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Abstract

Qin (1996) recently showed that in a game of endogenous formation

of cooperation structure, if the underlying TU-game is superadditive,

then the full cooperation structure is stable. In this note, we character-

ize the class of games that ensure the stability of the full cooperation

structure, and show that this class is much larger than that of super-

additive TU-games.
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1 Introduction

In a seminal paper, Aumann and Myerson (1988) proposed a model of en-

dogenous cooperation structure formation. Cooperation structures represent

situations in which players have the possibility to cooperate, or communi-

cate, only with a subset of the population. An interesting feature of these

situations is that two players who are in cooperation may not be in coop-

eration with the same subset of players. Hence, these structures may be

represented by non-directed graphs. Aumann and Myerson proposed to use,

in an extensive-form game, the Myerson value (Myerson, 1977) to compute

players’ payoffs in cooperation structures. A major drawback of their ap-

proach is that the order of play has to bet set exogenously. Recently, Qin

(1996) reformulated Aumann and Myerson’s game as a normal-form game.

One of Qin’s results is that if the underlying TU-game is superadditive,

then the full cooperation structure (each player cooperates with all the oth-

er players) is stable in the sense that no player can profitably deviate by

severing some of her links.

In this note we characterize the class of TU-games that admit a stable

full cooperation structure, and show that it is much larger than the class of

superadditive games. Indeed, we show that the full cooperation structure

is stable if and only if the value of each player is individually rational and

the TU-game is superadditive for two-player coalitions only. In particular,

this implies that if, for some TU-game (N, v) and two players i and j, we

have v({i, j}) < v({i}) + v({j}), then the full cooperation structure is not

stable.

The paper is organized as follows. In section 2 we present the framework.

In section 3 we define the game of endogenous formation of cooperation

structure, and state and prove our characterization result.
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2 Definitions

A transferable utility game (or a TU-game) is defined by a couple (N, v)

whereN = {1, . . . , n} is the set of players, and v is the characteristic function

that maps the power set of N to the set of real numbers (with the convention

that v(∅) ≡ 0). The number v(S) yields the worth of coalition S ∈ 2N . The

space of all TU-games with the set of players N is denoted by ΓN .

We assume that players are able to establish meaningful relationships

with a subset of players, and we call the set of all private relationships a

cooperation structure. A useful way to represent cooperation structures

is by a non-directed graph, whose vertices represent players and whose edges

represent the relationships that players have between each other.

We define a graph, g, as a set of links between players. We write i:j ∈ g

when i and j are linked in g. Two players i and j are indirectly linked in g if

there exists a sequence i1, . . . , ik in N , with k ≥ 3, such that i = i1, it−1:it

for all t = 2, . . . , k, and ik = j. The sequence i1, . . . , ik is called a path.

Two players are said to be connected if they are (indirectly) linked. A

coalition S is said to be connected if any pair of players i, j ∈ S is connected

by a path involving only players in S. We denote by GRN the set of all

graphs and by gN the complete graph, i.e. the graph in which each player

is linked with all other players,

gN = {i:j | i ∈ N , j ∈ N , i 6= j}, (1)

GRN = {g | g ⊆ gN}. (2)

For any graph g, g\{i:j} denotes the graph in which the link i:j has been

deleted, and g ∪{i:j} is the graph to which the link i:j has been added. We

denote the graph g restricted to the set of vertices S by g(S),

g(S) = {i:j | i, j ∈ S, i:j ∈ g}.

For any subset of players S, there is a unique partition of players that

groups together players connected by g(S). Such a partition is denoted
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by S/g. In other words, for any i ∈ S, the element of the partition S/g

containing i also contains all other players that are connected to i by g(S).

A formal definition of this partition is defined as follows,

S/g = {{i ∈ S | i and j are connected in S by g} | j ∈ S}.

3 The game

Qin’s (1996) model works as follows. Given a TU-game (N, v), we allow

players to choose who they want to cooperate, or communicate with. Hence,

each player can have private relationships only with a subset of the grand

coalition. More formally, we define a non-cooperative game

G (N,v)
µ =< N, (Σi)i∈N , (hi)i∈N ) >,

where the TU-game (N, v) is called the underlying game of G
(N,v)
µ . As in

(N, v), the set of players is N and Σi is the strategy space of player i. A

strategy σi for player i is defined as a n-dimensional vector whose coordinates

are either 0 or 1. When σi(j) = 0 player i does not wish to form a link with

player j, while he would be glad to create such a link when σi(j) = 1. The

ith coordinate of σi is assumed to be equal to zero, σi(i) ≡ 0. In other

words, no player can make a link with herself. A link between players i and

j is formed only if both i and j wish to create it: σi(j) = σj(i) = 1. We

denote the n-tuple of strategies by σ = (σ1, . . . , σn). Each σ ∈ (Σi)i∈N gives

a unique cooperation structure g(σ),

g(σ) = {i:j | σi(j) = σj(i) = 1}.

