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Abstract

We propose a simple mechanism to determine how the surplus generated by

cooperation is to be shared in zero-monotonic environments with transferable utili ty. The

mechanism consists of  a bidding stage followed by a proposal stage. We show that the

subgame perfect equili brium outcomes of this mechanism coincide with the vector of the

Shapley value payoffs. We extend our results to implement the weighted Shapley values.

Finally, we generalize our mechanism to handle arbitrary transferable utili ty

environments. The modified mechanism generates an eff icient coaliti on structure, and

implements the Shapley values of the super-additive cover of the environment.

Keywords: Shapley value, Implementation, Simple mechanism, Coaliti on formation.

Journal of Economic Literature Classification Numbers: C71, C72
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1.- Introduction

The Shapley value has long been a central solution concept in cooperative game

theory. It was introduced in Shapley [24] and was seen as a reasonable way of

distributing the gains of cooperation among the players in the game. It is the most studied

and widely used single-valued solution concept in cooperative game theory. It has

generated various axiomatizations that demonstrate its fairness and consistency properties

(see, for instance, Myerson [19], and Hart and Mas-Colell [12], and has been used to

impute costs and benefits as in cases of airport runways, phone networks, and politi cal

situations.1

A natural question concerning the Shapley value is whether the agents can reach it

through non-cooperative behavior. In other words, is it possible to find a non-cooperative

framework that gives rise to the Shapley value as the result of equili brium behavior? This

is part of the Nash program, which tries to provide a non-cooperative foundation for

cooperative solution concepts. Several papers have addressed this question in different

ways. We will comment on them later in this introduction.

In this paper, we provide a simple non-cooperative game whose outcome always

coincides with the Shapley value for zero-monotonic games in characteristic form. We

call this game the "bidding mechanism". The basic idea of the bidding mechanism is quite

simple. We let one of the players make a proposal to each of the other players, a proposal

that will either be accepted by all the other players (in which case the proposal becomes

final) or rejected. In the latter case, the proposer is now on his own and the rest of the

players play the same game again. If the proposal is accepted, the proposer can form the

grand coaliti on of all the players and collect the value generated in exchange for the

proposed payments to the rest of the players.

The question of how the proposer is determined is, of course, central to the design of

the bidding mechanism. Indeed, in some games, being the proposer could prove to be

beneficial, while in other games it is preferable not to be the proposer. Hence, before the

proposal stage is reached, the players will bid to become the proposer, where bids can be

positive or negative.2 The player with the highest “net bid” (the difference between the



4

sum of the bids he makes to the others minus the sum of the bids the others make to him)

becomes the proposer and, before proceeding to the proposal stage, pays the bids to the

other players. We will show that in the subgame perfect equili bria (SPE) of the bidding

mechanism a proposer is determined who will make a proposal that will be accepted by

the others. For the proposer, the difference between the value of the grand coaliti on and

the payments and bids paid is her Shapley value. For each of the other players as well , the

sum of the bid received plus the accepted proposal is his Shapley value.3

Several features of our game make it attractive and different from previous non-

cooperative approaches to the Shapley value. First, the players obtain the Shapley value

in every equili brium outcome of the game; that is, the implementation is not in expected

terms. Also, the game does not imply any a priori randomization that imposes some order

on the moves of the players. By adjusting his bids, every player can determine whether he

or someone else will be the proposer. Second, the rules of the game are very natural and

do not rely on "random" meetings or probabiliti es that are close to the actual definition of

the Shapley value. Hence, the implementation is less "obvious", and provides further

support for the use of the Shapley value. Third, the game is finite. Moreover, at

equili brium, it ends in one stage if the game is strictly zero-monotonic (a stage includes

three periods of play: bidding, proposing, and accepting or rejecting). Fourth, the

strategies played by the players at equili brium are simple and intuitive. Furthermore, even

though the Shapley value plays no role in specifying the rules of the game, the

equili brium strategies are intimately related to the Shapley value itself.

Implementing the Shapley value is not straightforward. For example, Thomson [27]

focused on the problems created by strategic behavior and showed that an agent can

obtain a better outcome by unilaterally misrepresenting his utili ty function. Several

authors have attempted to realize the Shapley value and overcome such problems.

Gul ([7]  and [8]) analyzed a transferable utili ty economy where random meetings

between two agents occur. At each meeting, a randomly chosen party makes an offer to

his partner. Acceptance of the offer means that the proposer buys the partner's resources.

If the offer is rejected, the meeting dissolves and both agents stay in the market. For

strictly convex games, as the time interval between meetings becomes arbitrarily small ,
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the expected payoff of each player at an eff icient stationary subgame perfect Nash

equili brium (SSPE) converges to his Shapley value. If strict convexity is replaced by

strict superadditivity the convergence result holds for those eff icient SSPE that entail

immediate agreement (Gul [7] and Hart and Levy [11]).

Evans [5] showed that a simpli fied version of Gul’s result follows from the

following characterization of the Shapley value. Consider a cooperative game and an

associated feasible payoff vector. Assume that players are randomly split i nto two groups

and a representative player is chosen also at random from each group. These two players

bargain with each other over how to split the total resources available to all of the players.

Following the bargaining process each of the two players has to pay out of his share to

the members of his group according to the pre-specified payoff vector.  This procedure

yields an expected payoff to any player that depends on the initial payoff vector, the

random partition mechanism and the solution concept applied to two-person bargaining

problems. The initial payoff vector is called consistent if it equals the expected payoff

vector. If all partitions are equally li kely and the bargaining solution splits the surplus

equally, the Shapley payoff vector is the unique consistent payoff vector.

