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Abstract

Treating endogeneity and flexibility in such a way that efficiency is
not sacrificed has become a rising point of interest in count data
models. We use a polynomial expansion of a Poisson baseline
density to compute the full information maximum likelihood (FIML)
estimator. In order to test the model we propose measures of
goodness of fit, information criteria, likelihood ratio and scores tests
for evaluation. We also show how to compute statistics for
sensitivity analysis. Then, we test our model using data on number
of trips by households and number of physician office visits, finding
that low order polynomials may be enough to improve fit
significantly.

Resumen

El tratamiento de la endogeneidad y la flexibilidad sin sacrificio de
la eficiencia se ha convertido en un tema de creciente interés en
modelos de nimero de eventos. En este trabajo utilizamos una
expansién polinomial de una densidad base Poisson para calcular el
estimador de maximo versosimilitud de informacién completa
(MVIC). Con el fin de contrastar el modelo proponemos medidas de
bondad de ajuste, ratio de verosimilitudes y contrates del gradiente
para la evaluacién. A continuacién contrastamos el modelo
utilizando datos sobre el nimero de desplazamientos de los hogares
y el nimero de consultas al médico de cabecera, encontrando que
una polinomio de grado pequefio puede bastar para mejorar elajuste
significativamente.

KEY WORDS: Polynomial Poisson expansion; Flexible functional form; Treatment
effect; Sensitivity analysis.

1. INTRODUCTION

Count data models try to explain the behavior of discrete and non negative dependent
random variables (Winkelmann and Zimmermann 1994 and Cameron and Trivedi 1998
provide excellent surveys). Applications of these models include health care utilization,
recreational demand, number of patents or bankruptcy among others. One of the most
popular models for count data assumes that the discrete variable follows a Poisson
probability function. However, despite its popularity, such a requirement often fails to
hold. Among other features, the Poisson model imposes a restriction of equidispersion

(i.e., the conditional mean should be equal to the conditional variance) which most data



sets fail to accommodate. A popular solution in the literature has been to include a
term which accounts for unobserved heterogeneity. When this random variable follows
a Gamma distribution, such an extension leads to the widely known Negative Binomial
(NB) model (Hausman, Hall and Griliches 1984, Cameron and Trivedi 1986).

Another customary characteristic of count variables is the high relative
frequency of zeros. Unfortunately, the NB distribution does not show enough flexibility
to accommodate this feature. Therefore the literature has moved to more adaptative
specifications that could solve these problems. A non exhaustive list includes hurdle
models (Mullahy 1986, Pohlmeier and Ulrich 1995), semiparametric (Gurmu et. al.
1996,1998,1999), finite class models (Deb and Trivedi 1997), Univariate Poisson
Polynomial models (Cameron and Johansson 1997) and Negative Binomial Polynomial
model (Creel 1999). In general, these estimators have been shown to work better than
the standard NB model in terms of fit and information criteria.

All these approaches do not consider the case when a dummy variable is
endogenously determined. Our model tries to combine both the flexibility required to
adequately fit count variables and the problems appearing in the presence of a binary
endogenous regressor. Such a circumstance typically may hold when the unobserved
heterogeneity is correlated with some of the regressors. If it was ignored we may get
biased estimates of the parameters of interest since we cannot isolate the effect of the
regressor on the distribution alone.

The literature addressing this problem has concentrated on correcting the
specification of the moment conditions to account for possible endogeneity of the
regressors (Terza 1998, Windmeijer and Santos Silva 1997, Mullahy 1997 and Grogger
1990). These models use as a benchmark the standard assumption of a linear
exponential specification for the mean of the count variable conditional on both
observable and unobservable variables (Kenkel and Terza, 1999 relax this assumption
by assuming an inverse Box Cox functional form for the conditional expectation of
counts). The identification of the parameters of interest is made on the basis of this
moment restriction. However, even if the restriction is correctly specified and we feel
confident about its robustness, one could think of using higher order moment
conditions and improve the efficiency of the estimates.

