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Abstract

We show that incentive efficient allocations in economies with adverse se-

lection and moral hazard can be determined as optimal solutions to a linear

programming problem and we use duality theory to obtain a complete charac-

terization of the optima. Our dual analysis identifies welfare effects associated

with the incentives of the agents to truthfully reveal their private information.

Because these welfare effects may generate non-convexities, incentive efficient

allocations may involve randomization. Other properties of incentive efficient

allocations are also derived.

JEL Classification Numbers. D82, D61, C61.

Key Words: asymmetric information; incentive efficiency; linear programming;

duality.

2



1 Introduction

It is well known that informational asymmetries generate adverse selection and moral

hazard problems. To take these problems into account, in addition to the standard

resource constraints, an allocation must satisfy incentive compatibility constraints:

agents must be given incentives to truthfully reveal their private characteristics and

actions. Despite great progress in understanding these environments, the characteri-

zation of economies under asymmetric information remains problematic. For example,

there is no clear consensus about the theory of competitive markets with asymmetric

information. Adapting the well-established techniques of linear programming and

duality theory to characterize efficient allocations under asymmetric information, we

study the role of incentive compatibility in determining allocations.

The point of departure of this work is the classic contribution of Prescott and

Townsend [23]. Those authors investigate the extent to which standard methods for

the analysis of efficient allocations and their decentralization as competitive equili-

bria can be applied to environments with asymmetric information. Using a framework

which embeds a large class of economies, and showing that lotteries play a role in the

analysis, they demonstrate that competitive equilibria exist and are incentive efficient

when trading takes place before the asymmetry of information is realized (e.g. moral

hazard). However, their approach does not extend to economies where trading takes

place after the asymmetric information is realized (e.g. adverse selection). Our main

contribution to the insights of Prescott and Townsend is to exploit the linear struc-

ture that arises when lotteries are allowed for, and which, as Myerson [21] shows, is

inherent to environments where incentive constraints are relevant. Framing the ana-

lysis in terms of linear programming allows us to obtain a complete characterization

of the set of incentive efficient allocations. Also, duality emerges as a powerful tool

to study these environments. Our findings point to the presence of external effects

associated with the incentives of agents to reveal their private characteristics as the

source of the problems encountered by Prescott and Townsend in decentralizing effi-

cient allocations with adverse selection. Our results are reminiscent of Myerson’s [22]

linear programming characterization of efficient mechanisms in cooperative games

with incomplete information and, in particular, of the concept of virtual utilities.

We introduce the linear programming methodology using two simple economies.

The first is an adverse selection insurance economy similar to the one used by Roth-

schild and Stiglitz [25] and Wilson [28]. The second is a moral hazard variation of

the first. In both cases, we show that incentive efficient allocations (i.e. allocations

which are Pareto optimal in the set of resource feasible and incentive compatible allo-

cations) can be determined as solutions to a linear programming problem. Then we
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use the primal problem, its dual, and their corresponding complementary slackness

conditions to obtain a precise and simple characterization of these allocations.

The adverse selection model is a standard insurance economy with two types of

agents, high-and-low risk, and two possible idiosyncratic endowment states. Follow-

ing Prescott and Townsend [23], we define allocations in the space of lotteries over

bundles of contingent commodities. A lottery is just a random insurance plan. In-

surance claims are assumed perfectly verifiable and fully enforceable.1 Agents have

von Neumann-Morgenstern preferences. Therefore, their objective function as well as

their incentive constraints are linear in the lotteries. Incentive efficient allocations can

then be determined as optimal solutions to a linear programming problem; more pre-

cisely, a Linear Semi-Infinite Programming problem. We derive the “dual problem”

and use the complementary slackness theorem to obtain a complete characterization

of the set of incentive efficient allocations. We also show that there is no loss of

generality in restricting attention to lotteries with finite support. Then we derive

properties of incentive efficient allocations as well as conditions under which lotteries

can be dispensed with.

The main economic insights of the model arise from the use of duality theory.

In the “dual problem” we identify the welfare effects arising from constraints on

the allocation. Apart from the standard welfare effects (i.e., utilities and economic

costs) we find others associated with the incentives of the agents to reveal their

types. Intuitively, a given allocation may be relatively costly because it gives a

greater incentive to one type of agent to misrepresent their type. For instance, all

actuarially fair insurance plans for the low-risk agents generate identical economic

costs. However, those plans that are more attractive to the high-risk agents imply

higher total welfare costs. The reason is that under such plans it becomes more costly

to prevent the high-risk agents from lying about their type (i.e., more resources are

needed to induce truthful revelation). That is, an external cost arises as a result of

the effect of the assignment to the low-risk agents on the high-risk agents.

Incentive efficient allocations must internalize the welfare effects of incentives. Our

analysis shows that these welfare effects may generate non-convexities. Hence, some of

the incentive efficient allocations may be random. The source of these non-convexities

lies in differences in preferences for risk across types. For instance, randomization is

beneficial when low-risk agents are risk neutral and high-risk agents are risk averse.

In this case, any fair insurance plan is equally good for a low-risk agent and equally

1Bisin and Gottardi [5] and Bisin and Guaitoli [7] depart from this “exclusive” benchmark and

study competitive economies with non-verifiable trades. Dubey, Geanakoplos and Shubik [11] study

environments where asymmetric information arises from the possibility of default.
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costly in terms of resources. However, a random insurance plan generates lower

external costs because it involves higher risk and is thus less attractive for a high-

risk agent. In general, whenever the incentives of the high-risk agents are at issue,

and as long as these agents are sufficiently more risk averse than low-risk agents,

assigning a lottery to the latter will reduce the external cost of the assignment and

may allow a welfare improvement. By contrast, if low-risk agents are at least as risk

averse as high-risk agents then the optimal insurance plan of the low-risk agents is

deterministic.

The analysis of the moral hazard economy is very similar. In this economy, there

is a continuum of ex ante identical agents and two possible idiosyncratic endowment

states. Each agent can exert either high or low effort at a direct utility cost. Higher

effort reduces the probability of ending up in the poor state. The main difference

compared with the adverse selection model is that allocations may now involve two

kinds of randomization: not only a random insurance plan, but also a random effort

level. In this economy, a given insurance plan may be relatively costly because it

gives a greater incentive to the agents to deviate from an optimal high effort level.

If risk aversion decreases fast enough with effort, the welfare cost of incentives may

be non-convex and optimal insurance plans may be random. Effort may also be

random. When their effort is high, agents have higher expected wealth, but this

comes at a direct utility cost. In some instances, agents may be willing to give up

some consumption to reduce their effort. The tradeoff between consumption and effort

is resolved by allowing the agent to provide low effort with some positive probability

at the cost of reducing his expected consumption. We find that if the agents’ expected

wealth is large enough, or if the cost of effort increases fast enough with consumption,

incentive efficient allocations involve random effort.

Related Literature. A recent paper by Bisin and Gottardi [6] analyzes an adverse

selection economy as one with consumption externalities . Because consumption plans

must satisfy incentive constraints, the consumption plan of one agent type affects the

set of admissible plans of the other type. These authors construct an appropriately

enlarged market structure which allows then to decentralize incentive efficient allo-

cations. Greenwald and Stiglitz [13] and Arnott, Greenwald and Stiglitz [2] also em-

phasize the importance of external effects in economies with asymmetric information,

but there, the external effects are modeled as exogenous. We show that the external

effects arise endogenously once incentive constraints are explicitly considered.

The idea that lotteries help separate types on the basis of their attitude towards

risk is discussed by Prescott and Townsend [23, 24] and further investigated by

Cole [10] and Arnott and Stiglitz [3]. Using duality theory, we can bring to light
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the welfare analysis underlying this discussion and establish a formal link between

the separating role of lotteries and the presence of non-convexities arising from the

welfare effects of incentives. In recent work, Kehoe, Levine and Prescott [18] study

an exchange economy where agents trade after they learn their type. They show that

if the agents’ preferences display decreasing absolute risk aversion then lotteries are

suboptimal. We obtain analogous results, also based on absolute risk aversion, for

the case of adverse selection and moral hazard.

Bennardo and Chiappori [4] study a moral hazard economy characterized by the

presence of both idiosyncratic and aggregate uncertainty where consumption and

leisure are complementary goods. They show that if the cost of effort increases fast

enough with consumption, incentive efficient allocations involve a random

effort level. We obtain similar results for the case of purely idiosyncratic uncer-

tainty and show that optimal effort is random also if the aggregate endowment is

sufficiently large.

Our approach is inspired by the work of Makowski and Ostroy [20]. These au-

thors use a linear programming model to study large economies with full information.

Gretsky, Ostroy and Zame (1999) present a similar linear programming treatment of

large assignment economies. This work is a first step in trying to introduce incentive

constraints in these models.

The structure of the paper is as follows. In section 2, we present the adverse

selection model. We set up the linear programming problem and its dual. Then we

use the complementary slackness theorem to characterize incentive efficient allocations

and study their properties. Section 3 presents a similar analysis for the case of moral

hazard. The proofs are deferred to the Appendix which involves an application of

Linear Semi-Infinite Programming.

2 Adverse Selection

2.1 The Economy

Consider an exchange economy with a single consumption good and a continuum of

agents of two types i = L,H. The fraction of agents of type i is denoted by ξi.