Hart and Mas-Colell [13] proposed a different natural bargaining procedure that

supports the Shapley value (as well as the Nash bargaining solution for pure bargaining

problems). In their paper, the proposers are also chosen at random but the meetings are

multil ateral. Agreement requires unanimity. Disagreement puts the proposer in jeopardy,

since there is a given probabili ty that he may be removed from the game after a rejection.

As the probabili ty of removal becomes small , the SSPE of the procedure yield the

Shapley value.4 When the probabili ty of removal is one, Hart and Mas-Colell [13] as well

as Mas-Colell [18] showed that the expected payoff of any player coincides with his

Shapley value. Their mechanism is then the same as our mechanism with the bidding

stage replaced by a random determination of the proposer. Krishna and Serrano [15]

showed further that for removal probabiliti es close to one there is a unique SPE of the

game proposed by Hart and Mas-Colell [13] that yields the Shapley value payoff vector

in expectation.
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In a different spirit, Hart and Moore [14] proposed a game in which agents are lined

up and each agent makes an offer to the following agent, where the offer is a contract that

may specify what offer this agent has to make to the agent after him. This game

implements the Shapley value in SPE. Winter [28] and Dasgupta and Chiu [4] proposed

demand commitment games in which each player can either make a demand to the

following player or form a coaliti on satisfying the demands of some of the players

preceding him. For strictly convex games, these mechanisms implement the Shapley

value in SPE.5 In these three works, the implementation is in expected terms since in the

first stage of the game the order of the players (or the identity of the first player in

Winter, 1994) is randomly chosen, each possible choice having the same probabili ty.

A solution concept closely related to the Shapley value is the weighted Shapley

value (Shapley [25]). We also show that a very natural and simple modification of the

bidding mechanism implements the weighted Shapley values.6

Finally, we generalize the bidding mechanism to deal with all  transferable utili ty

environments. In the generalized bidding mechanism, the proposer makes a proposal to

each of the other players and, simultaneously, chooses the coaliti on she wants to form. If

all the agents accept the proposal and the coaliti on, the coaliti on is formed, and the rest of

the players proceed to play the same game among themselves (after having received the

proposed payment by the proposer). In the case of rejection, the proposer is on her own

and the remaining players play the same game again. In any SPE of this mechanism, the

proposer makes a proposal that is accepted. The payoff of the proposer is the difference

between the value of the coaliti on she formed and the payments and bids she made. The

payoff to any player in the coaliti on is the sum of the bid and the proposal accepted. The

payoff to players outside the coaliti on is the sum of the bid, the proposal accepted, and

their payment in the continuation game. Hence, the SPE of this mechanism determine a

coaliti on structure and a sharing of the surplus generated under this particular structure.

We show that at the SPE of the generalized bidding mechanism the players form an

eff icient coaliti on structure. Moreover, the final payments of the players coincide with the

Shapley values of the super-additive cover of the game.7



7

The paper is organized as follows. Section 2 presents the basic cooperative

definitions and Section 3 introduces the bidding mechanism and shows that it implements

the Shapley value for zero-monotonic games. In Section 4 we extend our results by

implementing the set of weighted Shapley values. In Section 5 we define the generalized

bidding mechanism and show that it implements the Shapley value of the super-additive

cover of the game. The paper concludes with a brief summary and discussion of further

research.

2.- The cooperative model

Consider a cooperative game in characteristic form (N, v), where N = {1,…, n} is

the set of players and v: 2N → R is a characteristic function satisfying v(Φ) = 0 where Φ is

the empty set. For a coaliti on S⊆N, v(S) represents the total payoff that the partners in S

can jointly obtain if this coaliti on is formed. We say that the cooperative game (N, v) is

zero-monotonic if v(S) + v({ i} ) ≤ v(S∪{ i} ) for any subset S⊆N with i∉S. In a zero-

monotonic game there are no negative externaliti es when a single

 player joins a coaliti on. In sections 2 to 4 of this paper, we restrict our analysis to zero-

monotonic games.

We denote by φ(N)∈Rn the Shapley value of the cooperative game (N, v) which is

defined by: 8

( ) ( )[ ]∑
⊆

−∪
−−

=
}/{

)(}{
!

!1!
)(

iNS
i SviSv

n

SnS
Nφ  for all i∈N,

where S denotes the cardinali ty of the subset S. The Shapley value can be interpreted

as the expected marginal contribution made by a player to the value of a coaliti on, where

the distributions of coaliti ons is such that any ordering of the players is equally li kely.

Also, Shapley [24] characterized the value as the only function that satisfies symmetry,

eff iciency, a null player axiom, and additivity.
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Given the cooperative game (N, v) and a subset S⊆N, we define the game (S, vS) by

assigning the value vS(T) ≡ v(T) to every T⊆S. We write (S, v) instead of (S, vS) for

notational convenience. Similarly, φ(S)∈RS denotes the Shapley value of the game (S,

v).

3.- The bidding mechanism

In this section, we design a non-cooperative game, which we call the bidding

mechanism. The equili brium outcomes of this mechanism always coincide with the

Shapley value of the cooperative game (N, v) and thus this mechanism implements the

Shapley value in subgame perfect equili bria. We propose a way to split the surplus of the

cooperation that is based upon the idea that only one of the players will make a proposal

to each of the other players. We invoke a notion of consistency in order to determine the

outcome of the game if the proposal is rejected. Following a rejection the players other

than the proposer play the same game again. Proceeding in this way, the payoff of an

agent is sensitive not only to whether or not he is the proposer, but also to the precise

identity of the proposer. Hence, in order to provide each player with the same strategic

possibiliti es, each player can, by his bid, directly influence the choice of the proposer. An

intriguing feature of the mechanism is that the Shapley value is not the outcome of just

one decision, but rather emerges as the cumulative outcome of both the proposal and the

bid.

