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Abstract

We characterize the divergence between informational and economic efficiency in a
rational expectations competitive market with asymmetric information about the
costs of production. We find that prices may contain too much or too little in-
formation with respect to incentive efficient allocations depending on whether the
main role of the price is, respectively, the traditional as index of scarcity or infor-
mational. Only when REE degenerate to Cournot equilibria the market solution
does not show allocative inefficiency. With multidimensional uncertainty we find
that the REE price does not have in general the incentive efficient information mix:
It pays to sacrifice allocative efficiency at the REE to improve productive efficiency.
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1 Introduction

In this paper we perform a welfare analysis of rational expectations equilibria (REE)
in a competitive production economy with asymmetric information taking into ac-
count incentive constraints. We characterize precisely the divergence between in-
formational and economic efficiency. Our paper is not the first to explore such
divergence. Pesendorfer and Swinkels (1998) and Shin (1995) explore the tension
between allocative and informational efficiency in some auction contexts. We pro-
vide here a complete characterization of both allocative and productive efficiency
in a simple economy in which prices convey information about costs.

We take a mechanism design approach and examine the efficiency properties of
REE in the class of Bayesian incentive compatible allocations. More specifically, we
look at REE which are implementable in supply functions. Indeed, REE which are
not implementable (that is, for which there is no game in which the REE emerges
as equilibrium) may be seen as an artificial construct.t

Since the seminal work of Lucas (1972) (and Green (1973)), REE have been used
pervasively in every field in economics. Applications in markets with asymmetric
information are prominent in this respect (see Grossman (1981) for an introduction).
The paucity of work on the welfare properties of REE in asymmetric information
environments is therefore somewhat surprising (with the exception of the work by
Laffont (1985)).2

Grossman (1981) shows that fully revealing REE (FRREE) are (ex post) Pareto
optimal (and ex post, obviously, there is no need to consider incentive constraints

because information has been revealed). Laffont (1985) shows however that FR-

!See Blume and Easley (1990), Palfrey and Srivastava (1986), and Postlewaite and Schmeidler

(1986).
2Some headway in the welfare analysis of competitive equilibria with asymmetric information has

been made by Prescott and Townsend (1984), Gale (1996), and Bisin and Gottardi (1999).



REE need not be incentive efficient in an interim sense because of the well-known
Hirschleifer (1971) effect: REE may reveal too much information and eliminate valu-
able insurance opportunities. However, Laffont provides the following positive result
(and conjectures that the property should be general) in a quasilinear linear-normal
world, in which ex ante and ex post optimality coincide: linear REE are Pareto
optimal in the class of linear Bayesian incentive compatible mechanisms (LBICM)
which face the same communication constraints as the market (that is, that use the
same pieces of aggregate information as the market). This can be considered to
be the best possible case for the market to attain efficiency. We consider in this
paper a quasilinear world which generalizes the case considered by Laffont(1985)
and show that even in the best possible case for the market linear REE are not, in
general, incentive efficient. We characterize precisely why this is so and examine the
potential misalignment of informational and economic (allocative and productive)
efficiency.

The essential ingredients of our model are as follows: we consider a partial equi-
librium model where a continuum of risk neutral firms compete in a homogenous
product market with potentially random demand. Costs of firms are strictly convex
and subject to shocks of type k£ = 1,2. Shocks of type 1 affect all the firms in the
same way while shocks of type 2 affect each firm differently. Furthermore, each type
of shock has a common 6, and an idiosyncratic s, component. Both are correlated
and the latter constitute private information to the firms. Idiosyncratic shocks pro-
vide thus information about the common ones. Firms may have asymmetric costs
ex ante. It is assumed that firms compete in supply schedules. This provides a
natural way to implement REE. In our paper REE will be just Bayesian equilibria
of the supply function game. This is, for example, like in Kyle (1989) but without

strategic interaction because of our continuum assumption.® The market price there-

3Grossman (1981) and Klemperer and Meyer (1989) consider supply function equilibria under



fore potentially reveals information about the common components of costs. For
tractability reasons the specification we use is of the linear-normal variety, yielding
unique linear Bayesian supply function equilibria (LBSFE). Our parametrization is
rich enough to encompass the cases of FRREE, partially revealing (nonnoisy) RE,
noisy REE (all of them implementable as BSFE), as well as displaying a FRREE
which is not implementable.* Our model generalizes, in particular, the quasilinear
model of Laffont (1985) and displays all the relevant welfare tradeofts (within a
quasilinear utility model). It is worth to recall that with quasilinear utility ex post
Pareto optimality implies ex ante Pareto optimality.

The welfare analysis is conducted in the class of mechanisms which are linear
and share the same communication constraints as the market, defining the class
of LBICM. We say that an allocation rule is incentive efficient if it maximizes
expected total surplus in the class of LBICM. Our LBSFE is a member of this class
but except in very particular circumstances is not optimal. The basic reason is an
informational externality: Firms do not take into account that their actions influence
the informational content of the price (about costs) and therefore the decisions
of other firms. An optimal mechanism will take into account the informational
externality with the only constraint of incentive compatibility. The information
externality is given by the expected average impact on total surplus of a change
in production for each firm as a consequence of a change in public information.
The welfare impact is just the average marginal effect on expected profits per firm
because firms are price takers.

Our analysis characterizes and decomposes the informational externality present
at the REE into a total output effect (TTOF) and a distribution of output effect

(DOE). The second is due to ex ante cost asymmetries among firms.

certainty and uncertainty, respectively, but with complete information. See also Wilson (1979).
4See Ausubel (1990) for a partially revealing non-noisy REE.



When TOE = 0 average production is at the first best efficient level. The
total output effect is the only relevant effect if firms face ex ante symmetric cost
functions. In this case and with random demand the responsiveness to private
information at the REE is insufficient or excessive depending on whether the firms
use (in equilibrium) downward or upward sloping supply functions. The fact that
firms may use downward sloping supply functions should not be surprising given
the double nature of prices, allocational and informational, at the REE. The price
is as usual an index of scarcity and guides competitive supply: A larger price will
tend to increase supply. However, a larger price may also contain news that the
common component of costs is high and will therefore tend to depress supply. When
the informational role of the price dominates then supply is downward sloping and
the REE price is not informative enough. It pays to make it more informative by
increasing the weights firms put on private signals which can be done in an incentive
compatible way. On the contrary when the allocational role of the price dominates
then supply is upward sloping and the REE price is too informative. It pays then to
make it less informative by decreasing the weights firms put on private signals. For
the boundary case in which firms do not respond to public information (because
the two roles of price exactly balance each other) the REE is incentive efficient.
This corresponds in fact with a Cournot market, in which firms do not condition
on market price. In this case the Bayesian Cournot equilibrium, with a continuum
of firms, is team optimal. That is, it maximizes expected total surplus under the
constraint that firms use decentralized production strategies (Vives (1988)). We see
that in general informational and allocative efficiency are not aligned.

A second effect is the distribution of output eftect (DOFE). This is due to the ex
ante asymmetry in costs. It is the only relevant effect when demand is not random
because then in our model price equals average marginal cost (with deterministic

demand at the REE the price reveals 8; 4+ 02, which determines average marginal



costs). In this case average output at the REE is first best optimal but the distribu-
tion of output across firms is inefficient in general. An incentive efficient allocation
will typically distort allocative efficiency to improve productive efficiency. At the
REE firms put the same weight on average on signals independent of whether the
shock has the same or a differential impact on costs. In a world without incentive
constraints expected total surplus could be increased at the REE solution by making
firms more (less) responsive to signals about the shock which has a differential (the
same) impact on costs. Whenever the precisions of both types of signals is different
it is possible to increase in an incentive compatible way the relative average weight
to signals of type 2. Only when the precisions of both types of signals are the same
incentive compatibility dictates that the weights should be the same and the REE
is incentive efficient. This is the (knife-edge) case considered by Laffont (1985).

Among the papers that deal with information externalities it is worth pointing
out the work by Stein (1987), Rob (1987, 1991) and Creane(1996). In all these pa-
pers an inefficiency arising from an information externality in a competitive market
is characterized.

