Evaluating (30) at the efficient equilibrium path, and dividing the
resulting equation by the Keynes-Ramsey equation (25) of the IH model, we obtain the
following optimal taxation condition:

MRSCJt,t+1

³
hIHt , xIHt+1

´
MRSIHt,t+1

¡
hIHt+1, h

IH
t , xIHt+1

¢ = ³
1+�τct+1
1+�τct

´µ
1+(1−β)A+βmIH

t+1−δ
1+(1−�τyt+1)[(1−β)A+βmIH

t+1−δ]

¶
, (31)

where the superscript IH is used to denote the equilibrium value of the variables in
the IH model; �τ ct and �τ

y
t are the optimal values of the tax rates on consumption and

income, respectively; and MRSIHt,t+1

³
hIHt+1, h

IH
t , xIHt+1

´
and MRSCJt,t+1

³
hIHt , xIHt+1

´
are

the MRSt,t+1 corresponding to the IH model and the CJ model, respectively, when
they are evaluated along the efficient equilibrium path. We see from (31) that optimal
taxes display time-varying rates off the BGP, while the optimal consumption tax rate
is constant and the optimal income tax rate is zero at the BGP. This result about
the optimal income tax rate in the long run resembles those obtained by Judd (1985)
and Chamley (1986) in models with standard preferences.13 Thus, we see that the
introduction of habit formation affects the optimal tax rates only during the transition.

If the MRSt,t+1 of the CJ model evaluated along the efficient consumption path
turns out to be smaller than the efficient MRSt,t+1 along the same path, then the

12Note that a tax on income has the same effects on capital accumulation as a tax on capital income
provided the tax revenue is entirely returned to consumers through a lump-sum transfer. Even if the
amount of taxes collected for a given tax rate is not the same, the marginal productivity of capital is
modiÞed identically under the two tax schemes.
13It should be pointed out that in the papers of Judd and Chamley the government intends to Þnance

optimally a given stream of spending. However, in our model the government just uses optimal taxes
aimed at correcting for the ineffciencies brought about by consumptions spillovers.
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consumers� willingness to shift present consumption to the future will be too small. In
this case, condition (31) tells us that the efficient path can be reached by means of
either subsidizing output or introducing a tax on consumption with �τ ct > �τ ct+1. These
Þscal policies correct the inefficiency because they make present consumption purchases
more expensive than the future ones and, hence, they encourage consumers to postpone
consumption. A decreasing sequence of tax rates on consumption directly drives the
after-tax price of future consumption in terms of present consumption down. Moreover,
a subsidy on output also reduces the relative price of future consumption because this
policy reduces the cost of shifting resources to future periods. Therefore, if theMRSt,t+1
of the CJ model along an efficient path is larger (smaller) than the efficient MRSt,t+1,
then a welfare-maximizing government must impose either a tax (subsidy) on income or
a tax on consumption with a rate that rises (falls) over time.

Finally, we can also characterize the dynamic behavior of the optimal tax rates by
expressing them as functions of the state variables of the model. As a Þrst step towards
this goal, we show that both rates depend only on the efficient value hIHt of the utility
growth rate. On the one hand, making �τyt+1 = 0 and from the deÞnition of the variable
hIHt , condition (31) can be rewritten as follows:

�τ ct+1 − �τ ct
1 + �τ ct

= ε

Ã
hIHt+1 − hIHt
1− εhIHt+1

!
. (32)

We thus see that the optimal tax on consumption increases (decreases) when hIHt
increases (decreases). Also note that �τ ct+1 = �τ

c
t along the BGP. Therefore, any sequence

of constant tax rates (not necessarily equal to zero) on consumption is optimal along a
BGP.

On the other hand, imposing �τ ct = 0 for all t in condition (31), we obtain that the
optimal rate of the income tax is

�τyt+1 = ε

Ã
hIHt+1 − hIHt
1− εhIHt

!Ã
1 + (1− β)A+ βmIHt+1 − δ
(1− β)A+ βmIH

t+1 − δ

!
. (33)

Note that this optimal rate equals zero along the BGP as hIHt+1 = hIHt . However, this
tax is positive when the growth rate of utility increases with time, hIHt+1 > h

IH
t , and it is

negative otherwise.
We have then shown that the evolution of the optimal rates of both taxes is

qualitatively determined only by the transition of the variable hIHt along the efficient
equilibrium. This occurs because, when habits are modeled in a multiplicative way, there
is a direct relation between the variable hIHt being increasing (decreasing) along the
transition and the MRSt,t+1 being suboptimally large (small). Proposition 5 describes
the behavior of hIHt during the transition, so that we can derive the evolution of the
optimal tax rates directly from this Proposition.