The agents in the economy are subject to idiosyncratic endowment shocks. Spe-

cifically, each agent can be in one of two states s = 1, 2. At each state, the agent is

endowed with a different amount ωs of the good, where 0 < ω1 < ω2. The probability

that state 1 (the low endowment state) is realized is higher for an agent of type H

(“high risk”) than for an agent of type L (“low risk”). These probabilities will be
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denoted by θH and θL, respectively, so that 0 < θL < θH < 1. Agents of type i

have von Neumann-Morgenstern preferences over contingent co nsumption plans as

defined by the Bernoulli utility function Ui : R+ → R, where Ui is twice continuously

differentiable, strictly increasing, and strictly concave with limc→0 U ′
i(c) = ∞ and

limc→∞ U ′
i(c) = 0.2

Idiosyncratic shocks are independent across agents, rendering no uncertainty at

the aggregate level.3 Ex post, the fraction of type-i agents with a low endowment is

θi, and the average endowment of the type-i group is ω̄i = θiω1 + (1 − θi)ω2. The

ex-post aggregate endowment is given by ω̄ = ξLω̄L + (1− ξL)ω̄H .

Agents choose their contingent consumption plans before the realization of the

individual shock. The structure of individual uncertainty is common knowledge and

the realization of the endowment shocks is observable. State-contingent net trades

are perfectly verifiable and fully enforceable ex post. However, an individual agent’s

type is known only to herself.

2.2 Allocations

In this section, we define the space of allocations and describe allocations which

are physically feasible and incentive compatible. Then we define incentive efficient

allocations.

Let Z denote the net trade set of an agent; that is, the set of all pairs z = (z1, z2) ∈

R
2 such that zs ≥ −ωs for s = 1, 2. For any z ∈ Z, the expected net trade of an agent

of type i is given by

ri(z1, z2) = θiz1 + (1− θi)z2,

and her expected utility is defined as

EUi(z1, z2) = θiUi(ω1 + z1) + (1− θi)Ui(ω2 + z2).

An allocation in this economy is a random net trade assignment for each type.

That is, before the realization of individual uncertainty, each agent receives a lottery

2Our model is slightly more general than the Rothschild-Stiglitz [25] economy, where state utilities

are type-invariant. As we will see, differences in tastes across types may have important consequences

for the nature of the incentive efficient allocations. All results can be extended to state-dependent

utilities and to any finite number of idiosyncratic states.
3The measurability problems associated with the aggregation of a continuum of independent and

identically distributed random variables are well known; see Judge [17]. A way around this problem,

as shown by Sun [27], is to consider a process of individual uncertainty which is measurable with

respect to hyperfinite Loeb product spaces. For such processes almost sure pairwise independence

guarantees the validity of the law of large numbers (see Sun [27, Theorem 3.10, p. 436]). For

alternative approaches to this problem see Al-Najjar [1] and Hammond and Lisboa [15].
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depending on her type. The realization of this lottery determines a net trade, and

thus, a contingent consumption plan for the agent. Formally, an allocation is a pair

of probability measures on Z. Denote the space of Borel measures on Z which have

compact support by Mc(Z). The space of allocations is the set of pairs (xL, xH) ∈

Mc(Z)×Mc(Z) such that
∫

Z

dxi = 1, xi ≥ 0, i = L,H.4 (2.1)

Here, xi is a probability measure describing the lottery assigned to each agent of

type i. For any Borel set B ⊂ Z, xi(B) is the probability that the agent is assigned

a net trade z ∈ B. Under this formulation, deterministic assignments are given by

degenerate measures. The law of large numbers implies that xi is also the distribution

of net trades of type-i agents once the outcomes of all individual lotteries are realized

(e.g. xi(B) is the fraction of agents of type i assigned to a net trade z ∈ B).

An allocation is feasible if the aggregate net trade is non-positive. The average

net trade of the agents of type i is given by 〈ri, xi〉 =
∫

Z
ridxi. Hence, the aggregate

resource constraint is

ξL〈rL, xL〉+ (1− ξL)〈rH , xH〉 ≤ 0. (2.2)

Since types are private information, an agent of type i may claim to be any of the

two types j = 1, 2, and receive expected utility 〈EUi, xj〉 =
∫

Z
EUidxj . An allocation

is incentive compatible if it is not in the interest of agents to misrepresent their type:

〈EUi, xi〉 ≥ 〈EUi, xj〉, j 6= i, i = L,H. (2.3)

An allocation is incentive efficient if it is feasible, incentive compatible, and there

exists no other feasible and incentive compatible allocation that is weakly preferred

by both types and strictly preferred by at least one type.

2.3 The Primal and Dual Problems

In this section, we show that every incentive efficient allocation is an optimal solution

to a linear programming problem.

The problem of the planner is to find an allocation so as to maximize a weighted

average of the utilities of the two types subject to the feasibility and the incentive

constraints. Note that utilities are linear in the lotteries. Constraints (2.1)-(2.3) are

also linear. In order to extend the inner product notation 〈· , ·〉 to the adding-up

constraint (2.1), we define I : Z → {0, 1} to be the characteristic function on Z

and write 〈I, xi〉 =
∫

Z
dxi for i = L,H. For given positive welfare weights (γL, γH),
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with γH = 1 − γL, the problem of the planner is to find an allocation (xL, xH) ∈

Mc(Z)×Mc(Z) to solve

(D) sup γL〈EUL, xL〉 + (1− γL)〈EUH , xH〉

s.t.

〈I, xL〉 = 1, (2.4)

〈I, xH〉 = 1, (2.5)

−〈EUL, xL〉 + 〈EUL, xH〉 ≤ 0, (2.6)

〈EUH , xL〉 − 〈EUH , xH〉 ≤ 0, (2.7)

ξL〈rL, xL〉 + (1− ξL)〈rH , xH〉 ≤ 0, (2.8)

xL, xH ≥ 0. (2.9)

Problem (D) is a linear programming problem. Standard results in linear program-

ming theory show that problem (D) is dual to another linear programming problem,

known as the primal problem or problem (P ). Whereas problem (D) is a maximiza-

tion problem with an infinite number of variables and a finite number of constraints,

problem (P ) is a minimization problem with a finite number of variables and an infi-

nite number of constraints. In optimization theory, these kind of problems are known

as Linear Semi-Infinite Programming (LSIP) problems.5 As we shall see, the primal

and dual problems are related because the primal variables are also the shadow prices

of the dual constraints, and vice versa.

Problem (P ), which is derived in detail in Appendix A, consists of finding a

quintuple (αL, αH, βL, βH, q) ∈ R
5 to solve

(P ) inf αL + αH

s.t.

αL ≥ γLEUL(z) + βLEUL(z)− βHEUH(z)− qξLrL(z)

∀z ∈ Z, (2.10)

αH ≥ (1 − γL)EUH(z)− βLEUL(z) + βHEUH(z)− q(1− ξL)rH(z)

∀z ∈ Z, (2.11)

βL, βH, q ≥ 0, (2.12)

5An LSIP problem is an optimization problem with linear objective and linear constraints in

which either number of variables or the number of constraints is finite. For an excellent survey on

LSIP theory, see Goberna and López [12].
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where (αL, αH) are the shadow prices of the adding-up constraints (2.4) and (2.5),

(βL, βH) are the shadow prices of the incentive constraints (2.6) and (??), and q is

the shadow price of the resource constraint (2.8).

Denote the optimal values for problems (P ) and (D) by ν(P ) and ν(D), respec-

tively. It is easy to see that both problems are consistent (i.e. their feasible sets are

not empty) as well as bounded (i.e. ν(P ) and ν(D) are finite).6 However, unlike an

ordinary linear program, a bounded LSIP problem need not have optimal solutions.

Moreover, the primal and dual problems need not have the same optimal value, as a

“positive duality gap” may occur: ν(P ) − ν(D) > 0. The next two theorems show

that the problems in this paper are well-behaved.

Theorem 2.1 ν(D) = ν(P ).

Theorem 2.2 Problems (P ) and (D) have optimal solutions.

Hence, the maximum in problem (D) and the minimum in problem (P ) are well-

defined and they are equal. A nice property of the dual problem is that the space

of variables can be restricted without loss of generality to measures with finite sup-

port. Proposition 2.1 below establishes the formal result. Let MF denote the set of

finitely supported measures on Z. Consider the restricted dual problem, (DF ), where

allocations are defined in MF ×MF . Denote its optimal value by ν(DF ).

Proposition 2.1 Problem (DF ) has optimal solutions. Further, ν(DF ) = ν(D).

Results of this kind are common to many LSIP programs (Goberna and López [12]).

2.4 Full Information

To gain some insight into the linear programming framework, we first consider the

case of full information. This case provides a benchmark for the rest of the analysis.

When agent types are public information, a simpler pair of LSIP problems obtains.

Theorems 2.2 and 2.1 and Proposition 2.1 extend to these problems. The dual problem

(D0) is obtained by eliminating the incentive constraints in (D). Every first best

6The allocation under autarky (where both types have zero net trade) is feasible and incentive

compatible, so problem (D) is consistent. In problem (P ), let βL = βH = 0 and q = q0 > 0.

Since EUi is strictly concave, the right-hand side of both (2.10) and (2.11) is bounded on Z. Fixing

αL = α0

L
and αH = α0

H
sufficiently large ensures that (2.10) and (2.11) hold. By the weak duality

theorem (see Krabs [19, Theorem I.3.1]), since problems (P ) and (D) are consistent, they are also

bounded: γLEUL(0) + (1− γL)EUH (0) ≤ ν(D) ≤ ν(P ) ≤ α0

L
+ α0

H
.
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allocation is an optimal solution to problem (D0) for some weight γL ∈ (0, 1). The

primal (P0) is obtained by eliminating the shadow prices of the incentive constraints,

βL and βH, and all the associated terms in (P ). Thus, the objective function in

problem (P0) is the same as in (P ), and the constraint systems are given by

αi ≥ vi(zi; q) ∀zi ∈ Z i = L,H; (2.13)

where

vi(zi; q) = γiEUi(zi)− qξiri(zi). (2.14)

Consider the terms in the function vi(zi; q). The first term, γiEUi(zi), is the

contribution to welfare when agents of type i have net trade zi. The second term,

qξiri(zi), is the value of the aggregate net trade of these agents when the shadow price

of the good is q. Thus, vi(zi; q) represents the net contribution to social welfare when

agents of type i have net trade zi and the shadow price of resources is q.