The paper is organized at follows. Section 2 describes the model. In Section
3 the competitive rational expectations equilibrium is derived as a linear Bayesian
supply function equilibrium. Section 4 describes the restrictions imposed by the
class of Linear Bayesian Incentive Compatible Mechanisms (LBICM) to which the
REE will be compared. This class has the same communication constraints as the
market. Section 5 analyzes the welfare properties of the REE solution in relation
to the incentive efficient solution. Finally, in section 6 we conclude. The Appendix

gathers some proofs.



2 The Model

A continuum of firms, indexed in the unit interval ¢ € [0, 1], compete in a homoge-
nous product market facing a linear downward sloping inverse demand: P(z) =
1+A—z, where x = fol z'di is the aggregate output (and in our continuum economy
also per capita output).” The demand intercept X is random and normally distrib-
uted with zero mean and finite variance o3, we write A ~ N (0, 0%). Firm i produces

according to a strictly increasing and convex cost function:
C'(z") = [ys) + 01 + o' (55 + 02)]z' + B(z')?/2 (1)

where z'is the output of the firm and 3 > 0 and v > 0. Costs are affected by the
unobservable random parameters 6; and 65, as well as by the signals that the firm
receives about them, si and s, respectively. Signals are of the type st = 65 + &,
where 0 ~ N(py, 05, ) and €}, ~ N(0,02 ), k = 1,2 for all 4. The random variables
01,64,6%, &5, 8{ and 8% are mutually independent for any ¢ and j. This means in
particular that error terms are uncorrelated across firms. The parameter v > 0
determines the sensitivity of firms’ costs to their private signals.

We can think that the random variables 6; and 6, are industry specific cost
parameters and therefore common to all firms while s{ and s} are firm specific com-
ponents of the costs which depends on the private signals received. For example,
high skill labor contracts are, in general, directly negotiable between the employer
and the employees. In contrast, unskilled labor contracts are often negotiated in-
dustry wide by unions. In a given industry skilled and unskilled labor costs are
correlated and therefore, fixing wages for high skill workers of two types (si, si)
provides a signal about the outcome of the industry wide union negotiation about

unskilled labor wages (61, 02).

SWithout loss of generality and to simplify notation we set the slope of demand equal to one.



Firms also differ in their costs by the known constant o' € (0, 2) where fol a'di =
1. Let fol(a" — 1)2di = o2. Firms’ costs are differentially affected by the term
(84 4 03). For example, firms with a lower o might be more efficient in using type
2 labor.

We make the convention that error terms cancel in the aggregate: fol eldi =
fol esdi = 0 (almost surely, a.s. for short). The aggregation of all individual signals
will reveal the underlying uncertainty: fol stdi = fol Ordi + fol eidi=0y, k=1,25

We are interested in the study of rational expectations equilibria under asym-
metric information. A (competitive) rational expectations equilibrium is a price
function p(#,,6) and productions z¢,4 € [0, 1] such that every firm 7 maximizes its
expected profit (E[n" | Q']) conditional on its information Qf = (s¢, s, p), where 7° =
p z'— C(z') , knowing the functional relationship p(6:,62) as well as the underlying
distributions of the random variables.

There are well-known problems with the competitive REE concept (see, for
example, Grossman and Stiglitz (1980), Hellwig (1980), Kyle (1989)). In this paper
we will restrict attention to REE which are the outcome of a well specified game.
That is, that are implementable. The natural way to implement REE is to consider
competition in supply functions (by analogy to Wilson (1979) or Kyle (1989) in
which traders choose demand functions). The strategy of firm 7 is a supply function

contingent on its private information: z'(s!,si, p). The market clearing price is

5More precisely, we will make the convention that the Strong Law of Large Numbers (SLLN) holds
for the continuum economy. Suppose that (q;);ep0,17 is a process of independent random variables
with F [¢;] = 0 for all i and that variances (Varg; ) are uniformly bounded. Define fol q:di = 0
(a.s.). The convention is used taking as given the usual linearity properties of integrals. Note
that the variances of the error terms are indeed uniformly bounded: Varel = agk, k =1, 2. For a
discussion of the issues involved in the convention see, for example, Judd (1985) or Vives (1988) for

an application in a Cournot market.



then determined by the intersection of aggregate supply and demand. A REE is
associated to a Bayesian Nash equilibrium of the game in supply functions. We will
restrict attention to linear Bayesian Supply Function equilibria (LBSFE).

The reason why we have chosen the present model specification, apart from its
tractability, is that the model is parsimonious in displaying a full variety of types of
rational expectations equilibria (REE) as well as highlighting the potential problems
with the concept. More concretely, if demand is non random (o5 = 0 with A = 0)
the model encompasses the following cases: (i) when firms have ex ante symmetric
cost functions (a® = 1 for all ¢) and signals do not affect costs (v = 0) we can
define a fully revealing REE (FRREE) which is not implementable; however, (ii)
under symmetry if signals do affect costs (v > 0) then there is a FRREE which
is implementable as a LBSFE; (iii) with asymmetric cost functions there is a (non
noisy) partially revealing REE which is implementable as a LBSFE if v > 0 (when
05, = 03, and 02 = 02 we have an equivalent of the quasilinear model of Laffont
(1985)) and (iv) there is no linear REE if v = 0. The following table summarizes

the cases:

o2 =0 v=0 v >0
a'=1V¢ | FRREE (not implementable) | FRREE

a' € (0,2) | non-existence of linear REE | partially revealing REE

Table 1: REE cases with non random demand

If demand is random (0% > 0) then there is a noisy REE which is implementable
as a LBSFE for any v > 0. The results are presented in the next section.

The timing will be the following: At t = 0 random variables 6;, 8> and A are
drawn but not observed. At t = 1 firms observe their own private signals s¢ and s}
and submit supply functions. Finally, the market clears and pay-offs are collected

at t = 2.



3 The Rational Expectations Equilibrium

In this section we characterize the Linear Bayesian Equilibria of the game in which
firms use supply functions contingent on their private information. That is, we re-
strict attention to equilibria in which strategies are linear in the information firms
have. The strategy of firm ¢ is a supply function contingent on its private informa-
tion: z'(s!, s4, p). The market clearing price is then determined by the intersection
of aggregate supply and demand.”

Firm ¢ solves the problem max,: E[r’ | 9], where n* = p z'— C(z') and Q' =
(si,s%,p) . In particular, firms condition on their private signals s{ and s} which
in turn implies that the market clearing price will be a function of the aggregation
of private signals or equivalently, according to our convention on the average error
terms of the signals, of 8, and 6,. Since the distribution of random variables and
the underlying model are common knowledge, firms can infer how aggregate private
information enters the pricing function and use this information in the estimation
of the underlying cost uncertainty.

In order to characterize the (linear) REE we conjecture that firms use strategies
of the following form: z' = ®(p) — als} — als}, where ®(p) is linear. Aggregate
output, according to our convention on the average error terms of the signals, is
then given by z = fol 2dj = ®(p) — a6, — az0> where a;, = fol aidi, k= 1,2.% Using
the inverse demand function p = 1 + A — z it is then easy to see that the random
variable z = XA + a10; + a2f; is informationally equivalent to the price. Note that

2 (and the price) will provide in general a noisy signal of the unknown parameters

"We can assume that the market shuts down if there is no market clearing price and that if there

are many the one that maximizes volume is chosen.
8To apply the convention requires that the coefficients a? and a} be uniformly bounded in i. This

is the case in equilibrium. We will drop the supersript of a variable or parameter when we average

it over the population of firms: y = fol y'di, for example.
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f; and 65 because X is random. We can write the information available to firm ¢ as
O = (s¢, s, z). Let us posit strategies of the form z* = b'—a!si —alsi+c'z. Aggregate
output and price are then given by x = b—a16; —asf2+czand p= (1—b)+(1—c¢)z,
respectively (where b= [b' and c= [¢') .

The optimal (interior) production of firm ¢ is determined by the first order
condition (FOC) 0E[n" | Q]/8z' = p— E[MC*(z") | '] = 0.1 The supply function
for firm 7 is given by: X'(si, s}, p) = 8 1 (p— (st + a'sy) — E[f; + a0, | ©]). Using
properties of the normal distribution one can calculate conditional expectations and

solve for the equilibrium. The proposition states the result. In the analysis that

2

2)~! denote the precision

follows we work mostly with precisions and let 7, = (¢
of the normal random variable y. To ease notation we set the means of the cost
parameters equal to zero: p; = p, = 0.!'! We consider first the case o3 > 0 and then

the case 02 =0 .