Efficiency is important when decisions are to be made on the basis of the
inference process. For instance, if we think of a model where we try to explain health
care utilization, the parameter affecting insurance status plays a key role if one
suspects of moral hazard problems and a precise estimate would be needed. Therefore,

our work is a flexible approach which allows to improve optimality of the estimation



in models where endogeneity of a dummy may be present.

The starting point is the Terza (1998) model which is introduced for
expositional purposes in section 2. We will concentrate in the specification of the
conditional distribution for the count. Under a Poisson specification, the parameters
may be estimated using full information maximum likelihood (FIML). Since one could
be interested in knowing whether this parametric choice is correct, we also show here
how to compute goodness of fit measures. In section 3, we introduce flexibility
assuming that the count follows a polynomial expansion over a baseline Poisson
density, instead of using a simple Poisson or Negative Binomial distribution. This
approach extends the semi-nonparametric (SNP) model of Cameron and Johansson
(1997), who in turn adapted the original Gallant and Nychka (1987) model, to deal
with endogenous binary variables. This extension is based on the fact that the baseline
density already accounts for some of the unobserved heterogeneity. Hence, we expect
that a low degree of the polynomial would be enough to provide a good fit. With a
linear exponential conditional mean it is relatively straightforward to recover
consistent estimates of the impact of regressors. This is not the case for polynomial
expansions since the first moment condition is not log-linear. This is why we also
discuss how to recover equivalent estimates of elasticity measures.

In section 4, we test our model using two data sets already analyzed in the
literature: the first one is a data set on the demand of trips by households, previously
analyzed in Terza (1990, 1998). Here, the Poisson model fails to accommodate the
shape of the empirical distribution mainly for the first counts of the support. Instead,
our flexible semi-nonparametric model is able to adapt to the observed data and
significantly improves the fit. We also report consistent estimates of the mean effect
of the dummy on the counts. The second example pretends to confront our estimator
with data showing an even higher degree of non-poisson behavior, evidenced by an
important overdispersion and relative excess of zeros. The data appear in Deb and
Trivedi (1997) who analyze the determinants of the number of physician visits by the
elderly using a mixture of Poisson densities. These authors acknowledge that possibly
some of the regressors could be correlated with unobservables but minimize its impact
and do not correct their model accordingly. Our main finding in this case is that a good
fit can also be achieved using a polynomial expansion in a model that explicitly deals

with the endogeneity problem.

2. COUNT DATA MODELS WITH ENDOGENOUS DUMMY REGRESSORS



The baseline model is the one proposed by Terza (1998). The count dependent variable
for the i individual , y;, takes only non negative integer values. Its probability
function Ay, x,d, €) depends on a binary variable (d;=0,1), a vector of covariates (x,)
and a latent random variable e. The model for the binary variable is assumed to be
generated by the process d;=1if z/a+v,>0 and d,=0 otherwise where z, is another vector
of covariates for individual i, a is a conformable vector of parameters and v is an error
term. It is assumed that conditional on the exogenous variables w=(x,z), the vector

(g,v) follows a bivariate normal distribution with zero mean and covariance matrix
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and ®() denotes the cumulative distribution function of a standard normal.
In his application, Terza (1998) performs a two-stage method of moments
(TSM) based on deriving Ely,lw,d;]. He assumes the standard linear exponential

specification for the mean of the count variable:

E[yi‘wi’di’s]:expixiﬁ*'diy*'s} (4)

This moment equation can not be used because of the unobservability of the &.
However, after some algebra an appropriate first order moment conditional on
observables can be derived and a Heckman (1978) type estimator may be computed.
Moreover, since the estimation errors are not homoskedastic Terza (1998) proposes
then to use a Weighted Nonlinear Least Squares (WNLS). This WNLS requires an



specific assumption about the probability function of the count variable loosing some
of the robustness in the initial TSM approach. He presents estimates for the Poisson
case, while the negative binomial is also suggested.

