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Abstract

We propcse a simple medhanism to determine how the surplus generated by
cooperationisto be shared in zero-monaonic environments with transferable utility. The
mechanism consists of a bidding stage followed by a propcsa stage. We show that the
subgame perfed equili brium outcomes of this mecdhanism coincide with the vector of the
Shapley value payoffs. We extend ou results to implement the weighted Shapley values.
Finally, we generalize our mechanism to handle arbitrary transferable utility
environments. The modified mechanism generates an efficient coaliti on structure, and

implements the Shapley values of the super-additive cver of the environment.
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1.- Introduction

The Shapley value has long been a ceantral solution concept in cooperative game
theory. It was introduced in Shapley [24] and was en as a reasonable way of
distributing the gains of cooperation among the playersin the game. It is the most studied
and widely used single-valued solution concept in cooperative game theory. It has
generated various axiomatizations that demonstrate its fairnessand consistency properties
(see for instance, Myerson [19], and Hart and Mas-Colell [12], and haes been used to
impute wsts and kenefits as in cases of airport runways, phore networks, and pditi cd

situations.’

A natural question concerning the Shapley value is whether the agents can reach it
through noncooperative behavior. In ather words, isit possble to find a non-cooperative
framework that gives rise to the Shapley value & the result of equili brium behavior? This
is part of the Nash program, which tries to provide anon-cooperative fourdation for
cooperative solution concepts. Severa papers have aldressed this question in dff erent
ways. We will comment onthem later in thisintroduction.

In this paper, we provide asimple non-cooperative game whaose outcome dways
coincides with the Shapley value for zero-monaonic games in charaderistic form. We
cdl this game the "bidding mechanism". The basic ideaof the bidding mechanism is quite
simple. We let one of the players make apropasal to ead of the other players, a proposal
that will either be accepted by all the other players (in which case the proposal becomes
final) or rejeded. In the latter case, the propaser is now on Hs own and the rest of the
players play the same game again. If the proposal is accepted, the propcser can form the
grand codlition d all the players and colled the value generated in exchange for the

propaosed payments to the rest of the players.

The question d how the proposer is determined is, of course, central to the design of
the bidding medhanism. Indead, in some games, being the propacser could prove to be
beneficial, while in ather games it is preferable not to be the proposer. Hence, before the
propcsal stage is reached, the players will bid to become the propaser, where bids can be
pasitive or negative.” The player with the highest “net bid” (the difference between the



sum of the bids he makes to the others minus the sum of the bids the others make to him)
beames the proposer and, before proceeding to the propcsal stage, pays the bids to the
other players. We will show that in the subgame perfed equili bria (SFE) of the bidding
mechanism a propaser is determined who will make aproposa that will be accepted by
the others. For the proposer, the difference between the value of the grand coaliti on and
the payments and kids paid is her Shapley value. For each o the other players as well, the
sum of the bid recéved plus the accepted propasd is his Shapley value.®

Severa fedures of our game make it attractive and dfferent from previous non
cooperative gproaches to the Shapley value. First, the players obtain the Shapley value
in evey equili brium outcome of the game; that is, the implementation is not in expeded
terms. Also, the game does nat imply any a priori randamization that imposes ssme order
onthe moves of the players. By adjusting his bids, every player can determine whether he
or someone dse will be the proposer. Second, the rules of the game ae very natural and
do nd rely on"randam™ medings or probabiliti es that are dose to the acua definition d
the Shapley value. Hence the implementation is less "obvious', and provides further
suppat for the use of the Shapley value. Third, the game is finite. Moreover, at
equili brium, it ends in ore stage if the game is grictly zero-monaonic (a stage includes
three periods of play: bidding, propcsing, and accepting or rejeding). Fourth, the
strategies played by the players at equili brium are simple and intuiti ve. Furthermore, even
though the Shapley value plays no role in specifying the rules of the game, the
equili brium strategies are intimately related to the Shapley value itself.

Implementing the Shapley value is nat straightforward. For example, Thomson [27]
focused on the problems created by strategic behavior and showed that an agent can
obtain a better outcome by unilaterally misrepresenting his utility function. Several

authors have atempted to redi ze the Shapley value and overcome such problems.

Gul ([7] and [8]) analyzed a transferable utility econamy where randam meetings
between two agents occur. At each meeting, a randamly chasen party makes an dffer to
his partner. Acceptance of the offer means that the proposer buys the partner's resources.
If the offer is rgjeded, the meding dislves and bdh agents gay in the market. For

strictly convex games, as the time interval between medings becomes arbitrarily small,
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the expeded payoff of each player at an efficient stationary subgame perfed Nash
equili brium (SSHE) converges to his Shapley value. If strict convexity is replaced by
strict superadditivity the convergence result holds for those efficient SSHE that entail
immediate agreement (Gul [7] and Hart and Levy [11]).

Evans [5] showed that a simplified version d Gul’s result follows from the
following characterization d the Shapley value. Consider a @operative game and an
asciated feasible payoff vector. Assume that players are randamly split i nto two groups
and a representative player is chosen aso at randan from each group. These two players
bargain with each ather over how to split the total resources available to all of the players.
Following the bargaining processeadh o the two players has to pay out of his sare to
the members of his group according to the pre-spedfied payoff vedor. This procedure
yields an expeded payoff to any player that depends on the initial payoff vedor, the
randam partition mechanism and the solution concept applied to two-person bargaining
problems. The initial payoff vector is cdled consistent if it equals the expeded payoff
vedor. If al partitions are equally likely and the bargaining solution splits the surplus
equally, the Shapley payoff vector is the unique mnsistent payoff vedor.