Proposition 1 Let 0% > 0 , then there is a unique Linear Bayesian Supply Func-
tion Equilibrium (LBSFE). Firm 1 uses the following strategy:
' =b —als) —absh+c'z
where:
ai =~/8+ (7’51 (Toy + Tey) + Traz(az — a"al)}) /BA (2)

ay = a'y/B+ (Te, [0 (To, + T2y) + Trar(@'ar — a2)]) /BA (3)

In equilibrium we will have that ¢ < 1.
The marginal costs for firm ¢ are given by MC? = [fysu + 01 + o (ys0; + 92)] + Bx*. The opti-

mization problem is strictly concave given strict convexity of the cost function.
H'We will not worry here about outputs (and prices) becoming negative because of our normality

assumption. The probability of occurrence of these events can be controlled by an appropriate
choice of parameters. Alternatively, we could work with pairs of prior and likelihoods which admit a
bounded support and maintain the crucial property of linear conditional expectations which yields

a tractable model (see Vives (1988)).
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' =c+ecyla —1) (4)
1

T B+1

A= (T91 + T€1)(T92 + T52) + TA[(a1)2(T92 + T€2) + (a2)2(T91 T Tey )}

bi

C_/Ci— 1 mlai(re, + 7,) + a2(7, + 74)]
B+1 AB+1)
_ Taa2(Te, + 7¢y)

BA

Cy =
and a1 and as are the unique solution to the cubic equations k,h = 1,2,k # h:
= [ al= /8= (ral(ra, +72)+ Taanan — ax))) /95
Proof. See Appendix

Corollary 2 In equilibrium,

a1>1,a2>1and0<1

G G

Furthermore, a; % az if and only if (12,/Te,) % (Tey/Tos) -

Proof. Taking the difference a; —as in the equations that determine the equilibrium
values it follows that a; — as = 0 if and only if 7.,7¢, = T¢,7-,. Let now 7., (79, +
Tey) = Tey(To, + T2, ). It follows that a; > as from which as > /8 and a fortiori
ar > /B It 7., (1o, + Toy) < Tey(To, + 72, ) we get that as — a; > 0. It is immediate
thatc< 1.1

Production strategies for the firms are asymmetric due to differences in costs
and therefore, coefficients a!, a} and ¢ depend on the cost parameter a’. As can be
seen from expressions (2), (3) and (4) firms with costs with higher sensitivity to 05
(higher values of ') tend to put a higher weight on signal s} and lower weights on

st and z.
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The individual weights a¢ and a} on private signals are the sum of two compo-
nents. The first component (v/8 and a'~/3, respectively) comes from the fact that
costs are signal-sensitive. The second component are the signal to noise ratios in
the estimation of #; and #; with information O = (s¢, s, z), respectively. As usual
in REE models the price (p = (1—b)+(1—c¢)z) serves a dual role as index of scarcity
and as conveyor of information. Indeed, a high price has a direct effect to increase
the competitive supply of a firm but also conveys news that costs are high. This can

be seen clearly in the expression for ¢, the average response to public information z.

The direct effect is ﬁ while the information effect is — 2217 +ZE(2ﬁ)if)2 To1t7e ) The
parameter ¢ can be positive or negative depending on which effect dominates. As
7 ranges from 0 to 0o, ¢ decreases from ﬁlﬁ to ﬁ(l — %) The less noise in demand
the larger the information component (in absolute value) and c is reduced.!? When
the price contains no information about costs (7, = 0) there is no information effect.
When the public information is not very noisy (7, is large enough) and costs are
not very sensitive to private signals in relation to the slope of marginal costs (v <
03), the information effect dominates and ¢ < 0. Then the aggregate supply is de-
creasing in the price. * In the particular case where the scarcity and informational
effects balance, firms set a zero weight (¢! = 0) on public information. In this case

firms do not condition on the price and the model reduces to the Cournot model

where firms compete in quantities. However, here not reacting to the price (public

2Tt is easy to see also that the less noise in demand the more firms rely on public information
and the less on private signals to learn about costs. For example, if a1 = as = a, then a decreases

from ~v/3 + ﬁ to /0 as Ty ranges from 0 to co.
13At the individual firm level the slope of the supply function is governed by ¢! = ¢ 4 co(a’ — 1),

where ¢ < 0 is the signal to noise ratio assigned to public information z in the estimation of 85
with information . Since firms are asymmetrically affected by the unknown parameter 05 , they
adjust the average response ¢ by ca(a’ — 1) to account for their cost specificity. Even when ¢ > 0

firms with high sensitivity to 8, (with o’ high) may set ¢! < 0.
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information) is optimal when supply functions are allowed.

Firms take public information z as given and use it to form probabilistic beliefs
about the underlying uncertain cost parameters #, and #,. This in turn determines
coefficients a!, a) and ¢’ for private and public information, respectively. At the
same time, the informativeness of public information 2 depends on the (average)
coefficients a1 and ay. In the REE firms behave as information takers and thus from
the viewpoint of an individual firm public information is perceived as exogenous.
This lies at the root of the informational externality present at the REE. Firms do
not take into account their impact on public information and therefore on other

firms.

Three particular cases deserve attention. The first is when signals are perfectly
informative (7., = 7., = 00) and we are back to a full-information competitive
equilibrium. As we know this is Pareto optimal. We then have that a1 = ay =
(1+7v)/8 and ¢ = 1/(1 + 3). The second is when signals are uninformative about
the common cost parameters ¢, and 0, (7., = 7., = 0) but still firms rely on them

because they affect costs directly (v > 0). Then the LBSFE reduces to the following:

a,i = ’y//@a aé = Oél'Y/ﬁ, Ci = C_CQ(O/— 1)7 Cy = _7—)\;£91 9 A= TosTo, +7—)\a2(7—62+7—91)
with average values a1 = ay; =a=~v/8, and c = ﬁ — %. In both cases no

informational externality arises because the weights assigned to private signals do
not depend on the informativeness of public information.'* The third case is when

demand is not noisy (6% = 0 or 75 = 00 ):

Proposition 3 Let 02 = 0. Then if v = 0 there is no LBSFE. If v > 0 the (unique)

YFor 7., = 7., = oo firms are perfectly informed about random costs and public information does
not add additional information. For 7., = 7., = 0, firms condition on private signals only because
costs are signal sensitive. No weight is given to private information in the estimation of random

costs.
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LBSFE is given by:

. 7o, (1 — af)
al = + ! 5
! ’7/6 6(7—91 T Tey T Toy T 7—62) ( )
, , Te,(al — 1)
ab = a' + 2 6
2 ’7/6 6(7—91 T Tey T Toy T 7—62) ( )
c=c+cya —1) (7)
, 1
b= ——
8+1
c— 1 ’7_6 Cp = — (7—91+T€1)
ﬁ +1 Y ’ ’7(7—91 T Tey T Toy T 7—62)

and ay = ax =v/0 .

Proof. When v > 0 the result follows directly from Proposition 1 letting 7, tend to
00. When v = 0, the equations determining a linear equilibrium are inconsistent. B

Recall that the costs of firm ¢ are: C'(x') = [y(s! +a'sh)+ 61+ a'bs]x + B(z%)? /2.
When demand is not noisy and a1 = ay = v/8 > 0, z = %(01 +63) , and the
price reveals 61+ 605. This means that price equals average marginal cost, p = MC
(: fol M C”'dz’) and therefore average production is at its full information first best
level. Then if o = 1 public information together with s} + s} is fully revealing for
the costs of firm 4. This is an instance of a FRREE which is implementable. The
equilibrium will be ex post Pareto optimal. If o’ # 1 then Q' = (s, 5%, 2) is partially
revealing for the costs of firm 4. This provides an instance of non noisy partially
revealing REE.