The mechanism is defined recursively. If there is only one player, then he just

obtains the value of his stand-alone coaliti on. It is also useful to describe the bidding

mechanism with only two players. It is a three-stage game. First, each player makes a bid

to the other. The proposer is then chosen as the player making the highest bid. If the bids

are equal the proposer is chosen randomly. The proposer pays the promised bid to her

partner. In the second stage, the proposer makes an offer to the other player for him to

join her. In the final stage, the player who is not the proposer either accepts or rejects the

offer. If he accepts, the grand coaliti on is formed and the proposer collects the value

generated by it while paying the offer to the other player. If the proposal is rejected each
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player is left on his own, and hence each obtains the value of the stand-alone coaliti on

(minus or plus the bid paid previously). Once we know the rules of a two-player bidding

mechanism, we can define the mechanism for three players, and so on. Assuming that we

know the rules of the bidding mechanism when played by at most n−1 players, we now

define the game for n players.

First, each of the players makes a bid to each of the other players. To determine the

identity of the proposer, we define the “net bid” of a player as the difference between the

sum of the bids he makes to the others minus the sum of the bids the others make to him.

The net bid of a player tries to measure the difference between the incentives of this

player to become the proposer (what he bids) and what the others are ready to pay him for

each of them to become the proposer (what the others bid to him). The player with the

highest net bid is chosen to be the proposer. If several players make the highest net bid,

the proposer is chosen randomly among them. Once “named” a proposer, she proceeds to

pay the bids to the other players. Second, the proposer makes an offer to each of the other

players to join her. Finally, each of the other players sequentially either accepts or rejects

the offer.9 The offer is accepted, and all the players join in the grand coaliti on, only if all

of them accept the offer. In this case, the proposer obtains the value of the coaliti on,

paying to the others the promised offers. If the offer is rejected, the proposer is on her

own, obtaining the value of her stand-alone coaliti on (minus the bids she has already

paid).
10 The rest of the players keep their bids and play the same game with n−1 players.

It is important to notice that the element of randomness in the determination of the

proposer is inconsequential to our proofs. Our results still hold if ties in net bids are

broken deterministically as would be the case if the highest indexed player were chosen

as the proposer. Randomness is introduced only in order to prevent biased treatment of

the participating players. We will return to this issue in the conclusion, when we will

discuss possible extensions of our mechanism.

We now describe the bidding mechanism more formally. Suppose first that there is

only one player { i}. Then, this player obtains the value of the stand-alone coaliti on (i.e.,

v(i)).
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Suppose now that we know the rules of the bidding mechanism when played by at

most n−1 players. The bidding game for a set of players N = {1,..., n} proceeds as

follows:

t = 1: Each player i∈N makes bids bi
j in R for every j ≠ i. Hence, at this stage, a

strategy for player i is a vector (bi
j)j≠i in Rn−1.

For each i∈N, we let ∑∑
≠≠

−=
ij

j
i

ij

i
j

i bbB . Let α = argmaxi(B
i) where, in the case of a non-

unique maximizer, α is randomly chosen among the maximizing indices. Once she has

been chosen, player α pays bα
i to every player i ≠ α.

t = 2: Player α makes an offer yα
j in R to every player j ≠ α. Therefore, at this stage a

strategy for player i is a vector (yi
j)j≠i in Rn−1 that he will follow if he is chosen to be the

proposer.

t = 3: The players other than α, sequentially, either accept or reject the offer. If a

rejection is encountered, we say the offer is rejected. Otherwise, we say the offer is

accepted.

If the offer is rejected, all players other than α proceed to play the bidding

mechanism where the set of players is N\{ α} and player α obtains the value of her stand-

alone coaliti on. On the other hand, if the offer is accepted, each player i ≠ α receives yα
i

and player α obtains the value of the grand coaliti on minus the payments ∑
≠α

α

i
iy .

Given that the characteristic function is v(.), the final payment for player α in case of

rejection is ∑
≠

−
α

αα
i

ibv )( . Final payments for the other players will be the sum of the bid

bα
i received and the outcome of the mechanism where the players are N\{ α}. In case of

acceptance of the proposal, final payment to any player i other than α is given by yα
i +

bα
i, whereas player α obtains ∑∑

≠≠

−−
α

α

α

α

i
i

i
i byNv )( .
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In order to analyze the outcome of the bidding mechanism, the following well -

known characterization of the Shapley value will be useful. The Shapley value of a player

i is the average of the marginal contribution of this player to the grand coaliti on and his

Shapley values in the games where a player different from i has been removed. Or, more

formally,

( ) .}){\(
1

}){\()(
1

)( ∑
≠

+−=
ij

ii jN
n

iNvNv
n

N φφ

This equation has been previously used by Maschler and Owen [16] and Hart and

Mas-Colell [12]. Furthermore, note that it provides a convenient recursive definition of

the Shapley value. Defining φi({ i} ) = v(i) for every i, the previous equation characterizes

the Shapley value for every game (N, v).

Theorem 1.- The bidding mechanism implements the Shapley value of the zero-

monotonic game (N, v) in SPE.

Proof: The proof proceeds by induction on the number of players n. The theorem holds

for k = 1, since for a one-player game, the value of his stand-alone coaliti on is the

Shapley value.

We now assume that the theorem holds for k = n−1 and show that it also holds for k

= n. We take N = {1,..., n}. We first prove that the Shapley value payoff is indeed an

equili brium outcome. We explicitly construct an SPE that yields the Shapley value as an

SPE outcome. Consider the following strategies:

At t = 1, each player i, i ∈ N, announces }){\()( iNNb jj
i
j φφ −= , for every j ≠ i.

At t = 2, player i, i ∈ N, if he is the proposer, offers }){\( iNy j
i
j φ=  to every j ≠ i.