Hart and Mas-Colell [13] proposed a different natural bargaining procedure that
suppats the Shapley value (as well as the Nash bargaining solution for pure bargaining
problems). In their paper, the propcsers are dso chosen at randam but the medings are
multil ateral. Agreement requires unanimity. Disagreament puts the proposer in jeopardy,
sincethereis a given probabili ty that he may be removed from the game dter argjedion.
As the probability of removal bewmes snall, the SSHE of the procedure yield the
Shapley value.* When the probabili ty of removal is one, Hart and Mas-Colell [13] as well
as Mas-Colell [18] showed that the expeded payoff of any player coincides with his
Shapley value. Their mechanism is then the same a our mechanism with the bidding
stage replaced by a randam determination d the proposer. Krishna and Serrano [15]
showed further that for removal probabiliti es close to ore there is a uniqgue SFE of the
game proposed by Hart and Mas-Colell [13] that yields the Shapley value payoff vector

in expedation.



In adifferent spirit, Hart and Moore [14] proposed a game in which agents are lined
up and each agent makes an dffer to the foll owing agent, where the offer is a mntrad that
may specify what offer this agent has to make to the agent after him. This game
implements the Shapley value in SFE. Winter [28] and Dasgupta and Chiu [4] propcsed
demand commitment games in which each player can either make a demand to the
following player or form a dlition satisfying the demands of some of the players
precaling him. For strictly convex games, these mechanisms implement the Shapley
value in SFE.” In these threeworks, the implementation is in expeded terms sncein the
first stage of the game the order of the players (or the identity of the first player in

Winter, 1994 israndamly chosen, each passble choice having the same probabili ty.

A solution concept closely related to the Shapley value is the weighted Shapley
value (Shapley [25]). We dso show that a very natural and simple modificaion d the
bidding mechanism implements the weighted Shapley values.®

Finaly, we generaize the bidding medhanism to ded with all transferable utility
environments. In the generalized bhidding medhansm, the propcser makes a propaosal to
eat o the other players and, simultaneously, choases the aaliti on she wants to form. If
all the agents accept the proposal and the aaliti on, the aoalitionis formed, and the rest of
the players proceeal to pay the same game anong themselves (after having receved the
propcsed payment by the propaoser). In the case of rejection, the proposer is on her own
and the remaining players play the same game again. In any SFE of this mecdanism, the
propcser makes a propasal that is accepted. The payoff of the propaser is the diff erence
between the value of the codliti on she formed and the payments and kids she made. The
payoff to any player in the alitionis the sum of the bid and the propasal accepted. The
payoff to players outside the aodlition is the sum of the bid, the propcsal accepted, and
their payment in the @ntinuation game. Hence, the SFE of this mecdhanism determine a
codliti on structure and a sharing of the surplus generated uncer this particular structure.
We show that at the SFE of the generalized hidding medhanism the players form an
efficient coaliti on structure. Moreover, the final payments of the players coincide with the

Shapley values of the super-additi ve cver of the game.’



The paper is organized as follows. Sedion 2 pesents the basic ocooperative
definitions and Sedion 3introduces the bidding mechanism and shows that it implements
the Shapley value for zero-monaonic games. In Sedion 4 we extend ou results by
implementing the set of weighted Shapley values. In Sedion 5we define the generalized
bidding medianism and show that it implements the Shapley value of the super-additive
cover of the game. The paper concludes with a brief summary and dscusson d further

research.

2.- The moperative model

Consider a cooperative game in characteristic form (N, v), where N = {1,..., n} is
the set of playersandv: 2" . Risa charaderistic function satisfying v(®) = 0 where ®is
the empty set. For a aalition SN, v(S) represents the total payoff that the partnersin S
can jointly obtain if this coalition is formed. We say that the woperative game (N, V) is
zero-monaonic if V(S + v({i}) < v(S{i}) for any subset SN with iJS In a zero-

monaonic game there ae no negative externalities when asingle

player joins a adlition. In sections 2 to 4 d this paper, we restrict our analysis to zero-

monaonic games.

We denate by @(N)OR" the Shapey \alue of the moperative game (N, v) which is
defined by:

(R(N)ZSD;{.}H( ~IS- )[v(sm{u}) v(9)] for all iDN,

where OS] denates the cardinality of the subset S. The Shapley value can be interpreted
as the expeded margina contribution made by a player to the value of a aalition, where
the distributions of coadlitions is such that any ordering of the players is equally likely.
Also, Shapley [24] charaderized the value & the only function that satisfies symmetry,

efficiency, anull player axiom, and additivity.



Given the aoperative game (N, v) and a subset SN, we define the game (S vs) by
assgning the value vg(T) = V(T) to every TOS. We write (S V) instead of (S vs) for
notational convenience. Similarly, SOR™ denates the Shapley value of the game (S,

V).

3.- The bidding mechanism

In this sction, we design a non-cooperative game, which we cdl the bidding
mechansm. The euili brium outcomes of this medhanism aways coincide with the
Shapley value of the operative game (N, v) and thus this medianism implements the
Shapley value in subgame perfect equili bria. We propose away to split the surplus of the
cooperation that is based uponthe ideathat only one of the players will make aproposal
to eat o the other players. We invoke anation d consistency in arder to determine the
outcome of the game if the proposal is rejeded. Following a rejedion the players other
than the propacser play the same game again. Procealing in this way, the payoff of an
agent is snsitive nat only to whether or nat he is the propcser, bu aso to the predse
identity of the proposer. Hence, in arder to provide each player with the same strategic
posshiliti es, ead player can, by hisbid, dredly influence the dhoice of the proposer. An
intriguing feature of the mechanism is that the Shapley value is not the outcome of just
one dedsion, bu rather emerges as the awmulative outcome of baoth the propasal and the
bid.