Corollary 1 (a) The sequence of optimal consumption tax rates {�τ ct }∞t=1 around the
BGP could be either monotonic or non-monotonic for a given arbitrary value of �τ c0 .
This sequence converges to a constant.

(b) The sequence of optimal income tax rates {�τyt }∞t=1 around the BGP could either
exhibit the same sign or change its sign. This sequence converges to zero.

Proof. Obvious from Proposition 5 and expressions (32) and (33) .
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Part (a) of Proposition 5 tells us that if z0 < z, then h
IH
t will increase. In this case,

theMRSt,t+1 will be suboptimally large and the optimal tax policy will consist on either
an increasing sequence of tax rates on consumption or a positive tax rate on income.
The opposite will occur if z0 > z. However, Part (b) of Proposition 5 tells us that, if
the marginal productivity of capital is not constant, namely, when B > 0, then the
variable hIHt could exhibit a non-monotonic behavior along the transition. This implies
that the optimal consumption tax could grow during a number of periods and decrease
afterwards. Similarly, the optimal tax on income could be positive during some periods
and become negative later on, or vice versa.

When B > 0 there are two state variables, zt and mt, and the transition of the
variable hIHt depends on the initial value of these two variables. Therefore, the optimal
Þscal policy depends also on the initial values of these two state variables or, equivalently,
on the initial values of both capital and the reference level of consumption. This means
that, under strictly decreasing returns to capital, two economies with different initial
capital stocks will have different optimal tax rates even if they share a common initial
value of the ratio zt of capital to consumption reference. On the contrary, when the
production function is Ak, the optimal Þscal policy only depends on the initial value of
the ratio zt. In this case, two economies with the same initial value of zt will exhibit the
same optimal tax rates regardless of their initial levels of capital.

We can provide a numerical example to compare the optimal income taxes for two
economies that are identical except on the initial value of the state variable mt. Let us
assume that the parameters characterizing both economies take the following values:14

A = 0.183, σ = 5, δ = 0.09, n = 0, ρ = 0.03, γ = 0.5, and β = 0.2.

Both economies share the same initial value of the ratio of capital to consumption
reference, namely, z0 = 0.99z. We also assume that in one economy m0 = m and, since
m = A, the technology is characterized by an Ak production function from t = 0 on. In
the other economy we set m0 = 1.01m and, hence, capital exhibits strictly decreasing
returns to capital. The optimal rate of the income tax when the technology is Ak turns
out to be always positive along the transition and converges to zero. However, the
optimal tax rate on income when the production function exhibits diminishing returns
to scale takes negative values for t ≤ 6, while for t > 6 it takes positive values. Similarly,
under diminishing returns to scale the tax rate on consumption is decreasing for t ≤ 6
and increasing for t > 6 for any arbitrarily given initial tax rate. Note that, when
t = 6.7081, it holds that hIHt+1 = hIHt , which is consistent with the expressions (32)
and (33) characterizing optimal tax rates. This numerical example has thus illustrated
clearly the potential non-monotonicity of optimal tax rates when the technology exhibits
strictly decreasing returns to capital.

The previous results on the optimal income tax rate are in a stark contrast with the
results obtained by Ljungqvist and Uhlig (2000) in a catching-up with the Joneses model
without capital accumulation. These authors show that the optimal income tax rate is
positive when there is a high realization of a productivity shock raising the growth rate,
and it is negative otherwise. In this paper we show that this result does not hold when
capital accumulation is introduced. On the one hand, if the production function exhibits

14We set the values of δ, n, ρ, σ, γ as in Caroll et al. (2000). In particular, the values of σ and γ are
such that the inverse of the stationary intertemporal elasticity of substitution takes the reasonable value
∆ = 3 (see footnote 7), and the value of A is such that yields a long-run growth rate equal to 2%. The
value of β allows us to obtain a speed of convergence of 1.6%. This conÞguration of parameter values is
also used in the proof of Proposition 5 (see (46) in the Appendix).
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constant returns to scale, the optimal income tax rate will take negative values when
the consumption growth rate is above its BGP value and takes positive values otherwise.
On the other hand, if the production function exhibits diminishing returns to scale, the
optimal income tax rate will be either procyclical or countercyclical, depending on the
reference level of consumption. Thus, we conclude that the results on optimal Þscal
policy obtained in a model without capital do not hold in a model exhibiting capital
accumulation.