At t = 3, player i, i ∈ N, if player j ≠ i is the proposer, accepts any offer greater than

or equal to φi(N\{ j} ) and rejects any offer strictly smaller than φi(N\{ j} ).
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It is clear that these strategies yield the Shapley value for any player who is not the

proposer, since xα
i = bα

i + yα
i = φi(N), for i ≠ α. Moreover, given that following the

strategies the grand coaliti on is formed, the proposer also obtains her Shapley value.

We now show that all net bids Bi are equal to zero. Following the above mentioned

strategies,

( ) ( ).}){\()(}){\()( ∑∑∑∑
≠≠≠≠

−−−=−=
ij

ii
ij

jj
ij

j
i

ij

i
j

i jNNiNNbbB φφφφ

By the balanced contributions property (see Myerson [19])

 }){\()(}){\()( jNNiNN iijj φφφφ −=−

and hence Bi = 0.

To check that the previous strategies constitute an SPE note, first, that the strategies at t =

2 and t = 3 are best responses as long as }){\(}){\()()( iNviNivNv
ij

j =≥− ∑
≠

φ . Indeed,

in the case of rejection, a proposer i obtains v(i) and the players j ≠ i play the bidding

mechanism where N\{ i} is the set of players; by the induction argument, the outcome of

this game is the Shapley value vector (φj(N\{ i} ))j≠i. Consider now the strategies at t = 1. If

player i increases his total bid ∑
≠ij

i
jb , he will be chosen as the proposer with certainty, but

his payoff will decrease. If he decreases his total bid another player will propose, and

player i’s payoff would still equal his Shapley value. Finally, any change in his bids that

leaves the total bid constant will i nfluence the identity of the proposer but will not alter

player i’s payoff .

We now show that any SPE yields the Shapley value. We proceed by a series of

claims:

Claim (a). In any SPE, at t = 3, all players other than the proposer α accept the offer if

yα
i > φi(N\{ α} ) for every player i ≠ α. Moreover, if yα

i < φi(N\{ α} ) for at least some i ≠

α, then the offer is rejected.
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Note that in the case of rejection, by the induction argument the payoff to a player i ≠ α is

φi(N\{ α} ). We denote the last player that has to decide whether to accept or reject the

offer, at t = 3, by β. If the game reaches player β, i.e., there has been no previous

rejection, his optimal strategy involves accepting any offer higher than φβ(N\{ α} ) and

rejecting any offer lower than φβ(N\{ α} ). The second to last player (denoted by β−1)

anticipates the reaction of player β. Hence, if yα
β−1 > φβ−1(N\{ α} ) and yα

β > φβ(N\{ α} ),

and the game reaches player β−1, he will accept the offer. If yα
β−1 < φβ−1(N\{ α} ) and yα

β

> φβ(N\{ α} ), he will reject the offer. If yα
β < φβ(N\{ α} ), player β−1 is indifferent to

accepting or rejecting any offer yα
β−1, since he knows that player β is bound to reject the

offer should the game reach him. In any case, the offer is rejected. We can go backwards

using the same argument to prove claim (a).

Claim (b). If v(N) > v(N\{ α} ) + v(α), the only SPE of the game that starts at t = 2 is the

following: At t = 2, player α offers yα
i = φi(N\{ α} ) to all i ≠ α; at t = 3, every player i

≠ α accepts any offer yα
i ≥ φi(N\{ α} ) and rejects the offer otherwise.

If v(N) = v(N\{ α} ) + v(α) there exist SPE in addition to the previous one. Any set of

strategies where, at t = 2, the proposer offers yα
j ≤ φj(N\{ α} ) to a particular player j ≠

α and, at t = 3, the player j rejects any offer yα
j ≤ φj(N\{ α} ), also constitutes an SPE.

In all the SPE of this subgame, the final payoffs to players α and i ≠ α are

∑
≠

−−
α

αα
j

jbNvNv }){\()( and φi(N\{ α} ) + bα
i , respectively.

It is easy to see that the proposed strategies constitute an SPE. Suppose now that v(N) >

v(N\{ α} ) + v(α). In that case, rejection of the offers made by player α cannot be part of

an SPE. In such a case, player α receives v(α). She can improve her payoff by offering

φi(N\{ α} ) + ε/(n−1) to every i ≠ α, with ε < v(N) − v(N\{ α} ) − v(α) and ε > 0 so that her

offers are accepted (by (a)). Therefore, an SPE requires acceptance of the proposal. This

implies yα
i ≥ φi(N\{ α} ) for all i ≠ α. However, an offer such that yα

j > φj(N\{ α} ) for some

j ≠ α cannot be part of an SPE, since α could still offer φi(N\{ α} ) + ε/(n−1) to every i ≠

α, with ε < yα
j − φj(N\{ α} ) and ε > 0. These offers are accepted and α’s payoff increases.
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Hence, yα
i = φi(N\{ α} ) for all i ≠ α at any SPE. Finally, acceptance of the proposals

implies that, at t = 3, every agent i ≠ α accepts an offer if yα
i ≥ φi(N\{ α} ).

If v(N) = v(N\{ α} ) + v(α), then the proposer has to offer at least ∑
≠α

αφ
j

j N }){\(  =

v(N\{ α} ) for the offer to be accepted by every other player. By the same argument as in

the previous case, every equili brium in which the offer is accepted necessarily involves a

proposal of exactly φj(N\{ α} ) for every j ≠ α. Given that the proposer obtains v(α) in case

of rejection, any offer that leads to a rejection would be an SPE as well .

Notice that following the first strategies, the offer is accepted and the grand coaliti on is

formed, while the second strategies imply that the proposer is left on her own. Given that

the last strategies are SPE only when v(N) = v(N\{ α} ) + v(α), it is easy to check that the

final payoffs are those stated in the claim.