The medanism is defined recursively. If there is only one player, then he just
obtains the value of his gand-alone adlition. It is aso useful to describe the bidding
mechanism with oy two players. It is athreestage game. First, each player makes a bid
to the other. The proposer is then chosen as the player making the highest bid. If the bids
are gual the proposer is chasen randamly. The propaoser pays the promised bid to her
partner. In the second stage, the proposer makes an dfer to the other player for him to
join her. In the final stage, the player whois nat the proposer either accepts or rejeds the
offer. If he acepts, the grand codlition is formed and the propaser colleds the value

generated by it whil e paying the offer to the other player. If the proposal is rejected each



player is left on his own, and hence exch oltains the value of the stand-alone aalition
(minus or plus the bid paid previously). Once we know the rules of a two-player bidding
mechanism, we can define the mecdhanism for three players, and so on.Asauming that we
know the rules of the bidding medanism when payed by at most n—1 players, we now

define the game for n players.

First, each of the players makes a bid to each o the other players. To determine the
Identity of the proposer, we define the “net bid” of a player as the diff erence between the
sum of the bids he makes to the others minus the sum of the bids the others make to him.
The net bid of a player tries to measure the difference between the incentives of this
player to beacome the proposer (what he bids) and what the others are ready to pay him for
eat o them to become the proposer (what the others bid to him). The player with the
highest net bid is chosen to be the propacser. If several players make the highest net bid,
the propaser is chasen randamly among them. Once “named” a propacser, she procedls to
pay the bids to the other players. Seamnd, the proposer makes an dffer to each of the other
playersto join her. Finaly, ead of the other players squentialy either accepts or rgjeds
the offer.® The offer is accepted, and all the players join in the grand codliti on, ony if ll
of them accept the offer. In this case, the propcser obtains the value of the aalition,
paying to the others the promised dffers. If the offer is rgeded, the proposer is on her
own, oltaining the value of her stand-alone adlition (minus the bids de has alrealy

paid) *° The rest of the players keep their bids and day the same game with n-1 players.

It isimportant to ndice that the dement of randamnessin the determination d the
proposer is inconsequential to ou proofs. Our results gdill hald if ties in net bids are
broken deterministicdly as would be the cae if the highest indexed player were dhosen
as the proposer. Randamnessis introduced orly in order to prevent biased treatment of
the participating players. We will return to this issue in the onclusion, when we will

discusspossble extensions of our mechanism.

We now describe the bidding mechanism more formally. Suppcse first that there is
only one player {i}. Then, this player obtains the value of the stand-alone wdlition (i.e.,

v(i)).



Suppcse now that we know the rules of the bidding mechanism when played by at
most n-1 players. The bidding game for a set of players N = {1,..., n} proceeds as

follows;

t = 1: Each player iCJN makes bids b’ in R for every j # i. Hence, a this gage, a
strategy for player i is avector (bi,-),-¢i inR"™.
For each iCIN, welet B' = > bl - Zb,j . Let a = argmax;(B') where, in the cae of anon
J#I J#I
unique maximizer, a is randomly chasen among the maximizing indices. Once she has

been chosen, payer a pays b to every player i # a.

t = 2: Player a makes an offer y“j in Rto every player j # a. Therefore, at this dage a
strategy for player i is a vector (yi,-)M in R"* that he will follow if he is chasen to be the

proposer.

t = 3. The players other than a, sequentially, either accept or reject the offer. If a
regjedion is encourtered, we say the offer is rejected. Otherwise, we say the offer is
aacepted.

If the offer is rejeded, al players other than o proceed to play the bidding
mechanism where the set of playersis N\{ a} and pdayer a ohtains the value of her stand-
alone walition. On the other hand, if the offer is accepted, each player i # o receives y*
and dayer a ohtains the value of the grand coaliti on minus the payments Z y .

Given that the dharaderistic functionisv(.), the final payment for player o in case of

rejedionis v(a) - Z b . Final payments for the other players will be the sum of the bid

170

b?% recéved and the outcome of the mechanism where the players are N\{ a}. In case of

acceptance of the propasal, final payment to any player i other than a is given by y% +
b, whereas player a obtains v(N) — Z y - Z b .

170 [E]
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In order to analyze the outcome of the bidding mechanism, the following well-
known charaderization d the Shapley value will be useful. The Shapley value of a player
I isthe average of the margina contribution d this player to the grand coalition and hs
Shapley values in the games where aplayer different from i has been removed. Or, more
formally,

AN) = (N ~v(N \{i}))ﬁgmm \{ip.

This equation hes been previously used by Maschler and Owen [16] and Hart and
Mas-Colell [12]. Furthermore, nae that it provides a cnvenient recursive definition o
the Shapley value. Defining @({i}) = v(i) for every i, the previous equation charaderizes
the Shapley value for every game (N, v).

Theorem 1.- The bidding mechanism implements the Shapley value of the zero-

monaonic game (N, v) in SFE.

Proof: The proof proceeds by induction onthe number of players n. The theorem holds
for k = 1, since for a one-player game, the value of his fand-aone adlition is the
Shapley value.