6 Conclusion

We have analyzed the dynamic equilibrium of an endogenous growth model where
preferences are time-dependent. In particular, we have assumed the existence of internal
and external habit formation in consumption. Thus, utility depends on own consumption
relative to a reference level, which grows with both past own consumption and past
average consumption. The presence of internal habits makes the instantaneous utility
function non-concave and, hence, concavity of the objective function is not guaranteed.
We have provided conditions under which the equilibrium path is the solution to a
dynamic system formed by standard Þrst order conditions. We have then studied the
equilibrium of two growth models, namely, the IH model, where the reference is the
own past consumption, and the CJ model, where the reference takes the form of an
externality accruing from average past consumption.

The introduction of a consumption externality makes the equilibrium of the CJ model
inefficient during the transition. We have then characterized the optimal Þscal policy. In
particular, we have derived the optimal tax rates on income and on consumption. The
optimal tax rate on income is zero along the BGP, whereas it is different from zero along
the transition. The optimal rate of consumption tax is constant at the BGP, while it
could either increase or decrease with time along the transition. We have shown how the
value of optimal tax rates during the transition depends on the initial values of both the
reference variable and capital. More precisely, if the marginal productivity of capital is
constant, then the optimal tax rates will only depend on the initial value of the ratio of
capital to consumption reference. However, if that marginal productivity is not constant
during the transition, then the optimal tax rates will depend on the initial values of both
capital and consumption and they could exhibit a non-monotonic dynamics.
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A Appendix

Proof of Proposition 1.
(a) We use the transformed variables xt and ht, and the equilibrium condition ct = ct,

in order to rewrite equation (16) as followsµ
1

1 + ρ

¶µ
ht
xt+1

¶µ
1− θεht+1
1− θεht

¶
=

1 + n

1 + f 0 (kt+1)− δ . (34)

Note that, by using the transformed variable mt, the marginal product of capital is then

f 0 (kt+1) = A (1− β) + βmt+1.

Hence, after rearranging terms, equation (34) becomes equation (20) in the statement
of the proposition.

Evaluating equation (20) when t tends to inÞnity, and using the deÞnitions of ht and
x, and the functional form of the utility function, we get

x−[γ+σ(1−γ)] = lim
t→∞

(1 + n) (1 + ρ)

1 +A (1− β) + βmt+1 − δ . (35)

Since γ + σ(1− γ) > 0 and

lim
t→∞

(1 + n) (1 + ρ)

1 +A (1− β) + βmt+1 − δ =
(1 + n) (1 + ρ)

1 +A− δ =
1

ϕ
< 1,

it follows from (35) that (21) holds.
Since x > 1 implies that lim

t→∞ ct = ∞ and ct = c̄t, we conclude from (10) that (9)

holds with equality. Therefore,

lim
t→∞ λt = limt→∞

"µ
1

1 + ρ

¶t ∂ut
∂ct

#
= (1− σ) lim

t→∞

"µ
1

1 + ρ

¶t ut
ct

#
=

xγ(1−σ) lim
t→∞

"µ
1

1 + ρ

¶t
(ct)

−[γ+σ(1−γ)]
#
= 0, (36)

as γ + σ(1− γ) > 0 . Rewriting (11) , we get

λt ≥
·
1 + f 0(kt+1)− δ

1 + n

¸
λt+1.

Since 1 + f 0(kt+1) − δ ≥ 1 + A − δ > (1 + n) (1 + ρ) > 1 + n, we have that λt > λt+1,
which together with (36) , implies that λt > 0 for all t Þnite. Therefore, (15) implies
that the resource constraint (4) is satisÞed with equality and, by using the transformed
variables, we get equation (17).

From the deÞnition of ht and the functional form of the utility function ut, it follows
that equation (18) must also hold. Combining the deÞnition of mt with the functional
form of f (kt+1) and the resource constraint (17), we obtain equation (19).