Claim (c). In any SPE, Bi = Bj for all i and j and hence Bi = 0 for all i in N.

Denote Ω = { i∈NBi = Maxj (Bj)}. If Ω = N the claim is satisfied since 0=∑
∈Ni

iB .

Otherwise, we can show that any player i in Ω can change his bids so as to decrease the

sum of payments in case he wins. Furthermore, these changes can be made without

altering the set Ω. Hence, he maintains the same probabili ty of winning, and obtains a

higher expected payoff . Take some player j∉Ω. Let player i∈Ω change his strategy by

announcing: b’ i
k = bi

k + δ for all k∈Ω and k ≠ i; b’ i
j = bi

j − Ωδ; and b’ i
l = bi

l for all l∉Ω

and l ≠ j. The new net bids are: B’ i = Bi − δ; B’k= Bk − δ for all k∈Ω and k ≠ i; B’ j = Bj +

Ωδ and B’ l = Bl for all l∉Ω and l ≠ j. If δ is small enough, so that Bj + Ωδ < Bi −

δ (remember that Bj < Bi), then B’ l < B’ i = B’k for all l∉Ω (including j) and for all k∈Ω.

Therefore, Ω does not change. However, ∑∑
≠≠

<−
ih

i
h

ih

i
h bb δ .

Claim (d). In any SPE, each player’s payoff is the same regardless of who is chosen as

the proposer.
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We already know that all the bids Bi are the same. If player i would strictly prefer to be

the proposer, he could improve his payoff by slightly increasing one of his bids bi
j.

Similarly, if player i would strictly prefer that some other player j were the proposer, he

could improve his payoff by decreasing bi
j. The fact that player i does not do so in

equili brium means that he is indifferent to the proposer’s identity.

Claim (e). In any SPE, the final payment received by each of the players coincides

with his Shapley value.

Note first that, if player i is the proposer, his final payoff is given by:

∑
≠

−−=
ij

i
j

i
i biNvNvx }){\()( . On the other hand, if player j ≠ i is the proposer, the final

payoff of player i is given by: j
ii

j
i bjNx += }){\(φ . Therefore, the sum of payoffs to

player i over all possible choices of the proposer is given by:

( )=++





−−= ∑∑∑

≠≠ ij

j
ii

ij

i
j

j

j
i bjNbiNvNvx }){\(}){\()( φ

),(}){\(}){\()(}){\(}{\()( NnjNiNvNvBjNiNvNv i
ij

i
i

ij
i φφφ =+−=−+− ∑∑

≠≠

Moreover, since player i is indifferent to all possible choices of the proposer, we have xj
i

= xk
i for all j, k. Therefore xj

i = φi(N) for all j in N. Q. E. D.

The theorem, in addition to showing that the mechanism indeed realizes the Shapley

value, provides us with the explicit form of the equili brium strategies. The ease by which

these strategies can be computed adds further credibili ty to our results and helps in the

actual implementation of the mechanism. At equili brium, the bid of player i to player j is

}){\()( iNN jj φφ − . The balanced contributions property (see Myerson [19]) implies that

the bid can also be expressed as }){\()( jNN ii φφ − , which is the contribution of player j

to the Shapley value of player i. In particular, the bids are symmetric: player i bids for j

just as much as player j bids for i. Furthermore, the determination of the offers is also

simple. If player i is the proposer, he offers φj(N\{ i} ) to any other player j. The offer

reflects the outside options of the players other than the proposer. Due to the recursive
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nature of our mechanism, these options are given by their Shapley value in the game

without the proposer. Finally, notice that if the game is strictly zero-monotonic11 not only

is the equili brium outcome unique, but the equili brium strategies are unique as well . This

eliminates problems of coordination among the players.

As we pointed out in the informal description of the mechanism, Theorem 1 holds if

proposer α obtains a payment u(α) lower than v(α) in case her offer is rejected. This is a

more reasonable assumption in those circumstances in which the technology is not

replicable. In such a case v(S) represents the payoff to the partners in S only if they have

access to the technology. If u(i) < v(i) for every i in N, then the equili brium strategies are

unique even if the game is zero-monotonic and not strictly zero-monotonic.

A further advantage of the mechanism is that it is finite in contrast to the infinite

horizon mechanisms that implement the Shapley value in stationary SPE. Moreover, at

the proposed equili brium strategies, only the first stage of the game is played, with the

proposal made by the chosen proposer accepted by the other players.

We can modify our mechanism by replacing the bidding stage with a random

selection of the proposer. Once the proposer is determined, the game proceeds similarly

to our mechanism with the only difference being that in case of rejection the new

proposer is randomly selected from the remaining players. This modified mechanism

coincides with the Mas-Colell [18] and Hart and Mas-Colell [13] (with removal

probabili ty equal to one) construction. In this mechanism, however,  the equili brium

payoffs yield the Shapley value in expected terms only.

4.- Implementation of the weighted Shapley values

The weighted Shapley value emerges out of considering non-symmetric divisions of

the surplus. It is defined in Shapley [25] by stipulating an exogenously given system of

weights w∈Rn
++. Each unanimity game is assigned a value by having agent i receive the

share ∑
∈Nj

ji ww /  of the unit. The w-weighted Shapley value of a game is defined as the
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linear extension of this operator to the game. We denote by φwi(N) the w-weighted

Shapley value of player i in the cooperative game (N, v).