We now asaume that the theorem halds for k = n—1 and show that it also hdds for k
=n. We take N = {1,..., n}. We first prove that the Shapley value payoff is indeed an
equili brium outcome. We explicitly construct an SFE that yields the Shapley value & an
SFE outcome. Consider the foll owing strategies:

Att=1,eah payeri,i ON, annownces b} =@, (N)-¢ (N \{i}) , for every j #i.
Att=2, dayeri,i ON, if heisthe propocser, offers y‘j =@ (N\{i}) toeveryj#i.

Att=3, dayeri,i ON, if player j # i isthe proposer, accepts any offer greder than
or equal to @(N\{j}) and rejects any offer strictly smaller than @(N\{j}).

11



It is clear that these strategies yield the Shapley value for any player who is not the
propaser, since X% = b% + y% = @(N), for i # a. Moreover, given that following the

strategies the grand coaliti onis formed, the propaoser also oltains her Shapley value.

We now show that all net bids B' are equal to zero. Following the @ove mentioned
strategies,

B‘:JZ

b =30’ =3 [, (N) =g, (N\(D)= 5 [@(N) -a(N\(3D).

2 IE3]
By the balanced contributions property (see Myerson[19])
@ (N)=¢,(N{ih) =g (N)-a(N\{j})

and hence B' = 0.

To chedk that the previous grategies constitute an SFE nate, first, that the strategiesat t =
2 andt = 3 are best resporses as long as V(N) —v(i) = Z(pj (N\{i}) =v(N\{i}) . Inded,

IE
in the cae of rgection, a proposer i oltains v(i) and the players j # i play the bidding
mechanism where N\{i} is the set of players; by the induction argument, the outcome of
this game is the Shapley value vector (@(N\{i}))jz. Consider now the strategiesat t = 1. If
player i increases his total bid z b} , he will be dhasen as the proposer with certainty, but

IE3]
his payoff will deaease. If he decreases his total bid ancther player will propose, and
player i’s payoff would still equal his Shapley value. Finally, any change in his bids that
leaves the total bid constant will i nfluence the identity of the propacser but will not alter

player i’ s payoff.

We now show that any SPE yields the Shapey \alue. We proceed by a series of

clams:

Claim(a). Inany SFE, at t = 3, al players other than the proposer a accept the offer if
y% > @(N\{ a}) for every player i # a. Moreover, if y < @(N\{ a}) for at least somei #

a, then the offer is rejected.

12



Note that in the case of rgjedion, by the induction argument the payoff to aplayeri # ais
@(NY{ a}). We denate the last player that has to dedde whether to accept or rejed the
offer, at t = 3, by B. If the game reades player , i.e., there has been no pevious
rejedion, his optimal strategy involves accepting any offer higher than ¢(N\{ a}) and
rgjeding any offer lower than ¢(N\{ a}). The seaond to last player (denoted by [3-1)
anticipates the readion d player B. Hence if Y51 > g-1(N\{ a}) and y5 > @s(N\{ a}),
and the game reaches player -1, he will accept the offer. If Y51 < @s-2(N\{ a}) and y%p
> @(N\{ a}), he will reled the offer. If Y5 < @(N\{a}), player -1 is indifferent to
acacepting or rejecting any offer y“s-1, since he knows that player 8 is boundto rejed the
offer shoud the game reach him. In any case, the offer is rejeded. We can go backwards

using the same agument to prove daim (a).

Claim (b). If v(N) > v(N\{ a}) + v(a), the only SFE of the game that startsat t = 2 isthe
following: Att =2, dayer a offersy”; = @(N\{a}) to al i # a; at t = 3, every player i

# a accepts any offer y > @(N\{ a}) and rejeds the offer otherwise.

If v(N) = v(NY{ a}) + v(a) there exist SFE in addition to the previous one. Any set of
strategies where, at t = 2, the propaser offers y% < @(N{ a}) to a particular player j #
a and, at t = 3, the player j rejeds any offer y < g(N\{ a}), also constitutes an SFE.

In al the SFE of this subgame, the fina payoffs to payers a and i # a are
V(N) —v(N \{a}) - Z bi" and @(N\{ a}) + b , respectively.
e

It is easy to seethat the proposed strategies constitute an SFE. Suppase now that v(N) >
V(N\{ a}) + v(a). In that case, rgjection d the offers made by player a canna be part of
an SFE. In such a case, player a recdves v(a). She can improve her payoff by offering
@(N{ a}) + €/(n-1) to every i # a, with e < v(N) = v(NY{ a}) — v(a) and £ > 0 so that her
offers are acepted (by (a)). Therefore, an SFE requires acceptance of the propaosal. This
impliesy” = @(N\{ a}) for all i # a. However, an dffer such that y*; > @(N\{ a}) for some
] # a canna be part of an SFE, since a could still offer g(NY{ a}) + &/(n-1) to every i #

a, with £ <y% - g(N\{ a}) and £ > 0. These offers are acepted and o' s payoff increases.

13



Hence y% = @(N\{ a}) for al i # a at any SPE. Finaly, acceptance of the proposas

impliesthat, at t = 3, every agent i # a aacepts an offer if y% = @(N\{ a}).

If v(N) = v(N{a}) + v(a), then the propcser has to dffer at least Z(pj(N \{a}) =
IEZd

V(NY{ a}) for the offer to be accepted by every other player. By the same agument asin

the previous case, every equili brium in which the offer is accepted necessarily involves a

proposal of exadly @(N\{ a}) for every j # a. Given that the proposer obtains v(a) in case

of rgjection, any offer that leads to arejectionwould be an SPE aswell.