According to (2.13), a feasible value of αi is an upper bound of vi(· ; q) for given

q. The maximal net contribution of type-i agents at price q is defined as

v∗i (q) ≡ sup
zi∈Z

vi(zi; q) = sup
zi∈Z

{γiEUi(zi)− qξiri(zi)}, (2.15)

so the primal systems (2.13) can be put in the form

αi ≥ v∗i (q), i = L,H. (2.16)

Because the objective of problem (P0) is to minimize the sum of the αi’s, the

two constraints in (2.16) bind at an optimum. Thus, the optimal shadow price q∗ of

resources minimizes the sum of the types’ maximal net contributions:7

q∗ = arg
{

min
q≥0

{v∗L(q) + v∗H(q)}
}

,

while the optimal value of αi is the maximal net contribution of type i at price q∗:

α∗i = vi(q
∗).

First best allocations. The complementary slackness theorem (see, for instance,

Krabs [19, Theorem I.3.3]) allows us to characterize optimal solutions for problems

7This full information economy is an example of the general problem studied by Makowski and

Ostroy [20]. In particular, α∗i (q) is the conjugate or indirect utility, redefined in its expected value

form for economies with uncertainty. These authors have shown how the fact that the constraints

of the primal program (the “pricing problem” in their terminology) can be incorporated into the

objective function is characteristic of the LP version of General Equilibrium.
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(P0) and (D0). According to the theorem, feasible solutions (αL, αH , q) and (xL, xH)

for problems (P0) and (D0), respectively, are optimal if and only if they satisfy the

complementary slackness conditions:

q
(

ξL〈rL, xL〉 + (1− ξL)〈rH , xH〉
)

= 0, (2.17)

αi = v∗i (q) = vi(zi; q) if xi(zi) > 0, i = L,H. (2.18)

Condition (2.17) states that the optimal shadow price q∗ is a complementary mul-

tiplier for the resource constraint (2.8). Since the monotonicity of preferences implies

that q∗ is positive, (2.17) implies that the aggregate net trade is zero. Condition

(2.18) states that the optimal assignments, x∗L and x∗H, are complementary multiplier

vectors for the respective constraint systems in (2.13). This implies that

x∗i puts weight only on net trades zi that maximize the net contribution to social

welfare of type i at price q∗. H owever, vi(· ; q
∗) is a strictly concave function, and

has at most one maximum. Thus, x∗i is a degenerate measure; that is, randomiza-

tion is never optimal. Further, it is easily verified that both types are fully insured

as their optimal consumption is independent of the realization of the idiosyncratic

shock. In summary, conditions (2.17)-(2.18) yield standard efficiency results for con-

vex economies with full information and no aggregate uncertainty: all agents are fully

insured and the aggregate consumption equals the aggregate endowment. We now

use a similar characterization to derive the more subtle properties of the optima when

agent types are private information.

2.5 Incentive Efficiency

When types are private information, allocations must provide incentives for the agents

to reveal their type. When γL is very large, first best allocations assign higher con-

sumption to type L than to type H, so agents of type H are inclined to lie. Similarly,

when γL is very low, first best allocations give higher consumption to type H, which

induces the agents of type L to lie. It is easily verified that, for some intermediate

weight, it is optimal that both types consume the ex-post average endowment w̄ with

certainty. This weight is given by

γ̄L =
(

1 +
(1 − ξL)U ′

L(ω̄)

ξLU ′
H(ω̄)

)−1

,

and corresponds to the only first best allocation that is also incentive compatible. The

next proposition describes a partitioning of the set of incentive effici ent allocations

into three regions according to which incentive compatibility constraint binds.
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Proposition 2.2 The set of incentive efficient allocations has three regions:

(i) When γL = γ̄L, the incentive efficient allocation assigns each type ω̄ units of

consumption in every state, and the two incentive constraints trivially bind.

Thus, βL = βH = 0.

(ii) When γ̄L < γL < 1, incentive efficient allocations assign higher expected con-

sumption to type L than to type H and, only the incentive constraint of type H

binds. In this case, βL = 0 and βH > 0 .

(iii) When 0 < γL < γ̄L, incentive efficient allocations assign higher expected con-

sumption to type H than to type L and, only the incentive constraint of type L

binds. In this case, βL > 0 and βH = 0.

Cases (ii) and (iii) in Proposition 2.2 are essentially symmetric and can be studied

separately.8

2.5.1 The incentives of type-H agents

In this section, we characterize incentive efficient allocations in which the incentive

constraint of type H binds. Throughout we let γL ∈ (γ̄L, 1) and assume, without loss

of generality, βL = 0.

The first constraint system in problem (P ) is given by

αL ≥ vL(zL;βH, q) ∀zL ∈ Z, (2.19)

where the function

vL(zL;βH, q) = γLEUL(zL)− qξLrL(zL)− βHEUH(zL) (2.20)

represents the net contribution to social welfare of type-L agents when types are

private information. The net contribution of type L is adjusted with respect to its

full information version and, unlike the latter, depends on the shadow price of the

incentive constraint of type H. Specifically, a new term arises which is not present

under full information: −βHEUH(zL). This term reflects an external cost that arises

as a result of the effect of the assignments to type L on type-H agents. That is, the

better the assignment of type L in the eyes of type-H agents, the more costly it is to

prevent the latter

8Prescott and Townsend [23, Section 3] characterize the set of incentive efficient allocations when

utilities are identical across types using the first-order conditions of the planner problem. In this

case, γ̄L = ξL.
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from lying. The total cost of assignments to type L is given by the sum of the

resource cost and the external cost: qξLrL(zL) + βHEUH(zL). When βH is positive,

the external cost is positive and, for a given q, the total shadow cost is higher than

under full information. Note that, since EUH(·) is strictly concave, the total cost is

not a convex function of zL.

The second constraint system is given by

αH ≥ vH(zH;βH, q) ∀zH ∈ Z, (2.21)

where the function

vH(zH;βH, q) = (1− γL)EUH(zH) − q(1− ξL)rH(zH) + βHEUH(zH) (2.22)

represents the net contribution to social welfare of type-H agents at prices βH and

q. The third term in the function reflects a benefit of assignments to type H on

the incentives of these agents. Clearly, the higher the utility that type-H agents

derive from their own assignment, the more incentives they have to report the truth.

The shadow cost of assignments to type H is given by the resource cost net of the

benefit on incentives: q(1−ξL)rH(zH)−βHEUH(zH). When βH is positive, the benefit

on incentives is positive and, for a given q, the total cost is lower than under full

information. In this case, however, the cost is a convex function of zH.

According to (2.19) and (2.21), a feasible value of αi is an upper bound of

vi(· ;βH, q) for given βH and q. The maximal net social contribution of type-i agents

at prices βH and q is defined as

v∗i (βH, q) ≡ sup
zi∈Z

vi(zi;βH, q). (2.23)

Constraints (2.19)-(2.21) can be expressed as

αi ≥ v∗i (βH, q), i = L,H. (2.24)

Thus, the optimal prices β∗H and q∗ minimize the sum of the types’ maximal net

contributions:

(q∗, β∗H) ∈ arg
{

min
βH ,q≥0

v∗L(βH, q) + v∗H(βH, q)}
}

,

while the optimal net contributions are given by α∗i = v∗i (β
∗
H, q∗) for i = L,H.

The principal result in this section is the characterization of incentive efficient

allocations. According to the complementary slackness theorem, feasible solutions
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(αL, αH , βH, q) and (xL, xH) for problems (P ) and (D) respectively, are optimal if

and only if:

βH(〈EUH , xH〉 − 〈EUH , xL〉) = 0, (2.25)

q(ξL〈rL, xL〉 + (1− ξL)〈rH, xH〉) = 0, (2.26)

αi = v∗i (βH , q) = vi(zi;βH, q) if xi(zi) > 0, i = L,H. (2.27)

By Proposition 2.2 we know that β∗H > 0, and it can be verified that q∗ > 0.9 Thus,

incentive efficient allocations satisfy the following three properties. First, an agent

of type H is indifferent between her assignment and that of type L. Second, the

aggregate net trade is zero. Third, the lottery x∗i assigned to type i puts weight

only on net trades that maximize the net contribution of type i at prices q∗ and β∗H.

The third property leads to the following result which stems directly from the strict

concavity of vH(· ;β∗H, q∗) and first-order conditions.

Proposition 2.3 x∗H is degenerate and provides full insurance.

Proposition 2.3 states that agents of type H should be fully insured when their

average consumption is lower than ω̄. Full insurance increases both the utility of type

H for a given resource cost and her incentives to report the truth (decreasing the

total cost of the assignment). Since the

incentive constraint of type L is not binding, type L wants to tell the truth. On

the other hand, more insurance to type L, while increasing her own utility, may raise

the incentives of type H to lie. For a given resource cost, an increase in insurance to

type L raises the total cost. As a result, the optimal assignment to type L is distorted

from full insurance. Since the total cost is not convex on zL, optimal assignments

may even be random. If utilities are type-invariant (as in Rothschild and Stiglitz [25]

and Wi lson [28]), however, optimal assignments to type L are deterministic.