A convenient way to express the weighted Shapley value is through the weighted

potential function Pw(N) defined in Hart and Mas-Colell [12].12 The w-weighted potential

Pw(N) is the unique function from the set of games into R that satisfies Pw(Φ) = 0 and

∑
∈

=
Ni

w
ii NvNPDw )()( , where DiPw(N) = Pw(N) − Pw(N\{ i} ). This function satisfies:

wiDiPw(N) = φwi(N). Furthermore,

.}){\()(
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The weighted Shapley value, as the Shapley value, can be calculated using a

recursive procedure. The role played by this formula in the proof of Theorem 2 is similar

to the role played by the recursive formula characterizing the Shapley value in the proof

of Theorem 1:

Lemma 1.- The weighted Shapley value of player i satisfies the equali ty:
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Proof.- The weighted Shapley value of player i satisfies:

[ ] =







−+=−= ∑ ∑∑ ∈ ∈

∈
Nj Nj

w
j

w
j

Nj

j
i

ww
i

wi iNPwjNPwNv
w

wiNPNPwN }){\(}){\()(
1

}){\()()(φ

( ) =







+−−+ ∑∑ ≠

∈
ij

w
i

w
i

w
i

w
iji

Nj

j
jiNPwiNPwjiNPwjNPwwNvw

w
}),{\(}){\(}),{\(}){\()(

1

=







−+ ∑∑∑ ≠≠

∈
ij

wj
i

ij
wi

ji

Nj

j
iNwjNwNvw

w
}){\(}){\()(

1 φφ



18

.}){\(})){\()((
1









+− ∑∑ ≠

∈
ij

wi
ji

Nj

j
jNwiNvNvw

w
φ      Q.E.D

We will now indicate how to modify our original bidding mechanism in order to

obtain as an equili brium outcome any weighted Shapley value. The only difference is in

the construction of the weighted net bids Bw
i. The determination of net bids incorporates

the vector of weights w∈Rn
++ by having ∑∑

≠≠

−=
ij

j
i

j

ij

i
j

ii
w bwbwB . Other than that

change, the weighted bidding mechanism proceeds like the bidding mechanism.

Intuitively we weigh each bid differently, according to the exogenously given weight of

the person making the bid.

Theorem 2.- The weighted bidding mechanism implements the weighted Shapley value

of the zero-monotonic game (N, v) in SPE.

The proof of Theorem 2 is similar to the proof of Theorem 1.

Finally, note that we can implement the weighted Shapley value in expected terms

by using a simpler mechanism (similar to the Mas-Colell [18] and Hart and Mas-Colell

[13], construction for the Shapley value). Given a system of weights w∈Rn
++, we replace

the bidding stage by a random choice of the proposer, where the probabili ty of player i to

be chosen as the proposer equals ∑
∈Nj

ji ww / (rather than 1/n).

5.- General transferable utili ty games and the formation of coali tions

The only requirement we have imposed so far on the cooperative environment is that

of zero-monotonicity. Zero-monotonic environments might still violate super-additivity.

Therefore the (weighted) bidding mechanism implements the (weighted) Shapley value

even in some non super-additive settings. This result however is not entirely satisfactory

since the outcome while coinciding with the Shapley value might not be “really”

eff icient. The sum of payments would indeed equal v(N), yet v(N) might not be the

maximal payoff the players could obtain. Note that in non super-additive environments it
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might be possible for the players to obtain a sum of payments that exceeds v(N) by

splitti ng up into two or more coaliti ons.

One way to resolve this diff iculty might be to consider the super-additive cover of

the environment. If we apply our mechanism to the super-additive cover of the

environment rather than to the original environment, the equili bria outcomes would

coincide with the Shapley value of the super-additive cover. A possible disadvantage of

this approach is that a player (the proposer) is able to collect rents from a coaliti on of

which she is not an active member. In other words, a player can act as a "principal" for a

coaliti on formed by other players.13

One way to avoid the use of “principals” is to modify our mechanism. The new

generalized bidding mechanism would generate a coaliti on structure in which proposers

would receive (when there is no rejection) just the value of the coaliti on to which they

belong. In this mechanism the players would not only share the surplus but would also

form coaliti ons in a sequential way. We show that at any SPE, the coaliti ons formed will

constitute an eff icient coaliti on structure and the final payments of the players will

coincide with the Shapley value of the super-additive cover of the environment.

Before proceeding with the formal description of the generalized bidding mechanism

we introduce the following notation. The super-additive (SA) cover of a cooperative

game in characteristic form (N, v), is denoted by (N, V). The value V(S), for S⊆N, is

defined by: }.ofpartitionais)({Max)( SSvSV
S

π
π

π ∑
∈

=

We denote the Shapley value of player i in the SA cover of (N, v) by Θi(N), and

similarly for the values Θi(S) of subsets S of N.

We know that: ( ) .}){\(
1

}){\()(
1

)( ∑
≠

Θ+−=Θ
ij

ii jN
n

iNVNV
n

N

A partition π such that ∑
∈

=
πS

SvNV )()( is called an efficient partition for N.
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The generalized bidding mechanism (GBM) is similar to the bidding mechanism.

The only difference is that in the GBM, the proposer, in addition to offering a vector of

payments to all the other players, also chooses a coaliti on she wants to form and be a

member of. Hence, an offer by the proposer consists of a payments vector and a coaliti on.

The offer is accepted if all the other players agree. In case of acceptance the coaliti on is

formed, the proposer collects the value of that coaliti on and the players outside the

coaliti on proceed to play the same game again among themselves. In the case of rejection

all the players other than the proposer play the same game again.

Formally, if there is only one player { i}, she obtains the value of the stand-alone

coaliti on. Given the rules of the game when played by at most n−1 players, the game for

N = {1,..., n} players proceeds as follows:

t = 1: Each player i∈N makes bids bi
j in R for every j ≠ i.