Notice that following the first strategies, the offer is accepted and the grand codlition is
formed, whil e the second strategies imply that the propaoser is left on her own. Given that
the last strategies are SFE only when v(N) = v(N\{ a}) + v(a), it is easy to check that the
final payoffs are those stated in the daim.
Claim (c). Inany SFE, B' = B for all i andj and henceB' = 0for all i in N.

Denate Q = {iONOB' = Max; (B)}. If Q = N the daim is stisfied since %B‘ =0.
Otherwise, we can show that any player i in Q can change his bids © as to decrease the
sum of payments in case he wins. Furthermore, these dhanges can be made withou
atering the set Q. Hence, he maintains the same probability of winning, and oliains a
higher expeded payoff. Take some player j1Q. Let player idQ change his grategy by
annourting: b'y = b + Sfor al kOQ andk #i; b'; = b - QO and b’y = b, for all 10Q
and| #j. Thenew net bidsare: B' = B' - & B¥*= B* - dfordl klQandk#i; B! =B +
0QOs and B' = B' for al 10Q and | #j. If dis snall enough, so that B' + 0QO5< B' -
J (remember that B' < B'), then B' < B" = B¥ for dl 10Q (including j) and for all k<.
Therefore, Q does not change. However, ; b, =0 < ; b, .

Claim (d). In any SFE, ead player’s payoff is the same regardlessof whois chosen as

the proposer.

14



We drealy know that all the bids B' are the same. If player i would strictly prefer to be
the propacser, he could improve his payoff by dlightly incressing one of his bids bi,-.
Similarly, if player i would strictly prefer that some other player j were the proposer, he
could improve his payoff by deaeasing bij. The fad that player i does not do so in

equili brium means that he isindifferent to the proposer’ sidentity.

Claim (e). In any SFE, the final payment received by each of the players coincides
with his Shapley value.

Note first that, if player i is the proposer, his fina payoff is given by:
x' =Vv(N) -v(N\{i}) —Zb} . On the other hand, if player j # i is the proposer, the final

IE3]
payoff of player i is given by: x’ =@ (N\{j}) +b’. Therefore, the sum of payoffs to

player i over al possble choices of the propaser is given by:

3 X/ =%(N>—v(N \{i}) —ZbEE*Z(cv.(N \{[}) +b)=

IEd IE]

VIN) =v(N\{i} + 5 @ (NA{j}) =B =v(N) -v(N\{i}) + 5 @ (N\{j}) =ngi(N),

JEA] JEA]
Moreover, since player i isindifferent to all possble choices of the proposer, we have X;
= for al j, k. Therefore X; = @(N) for al jinN. Q. E.D.

The theorem, in addition to showing that the mecdhanism indeed reali zes the Shapley
value, provides us with the explicit form of the eguili brium strategies. The eae by which
these strategies can be computed adds further credibility to ou results and helps in the
adual implementation d the medhanism. At equili brium, the bid of player i to player j is
@ (N) —¢ (N \{i}) . The balanced contributions property (seeMyerson [19]) implies that

the bid can also be expressed as @ (N) —¢@ (N \{ j}) , which isthe @ntribution d player |
to the Shapley value of player i. In particular, the bids are symmetric: player i bids for |

just as much as player j bids for i. Furthermore, the determination d the offers is aso
smple. If player i is the propcser, he offers @(N\{i}) to any other player j. The offer

reflects the outside options of the players other than the propaoser. Due to the recursive
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nature of our medanism, these options are given by their Shapley value in the game
without the propaser. Finally, ndicethat if the gameis grictly zero-monaonic*! not only
is the euili brium outcome unique, but the euili brium strategies are unique & well. This

eliminates problems of coordination among the players.

Aswe pointed ou in the informal description d the mecdhanism, Theorem 1 hdds if
propcser a olktains a payment u(a) lower than v(a) in case her offer isrgeded. Thisisa
more reasonable aumption in those drcumstances in which the techndogy is not
replicable. In such a cae V(S represents the payoff to the partnersin Sonly if they have
aacessto the techndogy. If u(i) < v(i) for every i in N, then the equili brium strategies are

unique even if the gameis zero-monaonic and nd strictly zero-monaonic.

A further advantage of the mechanism is that it is finite in contrast to the infinite
horizon medanisms that implement the Shapley value in stationary SFE. Moreover, at
the proposed equili brium strategies, only the first stage of the game is played, with the
propcsal made by the chasen propaser accepted by the other players.

We can modify our medianism by repladng the bidding stage with a randam
seledion d the propaser. Once the propacser is determined, the game proceeds smilarly
to ou medanism with the only difference being that in case of rgedion the new
proposer is randamly selected from the remaining players. This modified medanism
coincides with the Mas-Colell [18] and Hart and Mas-Colel [13] (with removal
probability equal to ore) construction. In this mechanism, howvever, the eguilibrium

payoffs yield the Shapley value in expeded terms only.

4 .- Implementation of the weighted Shapley values

The weighted Shapley value emerges out of considering non-symmetric divisions of
the surplus. It is defined in Shapley [25] by stipulating an exogenouwsly given system of
weights wOR,.. Each urenimity game is assgned a value by having agent i receive the

share w' / ;wj of the unit. The w-weighted Shapey \alue of a game is defined as the
]
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linear extension d this operator to the game. We denate by @,i(N) the w-weighted
Shapley value of player i in the woperative game (N, V).