Proposition 2.4 If utilities are type-invariant, then x∗L is degenerate and assigns

lower consumption in state 1 than in state 2.

Given the consumption level of type H, the planner chooses xL so as to increase

the utility of type L as much as possible without inducing type H to lie. For a given

resource cost, the planner may increase the net social contribution of type L (i.e.,

widen the gap between the utility of type L and the external cost of the assignment)

9q∗ cannot be zero. If UH is unbounded then vH (· ; β∗, 0) is unbounded on Z, which contradicts

(2.27). If UH is bounded, then vH (· ; β∗, 0) does not have a maximum (recall that limc→∞ Ui(c) = 0),

a contradiction since (D) is solvable and the support of x∗
H

is non-empty.
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by exploiting differences in the preferences of the two types. Because type L is more

likely to be in state 2 than type H, assignments which give higher consumption in

state 2 relative to state 1 are relatively more attractive for type L than for type

H. This explains why partial insurance to type L is incentive efficient. Lottery

assignments, in turn, exploit differences in preferences for risk. When utilities are

identical across types, there are no such differences and lotteries do not help enhance

efficiency. There are economies, however, where lotteries play a useful role. Consider

the extreme case where agents of type L are risk neutral and agents of type H are risk

averse. One can then easily devise a random allocation which is incentive compatible

and first best efficient. First, agents announcing type H are assigned their first best

deterministic consumption level. Agents announcing type L, on the other hand,

receive a non-degenerate lottery. Whereas the implied expected consumption (and,

hence, the utility) of type L is also the first best one, the risk involved is such that

the certainty equivalent that type-H agents assign to the lottery is no greater than

their own deterministic consumption. This prevents any misrepresentation.

The next proposition shows that, when type L is at least as risk averse as type H,

lotteries are not useful. Let Ai : R+ → R+ denote the index of absolute risk aversion

for type i; that is, Ai(c) = −
U ′′

i
(c)

U ′

i
(c)

for c ∈ R+.

Proposition 2.5 If AL(c) ≥ AH(c) for all c ∈ R+, then x∗L is degenerate and assigns

lower consumption in state 1 than in state 2.

2.5.2 The incentives of type-L agents

An analysis analogous to the one in the previous section allows us to characterize

incentive efficient allocations in which the incentive constraint of type L binds. In

this case, incentive efficient allocations provide full insurance to type L and over

insurance to type H. Full insurance to a type-L agent increases her utility as well as

her incentive to tell the truth. The optimal way to induce type L to tell the truth is to

provide over insurance to type H. Intuitively, an over insured position is less attractive

for type-L agents than for type-H agents since the former are less likely to be in

the low endowment state. If type L is sufficiently more risk averse than type H, the

assignment to type H may be random, since type L is more reluctant to accept random

assignments than type H. By contrast, if type H is at least as risk averse as type L,

optimal assignments to type H are deterministic. The next proposition summarizes

the properties of incentive efficient allocations when the incentive constraint of type

L binds.
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Proposition 2.6 For any γL ∈ (0, γ̄L), incentive efficient allocations satisfy the

following.

(i) x∗L is degenerate and provides full insurance; and

(ii) If utilities are type-invariant, then x∗H is degenerate and assigns higher con-

sumption in state 1 than in state 2. More generally, if utilities are not type

invariant, and AH(c) ≥ AL(c) for all c ∈ R+, then x∗H is degenerate and assigns

higher consumption in state 1 than in state 2.

3 Moral Hazard

3.1 The Economy

Consider an exchange economy with two goods, namely time and a single consumption

good, and a measure one of ex ante identical agents. Each agent faces an idiosyncratic

shock leading to two possible states, s = 1, 2. In state s, the agent is endowed with

ωs units of consumption where 0 < ω1 < ω2. Prior to the realization of the shock,

the agent is endowed with one unit of time which he allocates between leisure and

effort in preventing the realization of state 1. Each agent can choose to exert either

high or low effort, with the set of effort levels denoted by E = {eL, eH}, where

0 < eL < eH < 1. Exerting high rather than low effort reduces the probability that

the agent will end up in state 1. The probability of state 1 with high and low effort

will be denoted by θH and θL, respectively, so that 0 < θH < θL < 1. Agents have von

Neumann-Morgerstern preferences as defined by the utility function u : E×R+ → R.

The utility of consumption c under effort ei is given by Ui(c) = u(ei, c), where Ui is

assumed twice continuously differentiable, strictly increas ing, and strictly concave

with limc→0 U ′
i(c) = ∞ and limc→∞ U ′

i(c) = 0. Since effort is costly, we assume that

there is some positive constant d such that UL(c)− UH(c) > d for all c ∈ R+.

Idiosyncratic shocks are independent and render no aggregate uncertainty. The

ex-post average endowment of the agents who provide effort ei is then given by

ω̄i = θiω1 + (1 − θi)ω2. The structure of uncertainty is common knowledge and

the realization of the endowment shocks is observable. State-contingent net trades

are perfectly verifiable and fully enforceable. However, effort is private information.

3.2 Allocations

In this section, we define feasible and incentive compatible allocations. Then
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we define incentive efficient allocations.

Let Z ⊂ R
2
+ denote the net trade set of an agent. For any z = (z1, z2) ∈ Z, the

expected net trade of an agent with effort ei is

ri(z1, z2) = θiz1 + (1− θi)z2,

and his expected utility is given by

EUi(z1, z2) = θiUi(ω1 + z1) + (1− θi)Ui(ω2 + z2).

An allocation in this economy specifies an effort level and a net trade for each

agent. Both specifications are allowed to be random and are given as follows. First,

the agent receives a lottery which prescribes an effort level. After the agent chooses

his effort and conditional on the prescription received, a second lottery specifies a net

trade. It is useful for our purposes to describe an allocation as a pair of measures

(xL, xH) ∈ Mc(Z)×Mc(Z) such that

〈I, xL + xH〉 = 1, xi ≥ 0, i = L,H.10 (3.28)

Here, ||xi|| = 〈I, xi〉 is the probability that effort ei is specified in the first lottery, and

the equality in (3.28) is an adding-up condition.11 In addition, 1
||xi||

xi is a probability

measure which describes the random net trade assigned conditional on specification

ei (i.e., the second lottery). Note that the uncertainty involved in an allocation is

resolved in two steps. In the first step, the agent may be uncertain about the effort

that he will be asked to provide. This occurs when both ||xL|| and ||xH|| are positive.

In the second step, the agent finds out his effort specification, but he may be uncertain

about his contingent consumption plan. This occurs when 1
||xi||

xi is a non-degenerate

measure. Allowing for random effort is natural since the consumption set, E × R+,

displays indivisibilities.12 As we shall see, the role for random net trade assignments

arises from the unobservability of effort.

From the perspective of the entire economy, ||xi|| is the fraction of agents who are

assigned ei, and 1
||xi||

xi is the distribution of their net trades. The ex-post aggregate

net trade of these agents is given by 〈ri, xi〉 =
∫

Z
ridxi (provided the agents conform to

their specification). An allocation is feasible if the aggregate net trade is non-positive:

〈rL, xL〉 + 〈rH , xH〉 ≤ 0. (3.29)

11Here, ||xi|| = 〈I, xi〉 = xi(Z) is the total variation of xi.
12It is well known that lotteries play a role in when consumption sets are non-convex. See Shell

and Wright [26].
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When effort ei is specified but ej is the actual effort provided, the agent’s expected

utility is 1
||xi||

〈EUj , xi〉. An allocation is incentive compatible if it is not in the interest

of the agents to deviate from their specifications:

〈EUi, xi〉 ≥ 〈EUj, xi〉, j 6= i, i = L,H. (3.30)

An incentive efficient allocation is a feasible and incentive compatible allocation

that maximizes the ex-ante expected utility of the agents.

3.3 The Primal and Dual Problems

An incentive efficient allocation can be determined as a solution to a planning pro-

blem, more precisely a dual LSIP problem. The problem is to choose an allocation

(xL, xH) ∈ Mc(Z)×Mc(Z) that solves

(D) sup 〈EUL, xL〉+ 〈EUH , xH〉

s.t.

〈I, xL + xH〉 = 1, (3.31)

−〈EUL, xL〉 + 〈EUH , xL〉 ≤ 0, (3.32)

〈EUL, xH〉 − 〈EUH , xH〉 ≤ 0, (3.33)

〈rL, xL〉+ 〈rH , xH〉 ≤ 0, (3.34)

xL, xH ≥ 0. (3.35)

The primal LSIP problem consists of finding a quadruple (α, βL, βH, q) ∈ R
4 that

solves

(P ) inf α

s.t.

α ≥ EUL(z)− βL[EUH(z)−EUL(z)]− qrL(z) ∀z ∈ Z, (3.36)

α ≥ EUH(z)− βH [EUL(z)− EUH(z)]− qrH(z) ∀z ∈ Z, (3.37)

βL, βH, q ≥ 0, (3.38)

where α, (βL, βH), and q are the shadow prices of the adding-up constraint (3.31),

the incentive constraints (3.32)-(??), and the resource constraint (3.34), respectively.
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In the Appendix, we show that problems (P ) and (D) have optimal solutions and

that their optimal values coincide. We also show that, in characterizing incentive effi-

cient allocations, there is no loss of generality in restricting attention to measures with

finite support. These results are analogous to Theorems 2.2 and 2.1 and Proposition

2.1 in Section 2.3.