When firms have ex ante symmetric cost functions (o' = 1 for all 7 ) and signals
do not affect costs (v = 0), only 8; + 0, matters and we can define a fully revealing
REE (FRREE). Indeed, this is just the competitive equilibrium of a full information
market in which the firms know 6; + 6, (Grossman (1981)). This is given by p =
(B + (0, + 05))/(1 + 3) with individual supply z* = 3 '(p — (6, + 62)). However,

15



this REE is not implementable. That is, there is no game which has as equilibrium
the REE. Indeed, for the price to be fully revealing it is needed that the supply of a
firm be sensitive to the signals but then there is no reason for firms to rely on their
signals!’® In terms of our model the nonexistence of a LBSFE when signals do not
affect costs directly (v = 0) is easy to understand. In this case equilibrium would
call for a; = as = 0 but then prices can not reveal any information. Furthermore,
if prices do not reveal any information then firms have an incentive to rely on their
signals and this makes the price informative.

It is worth summarizing the cases in which there is no information externality:
When public information is pure noise (7, = 0), when signals are uninformative
(Te, = Te, = 0), in the full information case (7., = 7., = 00), and when the
equilibrium is fully revealing (75 = 0o, v > 0 and o' = 1 for all ¢). In the last two
cases there is no welfare loss at the LBSFE with respect to the first best because the
market outcome replicates the full information competitive equilibrium. Otherwise

there will be a welfare loss.

4 Linear Bayesian Incentive Compatible Mechanisms

Our objective is to analyze the welfare properties of REE (our LBSFE). We will do
so taking into account incentive constraints in the market with private information
as in Holmstrom and Myerson (1983) and Laffont (1985). We will study the perfor-
mance of the REE in the class of linear incentive compatible Bayesian mechanisms

(LICBM). This is the class of mechanisms which are:

1. linear in private and public information,

15 Another way to put it is to realize that at the described FRREE the price is not measurable in
the supplies of the firms. Anderson and Sonnenschein (1982) insist on defining REE requiring that

prices be measurable in the demands of agents.
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2. incentive compatible,
3. restricted to have the same communication constraints as the market, and

4. implementable in Bayesian Nash equilibrium.

We will say that an allocation is incentive efficient if it maximizes expected total
surplus (ETS) in the class of LBICM.'

A LBICM has the following properties parallel to the REE. First, it is linear in
private and public information as the linear REE. Second, since the mechanism has
to infer private signals from firms it has to take incentive compatibility constraints
into account. Third, the mechanism is bound to use the same communication
constraints as in the competitive case. Finally, the game induced by the mechanism
has a Bayesian Nash equilibrium which implements the desired allocation.

To compare the performance of REE in this class is to consider the best possible
case for the market. Indeed, Laffont (1985) shows that incentive efficiency breaks
down as soon as non-linear mechanisms are considered. Furthermore, if the mech-
anisms considered were not bound by the same communication constraints as the
market then it would be very easy to improve upon it. For example, by pooling
the private information of firms one could recover the true values of 8, and 8, and,
therefore, replicate the full information outcome.

According to the revelation principle we can restrict attention to direct mecha-
nisms in which the strategy space of a firm is just his type space (the space of private
signals). Firms submit their signals to the center and then the center derives the
statistic z = (A+ a10; + a202), which is constructed in the same way as in the REE.
Thus the mechanism is restricted to use the same communication constraints as

the market. The center assigns productions to the firms according to the rules:

18Tn our world of quasilinear utility ex post efficiency implies ex ante efficiency.
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i =b" —alst — absy + c'z. 17

The aggregation over individual weights a! and a), determines the informative-
ness of statistic z about ; and #;. By choosing individual weights the center has
the possibility to influence information revelation through z.

Suppose the center assigns production z¢ = b — a!s} — absh + ¢'Z, where Z =
A+ [ a{Sidi+ [ a455di), depending on announcements s} and 8} of the firms. Firms
submit signals 8} and 5% (not necessarily the true ones) that maximize expected prof-
its conditional on the true signals observed (s}, s}): maxg 5 F [pz' — C(2') | s, s5),
where p = (1 — b) + (1 — ¢)z. This leads to the following incentive compatibility
constraints (ICC):

Proposition 4 At a the LBICM truth telling requires that for ' = b'—als! —absh+

cz!

El(p— MC'(z") | s1,85] =0 Vs, Vs5, Vi (8)

which given normality implies

El(p—MC'(z")] = 0 Vi 9)
COV(p— MC(z"),s!] = 0 Vi (10)
COV(p— MC(z")),s)] = 0 Vi (11)

Proof. See Appendix

The Proposition shows that to achieve incentive compatibility it is necessary to
eliminate the covariation between signals and the margin (p — MC%(z*)) (10 and
11). Observe that'®

_ COVI(p— MC'(z")),s1]

El(p— MC'(z")) | s}) Fare (12)

1"We will use the same notation for the coefficients in the production rules of the LBICM and in

the REE. No confusion should arise from this.
1%Recall that F[si] = 0 by assumption.
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If COV|[(p— MCY),s{] # 0, then, given signal si, expected price is not equal to
expected marginal cost and firm ¢ would gain by announcing a different signal
! # st and inducing E[(p — MC%(z")) | s4] = 0. The following corollary derives the

implications for the coefficients of linear production rules at a LBICM.

Corollary 5 Let t, = %, k=1,2. At a LBICM the following ICC on the

(Te, +70,

coefficients of the production rules have to hold:

a’i = filc,o)=a(1+t(c"—¢)

@y = fla'd0) = ara + 687 ((1—cl+ B —1)+ 8 o)
1

(1+5)

and

v+t
tr(1—c(1+8)) + 8]

ar = hi(c) = k=12

Proof. See Appendix.

An LBICM puts restrictions on three coefficients while there remains one free
parameter (c!). Note that the level of noise in demand does not affect the ICC.
The weights assigned to private information depend on both ¢ and the average
value c. To keep incentives the center needs to impose production rules such as to
eliminate the covariation between signals and (p — MC*) which in turn gives the
restrictions in a! and a). For example, the requirement COV[(p — MC%),si] = 0
vields a¢ = f1(c%,c).l? For a given c, a! is increasing in c¢'. A higher weight ¢! given
to z must be compensated with a higher a!, otherwise the firm would misreport.
The reason is that a higher ¢! means that less weight is given to public information

in the estimation of costs (because the coefficient for public information enters by

Y And similarily COV[(p — MC?), s4] = 0 defines coefficient a} = fo(al, ¢, ¢). In the following we

limit the analysis to coefficient a’. Qualitatively it is the same for aj.
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convention in the production schedule recommended by the mechanism as + ¢
while for signal si enters as — a! ) and this must be compensated by a higher
weight on private signals. This holds in the aggregate also and a; (as well as as)
are increasing in c¢. It is worth to remark that incentive compatibility requires that
a1 = as whenever signals of the two types are of the same precision: t; =t

It should be clear that the REE is incentive compatible. Indeed, incentive com-
patibility requires that the FOC at the REE E {(p — MC(z")) | 5%, s%, p} = 0, hold
on average given the private signals of the firms: E[E {(p— MC%(z")) | s}, s, p} |
si,st] = 0. Another way to put it is to realize that maximizing expected profits
subject to ICC yields the REE allocation. The following corollary states the result,

which will be useful later.

Corollary 6 The solution to

max [pz' — C(z")]
st. 1 z'=0b"—als —absh +c'z,

2 = (A4 a101 + ax0s)

ai = fl(Ci,C), a; = fQ(OZivCivC)v and bl =

(1+0)
results in the following FOC:

OFE[r]
act

oy 20 )| - £l ne] —0 or

(13)

=K [(p—MCi) <—

which determines coefficient ¢', and therefore at,ab, as in the REE.

Indeed, from ICC we know that coefficients a} and a’, are chosen so that E [(p — MC*)s'] =
E[(p— MC%s.] = 0. Then the optimality condition in the REE reduces to E [(p — MC")z] =
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0 which determines the remaining coefficient ¢*.?° Allocations at a LBICM make ef-
ficient private use of the signals (yielding E [(p — MC")s{] = E [(p — MC%s}] = 0).
To this the REE adds the privately efficient use of public information (which yields
El(p—MC")z]=0).

5 Welfare Analysis

An incentive efficient allocation maximizes expected total surplus in the class of
LBICM. The characterization of incentive efficient allocations boils down to solving
an optimal control problem with integral objective.