A convenient way to express the weighted Shapley value is through the weighted
potential function P,(N) defined in Hart and Mas-Colell [12].1% The w-weighted paential
Pw(N) is the unigue function from the set of games into R that satisfies P,(®) = 0 and

;WiDiPW(N) =Vv(N), where D'P,(N) = Py(N) — P(N\{i}). This function satisfies:
WD'P(N) = @i(N). Furthermore,

Il . Il
P, (N) = —— [y(N) + 5 wR,(N (I
] |

2

The weighted Shapley value, as the Shapley value, can be alculated using a
reaursive procedure. The role played by this formulain the proof of Theorem 2 is smilar
to the role played by the reaursive formula tharaderizing the Shapley value in the proof
of Theorem 1:

Lemma 1- The weighted Shapley value of player i satisfies the equality:

1 O, : - L
@i (N) =—=— W (V(N) -V(N\{i})) + 3 W' @, (N\{I} .

;WJ O I C
1

Proaf.- The weighted Shapley value of player i satisfies:

@ (N) =W [R,(N) - R,(N \{ip] = W—D/(N)+ZWP(N\{J})—ZWP(N\{I})D—

JON JON |
iON

wE,vv(l\mzwl(wp (NALJD) =W P, (N\{i, i) =W P, (N \{i}) +W P, (N \{i, j}))%—

O
%S'VV(N)+;WI¢WI(N\{J}) w; goWJ(N\{|})D_
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1 0, : : O
<~ W VN)-V(N\{i}) +5 W q)wi(N\{J})% QED

%Wj O IE3

We will now indicae how to modify our original bidding mechanism in order to
obtain as an equili brium outcome aty weighted Shapley value. The only differenceisin
the construction d the weighted net bids B,,. The determination d net bids incorporates

the vedor of weights wOR",. by having B, = ZWib} - ZWikJ,i . Other than that

JEdl JEdl
change, the weighted bidding medhansm proceals like the bidding mechanism.
Intuitively we weigh each hid dfferently, according to the exogenowsly given weight of
the person making the bid.

Theorem 2.- The weighted bhidding mechanism implements the weighted Shapley value

of the zero-monaonic game (N, v) in SFE.
The proaof of Theorem 2 is smilar to the proof of Theorem 1.

Finally, nae that we can implement the weighted Shapley value in expeded terms
by using a simpler mechanism (similar to the Mas-Colell [18] and Hart and Mas-Colé€ll
[13], construction for the Shapley value). Given a system of weights wOR'..., we replace
the bidding stage by a randam choice of the propaser, where the probabili ty of player i to

be dhosen as the propaser equals w' / Zwi (rather than 1/n).

JUN
5.- General transferable utility games and the formation of coalitions

The only requirement we have imposed so far on the woperative environment is that
of zero-monaonicity. Zero-monaonic environments might still violate super-additivity.
Therefore the (weighted) bidding mechanism implements the (weighted) Shapley value
even in some non super-additi ve settings. This result however is not entirely satisfadory
since the outcome while coinciding with the Shapley value might not be “really”
efficient. The sum of payments would indeed equal Vv(N), yet v(N) might not be the
maximal payoff the players could oltain. Note that in nonsuper-additive environments it
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might be possble for the players to oltain a sum of payments that exceals v(N) by

splitti ng up into two ar more aliti ons.

One way to resolve this difficulty might be to consider the super-additive cver of
the environment. If we gply our medianism to the super-additive cover of the
environment rather than to the original environment, the equilibria outcomes would
coincide with the Shapley vaue of the super-additive wver. A possble disadvantage of
this approadh is that a player (the propaser) is able to colled rents from a walition o
which sheis not an adive member. In ather words, a player can ad as a "principa” for a

codliti on formed by other players.*®

One way to avoid the use of “principals’ is to modify our mechanism. The new
generdized hidding medhanism would generate a oaliti on structure in which propcsers
would receve (when there is no regjedion) just the value of the walition to which they
belong. In this medhanism the players would na only share the surplus but would aso
form coaliti ons in a sequential way. We show that at any SFE, the @aliti ons formed will
constitute an efficient coalition structure and the final payments of the players will
coincide with the Shapley value of the super-additive wver of the environment.

Before proceeding with the formal description d the generalized hidding mechanism
we introduce the following notation. The super-addtive (SA) cover of a moperative

game in charaderistic form (N, v), is denoted by (N, V). The value V(S), for SN, is
defined by: V(S) = Maxn{;v(S) | 7 isapartitionof S}.

We denate the Shapley value of player i in the SA cover of (N, v) by ©;(N), and
similarly for the values ©;(S) of subsets Sof N.

Weknow that: @, (N) = %(\/(N) _V(N\{iY) )+% 5 0, (N\().

IEd

A partition rrsuch that V(N) = Z v(S) iscdled an efficient partitionfor N.

St
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The generalized hidding mechanism (GBM) is smilar to the bidding mechanism.
The only difference is that in the GBM, the propaser, in addition to dffering a vector of
payments to all the other players, aso chooses a @alition she wants to form and ke a
member of. Hence an dffer by the propaser consists of a payments vector and a coaliti on.
The offer is accepted if al the other players agree In case of acceptance the aalitionis
formed, the proposer collects the value of that coalition and the players outside the
codlition proceal to play the same game again among themselves. In the cae of rgedion

all the players other than the propacser play the same game again.

Formally, if there is only one player {i}, she obtains the value of the stand-alone
codliti on. Given the rules of the game when played by at most n—1 players, the game for

N ={1,..., n} players proceeds as foll ows:
t = 1: Each player iJN makes bids b, in Rfor every j #i.
Player a is chosen asin the bidding mechanism. She pays b’ to every player i # a.

t = 2: Player a chooses a dlition S, with aJS, and makes an offer y%; in Rto every

playeri # a.

t = 3: The players other than a, sequentialy, either accept or reject the offer. If an
agent rgjectsit, then the offer isrgjected. Otherwise, the offer is accepted.