3.4 Incentive Efficiency

In this section, we characterize incentive efficient allocations. Since the aggregate

endowment is constant, under full information it is optimal that each agent consumes

with certainty the average endowment in the economy. However, since effort is costly

and cannot be publicly observed, an agent who is fully insured will shirk to low effort

when high effort is specified. For this reason, allocations which specify high effort

with positive probability can only provide partial insurance. On the other hand,

agents must be subject to the minimum risk possible that is compatible with their

incentives to conform to a high-effort specification. So the incentive constraint (??)

binds with βH > 0. Implementing a low-effort specification is trivial. Since the

incentive constraint (3.32) does not bind, we may let βL = 0.

The first constraint system in problem (P ) is given by

α ≥ vL(zL; q) ∀zL ∈ Z, (3.39)

where the function

vL(zL; q) = EUL(zL)− qrL(zL) (3.40)

represents the net contribution to social welfare with low effort. The first term in

(3.40) is the contribution to welfare when agents are assigned effort eL and net trade

zL. The second term is the value of the associated aggregate net trade when the

shadow price of the good is q. Note that, since there are no welfare effects of incentives,

the net social contribution with low effort is the same both under full and private

information.

The second constraint system is given by

α ≥ vH(zH;βH, q) ∀zH ∈ Z, (3.41)

where the function

vH(zH;βH, q) = EUH(zH)− qrH(zH)− βH[EUL(zH)− EUH(zH)] (3.42)
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represents the net contribution to social welfare with high effort. The first and second

terms in (3.42) are the contribution to welfare when agents are assigned effort eH

and net trade zH , and the value of the associated aggregate net trade, respectively.

The third term is the welfare effect of incentives. If the net trade assigned is such

that the agent has incentives to deviate to eL, the term is negative and reflects a

welfare cost which is proportional to the utility gain in the deviation. If the net

trade assigned is such that the agent wants to conform to eH, the term is positive and

reflects a benefit which is proportional to the utility loss that a deviation would imply.

The direct (i.e. full information) net contribution of the assignment is thus adjusted

upward (downward) when it gives the right (wrong) incentives. The total cost of an

assignment under high effort is given by the resource cost net of the w elfare effect of

incentives: qrH(zH) + βH[EUL(zH) − EUH(zH)]. Note that the cost function is not

convex.

The maximal net contributions with high and low effort at prices βH and q are:

v∗L(q) ≡ sup
zL∈Z

vL(zL; q), (3.43)

v∗H(βH, q) ≡ sup
zH∈Z

vH(zH;βH, q). (3.44)

It is thus possible to write conditions (3.39)-(3.41) as

α ≥ v∗(βH , q),

where v∗(βH, q) is the largest of the two maximal net social contributions:

v∗(βH, q) ≡ max{v∗L(q), v∗H(βH, q)}. (3.45)

Because the objective of the primal problem is to minimize α, the optimal prices

β∗H and q∗ are determined by minimizing v∗(βH , q):

(β∗H, q∗) ∈ arg
{

min
βH ,q≥0

{

v∗(βH, q)
}

,

while optimal net contribution is given by α∗ = v∗(β∗H, q∗).

We now turn to the characterization of incentive efficient allocations. According

to the complementary slackness theorem, if (α, βH, q) and (xL, xH) are feasible for

problems (P ) and (D), respectively, then they are optimal if and only if:

βH(〈EUL −EUH , xH〉) = 0, (3.46)

q(〈rL, xL〉 + 〈rH , xH〉) = 0, (3.47)

α = v∗(βH, q) = vi(zi;βH, q) if xi(zi) > 0, i = L,H. (3.48)
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We have already noted that β∗H > 0, and it can be checked that q∗ > 0. Thus, an

incentive efficient allocation (x∗L, x∗H) has the following three properties. First, when

eH is assigned, the agent is indifferent between exerting effort (eH) and shirking (eL).

Second, the aggregate net trade is zero. Third, x∗i puts weight only on net trades

which achieve the optimal net contribution. That is, x∗L(zL) is positive provided:

(i) zL maximizes vL(· ; q∗), and (ii) vL(q∗) = v∗(βH, q). Similarly, x∗H(zH) is positive

provided: (i) zH maximizes vH(· ;β∗H, q∗), and (ii) vH(βH, q∗) = v∗(βH , q). The follow-

ing proposition follows from the third property and is a direct result of the strict

concavity of vL(· ; q∗) and first-order conditions.

Proposition 3.1 If ||x∗L|| > 0 then x∗L is degenerate and provides full insurance.

Since a low effort assignment does not generate incentive effects, an agent who

is assigned eL should be fully insured. Under a high effort specification, however,

an increase in insurance may raise the incentives to shirk (increasing the shadow

cost of the assignment). Since the shadow cost function is not a convex, net trade

assignments under high effort may even be random. If utility is separable in effort

and consumption, however, optimal assignments under high effort are deterministic.

Proposition 3.2 Suppose that utility is separable in consumption and effort. If

||x∗H|| > 0 then x∗H is degenerate and assigns lower consumption in state 1 than

in state 2.

The planner would like to increase as much as possible the utility of agents who

are specified high effort without adversely affecting their incentives. The planner may

increase the net contribution with high effort by exploiting differences in preferences

with high and low effort. Partial insurance makes high effort relatively more attractive

because it raises the probability of being in the high consumption state. Random net

trade assignments exploit differences in preferences for risk. When utility is separable,

there are not such differences and random net trade assignments are not optimal.

Consider, however, the extreme case where an agent is risk neutral when his effort

is high and risk averse when it is low. Then it is easy to find a random allocation

which is incentive compatible and first best efficient. In this allocation, agents who

are specified high effort are assigned a random net trade which yields the first best

expected consumption and involves sufficient risk for the agent not to have incentives

to shirk to low effort.

The next proposition shows that, if risk aversion does not decrease with effort,

random net trade assignments are not optimal.13 Let Ai : R+ → R+ be the index of

13Arnott and Stiglitz [3] derive this result through a different argument.
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absolute risk aversion of an agent with effort ei; that is, Ai(c) = −
U ′′

i
(c)

U ′

i
(c)

for c ∈ R+.

Proposition 3.3 Suppose that AH(c) ≥ AL(c) for all c ∈ R+. If ||x∗L|| > 0 then x∗H

is degenerate and assigns lower consumption in state 1 than in state 2.

Remark. The conditions which characterize incentive efficient allocations with

adverse selection and moral hazard are very similar (conditions (2.25)-(2.27) and

(3.46)-(3.48), respectively). Their main differences relate to the definition of the

net contribution functions in each model, and thereby in the third condition of the

characterization. The net contributions differ in the terms which describe the welfare

effects of incentives. With adverse selection, the assignments of both types generate

incentive effects. In particular, the assignment of the type with the highest average

consumption generates external costs because it affects the truth-telling incentives of

the other type. With moral hazard, only the assignments of those agents who are

specified high effort generate incentive effects. In this case, it is the incentives of

these agents (not the incentives of others) that are affected.14 A second important

difference is that, while in the adverse selection model the fraction of each type is

exogenously given, in the moral hazard model the fraction of people who provide

each effort level is endogenous. As a result, whereas in the first model the net social

contributions of the two types are defined independently, in the second model the

net social contributions with high and low effort are inter-related. In particular, the

optimal maximal net contribution is the largest of the maximal contributions with

high and low effort at the optimal prices.

The remainder of this section focuses on optimal effort assignments. To avoid

trivial solutions, we assume throughout that it is not incentive efficient to assign low

effort with probability one and to provide the agents with full insurance.15 Below we

give conditions under which the optimal effort is random.

Consider the most preferred allocation which is feasible and incentive compatible,

and specifies high effort with probability one. There may exists a feasible and incen-

tive compatible allocation which specifies low effort with positive probability and is

strictly preferred by the agents. When a fraction of the population provides low ef-

fort, the aggregate endowment decreases. Yet, if this fraction is taken to be small, the

14The source of this difference is the different form of the incentive constraints in the two models.

Whereas with adverse selection both incentive constraints depend on assignments of the two types

xL and xH , with moral hazard the (relevant) incentive constraint depends only on the net trade

assignment under high effort xH .
15Assume there exists a feasible and incentive compatible allocation (xL, xH) such that xL = 0

and 〈EUH , xH〉 > UL(ω̄L).
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loss in endowment is also small. Starting from the original high effort allocation, it is

feasible to give an arbitrarily high fixed consumption to a sufficiently small fraction

of agents and allow these agents to provide low effort without decreasing the average

consumption of others by too much. The cost of introducing this lottery is that, due

to a reduction in expected consumption, agents are slightly worse off if high effort

is specified. The benefit is that, ex ante, every agent has a positive probability of

being fully insured, exerting less effort and receiving a highly subsidized consumption

level.16 Since marginal utility of consumption decreases to zero, the cost of giving up

a small amount of expected consumption becomes negligible as agents get wealthier.

However, the disutility of effort is strictly positive. Proposition 3.4 asserts that, under

the natural assumption that marginal utility of consumption does not increase with

effort (decrease with leisure) and as long as the loss in expected endowment from

switching from high to low effort, ω̄H − ω̄L, is bounded, agents are willing to give up

some expected consumption to participate in the lottery provided they are sufficiently

wealthy.

Proposition 3.4 Suppose that

(i) U ′
H(c) ≤ U ′

L(c) for all c ∈ R+, and

(ii) (θL − θH)(ω2 − ω1) < M for some constant M , so (ω̄H − ω̄L) is bounded.