We will use Terza’s model and FIML as a benchmark (say PFIML model),
keeping the assumption of a Poison density, i.e., y,/x,d,e OP(\). Although it is
computationally harder, this method presents some advantages with respect to TSM
and WNLS. First, the efficiency gains issue is well known if the restriction on
fy;1x,d,¢) is true, since the FIML will asymptotically reach the Cramer-Rao lower
bound. Notice that in the particular case of NWLS, robustness is not a comparative
advantage of the previous since we need to assume a Poisson density for fiy,|x,d,¢)
either.

Second, all the parameters are separately identified, more specifically p and o.
Given that the variance covariance matrix in (1) needs to be positive definite, we may
reparameterize the model in such a way that we restrict the estimate of p to be
between -1 and 1, and standard errors for this parameters can be obtained using the
delta method. This feature was not directly available in the TSM or WNLS approach
where parameter p could take values outside the bounds. Doing inference about p is
important since a simple i-test for the exogeneity of the binary variable is readily
available and because p may have an appealing structural interpretation. For instance,
if the count variable represents visits to doctors and the dummy indicates insurance
status, then a positive p is an indication of adverse selection in the insurance market.
On the contrary, negative p could indicate cream skimming by insurance companies
(see Coulson, 1995). Moreover, as we will see later, the identification of p and o will
play a role in obtaining predicted frequencies of counts.

Third, a formal test for the Poisson assumption, conditional on the other
assumptions of the TSM model (i.e., the joint normality and the linear exponential
specification of the conditional mean of the count) can be performed. The Poisson FIML
provides under the null hypothesis, the asymptotically efficient estimate required to
perform a Hausman specification test of the null of Poisson distribution against
exponential mean models where the consistent estimate is given by the TSM. It is also
possible to go further and test jointly all of the distributional assumptions -i.e., the
poisson and the bivariate normal distributions- through a Hausman test. This could
be done using the PFIML and a consistent estimator of the conditional mean of the
count obtained by the Generalized Method of Moments (GMM), as suggested by
Windmeijer and Santos Silva (1997), Mullahy (1997) and Grogger (1990). This test

requires the availability of convenient instruments.



Finally, FIML allows one to obtain the expected frequency for different values
of the count variable and compare it with the observed frequencies. This is needed
when building goodness of fit measures that have been used by Gurmu and Trivedi
(1996) and Cameron and Johansson (1997) in models which ignore the problem of
endogeneity. This cannot always be done using the WNLS, since nothing ensures that
the estimates of p are between -1 and 1. Also this technique is particularly useful to
detect the excess of zeros problem. Moreover, Andrews’ goodness of fit test (Andrews,
1988a, 1988b) can also be computed on the basis of the differences against fitted and
expected frequencies. This statistics has been used in a count data context without
endogenous regressors by Deb and Trivedi (1997). We will discuss the basic issues
here.

Let us partition the range of the count variable in o intervals where ¢,>¢,> ...
>c,;, are the endpoints. The observed frequency p; of the interval (count) j=1,2,...,dJ is

given by:
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The expected frequency for the interval p; requires some more computation. If
the regressor d; was uncorrelated with the errors ¢ then, we could use that
fiylw,d)= I}‘(y lw,d,e)dF(e) to compute the frequency of count j conditional on regressors
and then average. This is not possible any more since under correlation we need to
integrate with respect to the density of € conditional also on d,. Instead of deriving this
conditional density a much simpler method is to get the marginal probability of the

count variable as:

Ay [w)=Ay,1{w)+Ay,0 [w) (6)

Then one would use f{y /w) estimated to add over the range points of y in every
interval j and then average over the whole sample and get p,. With this in mind, a very
simple goodness of fit measure is given by the sum over j of the absolute differences
A= p;-p;/. The goodness of fit test is basically a moment conditions test where we use
the fact that A; - 0 almost surely under the law of large numbers (see Andrews 1988a,
1988b for more details).