(b) We have already proved that (21) holds. From the deÞnition of the variable zt,
we have that lim

t→∞ (kt+1/kt) = x > 1 and, thus, limt→∞ mt = A (see (3)). The stationary

values z and h are obtained from a direct computation aimed at obtaining their limiting
values according to the dynamic system formed by equations (17)-(20).
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Proof of Proposition 3. First, note that the unique strictly positive stationary path
solving the system of difference equations (17)-(20) is given by expressions (21)-(24), as
can be seen by making mt = m > 0, xt = x > 0, zt = z > 0 and ht = h > 0 for all t in
that dynamic system and solving for the corresponding stationary values.

Let us check that the stationary path solving both the Keynes-Ramsey equation (16)
and the resource constraint (4) with equality satisÞes all the Þrst order conditions and
transversality conditions for optimality. By deÞning λt as

λt =

µ
1

1 + ρ

¶t ∂ut
∂ct

+

µ
1

1 + ρ

¶t+1 ∂ut+1
∂vt+1

∂vt+1
∂ct

, (37)

the necessary Þrst order conditions (7) , (8) , (11) , (12) , and (15) are automatically
satisÞed by any path solving both (16) and the resource constraint (4) with equality.
Moreover, from the same arguments appearing in the proof of Proposition 1, it is
immediate to see that λt ≥ 0, with strict inequality for all t Þnite.

Let us now check that the stationary solution to the dynamic system formed by
equation (16) and the resource constraint (4) with equality satisÞes also the transversality
conditions (9), (10), (13), and (14) when σ ≥ 1 and x > 1. Using (37) , the transversality
condition (10) becomes

lim
t→∞

("µ
1

1 + ρ

¶t+1 ∂ut+1
∂vt+1

∂vt+1
∂ct

#
· ct
)
= 0, (38)

which, making ct = c̄t, is equal to

−γθ(1− σ) lim
t→∞

(µ
1

1 + ρ

¶t+1
ut+1

)
= 0. (39)

Moreover, at the stationary path, we have that ut+1/ut = x
(1−γ)(1−σ) and, as x > 1,

γ ∈ (0, 1) and σ ≥ 1, it follows that
ut+1
ut

< 1 < 1 + ρ. (40)

Therefore, from (40) we can conclude that (39) effectively holds, so that (10) is fulÞlled.
Moreover, using (37) , (9) could also be written as

−γθx1−σ lim
t→∞

(µ
1

1 + ρ

¶t+1
(ct)

−[γ+σ(1−γ)]
)
≤ 0,

which is satisÞed with equality as lim
t→∞ ct =∞ and γ + σ(1− γ) > 0 .

Now, we can use (36) to conclude that (13) also holds with equality. Moreover, using
again (36), the transversality condition (14) becomes

−(1 + n)xγ(1−σ) lim
t→∞

µ
1

1 + ρ

¶t
(ct)

(1−γ)(1−σ) kt+1
ct

= 0. (41)

Recall that

lim
t→∞

kt+1
ct

= z =
x

(1 +A− δ)− (1 + n)x.

Therefore, since σ ≥ 1 and lim
t→∞ ct =∞, we conclude that (41) effectively holds, so that

(14) is satisÞed.
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We have thus proved that all the necessary conditions for optimality are satisÞed by
the unique stationary path solving the dynamic system formed by (16) and the resource
constraint (4) with equality. Note that this means that the necessary conditions for
optimality are satisÞed by the unique stationary path {xt, ht, zt, mt}∞t=0 solving the
system of equations (17)-(20) for given initial values z0 > 0 and m0 > 0.

By assumption, there is only one path {xt, ht, zt, mt}∞t=0 satisfying the necessary
conditions for optimality (17)-(20) and, moreover, this path is strictly positive and
converges to a strictly positive BGP. Furthermore, we have just proved that this BGP
satisÞes all the transversality conditions. Therefore, we only have to prove that non-
interior paths deliver lower levels of utility in order to conclude that the proposed interior
path {xt, ht, zt, mt}∞t=0 is the unique equilibrium path of the economy. To this end, let
us express the budget constraint (4) in terms of the transformed variables,

zt+1 ≤
µ
zt
xt

¶µ
mt + 1− δ
1 + n

¶
− 1

1 + n
. (42)

For given values of the state variableszt > 0 and mt > 0 in period t, the growth rate xt
of consumption must satisfy the following feasibility condition:

0 ≤ xt ≤ zt(mt + 1− δ), (43)

as follows from combining (42) with the fact that zt+1 ≥ 0 . On the one hand, the
discounted sum of utilities is equal to −∞ when xt = 0, since σ ≥ 1. On the other
hand, if xt = zt(mt + 1− δ) , then the constraint (42) implies thatzt+1 = 0 , which in
turn implies that xt+1 = 0 (see (43)). Again, this results in a discounted sum of utilities
equal to −∞ when σ ≥ 1. Therefore, optimality requires that xt ∈ (0, zt(mt + 1− δ))
and, hence, ht ∈ (0,∞) for all t. We have thus ruled out non-interior values for the
control variables, since their corresponding paths yield a level of utility that is strictly
dominated by the one associated with an arbitrary interior path converging to a strictly
positive stationary path.