Incentive compatibility constraints put restrictions on a}, a) and b* as a function
of coefficient ¢’ and its average ¢ = fol c'di (see Corollary 5 ). Coefficient ¢ and
its average ¢ determine production z! for firm ¢, which in turn determines total
production z = [ z'di and total costs of production through the aggregation over
firms. An incentive efficient allocation will maximize expected total surplus using

as control ¢', 7 € (0,1):%!

z 1
max F [/ P(q)dq—/ C’i(xi)di] (14)
{c} 0 0
1
st. = b —alst —absh+c'z, = / r'di (15)
0
2 = (A4 a0y + axfs),and (16)

ali = fl (Civ C)
1CC: aé = fQ(OZiv Civ C)

i 1
b= (1+8)"

The problem can be reformulated in the following way:

< 0.

20 : : 82 B[]
The FOC is sufficient because [ 5y’ ] a§£7i1:0
21The reader should not get confused with notation: while ¢* and ¢ refer to coefficients determining

production in the mechanism, capital C refers to costs.
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max [ ¢ (@', ¢, c) di (17)
{¢} Jo

[0) (@', ¢, c) = G(c)—-F (@', ¢, c) with
G(c) = E {/x P(q)dq} =FE{1+AX—z/2)x} and F (z’,ci,c) = EC'(z"), where

1
r = (1 I ﬁ) - hl(C)Hl - h2(C)t92 +cz,
(N o 7 i i q i i d
t 1+ 3) fildsc)sy — falal, ¢, e)sp + €'z, an

z = (A4 hi(c)01 + ha(c)02).

The function G(c) gives the expected gross surplus resulting from total production
r = fol z'di and the function F (i, ¢!, ¢) describes the expected cost of production for
firm ¢ and has to be integrated over all firms ¢ to obtain the total expected costs of

production. The following proposition characterizes incentive efficient allocations.

Proposition 7 Incentive efficient allocations have to fulfill the following system of

First Order Necessary Conditions (FONC):

1 ) J ) i
E p% _ / MC? ai dj — MC" 8:}5' =0 for allx. (18)
dc 0 dc act

Proof. According to Lemma 14 in the Appendix we obtain the following FONC

from the solution to (17):

= QOforall ¢ or

96 (i.c'0) / 2. .0) .
0

oct dc

1 1 Y
_M+/ @)= 8D o forall i

oct 0 dc
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and the result follows from:

OF(i,c',c) E{@C’(:}C")}

act act

o (3]

aF(]v ij C) _ 80(:}5]) _ F (] %
Thet s ()
G'(c) = pg—"z.-

The FONC just say that the effect on the costs of firm ¢ of a marginal change
in ¢ must be equated for all the firms and must equal the effect on net surplus
(gross surplus minus costs) of changing the average parameter ¢. The FONC in
(18) can be expressed as the sum of two parts: a term as in the FONC of the REE
and an informational externality term IE. A necessary condition for the REE to
be incentive efficient is that the informational externality be zero when evaluated

at the REE.

Proposition 8 The FONC for an incentive efficient allocation can be decomposed

oz (3o we ()
sl (%) [ 0w ()

= EB{(p MC”) S} +E {/1[@— MC’j)cjgz}dj} =0 foralli (19)

7REE g
=IF

as follows:

Proof. For the first equality we make use of the decomposition of the derivatives
dai/0c = fol (0a'/dc+ dal/dc') di and day/dc = fol (8a’/dc+ dab/dct) di and plug

those expressions into the derivatives dz‘/9c¢' and dz/dc and rearrange to obtain

E [pg—’c”] = [p 5er T f ! aw ] . (See Lemma 13 in the Appendix for a complete
proof.) For the second equality, note that the first part is the FOC of the REE
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as shown in Corollary 6. For the second part we have E [( — MCY) (‘9’”])] =
E [( — MCY) ( duigl _ 0) 4 C,az)] . We obtain E [( — MCY) ("’“1 {)]

= F [(p— MCY) (aaaésé)] = 0 because from ICC: FE [(p— MCJ)SI] = 0 and
E [(p — MC’j)sg] = 0 for all 5. This leads to the result. B

The first order necessary condition has two parts. First, changing weight ¢’ re-
sultsin a marginal effect on expected profits of firm ¢ given by: F [(p — MCY (g—ﬁ)] =
E(p— MC% z]. This part is the same as when maximizing expected profits with
respect to ¢! and coincides therefore, with the optimality condition of the REE,
El(p— MC%z] =0, as shown in Corollary 6. This condition is just marginal cost
pricing in expected terms in the competitive environment with private information.
The incentive efficient solution also takes into account the effect of changes in the
average value ¢ = [ ¢’ (and hence a; and a, through ICC), which affects production
z! of firms. The marginal impact of a change in ¢ on expected total surplusis given
by IE=F [fol (p— MCY) (axj) dj|. An increase in ¢ changes production of firm j
by Whlch has social value of E |(p — MCY) (a’”J )] . Since firms are price takers,
the social value of that change in production is just the marginal impact on expected
profits per firm, which depends on the covariation of Wlth (p— MCY). Averaging
this effect over all firms gives the I E. Of course, this effect is not taken into account
at the REE, because there firms take the informativeness of public information as
given.

The FONC in (19) hold for all firms and when taking the average of the equation
we can derive an expression for the optimal weight ¢ assigned to public information

for firm ¢ as shown in the following corollary.
Corollary 9 The optimal individual weight ¢ on public information is given by:

' =c+cya —1) (20)
TAG2(Te, + To,)

3A

Cyp = —
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A= [(Tﬁ’l + T€1) (TGQ + T52) + T [(a1)2(T92 + TSQ) + (a2)2 (T91 + Tél)]]

and therefore, individual coefficients a} and a’y, can be written as

a’i =a+ ﬁCQ (Oéi - 1) (21>
ah = alay + 22 ((1 - (1 + 8) + Be) (o' =1) (22)

ﬁ (7—92 + 7—62)

Proof. See Appendiz.

Observe that the functional form for the optimal ¢! coincides with the optimal ¢t
in (4) for the LBSFE. However, the optimal value ¢! will be different from its REE
value, depending on the optimal average coefficient ¢ which can be found by averag-
ing (19) over firms. This will determine parameter ¢ and from ICC also parameters
a; and ay and therefore, average production z(c). Once ¢ is determined we can
go back to (20), (21) and (22) to obtain individual coefficients ¢, a! and a% which
determine individual productions z¢. It is clear then that average production is at
the incentive efficient level if and only if individual productions are also incentive
efficient (for almost all firms).

The externality term IE = E{ [[(p— MCY)c’ 2]} vanishes in three cases: (1)
with marginal cost pricing (p = MCY) ; (2) for 9z/0c = 0, that is when coefficient
¢ does not affect public information z, and (3) for ¢/ = 0, that is when firms do not
condition on public information.

(1) Marginal cost pricing (p = MCY) prevails if private signals are perfectly
informative (7., = 7., = 00) about cost uncertainty (the 6 parameters). In this case
firms do not rely on public information in the estimation of costs (since they are
already fully informed) and consequently assign first best weights to private signals
(al = (y+1)/83; al = o/ (v+ 1)/3). Then, production z# will be such that p = MC7

under certainty because marginal costs are not random.
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(2) The coefficient ¢ does not affect public information z if private signals are
pure noise . Indeed, for 7., = 7., = 0 we have from ICC that da;/0c = Jaz/0c =0
and therefore also 0z/0c = 0. The reason is that private signals are only used to
account for the signal-sensitivity of costs and not for estimation purposes since
signal precisions are zero. As a consequence, the REE and the incentive efficient
solutions coincide and optimal weights are given by a1 = a; = /3.

(3) If firms’ production z7 does not depend on public information (¢/ = 0), then
making z more or less revealing can not affect production and therefore, expected
profits of firms. In fact, for ¢/ = 0 for all j the model reduces to a Cournot Model
with private information. According to the corollary this case arises when ¢ = 0
and o/ =1 for all j . 2

From the above corollary we see immediately that the informational externality
term involves two sources of misallocation. First, a misallocation of total pro-
duction, or Total Output Effect (TTOF) and second, a misallocation of individual
production across firms, or Distribution of Output Effect (DOFE). The DOFE only

appears when cost functions are ex ante asymmetric.