Numerical integration is needed at some steps of the implementation. The

reader interested may consult the appendix on computational methods.
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(PPFIML).

As we will see later in the examples, FIML estimation using the Poisson is likely to
be inadequate. The consistency of the estimates relies on every one of the four basic
assumptions: a Poisson density for the distribution conditional on the unobserved
heterogeneity, a linear exponential specification for the conditional mean, the bivariate
normality of the error terms and the linear structure of the model for the binary
variable d. We will concentrate on relaxing the first two assumptions: the Poisson
density and the specification for the conditional mean.

One of the options to relax assumptions about functional forms has been to
perform a series expansion from a baseline density. The use of polynomial expansions
of a normal density was proposed in the continuous dependent variable case by Gallant
and Nychka (1987). Application to a binary choice model has been performed by
Gabler, Laisney and Lechner (1993). In count data settings we must cite the work by
Gurmu et. al. (1996, 1998, 1999), Cameron and Johansson (1997) and Creel (1999). We
are not aware of any other application of series expansion in a model with endogenous
binary regressor.

Following the approach of Cameron and Johansson (1997) we will use a
squared polynomial expansion over a Poisson baseline probability function. The
resulting probability function is obtained by multiplying the baseline by a squared
polynomial in the dependent variable A*(y,a) of degree K, where a is the vector of
coefficients where the polynomial has to be raised to the square in order to preserve
the non negativity of the density function. To ensure that the resulting probability
function sums to unity it is necessary to divide the expression by a normalizing

constant Y,(A,a) . Thus, following Cameron and Johanson (1997):
K i
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Estimation is done by maximum likelihood using (3) and (7). The estimates of
all parameters are consistent and asymptotically normal distributed with variance
computed by the standard sandwich form. As in Cameron and Johansson (1997) or
Creel (1999), we do not consider technical issues on the ability of the expansion to

approximate arbitrarily well any model as long as we let K. The proof for the



continuous case appears in Gallant and Nychka (1987).

Our model differs from Cameron and Johansson (1997) in at least two things:
first, we take into account endogeneity. Second, we allow that the latent variable enter
in the specification through the baseline density, relieving the adaptative task of the
polynomial expansion. We expect that this latter effect helps to get parsimonious
results for the degree of the polynomial. Creel (1999) used a negative binomial as the
baseline density and he found that small degrees of the polynomial expansion sufficed
to obtain a good fit. In fact, the negative binomial can be obtained by integrating out
a Poisson density with a gamma distributed latent variable. Such a latent variable is
normally distributed in our context.

An important issue will be then to determine the order of the polynomial. In
this sense, we must be cautious in order to avoid overfitting. To fix the polynomial
degree we will use the goodness of fit test proposed in the previous section and other
statistical tools: likelihood ratio tests, score tests and information criteria. The

information criteria are defined by:

Schwarz: BIC=-2 In (L)+P In(N)
Consistent Akaike: CAIC=-2 In (L)+P (In (N)+1)

where P represents the number of parameters to be estimated. Gallant and Tauchen
(1995) advise to use the BIC as a parsimonious criteria on the size of the polynomial.
The BIC imposes a bigger penalty on the number of parameters than the standard
Akaike, but not as big as the CAIC does. Considering a penalty on the number of
parameters is interesting, since one would like to avoid overparameterized models.
Contrary to the Poisson-Negative Binomial case, the mean of the count variable
conditional on both observable and unobservable variables is no longer given by the

parameterized A. Instead, following Cameron and Johansson (1997)

E(y \w,d,s):ZiO Zf(_o aam; (N, (8

where m() denotes the j" non central moment of the poisson density and we
stress the dependence on the baseline density mean A. It is clear from (8) that the
departure form the standard linear exponential specification of the conditional mean
implies that we must modify the interpretation of the coefficients on the variables. In
fact, for the case where there are no series expansion the expression in (8) reduces to

A, but in general for the K=1 case the coefficients no longer admit an interpretation as



elasticities.