Then there exists a threshold ω̂H such that, if ω̄H ≥ ω̂H then ||x∗H|| < 1 .

In recent work, Bennardo and Chiappori [4] study a moral hazard environment

where the optimal effort is typically random.17 In their model, consumption and

leisure are assumed to be complementary goods, so that the marginal utility of con-

sumption decreases with effort, and the cost of effort increases with consumption.

An important result in that paper is that, if the marginal utility of consumption de-

creases fast enough with effort then there may be a limit to the amount of expected

consumption that the agent can receive while still being willing to provide high ef-

fort. Put differently, a really wealthy individual may have no incentive to provide

high effort. When the aggregate endowment exceeds a threshold level, part of the

available resources cannot be consumed if high effort is specified with probability one.

In this case, the best high-effort allocation implies an strictly negative aggregate net

trade and cannot be incentive efficient. In terms of our former discussion, what is

16That is, of “winning the lottery” and reducing effort.
17Most models in the partial equilibrium literature consider only deterministic effort prescriptions.

See, however, the general equilibrium model of Prescott and Townsend [23].
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special about this case is that the lottery described in the previous paragraph can be

implemented at no cost (provided that the probability of a low effort specification is

sufficiently low) as there are resources available for free! The following proposition

establishes the result formally.

Proposition 3.5 Suppose that

(i) U ′
H(c) ≤ U ′

L(c) for all c ∈ R+, and

(ii) limc→∞
U ′

H
(c)

U ′

L
(c)

= 0.

Then there exists a threshold ω̌H such that, if ω̄H ≥ ω̌H then any allocation with

||xH|| = 1 satisfies the resource constraint (3.34) with strict inequality. In this case,

||x∗H|| < 1.

Proposition 3.5 is a similar, slightly stronger result than the result in Bennardo and

Chiappori [4, Lemma 3.6]. It shows that the key assumption behind the Bennardo-

Chiappori result is that marginal utility of consumption ought to decrease faster with

high than with low effort (Assumption (ii)). The main difference between Propositions

3.4 and 3.5 is that random effort prescriptions may be optimal in economies where

agents have relatively low endowment provided that the ratio
U ′

H
(c)

U ′

L
(c)

goes to zero

sufficiently fast.

Appendix A

A.1 The Linear Semi-Infinite Programming Problems

In this section, we set up the primal LSIP problem and derive its dual. Following

Charnes, Cooper and Kortanek [8], we define the restricted dual problem, so-called

dual problem in Haar’s sense. The LSIP

problems in Sections 2 and 3 obtain as particular cases of the problems in this

section by applying the definitions in Table I.

A.1.1 The Primal Problem

Let 1 ≤ m ≤ n and R
n be equipped with the Euclidean norm and partially ordered

by means of the cone

Kn
m = { y ∈ R

n : yj ≥ 0, j = 1, ...,m}.
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Let ω ∈ R
2
+ and define Z = { z ∈ R

2 : z ≥ −ω }. Let C(Z) denote the vector

space of continuous real-valued functions on Z, endowed with the topology of uniform

convergence on compact sets and partially ordered by means of the cone

C+(Z) = { f ∈ C(Z) : f(z) ≥ 0 ∀z ∈ Z }.

The primal problem is to find y ∈ R
n to solve

(P ) inf c · y

s.t. Ay ≥ b,

y ∈ Kn
m,

where c ∈ R
n, b = (bL, bH) ∈ C(Z) × C(Z), and A : R

n → C(Z) × C(Z) is a

continuous linear mapping. Problem (P ) is linear and has n unknowns and infinitely

many constraints. Denote its optimal value by ν(P ).

A.1.2 The Dual Problem

Let Mc(Z) denote the space of signed Borel measures on Z which have compact

support and are finite on compact sets. This space is the topological dual space of

C(Z) (Hewitt [16]).

Let C(Z)× C(Z) be paired in duality with Mc(Z) ×Mc(Z). The reflexive space

R
n is paired with itself. The two pairings are endowed with their natural bilinear

forms (to highlight the dimensionality of the spaces in the pairing we use the dot

product and bracket notation for finite and infinite dimensions, respectively):

〈f, x〉 =

∫

Z

fLdxL +

∫

Z

fHdxH , f = (fL, fH) ∈ C(Z)× C(Z),

x = (xL, xH) ∈ Mc(Z)×Mc(Z);

y · z =

n
∑

j=1

yjzj, y ∈ R
n, z ∈ R

n.

The adjoint of A, A∗ : Mc(Z)×Mc(Z) → R
n, is defined by the relation

y · (A∗x) = 〈Ay, x〉, for all y ∈ Kn
m, x ∈ Mc+(Z)×Mc+(Z). (A.1)

We may write Ay =
∑n

j=1 yjfj, where fj = (fjL, fjH) ∈ C(Z)×C(Z) for j = 1, · · · , n.

Then (A.1) can be expressed as

y · (A∗x) =
n
∑

j=1

yj〈fj , x〉, for all y ∈ Kn
m, x ∈ Mc+(Z)×Mc+(Z). (A.2)
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Write A∗x ≤ c as

n
∑

j=1

yj(〈fj, x〉 − cj) ≤ 0, for all y ∈ Kn
m.

The dual problem is to find x ∈ Mc(Z)×Mc(Z) to solve

(D) sup 〈b, x〉

s.t. 〈fj , x〉 ≤ cj, j = 1, ...,m,

〈fj , x〉 = cj , j = m + 1, ..., n,

x ≥ 0.

Problem (D) is a linear programming problem with infinitely many unknowns and

n constraints. Denote its optimal value by ν(D). By the weak duality theorem

(Krabs [19, Theorem I.3.1]), ν(D) ≤ ν(P ).

A.1.3 The Dual Problem in Haar’s Sense

Let R
(Z) denote the vector space of all functions λi : Z → R which vanish outside a

finite subset of Z. For any λi ∈ R
(Z), we define the supporting set of λi as

supp λi = {zi ∈ Z : λi(zi) 6= 0}.

Let C(Z)× C(Z) be paired in duality with R
(Z) × R

(Z), with bilinear form

〈f, λ〉 =
∑

zL∈suppλL

fL(zL)λL(zL) +
∑

zH∈suppλH

fH(zH)λH(zH),

f = (fL, fH) ∈ C(Z)×C(Z), λ = (λL, λH) ∈ R
(Z) × R

(Z).

The dual problem in Haar’s sense is to find λ ∈ R
(Z) × R

(Z) to solve

(DF ) sup 〈b, λ〉

s.t. 〈fj, λ〉 ≤ cj , j = 1, ...,m,

〈fj, λ〉 = cj, j = m + 1, ..., n,

λ ≥ 0.

Problem (DF ) is also a linear programming problem with infinitely many unknowns

and n constraints. Denote its optimal value by ν(DF ). To see the relation between

problems (D) and (DF ) denote the set of finitely supported Borel measures on Z

by MF . Also, denote the Dirac measure at z ∈ Z by δz (i.e., for any Borel set

B ⊂ Z, δz(B) = 1 if z ∈ B and δz(B) = 0 otherwise). Any pair λ = (λL, λH) ∈
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Adverse Selection Moral Hazard

(n,m) (5, 3) (4, 3)

y (βL, βH, q, αL, αH) (βL, βH, q, α)

c (0, 0, 0, 1, 1) (0, 0, 0, 1)

b = (bL, bH) (γLEUL, (1 − γL)EUH) (EUL, EUH)

f1 = (f1L, f1H) (−EUL, EUL) (−EUL + EUH , 0)

f2 = (f2L, f2H) (EUH,−EUH) (0, EUL − EUH)

f3 = (f3L, f3H) (ξLrL, (1− ξL)rH) (rL, rH)

f4 = (f4L, f4H) (I, 0) (I,I)

f5 = (f5L, f5H) (0,I) —–

Table I: Adverse Selection and Moral Hazard

R
(Z) × R

(Z) corresponds to a pair of finitely supported measures x = (xL, xH) where

xi =
∑

zi∈suppλi
λi(zi)δzi

for i = L,H. Thus, the space R
(Z) × R

(Z) is isomorphic

to MF × MF . This implies that problem (DF ) is equivalent to problem (D) when

dual variables are restricted to lie in the subset MF ×MF of Mc(Z)×Mc(Z). Thus,

ν(DF ) ≤ ν(D).

A.2 Proofs of Theorems 2.2 and 2.1 and Proposition 2.1

We begin with three preliminary Lemmas. To prove Lemma A.1 we appeal to the

properties of the expected utility EUi and the expected net trade functions ri defined

in Table I. In particular, we use the continuity and strict concavity of EUi, the

fact that marginal utility of consumption decreases asymptotically to zero, and the

linearity of ri. The proof also uses the fact that at most one incentive constraint

binds in problem (D).

Lemma A.1 There exists a compact subset T ⊂ Z such that, if all the constraints

which are associated with elements z ∈ Z|T are eliminated from problem (P ) then the

set of optimal solutions does not change.

Proof. Let Y denote the set of feasible solutions in problem (P ). That is, y ∈ Y if

and only if y ∈ Kn
m and

0 ≥ hi(zi, y) ≡ bi(zi)−
n
∑

j=1

yjfji(zi) for all zi ∈ Z, i = L,H. (A.3)

(See Table I). Note that Y is a closed convex subset of R
n. We establish the Lemma

through a sequence of claims.
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Claim 1: Y is non-empty.

Proof: This follows straightforwardly from (A.3) given the strict concavity of bi and

the linearity of fmi for i = L,H (see Table I).