Proof of Proposition 4. Using (17), (18), (19) and (25), we obtain the following
Jacobian matrix evaluated at the BGP:

M IH ≡



∂xt+1
∂xt

∂xt+1
∂zt

∂xt+1
∂mt

∂xt+1
∂ht

∂zt+1
∂xt

∂zt+1
∂zt

∂zt+1
∂mt

∂zt+1
∂ht

∂mt+1

∂xt
∂mt+1

∂zt
∂mt+1

∂mt

∂mt+1

∂ht

∂ht+1
∂xt

∂ht+1
∂zt

∂ht+1
∂mt

∂ht+1
∂ht


=



γ 0 0 ϕ
1−σ

− (1+A−δ)z
(1+n)x2

1+A−δ
(1+n)x

z
(1+n)x 0

0 0 xβ−1 0

− (1−εh)γ
εhϕ 0 xβ−1(1−εh)β

(1+n)(1+ρ)εϕ
εh−σ
(1−σ)εh


.

It is immediate to see that the eigenvalues µn, n = 1, 2, 3, 4, of MIH are µ1 = x
β−1 ,

µ2 =
1+A−δ
(1+n)x and the two roots µ3 and µ4 solving the equation Q (µ) = 0 , where

Q (µ) = µ2 −
·
1 + γ +

µ
σ

σ − 1
¶µ

1− εh
εh

¶¸
µ+

1 + ρ

h
.

Note that µ1 ∈ (0, 1) because x > 1. From the resource constraint (17), we see that
µ2 = 1+

1
(1+n)z > 1. Finally, in order to determine the value of µ3 and µ4, we must Þrst

characterize the function Q (µ) . This function is a convex function with Q (0) > 0 and

Q (1) =

·
σ (γ − 1)− γ

σ − 1
¸µ
1− εh
εh

¶
.
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Condition ϕ > 1 implies that εh < 1. Hence, Q (1) is negative and Þnite when σ > 1,
whereas it converges to minus inÞnite as σ tends to one.

From our previous analysis we can conclude that, if σ > 1, then µ3 > 1 > µ4 > 0.
Therefore, all four eigenvalues are positive, two eigenvalues are smaller than one, and
two eigenvalues are larger than one. This means in turn that the BGP exhibits saddle
path stability, since the IH model has two state variables, zt and mt.

When σ = 1, the system of equations deÞning the equilibrium path is formed just
by equations (17), (19) and (25), and the equilibrium is fully described without the
variable ht. In this case, Q (µ) has a unique root, which is µ3 = 0. This means that the
equilibrium also exhibits saddle path stability in this case.

Proof of Proposition 5. Using Proposition 4, we obtain the following equations
characterizing the equilibrium saddle path around the BGP for the IH model:

qt = E
1µt1 +E

4µt4 + q,

where qt = (ht, xt,mt, zt) , µ1 and µ4 are the stable eigenvalues, and
E1 =

¡
E1h, E

1
x, E

1
m, E

1
z

¢
and E4 =

¡
E4h, E

4
x, E

4
m, E

4
z

¢
are the eigenvectors associated

with the eigenvalues µ1 and µ4, respectively. We proceed to Þnd some properties of

the eigenvectors E1 and E4 by using the matrix relationship
³
MIH − µnI

´
En = 0,

for n = 1, 4, where I is the identity matrix. Since these systems are homogenous,
their solutions can be expressed as