In order to recover an estimate of the impact of covariates in the counts we
should compute Efy | x,d] which is a non-linear function of the parameters of interest.
The derivation of such an expression is a bit more complex than for the K=0 model.

Since y is a discrete non negative random variable, its mean is given by:

E(y ‘x’d) :Z:/ll yﬂy ‘x’d)’

9
where fly w,d)-% ®©)

The numerator can be replaced by the estimate of the joint density, and an
estimate of the marginal density of d may also be obtained using the estimated

coefficients as

Adwy=["[d® " (e)+(1-d)(1-@"2))dF(e)

Thus, the percentage mean effect of the change given by dummy regressor x;
is given by
EQ |x;)x,;=D-E(y|x

EQ gy

iorxuzo).
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(11)

Strictly speaking, this in only valid for dummy regressors. For the continuous
case we would use the standard notion of partial derivative. Notice that this
conditional expectation is a function of the covariates observations. Therefore we get
a vector of such quantities from i=1,...,N. To summarize this information we will report
two different measures.

The first one computes the quantity in (11) evaluated at different points of the
covariates. We chose three of these: the mean point, the upper point and the lower
point. Here, upper (lower) means that we choose covariates’ values in the range of the
sample space yielding the largest (smallest) conditional expected count. That is, at the
upper (lower) point we have the conditional distribution of the count with the largest
(smallest) conditional mean. If the fit of the PFIML was poor with respect to the
polynomial poisson at the left tail of the distribution, then we would also expect larger
differences in the mean effect estimates at these points. The second measure provides

the frequency plot of the computed means.



4. SOME APPLICATIONS

4.1. Data on frequency of recreational trips

Terza (1998) uses data on the number of trips by households (TOTTRIPS) to specify
a model where vehicle ownership (OWNVEH) is included as a potentially endogenous
dummy regressor. Table B.1 in appendix B describes the variables in the dataset. The
variables have been divided in two groups attending to its determination status:
endogenous (number of total trips and vehicle ownership) and exogenous (regressors).

We will first be concerned with the endogeneity of the OWNVEH variable. It
is likely that unobserved variables as the personal predisposition (or aversion) to travel
may be positively (or negatively) correlated with the decision of purchasing a vehicle.
For instance, an individual may like to travel while detesting traffic jams, and such
an aversion will be negatively correlated with the ownership of a vehicle. If this is the
case, we should be aware of isolating the effect of vehicle ownership on the number of
trips induced by this correlation.

The first columns of Table B.2 in appendix B shows the results of Nonlinear
Least Squares (NLS), TSM and WNLS estimation methods. The value of the OWNVEH
coefficient estimated with TSM and WNLS increases between a 75% and a 30% with
respect to NLS. This indicates that the sign of the correlation between € and the
endogenous dummy is negative. The WNLS pursues a more efficient estimation at the
price of restricting the parametric family of the conditional counts to be a Poisson. For
instance, a test of the significance of some variables like FULLTIME may lead to
different conclusions under TSM or WNLS. We must take into account that the Poisson
assumption may not verify.

Some descriptive statistics of TOTTRIPS are shown in Table 1, where we
include some evidence on the non-Poisson behavior of this variable. The variance
exceeds five times the mean and the number of zeros is up to 17 times greater than
expected from a Poisson with mean parameter equal to the sample mean.

Also the conditional analysis shows that Poisson distribution is not suitable.
In Table 2, the Andrews’ test rejects the null of a correct specification at 5% for the
K=0 model. Using an informal test, Terza (1998) also found evidence of misspecification
for the Poisson assumption.