For each cooperation structure g, players are rewarded using the Myerson

value of the game (N, v) on g, denoted by the n-dimensional vector µ(v, g).

The Myerson value is an allocation rule for TU-games with graphs. To

compute the Myerson value for some game (N, v) and some cooperation
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structure g, we first need to define a characteristic function embedded on

graphs,

∀ S ⊆ N, (v/g)(S) =
∑
T∈S/g

v(T ). (3)

The Myerson value is the unique allocation µ rule that satisfies the Com-

ponent Efficiency axiom,∑
i∈N

µi(v, g) =
∑
S∈N/g

v(N),

and the Fairness axiom,

µi(v, g)− µi(v, g\i:j) = µj(v, g)− µj(v, g\i:j), ∀ g ∈ GRN , ∀ i:j ∈ g.

Myerson proved that his value is closely related to the Shapley value.

Indeed, we have

µ(v, g) = ϕ(v/g), ∀ (N, v) ∈ ΓN , ∀ g ∈ GRN ,

where ϕ is the Shapley value. It is straightforward to see that for the full

cooperation structure, v/g = v, and hence µ(v, gN ) = ϕ(v). Clearly, if some

player i is not connected to anyone in the cooperation structure g, then

µi(v, g) = v({i}). Note that it may happen that for some game (N, v) and

some g, we have µi(v, g) < v({i}).

Thus, the utility of a player in the game G
(N,v)
µ under the strategy profile

σ is her Myerson value of the corresponding cooperation structure,

hi(σ) ≡ µi(v, g(σ)). (4)

Consider now a cooperation structure g such that players i and j are not

linked, i.e., i:j /∈ g. Then, player i desires to link up with player j if and

only if

µi(v, g ∪ {i:j}) ≥ µi(v, g). (5)
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Given that the Myerson value satisfies the Fairness axiom, it is readily ver-

ified that if (5) holds true for player i, then it also holds true for player j.1

A cooperation structure g is stable in Qin’s sense if there is a strategy

profiles σ such that g(σ) = g and σ is a Nash equilibria of the game G
(N,v)
µ .

This result was also obtained in a similar framework by Dutta, van den

Nouweland, and Tijs (1998).2 We show now that this result can be extended

to a larger class of games.

Proposition 1 Let (N, v) be a TU-game and µ the Myerson value. Then

the full cooperation structure is stable if and only if µi(v, gN ) ≥ v({i}) for

all i ∈ N , and

v({i, j}) ≥ v({i}) + v({j}), for all i, j ∈ N. (6)

Proposition 1 says that if the Shapley value of each player in the game

(N, v) is individually rational then gN is stable if and only if the game (N, v)

is “superadditive” for two-player coalitions. Hence, the two conditions —

individual rationality and (6) — fully characterize the class of TU-games

that ensure the stability of the full cooperation structure.

As the following example shows, superadditivity of the game (N, v) is

not necessary for the stability of the full cooperation structure.

Example 1 Consider the following TU game (N, v) with N = {a, b, c, d},
1Reciprocity may not hold if player i wants to link up with several players at a time.
2Dutta, van den Nouweland, and Tijs (1998) employed several equilibrium concepts,

(undominated Nash equilibrium, coalition-proof Nash equilibrium and Strong Nash equi-

librium) and did not use a specific solution concept to analyse to equilibria of the game.
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and v defined by

v(S) =



0 if |S| = 1,

20 if |S| = 2,

12 if |S| = 3,

16 if |S| = 4.

The Myerson value of each player for the full cooperation structure is

µi(v, gN ) = 4, for i = a, b, c, d, which is individually rational. Obviously,

condition (6) is satisfied. Hence, Proposition 1 implies that the full coopera-

tion structure is stable. Yet, it is obvious that the full cooperation structure

is Pareto dominated, i.e. there is another cooperation structure (for instance

g′ = {a:b, c:d}) that yields a strictly higher value to all players.3

In order to prove the proposition, we introduce more definitions.

For any cooperation structure g and players i and j such that i:j ∈ g,

define the set

S(g, i:j) = {S ⊆ N | S/g = S and S/(g\{i:j}) 6= S}.

In other words, S(g, i:j) is the set of coalitions S such that S is connected in

g(S) but is non-connected in g(S)\{i:j}. When no confusion is possible, we

write S(i:j) instead of S(g, i:j). In other words, S(i:j) represents the set of

coalitions S that are connected thanks to i:j when the graph is restricted to

S.4 Thus, for any S ∈ S(i:j), if i:j is deleted, S/(g\{i:j} = {Si, Sj}), with

Si and Sj being the sets in S/(g\{i:j}) that contain i and j respectively.