¡
E1x, E

1
z , E

1
h

¢
= E1m

¡
e1x, e

1
z, e

1
h

¢
and

¡
E4x, E

4
m, E

4
h

¢
=

E4z
¡
e4x, e

4
m, e

4
h

¢
, where E1m and E

4
z are arbitrary constants. Moreover, since µ4 6= ∂mt+1

∂mt
,

it follows that e4m = 0. Substituting all these equalities in the previous system, we get

e1x = −
∂xt+1
∂ht

∂ht+1
∂mt

∂xt+1
∂ht

∂ht+1
∂xt

−
³
∂ht+1
∂ht

− µ1
´ ³

∂xt+1
∂xt

− µ1
´ ,

e1z =

∂zt+1
∂xt

∂xt+1
∂ht

∂ht+1
∂mt

−
³
∂xt+1
∂ht

∂ht+1
∂xt

−
³
∂ht+1
∂ht

−µ1
´³

∂xt+1
∂xt

−µ1
´´

∂zt+1
∂mt³

∂zt+1
∂zt

−µ1
´³

∂xt+1
∂ht

∂ht+1
∂xt

−
³
∂ht+1
∂ht

−µ1
´³

∂xt+1
∂xt

−µ1
´´ ,

e1h =

∂ht+1
∂mt

³
∂xt+1
∂xt

− µ1
´

∂xt+1
∂ht

∂ht+1
∂xt

−
³
∂ht+1
∂ht

− µ1
´ ³

∂xt+1
∂xt

− µ1
´ ,

e4x = −
∂zt+1
∂zt

− µ4
∂zt+1
∂xt

,

and

e4h =

∂ht+1
∂xt

³
∂zt+1
∂zt

− µ4
´

∂zt+1
∂xt

³
∂ht+1
∂ht

− µ4
´ .

We must now establish the value of the arbitrary constants E1m and E4z . First,
E4m = 0 implies that mt = E

1
mµ

t
1 +m, so that E

1
m = m0−m.Moreover, by construction,

zt = E
1
zµ
t
1 +E

4
zµ
t
4 + z = E

1
me

1
zµ
t
1 +E

4
zµ
t
4 + z.

This implies that
E4z = (z0 − z)− (m0 −m) e1z.
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Substituting the values of E1m and E4z we have obtained above into the equations
characterizing the evolution of xt and ht around the BGP, we get

xt = (m0 −m) e1xµt1 +
h
(z0 − z)− (m0 −m) e1z

i
e4xµ

t
4 + x, (44)

ht = (m0 −m) e1hµt1 +
h
(z0 − z)− (m0 −m) e1z

i
e4hµ

t
4 + h. (45)

Clearly, xt is non-monotonic around the steady state if there exists a positive Þnite
number tx such that the derivative of the RHS of (44) with respect to t equals zero at
t = tx . By differentiating (44) with respect to t, we obtain that the critical value of t is
given by

tx =
ln
h
−
³
ln(µ4)
ln(µ1)

´³
e4x
e1x

´³
z0−z
m0−m − e1z

´i
ln
³
µ1
µ4

´ .

Similarly, it is obvious from (45) that ht is non-monotonic if

th =
ln

·
−
³
ln(µ4)
ln(µ1)

´µ
e4h
e1
h

¶³
z0−z
m0−m − e1z

´¸
ln
³
µ1
µ4

´
is positive and Þnite. Consider the following conÞguration of parameter values:

A = 0.093, σ = 5, δ = 0, n = 0, ρ = 0.03, γ = 0.5, and β = 0.2, (46)

and the initial values of the state variables are z0 = 0.99z and m0 = 1.01m, so that
(44) is a good approximation of the evolution of the growth rate xt. Then, we obtain
tx = 5. 9644 and, hence, the growth rate xt displays a non-monotonic behavior around
its stationary value. Consider now the same initial conditions for the state variables and
the same set of parameter values as in the previous example, but making A = 0.183 and
δ = 0.09. In this case we get that th = 7.1723 so that ht is non-monotonic around h.

Note that, if B = 0 then mt = A. In this case, m0 = m and the equations (44) and
(45) become

xt = (z0 − z) e4xµt4 + x,

ht = (z0 − z) e4hµt4 + h.
In order to establish the relation between the variables xt and ht and z0, we derive the
sign of e4x and e

4
h in this case. First, note that

∂zt+1
∂zt

= µ2 > 1 > µ4. Moreover,

∂ht+1
∂xt

= −(1− εh) γ
εhϕ

< 0,

∂ht+1
∂ht

=
εh− σ
(1− σ) εh = 1 +

σ (1− εh)
(σ − 1) εh > 1 > µ4,

and
∂zt+1
∂xt

= −(1 +A− δ) z
(1 + n)x2

< 0.