Proposition 10 Let MC = [ MC7dj. Then

0 1 ;) ,
IE = :E [(p — MO) (a—i)] f+\E [/0 (p— MCY) <a—i> (af — 1)ch3}/ (23)
TOF DOE

Proof. Follows directly from equation (19) using ¢! =c+ c2(a —1). H
We will characterize the two effects separately and derive solutions for two par-

2 = 0) and second, when

ticular cases: first, when costs are ex ante symmetric (o

2This is consistent with Vives (1988) where it is shown that a Cournot market with private
information and a continuum of firms would solve a team problem with expected total surplus as its
objective function. In our terminology, the competitive Cournot market is restricted efficient in the

class of LBICM.
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demand is not random (03 = 0). The former case corresponds to a situation where

DOFE = 0 while the latter one corresponds to TOFE = 0.

5.1 Total Output Effect

The following proposition derives the sign of the information externality for the

TOFE when evaluated at the REE solution:

Proposition 11 If demand is noisy, o5 > 0, then sign TOE = sign(—ciFF), If
o2 =0, then TOE = 0.

Proof. We have that TOE = FE [(p — MC) (%)] c=F [(p - MC) (%01 + %02)] C.
Derivatives da;/9dc and Oay/dc are strictly positive from ICC. Also from ICC we
obtain the following restrictions: E [(p — MC%si] = E [(p — MC%s}] = 0, which can
be used to show that: E[(p— MC)8r] = [E[(p— MC?)8,]dj = [ E [MC’jai] dj =
[(’y — ﬁak)agk] < 0 because using the equilibrium characterization in Corollary 2 we

have that af”® > I (for 0% > 0). In summary, if 0% > 0 we find therefore:

TOE= |E[(p— MC)b:] aa—‘? +E(p— MC)8] aa—‘f e (24)

If 03 = 0, then we know that at the REE, p = MC because E [(p— MC)f;] =
[E [MC’jaij] = 0 since afF = 7 (fork=1,2) and TOE=0. W

The conclusion is that when costs are ex ante symmetric incentive efficiency
requires to increase (decrease) ¢ when c¢*F¥ is negative (positive).?® For c*¥F < 0 the
informational role of the price dominates and the price reveals too little information.

In this case an increase in ¢ means that more weight should be given to private signals

ZWith symmetric costs it is easy to check that the FONC for an incentive efficient allocation are

also sufficient.
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(a1 and a9 increase) and public information becomes therefore more revealing. On
the contrary, when the price is mainly an index of scarcity, ¢*#* > 0, then the
price reveals too much information and ¢ should be reduced. Only in the knife-edge

(Cournot) case where ¥ = 0 the REE is incentive efficient.

Example 1 Consider the classical case in which signals do not affect costs, v =
0, demand is noisy, o2 > 0, costs are symmetric, o' = 1 for all © and there is
only one uncertain cost parameter, Tg, = 0o (assume 03 = 0). Then al'P¥ =
Te,/ (B(Te, + Tp)) where T, = Tg, + Tra? is the precision (informativeness) of the
price. The parameter a; is the unique solution to the cubic equation: (BT a; +
B(Te, +To,) a1 — T, = 0. The optimal weight ay is the unique positive solution

to the fourth degree equation: B7ia;{E1}+ B(T¢ + 7o) a1 — T, = 0 with By =
{alﬁ(751+791)+751

’7’51

} . Only when Ey =1 or equivalently a1 = 7.,/ (B(Te, +To,) + T<,)

the REFE is incentive efficient. From ICC the weight ¢ on public information is given

by c = al(ﬁ(T?Tfig;:l)fT“, which equals 0 for E; = 1. When c*P¥ > 0, ¢ should
€1

be reduced and when cftFF

< 0 it should be increased. Qualitatively the same result
holds for the team solution where ETS is maximized under the only constraint that

firms use decentralized production strategies, that is
mbaXE[TS} = mbaXE 1+A—x/2)x — /C’(:Jci)di}

subject to x' = b — as’ + cz, with » = X\ + af. Taking derivatives and evaluating the

expressions at the solution to the REE we find the following distortion TE (Team

24Negative solutions can be ruled out easily.
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Externality):®
TE=cE[(p— MC")6:]
<0 (by ICC of REE)
Therefore, the solutions coincide for c®*PY = 0 (as in the LBICM). For c*!¥ < 0

the distortion is positive and ¢ should be increased (as in the LBICM) while the

contrary is true for c*P¥ = 0. The ICC do not affect the direction of change for c
only the magnitude.
5.2 Distribution of Output Effect

Proposition 12 FEvaluating DOFE at the REE yields:

! , , ~ [ Oai Oay
DOE = E [/0 ((p— MC¥)ex(0? — 1)dj) (a—acel + aiceg”

—2)02Ty | Oa Tey + To, da
_ (Z@)%Ts 22 4 3_02 <(a1)2 ot ) - & )> - a—clalag (25)
S—_—— | A N —

v~

Proof. First, we substitute for 9z/9c = (da,/dc) 0, + (Bas/dc) B, into DOE from
(23). Taking expectations and integrating over firms gives the result. Signs are
obtained when evaluating the expression at optimal REE values (a; > 0, as > 0)

(see Appendix for a complete proof). B

% Derivatives are given by 22 = —s' +cf, 2Z = 1 and % = z which yields the following (sufficient)
FOC’s:
PP Bl MOY (s e)] 0
OE[TS .
e = Bl Mo
OETS] o
50 = E[(prC’)z]fO
Evaluating the team solution at the REE where E[(p— MC')] = E[(p— MC)z2] =

E[(p— MC?") (—s")] =0, we get the team externality.
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The DOF is the sum of two parts: first, a positive effect on welfare of increasing c

day
dc

making public information more revealing ( by %2) about 6, and second, a negative
effect of making public information more revealing (by % ) about ;. The sign of
DOE depends on which of the two effects dominates. It is clear that changes in
opposite direction for a; and as would be optimal: A welfare improvement could
be achieved by decreasing revelation of 8, (through a decrease in a;) and increasing
revelation of #; (through an increase in as). Starting from the REE it pays to
increase the average responsiveness to the signal about the shock 6, which has an
asymmetric impact on the costs of firms and to decrease it to the signal about the
shock 6,. However, due to the constraints imposed by the LBICM public information
can only become more (or less) revealing about #; and 8, jointly and changes in

opposite direction are not possible.

When noise in demand vanishes (0% = 0) we can transform and evaluate the

DOEFE at the solution to the REE as follows :

1 . . i . 0

DOE = / (o —1)QE [(p— MC'J)01] 3LCI+E [(p— MC’J)HQ] aij dj
0 N -~ “ L. -~ o
—(ad—1)/A =(1-ad)/A
= 20 [0(a2 — o) and sign LGQ —a) = S1gN (TeyTo, — TeyTo,)
A ¢ e g2 01 1102/
where A = (7o, +Te,) + (To, + Tey).

If demand is not noisy then X is a constant, al**¥ = al'f¥ = ~/3 and public

information becomes 2z = a(6; + 0;). At the REE, z is now fully revealing with
respect to average production x = b — a(0; + 02) + cz. Then, E[(p — MC)8,] =0
and F [(p— MC)0;] = 0, the total output effect vanishes (TOF = 0) and first best
average production is obtained. Furthermore, whenever 02 > 0 it can be shown that

the incentive efficient solution and the REE coincide if and only if 7.,79, — 7,79, = 0
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This is precisely the case considered by Laffont (1985).2° The result is that if
TesTo, — TeyTo, # 0 then as — a; should be increased. If 7.,79, — 7,70, > (<) 0,
as — a; should be increased by increasing (decreasing) ¢ from the REE value. Thus
it pays to distort allocative efficiency at the REE to improve productive efficiency.

The REE always puts the same weight on the two types of signals, al*¥F = g,
when 0?\ = 0 because say that as > a1, then the public statistic 2 = (a101 + a202)
is more precise about #; than about #; and, on average, firms would rely more on
signal s{ than s. However, this would imply a; > as, a contradiction. This is only
optimal when the two types of signals are of the same precision, 7.,/70, = T, /To,,
because then incentive compatibility requires that a; = a;. We have seen that in
principle it always pays to increase as — a; to increase the relative revelation of 5.