Player α is chosen as in the bidding mechanism. She pays bα
i to every player i ≠ α.

t = 2: Player α chooses a coaliti on Sα with α∈Sα and makes an offer yα
i in R to every

player i ≠ α.

t = 3: The players other than α, sequentially, either accept or reject the offer. If an

agent rejects it, then the offer is rejected. Otherwise, the offer is accepted.

If the offer is accepted, each player i ≠ α receives yα
i and player α receives the value of

the coaliti on Sα minus the payments ∑
≠α

α

i
iy . After this, players in N\Sα proceed to play the

GBM again among themselves. (Therefore, final payment to a player i∈Sα\{ α}  is yα
i +

bα
i, player α receives ∑∑

≠≠

−−
α

α

α

α
α

i
i

i
i bySv )( , and the final payment for a player i∈N\Sα

will be the sum of the bid bα
i, the offer yα

i, and the outcome of the GBM where the

players are N\Sα.) On the other hand, if the offer is rejected, all players other than α

proceed to play the GBM where the set of players is N\{ α} and player α receives the

value of her stand-alone coaliti on.
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Theorem 3.- The generalized bidding mechanism implements the Shapley value of the

SA cover of the game (N, v).

Proof: The arguments, in part, are very similar to those used in Theorem 1, thus we

emphasize just the new features of this proof and otherwise rely on the reasoning

employed in Theorem 1.

It is easy to see that the theorem holds for k = 1. We assume that it holds for k = n−1 and

then consider the following strategies:

At t = 1, each player i, i ∈ N, announces bi
j = Θj(N) − Θj(N\{ i} ), for every j ≠ i.

At t = 2, player i, i ∈ N, if she is the proposer, chooses a coaliti on Si such that Si ∈

ArgmaxS⊆N { v(S) + V(N\S)  i in S} and offers }){\( iNy j
i
j Θ=  to every j ∈ Si\{ i} and

)\(}){\( ijj
i
j SNiNy Θ−Θ=  to every j ∉ Si.

At t = 3, player i, i ∈ N, if player j ≠ i is the proposer and i ∈ Sj, accepts any offer

greater than or equal to Θi(N\{ j} ) and rejects it otherwise. If player j ≠ i is the proposer

and i ∉ Sj, player i accepts any offer greater than or equal to Θi(N\{ j} ) − Θi(N\ Sj) and

rejects it otherwise.

Following these strategies, the proposer selects a coaliti on Sα that is part of an eff icient

partition.14 Also, the induction argument ensures that, in the game that  follows among

the players in N\Sα, player i ∉ Sα will obtain Θi(N\ Sα). It is then easy to see that the

previous strategies yield Θi(N) to any player i.

To prove that the previous strategies constitute an SPE, note, first, that the strategy at t =

3 is a best response for any player different from the proposer by the same argument we

used in Theorem 1. At t = 2, given the rejection criteria used by the other players, if

player i is the proposer, she chooses a subset Si that maximizes:

 v(Si) − ∑
∈

Θ
}\{

}){\(  
iSj

j

i

iN  − [ ]∑
∉

Θ−Θ
iSj

ijj SNiN )\(}){\(  = v(Si) + V(N\Si) − V(N\{ i} ).
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Therefore, the proposed strategy is optimal. Finally, an argument similar to the one in the

proof of Theorem 1 demonstrates the optimali ty of the strategies at t = 1.

To show that any SPE yields the Shapley value, we proceed by a series of claims.

We state the claims without proof, since they are similar to those in Theorem 1. To

simpli fy notation, we denote the “effective offer” to player i ≠ α in stage 2, when player

α is the proposer by zα
i, and define it as zα

i = yα
i if i ∈ Sα\{ α} and zα

i = yα
i + Θi(N\Sα) if i

∉ Sα. By the induction argument, the effective offer is the total payment (without taking

into account the bid already received) that a player will receive (at equili brium) if the

offer is accepted.

Claim (a). In any SPE, at t = 3, any player j ≠ α accepts the offer if  zα
j is strictly

greater than Θi(N\{ α} ) for every player i ≠ α. Moreover, if zα
i < Θi(N\{ α} ) for at

least some i ≠ α, then the offer is rejected.

Claim (b). If the coaliti on {α} is not part of any efficient partition, then in any SPE

of the game that starts at t = 2, α will choose a coaliti on Sα that is part of an

eff icient partition. Furthermore, player α will announce offers such that zα
i =

Θi(N\{ α} ) for any player i ≠ α . Finally, at t = 3, every player i ≠ α accepts any

offer such that zα
i ≥ Θi(N\{ α} ).

If the coaliti on {α} is part of any efficient partition, there exist other equili bria in

addition to the previous ones. Any set of strategies where, at t = 2, the proposer

makes offers such that zα
j ≤ Θj(N\{ α} ) to a particular player j ≠ α and, at t = 3, the

player j rejects any effective offer less than or equal to Θj(N\{ α} ), also constitute an

SPE.

In all the SPE of this subgame, the payoffs (taking into account the continuation of

the game after Sα has been formed) to players α and i ≠ α are V(N) − V(N\{ α} ) −

∑
≠α

α

j
jb  and Θi(N\{ α} ) + bα

i , respectively.

(Notice that following both types of strategies an efficient partition is formed.)
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Claim (c). In any SPE, Bi = 0 for all i in N.

Claim (d). In any SPE, each player’s payoff is the same regardless of who is chosen

as the proposer.

Claim (e). In any SPE, the final payment received by each of the players coincides

with his Shapley value in the SA cover. Q. E. D.

Theorem 3 shows that when facing environments where forming the grand coaliti on

might not be efficient, it is possible to employ a generalized version of our original

bidding mechanism that allows both that an eff icient partition can be formed and that the

surplus can be shared in a “reasonable” way. If the game is super-additive, the

generalized version yields the same outcome as the bidding mechanism. It is however

important to notice that, if the game is not super-additive but the grand coaliti on is

eff icient, this coaliti on is formed under both mechanisms although the sharing of the

surplus will be different. The reason is that the Shapley value of the super-additive cover

usually does not coincide with the Shapley value of the game if the game is not super-

additive.