Proof of Proposition 1 Observe that there is a unique strategy profile

σ∗ such that g(σ∗) = gN . Hence, σ∗ is a Nash equilibrium if and only if
3A similar result was obtained by Jackson and Wolinsky (1996), who showed that

some games G (N,v)
µ may have a stable cooperation structures that are not efficient, i.e.

structures that do not maximize the worth of coalition(s).
4In graph terminology, we say that S(g, i:j) is the set of all subgraphs ĝ of g such that

the link i:j is critical in ĝ — see Bollobás (1998).
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no player breaks one or more links. Hence, it suffices to compare, for any

player i, her payoffs under the strategy profile σ and under the strategy

profile (σ′i, σ
∗
−i), where σ′i(j) = 0 for at least one j ∈ N\{i}.

Clearly, if the value of some player is not individually rational, then that

player has an incentive to break up all her links (or any part thereof), and

then the full cooperation structure is not stable. In other words, individual

rationality is a necessary condition for the full cooperation structure to be

stable. We now show that if the value of each player is individual rational,

then stability is equivalent to condition (6).

We claim that for any graph g, if a player contemplates breaking a link,

yielding g′, the change of her payoff (i.e., her Myerson value) will only depend

on the worth of the coalitions that are connected in g and not connected in

g′. To see this, consider the value of player i for a cooperation structure g

and g\{i:j}.

µi(v, g) =
∑
S3i

ρS ((v/g)(S)− (v/g)(S\i))

µi(v, g\{i:j}) =
∑
S3i

ρS ((v/g\{i:j})(S)− (v/g\{i:j})(S\i)) ,

where ρS = (n−1)!(n−s)!
n! . Notice that

(i) g/(S\{i}) = (g\{i:j})(S\{i}),

(ii) (g\{i:j})/S 6= g/S when i:j connects S in g, i.e., when S ∈ S(i:j),

(iii) (g\{i:j})/S = g/S when i:j does not connects S in g.

Using (3) we deduce

(a) (i) ⇒ (v/g)(S\{i}) = (v/g\{i:j})(S\{i}), ∀S 3 i,

(b) (ii) ⇒ (v/g\{i:j})(S) 6= (v/g)(S) when S ∈ S(i:j),

(c) (iii) ⇒ (v/g\{i:j})(S) = (v/g)(S) when S /∈ S(i:j),
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Thus,

µi(g)− µi(g\{i:j}) ≥ 0

⇔
∑

S∈S(i:j)

ρS(v(S)− v(Si)− v(Sj)) ≥ 0,
(7)

which proves the claim. Observe that if g = gN , then S(i:j) = {{i, j}}. In

other words, in the full cooperation structure, if a player i breaks a link with

player j, the only coalition that becomes non-connected is {i, j}.

More generally, suppose that some player i severs her links in gN with

players j ∈ S, where S is some subset ofN\{i}. Then we have {S(i:j)}j∈N =

{{i, j}j∈S}. This implies that i severs her links with players j ∈ S ⊆ N\{i}

if, and only if ∑
j∈S

ρ{ij}(v({ij})− v({i})− v({j})) < 0. (8)

As (8) holds for any S ⊆ N\{i}, for any i ∈ N , the result follows. �

Qin (1996) showed that if the underlying TU-game is superadditive,

then for any partition P of N , there is a Nash equilibrium σ game such

that N/g(σ) = P — see Qin (1996, remark 2). We now show that this

result can be extended.5

Proposition 2 Let (N, v) be a superadditive TU-game. For any g ⊆ gN ,

there exist a strategy profile σ such that g = (σ) = g and σ is a Nash

equilibrium of G
(N,v)
µ .

Proof Consider any superadditive game (N, v) and any cooperation struc-

ture g. Hence, (7) always holds and we can deduce that no player wishes to

break a link. Consider the following strategy profile. For each player i ∈ N ,

let σi(j) = 0 if i:j /∈ g and σ∗i (j) = 1 if i:j ∈ g. Because players do not sever

links, if a player i deviates with the strategy σ̂, it should be the case that
5See Dutta, van den Nouweland, and Tijs (1998, proposition 1) for a similar result.
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for some j we have σ̂i(j) = 1 and σ∗i (j) = 0. But deviations are individuals,

which implies that σ∗j (i) = 0. Hence, g(σ̂i, σ∗−i) = g, and player’s i payoff

remains unchanged. Thus, i has no incentives to deviates. �
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