Claim 2: If y ∈ Y then y ≥ 0. Further, there exist constants Mj, j = 1, . . . , n, such

that any optimal solution to problem (P ) lies in the set

M = {y ∈ Y : yj ≤ Mj , j = 1, . . . , n}.

Proof: By definition, any y ∈ Y satisfies yj ≥ 0 for j = 1, . . . ,m. Now, fmi(0) = 0

and utilities can be normalized so bi(0) = 0. Because 0 ∈ Z, (A.3) implies that

yj ≥ 0 for j ≥ m + 1. The existence of Mj for j ≥ m + 1 follows from Claim 1 and

the primal o bjective function. By the weak duality theorem and since autarky is a

feasible solution for problem (D),

bL(0) + bH(0) ≤ ν(D) ≤ ν(P ) ≤

n
∑

j=m+1

Mj .

Finally, since at most one incentive constraint binds in problem (D), it can be verified

using (A.3) that at an optimal solution yj is bounded above for 1 ≤ j ≤ m.

Claim 3: There is some ε > 0 such that ym > ε for all y ∈ M .

Proof: Assume not. Then there exists a sequence {yk} in M such that 0 ≤ yk
m < 1

k

for all k ∈ N. Since at most one incentive constraint binds, without loss of generality

let y1 = 0. Then, for some i and any y ∈ Y ,

0 ≥ hi(zi, y) ≥ bi(zi)− ymfmi(zi)− yn, for all zi ∈ Z. (A.4)

Since holds (A.4) for y = yk, rearranging and taking limits gives

lim
k→∞

yk
n ≥ bi(zi)− lim

k→∞
yk

mfmi(zi) = bi(zi), ∀zi ∈ Z.

Hence,

lim
k→∞

yk
n ≥ bi(zi), ∀zi ∈ Z.

When utility is unbounded, limk→∞ yk
m+1 = ∞, thereby contradicting Claim 2. When

utility is bounded, limzi→∞ bi(zi) = Bi. But Mn can then always be found in (0, Bi),

leading to a similar contradiction.

Claim 4: There is a z̄ such that, for each i = L,H and any y ∈ M , ∇hi(zi, y) << 0

for all zi > z̄.
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Proof: Without loss of generality, take i = L. From Table I, ∇fjL = 0 for j ≥ m+1.

Also, ∇fmL(zL) = ḡL >> 0. Then

∇hL(zL, y) = ∇bL(zL)−
m
∑

j=1

yj∇fjL(zL)

= ∇bL(zL)−
m−1
∑

j=1

yj(∇f+
jL(zL)−∇f−jL(zL))− ymḡL,

where ∇f+
jL and ∇f−jL ≥ 0 stand for the positive and negative parts of ∇fjL. This

together with Claims 2 and 3 implies

∇hL(zL, y) ≤ ∇bL(zL) +
m−1
∑

j=1

Mj∇f−jL(zL)− εḡL, for all zL ∈ Z.

But as marginal utility decreases asymptotically to zero:

lim
zL→+∞

∇bL(zL) = 0,

lim
zL→+∞

∇fjL(zL) = 0, 1 ≤ j ≤ m− 1,

and this gives

lim
zL→+∞

∇hL(zL, y) = −εḡL << 0.

Since hL(·, y) is a continuously differentiable, there exists a constant z̄L such that

∇hL(zL, y) << 0 for all zL > z̄L. A similar derivation gives z̄H . Setting z̄ =

max{z̄L, z̄H} proves our claim.

Claim 5: The set T = [−ω1, z̄]× [−ω2, z̄] satisfies Lemma ??.

Proof: Claim 5 is direct from Claim 4. This completes the proof of Lemma A.1. �

Consider the LSIP problems which arise by replacing Z by T in problems (P ),

(D) and (DF ). Denote these problems by (P T ), (DT ) and (DT
F ), respectively. The

proofs of Lemma A.2 and Lemma A.3 below appeal to some well-known results in

LSIP theory. The proof of Lemma A.2 exploits also the strict concavity of EUi and

the linearity of ri.

Lemma A.2 The system of constraints in problem (P T ) is canonically closed in the

sense of Charnes, Cooper and Kortanek [9].

Proof. First, since T is compact and since for all i and j bi and fji are continuous,

the set

{(f1(t), f2(t), . . . , fn(t), b(t)) : t ∈ T}
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is compact in R
n+1.

Second, the Slater constraint qualification is satisfied. To see this, let y0
j = 0 for

1 ≤ j ≤ m− 1 and let y0
m > 0 be given. Since, fmi is linear and bi is strictly concave,

there exist constants aL > 0 and aH > 0 and values for y0
j for j ≥ m + 1 such that,

0 ≥ hL(zL, y0) = bL(zL)− y0
mfmL(zL)− y0

m+1 + aL, for all zL ∈ Z,

0 ≥ hH(zH, y0) = bH(zH)− y0
mfmH(zH)− y0

n + aH, for all zH ∈ Z.

That is, y0 is a Slater point. �

Lemma A.3 Problem (DT
F ) is solvable and ν(DT

F ) = ν(DT ) = ν(P T ).

Proof. By weak duality of the pair {(P T ,DT )}, and the definition of (DT
F ),

ν(DT
F ) ≤ ν(DT ) ≤ ν(P T ).

Given Lemma A.2, the inhomogeneous Haar theorem of Charnes, Cooper and Kor-

tanek [8, Theorem 3] implies that the system of constraints in (PT ) has the Farkas-

Minkoswki property. Since (P T ) and (DT
F ) are consistent, the extended dual theorem

of Charnes, Cooper and Kortanek [8, Theorem 4] implies then that (DT
F ) is solvable

and that ν(DT
F ) = ν(P T ). �

We are now ready to prove Theorems 2.1 and 2.2, and Proposition 2.1.

Proof of Theorem 2.1. By weak duality of the pair {(P ), (D)}, and the definition

of (DF ),

ν(DF ) ≤ ν(D) ≤ ν(P ).

Also, since R
(T ) ⊂ R

(Z), it follows that ν(DT
F ) ≤ ν(DF ). By Lemma A.1, ν(P ) =

ν(P T ). But then, Lemma A.3 implies that ν(DF ) = ν(D) = ν(P ). �

Proof of Proposition 2.1. The proof of Theorem 2.1 establishes that ν(DF ) =

ν(D). It also implies that ν(DT
F ) = ν(DF ). Since by Lemma A.3, (DT

F ) is solvable, so

is (DF ). �

Proof of Theorem 2.2. The solvability of (D) follows from Proposition 2.1. By

Claims 1 and 2 in Lemma A.1, Y is non-empty and may be assumed bounded. Since

Y is closed, problem (P ) maximizes a continuous function on a compact set, and so

its value is attained. �
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A.3 Proofs of Proposition 2.2 and 2.4 to 2.6, and 3.4 to 3.5

Proof of Proposition 2.2. Let (x∗, x∗) denote the first best equal treatment allo-

cation: x∗ = δz∗ with z∗ = (z∗1, z
∗
2) and z∗s = ω̄ − ωs for s = 1, 2. Since (x∗, x∗) is

incentive compatible, it is also incentive efficient. Let γ̄L and γ̄H be the associated

weights in problem (D). Using first-order conditions,

v′i(z
∗; q∗) = γ̄iU

′
i(ω̄)− ξiq

∗ = 0, i = 1, 2.

Writing γ̄H = 1 − γ̄L and rearranging gives

γ̄L =
(

1 +
(1 − ξL)U ′

L(ω̄)

ξLU ′
H(ω̄)

)−1

.

Any other incentive efficient allocation (x∗L, x∗H) is such that either (i) one type is

strictly better off, or (ii) both types are indifferent. Assume (i) and suppose, without

loss of generality, that type L is better off. Then, γL > γ̄L. Since x∗ provides full

insurance, the expected consumption of type L must exceed ω̄ and, by feasibility, that

of type H must be lower than ω̄. But then,

〈UL, x∗H〉 < 〈UL, x∗〉 < 〈UL, x∗L〉,

so the incentive constraint of type L is does not bind (βL = 0). Since the incentive

constraint of type H is satisfied, x∗L entails only partial insurance. This constraint

must bind with βH > 0; otherwise, the utility of type L could be increased by reducing

the risk in x∗L and maintaining the expected consumption.

Case (ii) is impossible. If each type i is indifferent between x∗i and x∗ then (x∗L, x∗H)

must give both types an expected consumption of at least ω̄. But, by feasibility, the

expected consumption of both types must equal ω̄. Since (x∗L, x∗H) and (x∗, x∗) are

different, at least one type i is not fully insured and strictly prefers x∗ to x∗i , a

contradiction. �

Proof of Proposition 2.4. We first show that, when Ui(·) = U(·) for i = L,H,

the function vL(· ;β∗H, q∗) is strictly concave. This function is additive across states,

vL(zL;β∗H, q∗) =
∑

s∈{1,2}

vLs(zLs;β
∗
H, q∗),

where

vL1(zL1;β
∗
H, q∗) =

(

γLθL − β∗HθH

)

U(w1 + zL1)− q∗ξLθLzL1,

vL2(zL2;β
∗
H, q∗) =

(

γL(1− θL)− β∗H(1− θH)
)

U(w2 + zL2)− q∗ξL(1− θL)zL2.
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Since U ′′ < 0, for s = 1, 2, the second derivative v′′Ls never changes sign. Suppose

v
′′

Ls ≥ 0 for some s. Because U ′ > 0, then v′Ls < 0. But then, by condition (2.27), the

optimal assignment to type L is deterministic and such that ws + z∗Ls = 0, which is

impossible since limc→0 U ′
L(0) = ∞. We conclude that v

′′

Ls < 0 for s = 1, 2.