Our GBM provides support for the use of the Shapley value of the SA cover as the

generalization of the Shapley value for games in which it is eff icient to form coaliti on

structures which are different from the grand coaliti on. The GBM implements the

Shapley value of the SA cover by simultaneously providing a bidding and coaliti on

formation game. To the best of our knowledge, this is the first paper that supports this

solution concept. Aumann and Dréze [1] study games with a (given) coaliti on structure

and define a value that assigns to each player his Shapley value in the coaliti on he

belongs to. Under this concept, the payoff to any player does not depend upon his

contribution to coaliti ons other than his coaliti on. The Shapley value of the super-additive

cover takes into account not only the contribution of a player to the coaliti on he belongs

to in an eff icient structure, but also his potential contribution to any other coaliti on.15
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6.- Conclusion

The object of this paper was to construct a simple non-cooperative mechanism to

realize a sharing of the surplus in a cooperative environment. The mechanism we use

basically consists of two distinct stages of play: a bidding stage, at the end of which a

winner is determined, followed by a proposal stage where the winner offers a sharing of

the surplus. In the case where the proposal is rejected, the same game is played again by

the players except for the proposer. We show that the payoff outcome of the subgame

perfect equili bria of this game always coincides with the Shapley value of the game.

Moreover, the strategies played by the players at equili brium are simple and natural. We

also showed that a natural modification of the mechanism implements the weighted

Shapley value. Finally, we have introduced a simple generalization of the bidding

mechanism that handles situations where the grand coaliti on might not be eff icient. By

playing the game, the players form, at equili brium, an eff icient coaliti on structure and

share the surplus according to the Shapley value of the super-additive cover of the

environment.

These mechanisms provide strong support for applying the Shapley value to

situations where cooperation is needed to obtain an efficient outcome. It might be also

used for a variety of cost allocation, revenue sharing, or partnership dissolution problems.

The general approach taken in this paper may yield ways to provide non-cooperative

foundations for other cooperative solution concepts for transferable utili ty games or for

cost-sharing methods. However, the extension of our approach to non-transferable utili ty

games is problematic. There exist several extensions of the Shapley value to non-

transferable utili ty games proposed by Harsanyi [9], Shapley [26], and Maschler and

Owen ([16],[17]). Dagan and Serrano [3] have shown that randomness is a necessary

component in a mechanism designed to implement any of these extensions. Since the

element of randomness in our mechanism (i. e., the tie-breaking rule) is inconsequential

to proving our results, it seems that the approach taken in this paper would fail to

implement the existing extensions of the Shapley value.
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1 For a nice introduction to the Shapley value and, in particular, its applications, see, for example Roth [23].

2 Crawford [2] also made use of a bidding stage in a procedure to generate Pareto-efficient egalitarian-

equivalent allocations. The discrete time non-cooperative coaliti onal bargaining game proposed by Evans

[6] to implement the core in subgame perfect equili bria also introduced simple bidding by the players for

the right to make an offer.

3 The equili brium strategies are unique if the game is strictly zero-monotonic. Otherwise, there might be

other equili bria in addition to this one, but they still yield the Shapley value.

4 They also show that for NTU games, the limit of the SSPE (as the probabilit y of removal becomes small )

is the consistent value, a solution concept that was introduced by Maschler and Owen ([16], [17]).

5 Winter [28] also required either subgame consistency or strategic equilibria. Dasgupta and Chiu [4] also

developed an implementation for general games in characteristic form if there is an (external) planner who

is able to impose a system of transfers and taxes.

6 Hart and Mas-Colell [12] also extended their results to weighted Shapley values.

7 If the game is super-additive, the grand coaliti on is an efficient structure and the Shapley value of the

super-additive cover coincides with the Shapley value. Therefore, the final SPE outcome of the generalized

bidding mechanism is the same as the final SPE outcome of the bidding mechanism.

8 We use φ(N) instead of φ(N, v) for notational simplicity.

9 Note that the actual sequence of players is inconsequential. The fact that players respond in sequence

rather than simultaneously is crucial for ruling out “bad” equili bria.  In bad equili bria, there are several

players rejecting the proposal since whenever there is at least one rejection, a rejection by any other player

is optimal (the proposal will be rejected independently of his decision).

10 Our results hold for any specification of the outside value for the proposer as long as she obtains a

payment less or equal to the value of her stand-alone coali tion. See Section 7 in Hart and Mas-Colell [13]
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for an interpretation of a situation in which the proposer would obtain zero if the offer is rejected, and for

further discussion on this extension.

11 We say that a game is strictly zero-monotonic if v(S) + v({ i} ) < v(S∪{ i} ) for any subsets S⊆N with i∉S

and S ≠ Φ.

12 Again, we omit the constant v and write for short φwi(N) or Pw(N) instead of  φwi(N, v) or Pw(N, v).

13 See Pérez-Castrill o [21] and Pérez-Castrill o and Wettstein [22] for the use of principals to realize

cooperative outcomes.

14 It can be easily shown that V(N) = MaxS⊆N { v(S) + V(N\S)  α in S} , for any player α in N, hence when

the proposer chooses the best possible coaliti on to be a member of, she is choosing a coaliti on that forms

part of an efficient partition.

15 Owen [20] and Hart and Kurz [10] also propose a coaliti on structure value to every game and every

coaliti on structure. However, in their approach, the coaliti on structure serves only as a bargaining tool to

increase the payoff of the members of the coaliti ons. At the end, all the players join the grand coaliti on.