If the offer is accepted, each player i # a receives y* and dayer a receives the value of

the aoaliti on S; minus the payments Z y[ . After this, playersin N\S, proceed to play the

12a
GBM again among themselves. (Therefore, final payment to a player i0S,\{a} is Yy +
b%, player o receives v(S,) - Z yo - Zbi" , and the final payment for a player iIN\S,

[Ee] [Ee]

will be the sum of the bid b, the offer y“, and the outcome of the GBM where the
players are N\S;.) On the other hand, if the offer is rejected, all players other than a
proceal to play the GBM where the set of players is N{a} and dayer a receves the

vaue of her stand-alone dliti on.
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Theorem 3.- The generalized bidding mechanism implements the Shapley value of the

SA cover of the game (N, V).

Proof: The aguments, in part, are very similar to those used in Theorem 1, thus we
emphasize just the new feaures of this proof and aherwise rely on the reasoning

employed in Theorem 1.

It is easy to seethat the theorem halds for k = 1. We assume that it holds for k = n—-1 and

then consider the foll owing strategies:
Att=1,ead payeri,i 0N, annownces b’ = ©;(N) — G;(N\{i}), for every j # 1.

Att =2, dayeri,i ON, if sheisthe propcser, chocses a malition § such that § [
Argmaxson {V(S) + V(N\S) O in § and dfers yij =0,(N\{i}) toeveryj O SYi} and

Yy, =0,(N\{i}) —©,(N\S) toeveryj O S.

Att =3, dayeri, i ON, if playerj # i isthe proposer andi O S, accepts any offer
greder than o equa to ©;(N\{j}) and rgjects it otherwise. If player | # i is the proposer
andi O §, player i accepts any offer greater than or equal to ©;(N\{j}) — Gi(N\ §) and

rejeds it otherwise.

Foll owing these strategies, the propcser seleds a @alition S; that is part of an efficient
partition** Also, the induction argument ensures that, in the game that follows among
the players in N\S,, player i 00 S, will obtain ©;(N\ &,). It is then easy to see that the
previous grategies yield ©;(N) to any player i.

To prove that the previous grategies constitute an SFE, nae, first, that the strategy at t =
3 is abest resporse for any player different from the proposer by the same agument we
used in Theorem 1. At t = 2, given the regedion criteria used by the other players, if
player i isthe proposer, she dhoases asubset § that maximizes:

MS)= 5 O,(NMD) - [0, (N -0, (N\S)] =v(S) + VNS) - V().

oS}
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Therefore, the proposed strategy is optimal. Finally, an argument similar to the one in the
proof of Theorem 1 demonstrates the optimality of the strategiesat t = 1.

To show that any SFE yields the Shapley value, we proceed by a series of clams.
We dtate the daims withou proof, since they are similar to those in Theorem 1. To
simplify notation, we dencte the “effective offer” to player i # a in stage 2, when payer
a isthe propeser by Z%, and defineit as 2% = y% if | O S{a} and 2% = y% + Oi(N\S,) if i
0 S. By the induction argument, the effective offer is the total payment (withou taking
into acount the bid aready received) that a player will recave (at equili brium) if the
offer is accepted.

Claim (a). In any SFE, at t = 3, any player j # a accepts the offer if Z°% is drictly
greaer than ©;(N\{ a}) for every player i # a. Moreover, if Z% < ©;(N\{ a}) for at

least somei # a, then the offer is rejected.

Claim (b). If the aodlition {a} is nat part of any efficient partition, then in any SFE
of the game that starts at t = 2, a will choose acodlition S, that is part of an
efficient partition. Furthermore, player a will annource offers sich that z% =
Oi(NY{ a}) for any player i # a . Findly, a t = 3, every player i # a accepts any
offer such that 2% > ©,(N\{ a}).

If the aoalition {a} is part of any efficient partition, there exist other equili bria in
addition to the previous ones. Any set of strategies where, at t = 2, the proposer
makes offers uch that 2% < ©;(N\{ a}) to a particular player j # a and, at t = 3, the
player j rejeds any effective offer lessthan or equal to ©;(N\{ a}), aso constitute an
SFE.

In al the SFE of this subgame, the payoffs (taking into accourt the ontinuation o
the game dter S, has been formed) to payers a and i # a are V(N) — V(N\{ a}) -

3 by and ©(NY a}) +b°; , respectively.

J2a

(Noticethat foll owing both types of strategies an efficient partitionisformed.)
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Claim(c). Inany SFE, B =0forall i in N.

Claim (d). In any SFE, ead player’s payoff is the same regardlessof whois chasen

asthe propaoser.

Claim (e). In any SFE, the final payment received by each o the players coincides
with his Shapley value in the SA cover. Q.E.D.

Theorem 3 shows that when facing environments where forming the grand coaliti on
might not be dficient, it is possble to employ a generalized version d our origina
bidding medanism that all ows both that an efficient partition can be formed and that the
surplus can be shared in a ‘“reasonable” way. If the game is super-additive, the
generdized version yields the same outcome & the bidding mechanism. It is however
important to ndice that, if the game is not super-additive but the grand coalition is
efficient, this coalition is formed under both medhanisms althowgh the sharing of the
surplus will be different. The reason is that the Shapley value of the super-additive wver
usually does nat coincide with the Shapley value of the game if the game is not super-
additive.