This can be achieved in an incentive compatible way by increasing (decreasing) c

from the REE value when (7.,/7¢,) — (72, /7T6,) > (<) 0.

6 Conclusion

We have studied the allocative and productive efficiency properties of REE in a
simple production economy with asymmetric information about costs. We have in-
sisted in that REE be implementable in Bayesian equilibrium and have considered
competition in supply schedules. Our model is rich enough to encompass all rele-
vant cases of REE: fully or partially revealing, with noise (in demand) or without.
We have looked at efficiency in the class of linear Bayesian incentive compatible
mechanisms which have the same communication constraints as the market. This
is the most favorable situation for the efficiency of market allocations. Here are the

results.

ZWhen 7.,79, — Te, To, = 0 Laffont (1985) noted that increasing as— a; was welfare improving

but that incentive compatibility required that as = a;.
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The first result is that, except in very particular cases, REE are not incentive
efficient. The source of the inefficiency is an informational externality. Firms are
competitive (price-takers) but when responding to their private signals they do not
take into account the fact that they modify the information content of the public
signal (the market price). Furthermore, at the REE prices may contain too little
or too much information (and this has nothing to do with the Hirshleifer effect, the
potential destruction of insurance opportunities since firms are risk neutral). That
is, informational efficiency need not be aligned with allocative efficiency.

We concentrate attention on two polar cases. In the first firms are ex ante
symmetric and demand is random. In the second firms are ex ante asymmetric and
demand is nonrandom. When firms are ex ante symmetric and demand is random
allocative efficiency is distorted at REE except in the (degenerate) case in which the
market turns into Cournot competition. That is, except if firms use strategies which
are not contingent on the price in which case there is no information externality.
Otherwise, if the informational role of the price prevails at an incentive efficient
solution more weight should be given to private signals while if the traditional role
of the price as index of scarcity prevails then less weight should be given to private
signals. In the first instance the REE price reveals too little information and in the
second too much. When firms are ex ante asymmetric and demand is nonrandom
then the total output at the REE is first best optimal but the REE allocation is not
incentive efficient except in the case in which the precision of the two types of signals
are identical (which is the case considered by Laffont (1985)). Otherwise it always
pays to distort allocative efficiency to improve productive efficiency. The REE price
does not contain enough information on the random cost parameter which affects
costs asymmetrically. In conclusion, with multidimensional uncertainty (and of
higher dimension than the price system) the information content of the REE has

the wrong composition.
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7 Appendix

Proof. of Proposition (1)

In order to characterize LBSFE we follow a standard procedure. We posit linear
strategies for the firms in terms of (si, s}, 2), derive a linear relationship between
prices and the random variables (A, 61, 02) and work through the optimization and
updating problems of the firms to obtain revised strategies. Identifying coefficients

of the initial and revised linear strategies we obtain:

ai = 7/8+ (7e,[(To, + Te,) + Traz(az — a'ar)]) /8A

ay = ay/B+ (1o,[a (To, + 7o) + Taar(@la; — az)]) /BA
d = (1-0/8- Talay(Te2 + Teg)ﬁJrAa’ag(Tm +7Te1)]
1

b= G1-b- %Ewl +a'fo]+ (1 —¢)8 " =) El2] + (ay —v/B) Elsi] + (az — a'v/8) EL

A = (T91 + T€1)(T92 + TSQ) + TA[(a1)2(T92 + T€2) + (a2)2(T91 + 7—51)}

The expressions depend on average coefficients a; and a; which are defined

(through aggregation) by the following cubic equations:

a1 = /B+ (7o, [(To, + Tep) + Taaz(az — ar)]) /8A

as = /B4 (7,[(Te, + T2,) + Tra1(a1 — a2)]) /BA.

To proof existence and uniqueness of the REE allocation we make use of a result
which we derive in Corollary (6). There we show that the REE allocation can be

equivalently obtained by maximizing expected profits subject to incentive compat-
[v(rey +7e1 ) t7e, ]

ibility constraints given by (see Corollary (5)) ai(c) = e (e ey ey and
_ V(o +7ey ) +7es] . . . .
as(c) = PNTETRY T o The optimal allocation is then determined by the

following FOC (see Corollary (6)):

OFE[r]
act

:E[(p—MC’i)z] =0
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Averaging over firms [ E [(p — MC") z]di = 0 the optimal solution is defined by a
function f(c) = 0 given by:

1 (o) B __Taaz(c)
fO=c—a 5 mnap 7 PO o

Taking limits for a;(c) and as(c) yields: lim.— a1(c) = lim.—  a1(c) = 0 and

(7 — Bax(c)) =0

lime—,00 az(c) = lime.—, o az(c) = 0. Therefore we have

i fe) = o
Jim fe) = ~oo
Furthermore,
>0 >0
! = _ | ale) 7 R A -
fle) = 1= | S b Bane) — 84
>0 >0
e ———  nm© -
2 /
- mw—ﬁ@(c))—mﬁag(c)

and da;/0c > 0, day/dc > 0, a1 > ~v/B and ax > /B and therefore f'(c) | )=0> O.
In summary, there exists a unique solution solving f(c) = 0 which determines the
remaining coefficients al, a, and ¢’ as given in the Proposition. Coefficient b’ is given

by the following expression:

i 1 TX [al (TGQ + T52) + a2(T91 + Tél)}
s 3" BA e

. 1 . . i i .
+<a§—%—E>E[s’1]+<a’2—aﬁv—%>E[s;]

and without loss of generality we assume that unconditional means are zero, that

is A= p, = p, = 0, and therefore, b =b=1/(1+3). ®
Proof. of Proposition (4) and Corollary (5)
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Given the mechanism described above and truth telling behavior by j # ¢ the op-

timal announcements s} and s of firm 4 are derived from the following maximization

program:
i NI
max E [pz' — C(') | 51, 3]
51,8%
where z' is the production recommended by the center when receiving messages

5%, 8. The FOC’s. yield:

.+ OT"

E[p—MC'z") | s}, s}] o = 0 Wi (28)
31
e -
E[p—MC’ (x)|31752]3—§¢ =0 \ (29)
2

Unless the weights a! and a), on private signals are zero the following condition has
to be satisfied: E[(p — MC%(z")) | si, s4] = 0 for almost all s}, s}. For truth telling
to be optimal this has to hold for si = 5 and s}, = 8. In fact, there is a linear
combination of announcements & = (a}s} + absh) that maximize expected profits
and truth telling is one of them.Given normality, we obtain:

COV(p— MC"),s}]
Var(st)

(s1 — Els))

El(p— MC") | si,s3]=El(p— MC")] +

COV((p— MC"), s
Var(sy)

(s — E[S’Q}) =0 Vs, Vs

Since the equation has to hold for all possible signals s{ and s, Var(si) > 0 and
Var(sy) > 0 we have E[(p—MC")] = COV[(p— MC"),s\] = COV[(p—MC"), s,] = 0.
Solving these equations yields the restrictions on b, a and a} as stated in the Corol-
lary. Substituting for p= (1 — b) + (1 — ¢)z, MCUx") = [ysi + 0, + a' (s + 62)] +
B (b — alst — absh 4+ c'z) and 2 = (A + a160; + az02) we obtain the following:

1

El(p— MC'(z')]=0— (1-b—8b)=0— b = b= Tt
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COVi(p— MC’i(:Jci)), sﬂ =0
1
To,Tey
[y (70, + 7o) + 7o, ] = (1 = Qante, + BclarT,
B (T, + Tey) '

Integrating over all firms yields average coefficient a; and plugging back into the

— (1= )ar7e, =7 (T4, + 72,) = e, + Bai (To, + 72,) — BT, | =0

expression for a! gives the result:

(v (T, +Tey) + Te,]
[Te,(1 = (14 8)) + B (10, + 72, )]
- [V (Toy + Tey) + Tey | (T, (Ci —¢)+ (To, + 7<)
! [Te,(1—c(1+83)+ B (o, + Tc,)] '

The third restriction yields the following:

a =

COV[(p— MC'(z")), sé} =0
1
To,Te2
[ [y (19, + Tey) + Toy] = (1 = €)aa7e, + Bclagte,]
B(To, + Tey)

and integrating over all a’, determines coefficient a; which when plugging back into