This motivates the estimation under a more flexible specification which in
principle would allow to test the Poisson against a wider set of alternatives. We started

with the K=1 specification and sequentially increased the size of the polynomial. The
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results for the K=1 specification did not imply a significant change with respect to the
K=0 and in fact, the single polynomial coefficient shows a small significance. Changes
start to appear when we move sequentially to the K=2,3,4 models. In term of goodness
of fit, a considerable gain is obtained by the model with K=2, with respect to K=0 and
K=1. As Table 2 and Figure 1 show the models with K=0 and K=1 underpredict the
frequency of zeros and overpredict the frequency of counts one and two, as usually
happens when the empirical distribution puts an excess of mass in the zero counts. In
particular, the measure of distance between observed and predicted frequency
decreases considerably and the test does not reject the null for K=2 and higher.

This leads to the problem of taking a decision on where to stop adding new
terms to the polynomial expansion. We used several measures for this: information
criteria, likelihood ratio tests jointly with the goodness of fit measure. The results on
Table 3 give a strong evidence in favor of the model with two terms on the series
expansion. The log likelihood ratio test strongly rejects the null hypothesis of K=0 and
K=1 against the alternative of K=2. On the other hand, the null hypothesis of K=2 is
not rejected against the alternative of K=3 or K=4, at even 15% of significance level.
In terms of information criteria as shown in Table 3, the model with K=2 is the
preferred one for any of the Schwarz and Consistent Akaike info criteria reported.
Given that the first coefficient of the polynomial of the model (a,) with K=2 shows a
small significance, it is expected that these results would improve if we restricted this
coefficient to be zero.

Table B.2 in the appendix B shows that the OWNVEH coefficient moves around
2.2. up to 2.3 for K=2,3,4 to be compared with the 2.05 in the PFIML. Although the
change is not important in size, the two coefficient do not have the same structural
meaning. In principle the researcher shouldn’t be interested in coefficient by
themselves but only on the way they can affect (cause) the characteristics of the count
variable (for instance, its mean). In order to make comparisons of these mean effects,
one should compute the expressions in (11). Figure 3 shows the distribution of the
percentage change across individuals. Notice that the Poisson distribution overpredicts
the impact of vehicle ownership by putting more mass on higher percentages.

On the other hand, Table 4 shows the change in mean due to vehicle ownership
as well as percentage change at three different points: the mean of the covariates, the
upper point and the Jower point (the exact values of covariates at this point are given
in the table). In any case, the increase in the expected mean induced by OWNVEH is
overpredicted by the K=0 model. Particularly interesting is the difference for the

counts at the lower. Here the K=0 model does not reject the null of a zero impact while

11



the effect is significant for the K=2 model. This is not surprising if we recall that the

Poisson model had a worse fit for lower counts.

4.2. Data on demand for medical care by the elderly

Deb and Trivedi (1997) consider data from the National Medical Expenditure
Survey (NMES) conducted in 1987 and 1988. We will use a subsample of individuals
aged 66 or more in the West part of USA.

Most of the individuals aged 65 or more are covered by Medicare, a public
insurance that protects again health care costs. In addition, the individuals have the
choice to contract a supplemental private insurance coverage (PRIVINS). The influence
of insurance status on the utilization and costs of health care services is a very
important topic in health economics (a non exhaustive list include Cameron et. al.,
1988, Manning et. al., 1987, Coulson et. al., 1995, Chiappori et. al., 1998, Holly et. al.
,1998, Street et. al. ,1999, Vera-Hernandez, 1999). If this utilization were very sensitive
to the generosity of insurance, the potential problems caused by moral hazard could
be severe. In fact, Besley (1988) relates the optimal copayment rate to the elasticity of
the demand for health care with respect to out-of-pocket expenditures.

For studies using non-experimental data, the endogeneity of the insurance
status in the equation for utilization is an important issue (see for example Cameron
et. al. 1988). This endogeneity is motivated by the relation between unobservable
health characteristics and insurance choice. If adverse selection is a prevalent feature
of the market, the ones that enjoy a more generous insurance are the ones with poor
unobservable health conditions. This would cause a positive correlation between wide
coverage insurance status and unobserved heterogeneity. On the contrary, if private
insurance companies are able to select the most healthy individuals (cream skimming),
we would expect the correlation to be negative. If endogeneity was neglected, the
positive correlation will overestimate the insurance effect, while the negative one will
underestimate it. Other studies that do take into account the endogeneity of insurance
status in a count data context are Coulson et. al. (1995) and Vera-Hernandez (1999).
In their paper Deb and Trivedi implement no correction of the endogeneity bias
although they acknowledge that it could be present.