Our GBM provides suppat for the use of the Shapley value of the SA cover as the
generdization d the Shapley value for games in which it is efficient to form coaliti on
structures which are different from the grand coalition. The GBM implements the
Shapley value of the SA cover by simultaneously providing a bidding and coaliti on
formation game. To the best of our knowledge, this is the first paper that suppats this
solution concept. Aumann and Dréze [1] study games with a (given) codliti on structure
and dfine avalue that assgns to each player his Shapley value in the aadlition he
belongs to. Under this concept, the payoff to any player does not depend upon Is
contribution to coaliti ons other than his coaliti on. The Shapley value of the super-additive
cover takes into acourt not only the @ntribution o a player to the wadlition he belongs

toin an efficient structure, but also his potential contribution to any other coaliti on.®
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6.- Conclusion

The objed of this paper was to construct a simple noncooperative medcianism to
redize asharing of the surplus in a coperative ewvironment. The mechanism we use
basicdly consists of two dstinct stages of play: a bidding stage, at the end d which a
winner is determined, followed by a propcsal stage where the winner offers a sharing of
the surplus. In the cae where the proposal is rejected, the same game is played again by
the players except for the propaser. We show that the payoff outcome of the subgame
perfect equili bria of this game dways coincides with the Shapley value of the game.
Moreover, the strategies played by the players at equili brium are simple and retural. We
also showed that a natura modificaion d the mechanism implements the weighted
Shapley value. Finally, we have introduced a simple generalization d the bidding
mechanism that handles stuations where the grand coalition might not be efficient. By
playing the game, the players form, at equili brium, an efficient coaliti on structure and
share the surplus acording to the Shapley value of the super-additive cver of the

environment.

These mecdhanisms provide strong suppat for applying the Shapley vaue to
situations where a@operation is neaded to oltain an efficient outcome. It might be dso

used for avariety of cost all ocaion, revenue sharing, a partnership dsslution problems.

The general approad taken in this paper may yield ways to provide non-cooperative
founditions for other cooperative solution concepts for transferable utility games or for
cost-sharing methods. However, the extension d our approach to nontransferable utili ty
games is problematic. There eist several extensions of the Shapley value to non
transferable utility games proposed by Harsanyi [9], Shapley [26], and Maschler and
Owen ([16],[17]). Dagan and Serrano [3] have shown that randamnessis a necessry
comporent in a medanism designed to implement any of these extensions. Since the
element of randamnessin ou mecdhanism (i. e., the tie-breking rule) is inconsequential
to proving our results, it seans that the gproach taken in this paper would fail to

implement the existing extensions of the Shapley value.
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! For aniceintroduction to the Shapley value and, in particular, its appli cations, see for example Roth [23).

2 Crawford [2] also made use of a bidding stage in a procedure to generate Pareto-efficient egalitarian-

equivalent allocations. The discrete time non-cooperative coalitional bargaining game proposed by Evans
[6] to implement the cre in subgame perfed equilibria dso introduced simple bidding by the players for
the right to make an offer.

% The equili brium strategies are unique if the game is drictly zero-monotonic. Otherwise, there might be
other equili briain addition to this one, but they till yield the Shapley value.

* They also show that for NTU games, the limit of the SSPE (as the probability of removal becomes small)

isthe mnsistent value, a solution concept that was introduced by Maschler and Owen ([16], [17]).

® Winter [28] also required either subgame mnsistency or strategic equilibria. Dasgupta and Chiu [4] also
developed an implementation for general games in charaderistic form if there is an (external) planner who
isable to impaose asystem of transfers and taxes.

® Hart and Mas-Colell [12] also extended their results to weighted Shapley values.

" If the game is super-additive, the grand codliti on is an efficient structure and the Shapley value of the
super-additive cover coincides with the Shapley value. Therefore, the final SPE outcome of the generalized

bidding mechanism is the same &s the final SPE outcome of the bidding mechanism.

8 Weuse @N) instead of @N, v) for notational simplicity.

° Note that the atual sequence of players is inconsequential. The fad that players respond in sequence
rather than simultaneoudly is crucia for ruling out “bad” equilibria. In bad equili bria, there ae several
players rejeding the proposal since whenever there is at least one rejedion, a rejedion by any other player
isoptimal (the proposal will be rejeded independently of his dedsion).

9 Our results hold for any spedfication of the outside value for the propaser as long as she obtains a

payment less or equal to the value of her stand-alone aalition. See Sedion 7 in Hart and Mas-Colell [13]
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for an interpretation of a situation in which the proposer would oltain zero if the offer is rejeded, and for
further discussion on this extension.
" We say that agame is grictly zero-monotonic if V(S) + v({i}) < v(SZ{i}) for any subsets SON with iC)S

and S# @,

12 Again, we omit the mnstant v and write for short @,i(N) or P,(N) instead of @.(N, v) or P.(N, V).

13 See PérezCastrill o [21] and PérezCastrillo and Wettstein [22] for the use of principas to redize

cooperative outcomes.

14|t can be eaily shown that V(N) = Maxgn {M(S) + V(N\S) O a in §}, for any player a in N, hence when
the proposer chooses the best possble walition to be amember of, she is choasing a @adliti on that forms
part of an efficient partiti on.

15 Owen [20] and Hart and Kurz [10] also propose a ®alition structure value to every game and every
codliti on structure. However, in their approad, the aaliti on structure serves only as a bargaining tod to

increase the payoff of the members of the aoaliti ons. At the end, al the playersjoin the grand coaliti on.
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