— [(1 = ¢)asre, — va' (To, + Tep) — &'Te, + Bab (To, + Te,) — Bcarte,] = 0

the expression for a} gives the following values:

Y (Toy + Tey) + 7oy
Teo,(1 —c(1+08))+ B (10, + Tey)
g 0 Te) + 7] (0 = 1Ty (L= €) + 05 (7o, 1 Tey) + 07 (¢! — a'c)]
2 B(Toy+ Tey) Tey(1 = c(1+ B)) + B (70, + Ty) ’

which are the expressions in the text. B
- Jy p2dj|

The Lemma relies on two properties of the derivatives:
day L1odd  0dl | L 9al da}
% = (a—ﬁa—a = 5b) 5 0
day L (0a), 0d) L 9al, das
%= <3c+a = ([ Fd )+ 5 S
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First, differentiating coefficients a; and a, gives:

9ar [T +70,) + 7,17, (11 8) (32)
dc 7oy (1 — (14 3)) + 8(7, + 70,)]"
daz [V(Tey +70y) + T, )T, (1 4+ 0)
dc Tey(1 — (14 B)) + B(7Tey + T9,)°
further, we have:
dal (e, + 7o) + 77, (DT (1+ B) + 7o)
dc (7o, +7o,) [Te,(1 — (1 + 3)) + B(r, +79,))°
0a) _ [rey+ 7o) + Terey (@15 B) 4 70,) 33
dc (Tey + Toy) [Tey(1 — (1 + 3)) + B(7<, + 79,)]°
and finally
aai . (V(Tey + Toy) + Tey [T,
ot (e, + 7o) [Te,(1 — c(1+B)) + B(e, + 7,)]
ay _ [V (Tey + Toy) + T5]7, | (34)
act (Tey + Toy) [Tey ( c(148))+ B(7c, + 7o,)]

Ba{ d Baé Ba%
acl  Ber L

constants and independent of ¢, j we obtain

L (9al 8a1 ! 9al dal
dgj= [ g+ 2h
/0 ( dc " oe aci | Y o Oc /A act

— (V(Tey + Toy) + Tey [T {/1 (Cj7—61(1 + 3) + 7o)
(Tey T 7o) [Te, (L — (1 + B3)) + B(7e, +70,)] [Jo [Te,(1

(V(Tey +To,) + 7Ty T, ({7, (1 + 8) +7o,) + [T, (1 — c(1 + B)) + B(7<, + 7o,)])

(7o, +7o,) [Te,(1 — (1 + 3)) + B(r, +79,))°

= ['7(7—51 + 7—6’1) + 7—61}7—61 . (1 + ﬁ)
[Te, (1 =1+ 8)) + B(7e, + 7o,)]

a1
dc’

Equivalently, using expressions (33) and (34) it can be shown that fol (88—‘? + ?%2-) dj =

%. Using these results we can do the following transformation:

oz B oay Oas 0z
E[pa—c]—E{p< 9 01 9 02+z+cac>]
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B[ (3 2]
- E :p<—(?,;§01—(?,;2202+2>+/01p<—%‘ft91—%02+0722> dj

- o (-] [ aeg)o

= E :pgi; +/01 p%ﬁjdj} :

For the first equality we wrote out the derivative dx/dc. In the second we make
use of the decomposition of the derivative as shown in (30) and (31). For the third
equality we first group derivatives depending on ¢ and j, respectively. Further, we
can take the integral outside the derivatives. For the fourth equality note that

E [p( aaizl% 83(;2 : +Z)] = E[ ( 83(;101 80%(92—%2)] because errors are not

correlated with the price: F [pet] = E [pei] = 0 Vi, Finally, the last equality follows

ox’
oc 2

by replacing expressions with derivatives and ’ respectively. W

Proof. of Corollary (9)
Averaging the individual FONC in (19) we have

/o1 (FONC') di=E [/ol [(p— MC") 2] di - /ol(p M @ﬂ) d]}

which together with condition (19) implies E [(p — MC) z]—E [ [ (p — MC9) zdj] =

0. Taking expectations and using coefficients from ICC we can show:

El(p- MC') ] - E { [ o= ) zd]}

S e B )+ 2 a0 - [ em e S -
A Tey Teqy Tx Teq

_ ﬁ i ﬁ(al)2 i ﬁ(a2)2 N as .

= -+ o (o) o) - @ - ) [7(79#752)}_0
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B B(a1)? Blaz)? i as
=+ + c—(a'—1)| —2—
BRI i Ak ) Kot L
B B(a1)? Blaz)?
£+ +
|:T)\ (7—91 +7'51 ) (792+752 ):|

asTx (To, + 7<)

A =c+ ca’ — 1),

— cd=c—(a'—1)

where for the first equality we take expectations: E[(p — MC)A]=(1—c(1+8)) E [)\2] =
1—c(1+8)) /ra. [ Ellp— MC6\] = [ (v — Ba}) /7e, = (v — Bar) /7, and [ E[(p— MC")05]
[ (ady — Bab) /e, = (a?y — Bas) /T,. For the second equality we use expressions for
ai = a1+ﬁ (¢ —c)and al = « @—k% (1—c(1+8)(at—1)+ B(c —¢))
from ICC and group terms depending on a; and as, respectively. The result follows
then by rearranging terms. B
Proof. of Proposition (12)
Take DOF from Proposition (10). Taking expectations as before (E [(p — MC)\] =
1 —c(l+B3)]/mx [El(p— MC")01] = (v — Bar) /7, and [ E[(p— MC")0:] = (v — Baz) /7-,),

we can do the following transformation:

E [/0 (p— MCY) (%—‘?01 + %%) (o — 1)02dj]

/ [%M N %M] R

dc Tey dc Tey
- ¢ 0_ |:aa1 < alﬁCQ ) 8a2 < agﬁCQ 4 1 >:|
T ae \(ro, + 7)) 9 \(To, =~ 7=) | (To, +7ey)
—02027')\ das A (a2)2 (T€1 + 7—91) aal

_ 200 Y% — (araz)

A dc Tx (7—62 + 7—62) (7—92 + ng) 80
| —COaT _% (e, + 7o) + T2 (@) Oy (aya2)
N A oc T Oc a4
_ e[ (Oaz - Oar N 04y (Te + 7o)
N A “ oc “ oc @ oc T
_ —C0ATA ax (a1a2)2 (1+08)8 (Te,To, — TeiTo,) - %(Tq +7o,)

N | e +T0) = T Ty + 7o) = 7o) 2 T gy
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For the first equality we have taken expectations. For the second equality we use

coefficients a? and @ from Corollary (9) to show:

! j j Te, Ba1
—Bdl) (0 — Dewdj = |——2 (0)? 02| and
[ =) @ = vets = | )
v ; . Te, 302 T
ady — Bal) (@) — Depdj = |——222 ()% 02 — ——2 07
A e R e e L e i
For the third equality we substitute for c; = —(7ra2(7, + 70,))/8A and simplify
in the forth and the fifth equality. Finally, using 8“2 = (ag)2 Tl ang
[7(752+792)+752}

% _ ( )2 [ 751(1+/8)

= ives the expression as stated in the Proposition. B
dc '7(751+701 )Jﬂ_sl} g p p

Lemma 14 Let ¢ be continuously differentiable. The FONC to the optimal control

problem
1

1
max 10) (@', ¢, c) di, with ¢ = / c'di (35)
{¢}ticro11 Jo 0

2elice) L 2 g g v,

ol 0

are given by

Proof. Suppose that {c }le 01 1S an optimal solution and consider the per-
turbed solution ¢ = ¢'+e€ ¢' and ¢ = fo &idi = c+e fo ‘di. Let V(e fo (i,¢,¢) di,
with ¢ = fo ¢idi. Since ¢ is optimal by assumption, a necessary condition is that

V’(O) =0,

fo {acz i,c,c)q + (Zc c [fo ’d@]}d
fo s (1. c) ’dz+[f0 ’dl][o a‘ﬁ(zc c)dz]:
e Gdo - [ 2 6o d] }ddi=o

Given that the assignment ¢° is arbitrary we conclude that to satisfy the above

equation, the term inside the bracket has to be equal to zero for all 7 :

2% . Y I |
aCi(Z’C’C>+|:/() a—c(z,c,c)dz}—() Vi
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