As a measure of health service utilization we use the number of physician office
visits (OFP). Other measures like number of hospitalizations or number of physician
non-office visits were also available. We chose OFP because this measure showed an

accentuated non-poisson behavior. This is particularly evident in view of Table 5. The
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variable shows a relative frequency of zeros (75.22) and variance to mean ratio of
overdispersion (7.55) which a Poisson distribution fails to accommodate by far.

For the sake of parsimony, some restrictions were imposed in the specification
of the probit equation. The constant term, the number of chronic diseases, the age, the
sex, the marital status and MEDICAID were excluded after fitting preliminary
standard probit models for the PRIVINS variable. The inclusion of the first five
variables might induce multicollinearity in the probit part while adding low
explanatory power (none of these variable was found to be individually significant at
5% and the Likelihood Ratio test of joint significance showed a p-value of 0.40), and
therefore they were excluded accordingly. On the other hand, the exclusion of the
MEDICAID variable was due to the fact that this variable was a nearly perfect
classifier (84% of individuals had either private insurance or MEDICAID coverage).
Finally, seven observations with zero or negative family income were deleted.

With this specification we calculated the NLS, TSM and WNLS estimators (see
results at Table B.4 in appendix B. None of the TSM coefficients in the count equation
except the one affecting the PRIVINS shows a change of sign. Moreover, this coefficient
shows a small significance in the TSM and WNLS in opposition to the NLS case. The
low significance of the presumably endogenous variable (PRIVINS) and of the RHO
coefficient is a symptom of no-endogenous determination of this variable. However, the
fact that there exist additional changes of sign and significance in the WNLS estimates
with respect to the NLS and TSM may suggest that misspecification bias could be
playing an important role here.

We estimated the PFIML and PPFIML models up to a polynomial of third
order. Recall that the WNLS and the PFIML should approach asymptotically under a
Poisson conditional count. Indeed, the results for the K=0 and the WNLS are similar
for most of the coefficients with no change of sign. However, this is not the case for the
PRIVINS (which is now bigger and significant) and RHO coefficients (which shows a
negative sign).

The comparison of the empirical and predicted probabilities in Table 7 and
Figure 2 leads us to conclude that the above results could be distorted due to
misspecification problems. The fit for the Poisson K=0 model is poor, mainly for the
zero, one and two counts and accordingly, the goodness of fit test rejects the null of a
Poisson and order one polynomial expansion. The fit improves for order two and three
polynomials. On one hand, the models with K=2 and K=3 show better information
criteria than K=0 and K=1 (see Table 6). On the other hand, in this case the

information criteria do not discriminate between K=2 and K=3, since the first is
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favored by the Consistent Akaike and the second by Schwarz. We definitely chose the
K=3 model since the order two polynomial is rejected against the order three
alternative by the likelihood ratio test as shown in Table 6. We stopped here, but in
order to determine if a polynomial of order four would significantly improve the fit we
performed a Lagrange multiplier test. The advantage of using Lagrange tests in this
context is that we don’t require to estimate the unrestricted larger model which in our
case requires an important computational effort (see computational appendix). The test
did not reject the null hypothesis of K=3 with a p-value of 17%.

Once we feel confident on the fit of our model we computed the sensitivity
analysis of the counts to changes in the endogenous dummy. This effect plays an
important role in health economics: it measures the sensitivity of health care
utilization due to the insurance status. Table 8 shows the estimation of this effect at
three different points. It is particularly interesting to notice that the impact of
insurance is close to zero in size and significance at the upper point, but not at lower
extreme point or mean covariates. The upper point contain covariate values that
indicate poor health conditions while the lower indicate good ones. Therefore it seems
plausible in this case to conclude that office physician visits by people with poor health
conditions is little affected by their insurance status.