Since 0 < θL < θH < 1 and U ′′ < 0, the first-order conditions imply that the

maximum of vL(· ;β∗H, q∗) satisfies ω1 + zL1 < ω2 + zL2. �

Proof of Proposition 2.5. We may write

vL(zL;β∗H, q∗) =
∑

s∈{1,2}

vLs(zLs;β
∗
H, q∗),

where

vL1(zL1;β
∗
H, q∗) = γLθLUL(w1 + zL1)− β∗HθHUH(w1 + zL1)− q∗ξLθLzL1,

vL2(zL2;β
∗
H, q∗) = γL(1 − θL)UL(w2 + zL2)− β∗H(1 − θH)UH(w2 + zL2)

−q∗ξL(1 − θL)zL2.

We first show that, if AL(c) ≥ AH(c) for all c ∈ R+ then vL(· ;β∗H, q∗) is strictly

concave. Write v′L1 = (g1 + g2)g3 where

g1 = γLθL
U ′

L

U ′

H

, g2 = −
(

β∗HθH + q∗ξLθL

U ′

H

)

, g3 = U ′
H .

Clearly, g′2, g
′
3 < 0. Further,

1

γLθL

g1
′ =

(U ′′
LU ′

H − U ′
LU ′′

H

(U ′
H)2

)

=

(

(

U ′′

L
U ′

H

U ′

L
U ′′

H

− 1
)

U ′
LU ′′

H

(U ′
H)2

)

=

(

(

AL

AH

− 1
)

U ′
LU ′′

H

(U ′
H)2

)

.

So AL ≥ AH implies g1
′ ≤ 0 and hence v′′L1 < 0. Finally, because 0 < θL < θH < 1,

v′′L1 < 0 implies v′′L2 < 0, which proves our claim.

Now g1
′ ≤ 0 is equivalent to

U ′

L

U ′

H

being non-increasing. Since 0 < θL < θH < 1 and

U ′′ < 0, the first-order conditions imply that the maximum of vL(· ;β∗H, q∗) satisfies

ω1 + zL1 < ω2 + zL2. �

Proof of Proposition 2.6. For γL ∈ (0, γ̄L), the net contributions are:

vL(zL;βL, q) = γLEUL(zL)− qξLrL(zL) + βLEUL(zL),

vH(zH;βL, q) = (1 − γL)EUH(zH)− q(1− ξL)rH(zH)− βLEUL(zL).

Similar arguments to those in the proofs of Propositions 2.3, 2.4 and 2.5 prove (i)

and (ii). �
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Proof of Proposition 3.2. Define U(·) = UH(·), so UL(·) = U(·) + d. Then

vH(zH;β∗H, q∗) =
∑

s∈{1,2}

vHs(zHs;β
∗
H, q∗),

where

vH1(zH1;β
∗
H, q∗) =

(

(1 + β∗H)θH − β∗HθL

)

U(w1 + zH1)− q∗θHzH1 − β∗HθLd,

vH2(zH2;β
∗
H, q∗) =

(

(1 + β∗H)(1− θH)− β∗H(1 − θL)
)

U(w2 + zH2)− q∗(1− θH)zH2

−β∗H(1 − θL)d.

Analogous arguments to those in the proof of Proposition 2.4 show that vH(· ;β∗H, q∗)

is strictly concave and that its maximum is characterized by partial insurance. �

The proof of Proposition 3.3 is analogous to that of proposition 2.5 and is omitted.

Proof of Proposition 3.4. Take an arbitrary endowment sequence {ωk} ⊂ R
2
+

such that limk→∞ ω̄k
H = ∞ and ω̄k

H − ω̄k
L ≤ N for some constant N (with ω̄k

i denoting

the average endowment with effort ei when ω = ωk). Let (αk, βk
H, qk) and (xk

L, xk
H) be

optimal primal and dual solutions for ω = ωk.

Suppose that ||xk
H|| = 1 for all k. Since qk > 0, by condition (3.47), the support

of xk
H becomes unbounded as k increases. Since βk

H > 0, by condition (3.46), there is

a sequence {zk
H} where zk

H = (zk
H1, z

k
H2) such that xk

H(zk
H) > 0 and limk→∞ zk

H2 = ∞.

Write the first-order condition associated to (3.48) for s = 2 as
(

1− θL

1 − θH

−
U ′

H(wk
2 + zk

H2)

U ′
L(wk

2 + zk
H2)

)

βk
H =

U ′
H(wk

2 + zk
H2)

U ′
L(wk

2 + zk
H2)

−
qk

U ′
L(wk

2 + zk
H2)

(A.5)

Since 0 ≤ θH ≤ θL ≤ 1, U ′
H ≤ U ′

L and βk
H > 0, the right-hand side of (A.5) is

positive. The first term in the left-hand side of (A.5) is bounded above by one. But

as limc→∞ U ′
L(c) = 0, for (A.5) to hold, limk→∞ qk = 0.

Let vk
L(qk) and vk

H(βk
H, qk) denote the maximal net contributions with eL and eH

for ω = ωk. By condition (3.48) and equality of the primal and dual optimal values,

αk = vk
H(βk

H, qk) = 〈EUH , xk
H〉. (A.6)

Let c̄k
H denote the certainty equivalent associated to xk

H, so UH(c̄k
H) = 〈EUH , xk

H〉.

Since U ′′
H < 0, then c̄k

H < ω̄k
H . Applying (3.43) for zk

Ls = c̄k
H − wk

s , s = 1, 2, gives

vk
L(qk) ≥ UL(c̄k

H)− qk(c̄k
H − ω̄k

L) > UL(c̄k
H)− qk(ω̄k

H − ω̄k
L). (A.7)

Since limk→∞ qk = 0 and limk→∞(ω̄k
H − ω̄k

L) ≤ M , (A.7) implies that for any ε > 0

there is K such that UL(c̄k
H) − vk

L(qk) ≤ ε for all k ≥ K. Fix ε ≤ d.
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Because U ′′
H < 0 and UL(·)− UH(·) = d, (A.6) implies

αk = 〈EUH , xk
H〉 < UH(c̄k

H) = UL(c̄k
H)− d, (A.8)

and, since ||xk
L|| = 0, by condition (3.48),

αk > vk
L(qk). (A.9)

(A.8) and (A.9) imply that UL(c̄k
H) − vk

L(qk) > d, a contradiction if k ≥ K. We

conclude that ||xk
H|| < 1 for all k ≥ K. �

Proof of Proposition 3.5. Suppose we restrict the allocations to satisfy xL = 0.

Take any endowment sequence {ωk} ⊂ R
2
+ with limk→∞ ω̄k

H = ∞. Let (β̂k
H, q̂k) and x̂k

H

be optimal primal and dual solutions to the restricted planner’s problem for ω = ωk.

The complementary slackness conditions in this case are obtained by letting xL = 0

in (3.46)-(3.48).

Suppose, in contrast to what we want to show, that 〈rH , x̂k
H〉 = 0 for all k. Since

(3.46) holds, there is a sequence {zk
H} where zk

H = (zk
H1, z

k
H2) such that x̂k

H(zk
H) > 0,

limk→∞ zk
H2 = ∞, and (ωH2 + zk

H2− ωH1− zk
H1) ≥ ε1 for some ε1 > 0 and all k. Write

the first-order conditions associated to (3.48) as:
(

θL

θH

−
U ′

H(wk
1 + zk

H1)

U ′
L(wk

1 + zk
H1)

)

β̂k
H =

U ′
H(wk

1 + zk
H1)

U ′
L(wk

1 + zk
H1)

−
q̂k

U ′
L(wk

1 + zk
H1)

, (A.10)

(

1− θL

1− θH

−
U ′

H(wk
2 + zk

H2)

U ′
L(wk

2 + zk
H2)

)

β̂k
H =

U ′
H(wk

2 + zk
H2)

U ′
L(wk

2 + zk
H2)

−
q̂k

U ′
L(wk

2 + zk
H2)

. (A.11)

Since limc→∞
U ′

H
(c)

U ′

L
(c)

= 0, taking limits in (A.11) yields
(

1− θL

1− θH

)

lim
k→∞

β̂k
H = − lim

k→∞

q̂k

U ′
L(wk

2 + zk
H2)

,

which implies that limk→∞ β̂k
H = limk→∞ q̂k = 0.

For sufficiently large k, the right-hand side of (A.11) is positive, so q̂k < U ′
H(wk

2 +

zk
H2). Since U ′′

L < 0 and ωH2 + zk
H2 > ωH1 − zk

H1, (A.10) implies
(

θL

θH

−
U ′

H(wk
1 + zk

H1)

U ′
L(wk

1 + zk
H1)

)

β̂k
H >

U ′
H(wk

1 + zk
H1)

U ′
L(wk

1 + zk
H1)

−
U ′

H(wk
2 + zk

H2)

U ′
L(wk

2 + zk
H2)

. (A.12)

But as Ui is continuously differentiable and (ωH2 + zk
H2 − ωH1 − zk

H1) ≥ ε1, taking

limits and rearranging in (A.12) gives

lim
k→∞

β̂k
H >

(

θL

θH

)−1

lim
k→∞

(

U ′
H(wk

1 + zk
H1)

U ′
L(wk

1 + zk
H1)

−
U ′

H(wk
2 + zk

H2)

U ′
L(wk

2 + zk
H2)

)

≥

(

θL

θH

)−1

ε2,

for some constant ε2 > 0, a contradiction. �
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