The previous inequalities imply that e4x > 0 and e4h > 0. Therefore, xt and ht increase
(decrease) with time if z0 < z (z0 > z)
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Proof of Proposition 6. Using (17), (19) and (27), we obtain the following Jacobian
matrix evaluated at the BGP:

MCJ ≡



∂xt+1
∂xt

∂xt+1
∂zt

∂xt+1
∂mt

∂zt+1
∂xt

∂zt+1
∂zt

∂zt+1
∂mt

∂mt+1

∂xt
∂mt+1

∂zt
∂mt+1

∂mt

 =


γ(σ−1)
σ 0 βxβ

σ(A+1−δ)

− (1+A−δ)z
(1+n)x2

1+A−δ
(1+n)x

z
(1+n)x

0 0 xβ−1

 .

The eigenvalues of this matrix are: µ1 = xβ−1, µ2 = 1+A−δ
(1+n)x and µ3 =

γ(σ−1)
σ . Note

that µ1 ∈ (0, 1) because x > 1. Using the resource constraint (17), we see that
µ2 = 1 + 1

(1+n)x > 1. Finally, µ3 ∈ (0, 1) because σ ≥ 1. Therefore, the equilibrium
path exhibits saddle path stability as the CJ model has two state variables, zt and mt.

Proof of Proposition 7. Using Proposition 6, we obtain the following equation
characterizing the equilibrium saddle path around the BGP for the CJ model:

qt = E
1µt1 +E

3µt3 + q,

where now qt = (xt,mt, zt), µ1 and µ3 are the stable eigenvalues, and E
1 =

¡
E1x, E

1
m, E

1
z

¢
and E3 =

¡
E3x, E

3
m, E

3
z

¢
are the eigenvectors associated with the eigenvalues µ1 and

µ3, respectively. We proceed to Þnd some properties of the eigenvector E1 and E3

by using the matrix relationship
³
MCJ − µnI

´
En = 0, for n = 1, 3. Since these sys-

tems are homogenous, their solutions can be expressed as
¡
E1x, E

1
z

¢
= E1m

¡
e1x, e

1
z

¢
and¡

E3x, E
3
m

¢
= E3z

¡
e3x, e

3
m

¢
, where E1m and E3z are arbitrary constants. Moreover, since

µ3 6= ∂mt+1

∂mt
, we get that e3m = 0 and

e1x = −
∂xt+1
∂mt

∂xt+1
∂xt

− µ1
,

e1z =

∂zt+1
∂xt

∂xt+1
∂mt

− ∂zt+1
∂mt

³
∂xt+1
∂xt

− µ1
´

³
∂zt+1
∂zt

− µ1
´ ³

∂xt+1
∂xt

− µ1
´ ,

and

e3x = −
∂zt+1
∂zt

− µ3
∂zt+1
∂xt

.

We must now establish the value of the arbitrary constants E1m and E3z . First,
E3m = 0 implies that mt = E

1
mµ

t
1 +m, so that E

1
m = m0 −m. Moreover, by construc-

tion,
zt = E

1
zµ
t
1 +E

3
zµ
t
3 + z = E

1
me

1
zµ
t
1 +E

3
zµ
t
3 + z.

This implies that
E3z = (z0 − z)− (m0 −m) e1z.

Substituting the values of E1m and E3z we have obtained above into the equation
characterizing the evolution of xt around the BGP, we get

xt = (m0 −m) e1xµt1 +
h
(z0 − z)− (m0 −m) e1z

i
e3xµ

t
3 + x. (47)
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As in the proof of Proposition 5, we consider the parameter conÞguration (46) with the
same initial conditions for the state variables. Then, we obtain that the critical value of
t that makes the derivative of the RHS of (47) equal to zero is tx = 5.6603 and, thus, xt
turns out to be non-monotonic.

Note that, if B = 0 then mt = A. In this case, m0 = m and the previous equation
becomes

xt = (z0 − z) e3xµt3 + x.
In order to establish the relation between the variable xt and z0, we derive the sign of
e3x in this case. First, note that

∂zt+1
∂zt

> 1 > µ3. Moreover,

∂zt+1
∂xt

= −(1 +A− δ) z
(1 + n)x2

< 0.

It then follows that e3x > 0. Therefore, xt increases (decreases) with time if z0 < z
(z0 > z) .
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