Finally, notice that the insurance effect predicted by the NLS is around 40%,
very close to the mean effect at the mean point of covariates in the K=3 model (45%)
and not so much to the mean effect at the lower extreme point (68%). However the
NLS estimation is far away from the upper extreme (2.5%) casting doubts on the
suitability of NLS when imposing the restriction of identical estimated percentage
change to all of the individuals.

Figure 4 shows the distribution of percentage change in mean effect due to
insurance status across individuals. More mass is put at the 35%-50% interval of the
percentage change for the K=2 model, while the K=0 tends to accumulate on higher

values. In general, the K=0 tends to overpredict the percentage change.

5. CONCLUSIONS

In this paper we contemplate the scenario proposed by Terza (1998) where unobserved
heterogeneity in a count model is correlated with a dummy regressor. Full information
maximum likelihood will allow us to obtain precise estimates which is crucial for
positive and normative purposes made on the basis of the inference. However this

method imposes several restrictions on the conditional distribution of the counts. We
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propose and fit an alternative and flexible Polynomial Poisson FIML which tries to
deal with those cases where the count variable shows a persistent non-poissoness even
when we account for unobserved heterogeneity. In addition, we compute measures of
fit and procedures a la Andrews to test the assumptions of the model based on the
observed differences between fitted and empirical frequencies.

We test the model using two data sets on number of trips by households and
number of physician office visits, already analyzed in the literature. The results show
that flexible estimation of the conditional probability function of the count helps to
improve significantly the fit of the model. Consequently we also find the largest
differences in the estimate of the mean effect can be found when the conditional

density has a relatively low predicted mean.
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APPENDIX A. COMPUTATIONAL ISSUES

All computations were done using GAUSS 3.2 for MS-DOS in a Pentium IIT
450Mhz. microprocessor. The numerical routine for integration of unobserved
heterogeneity in (3) is based on the Gauss-Legendre quadrature (INTQUAD package).
The procedure requires to define fixed upper and lower bounds of integration and the
number of points for quadrature evaluation. This problem was initially solved by
setting this bounds as four times the current standard deviation of ¢ variable (the o
parameter in our specification). Then, the objective function was optimized using the
Broyden-Fletchell-Golden-Shannon algorithm. Several runs were performed using
different starting values. This derivative-based algorithm was found to be enough to
find the global optimum in the case of k=0. However, for higher degrees of the
polynomial size we found that the algorithm often converged to local optima. Local
optima is a problem often encountered when using series expansion.

Then we decided to implement a more robust search method like Simulated
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Annealing (SA) using the code written by E.G. Tsionas. The SA algorithm is a random
search method which tries to escape from local optima by randomly accepting downhill
moves. The decision to accept downhill moves is made by the Metropolis criteria
depending on two parameters: temperature and strength. Following the advice in Goffe
et al. (1994) we tried initial runs to determine the optimal starting temperature and
strength. To avoid overflow errors we restricted the area of search using wide enough
upper and lower bounds centered around the best BFGS optimum. To ensure that the
global optima was found we put a big number of function evaluations per iteration.
Moreover, given the difference in time for convergence between the BFGS (around a
pair of hours for K>0) and the SA (at least one week) we were also concerned to know
whether a global solution could also be found using derivative-based or hybrid
methods. In general we found that the best result of several trials with a BFGS
coincided with the SA optima for K=1 and K=2, although finding such a point with
higher polynomial degrees was found to be harder. We also used the algorithm
implemented in Cameron and Johansson (1997) which basically combines random
search with a derivative-based method. We found that this algorithm was not robust
enough for high order polynomials in our particular context.

Moreover, we found that the Health data set was more problematic than the
data from Terza. Here we found that the Hessian was ill-conditioned even for the K=0
case. A first exploration of the correlations among dependent variables did not find a
significantly high degree of pairwise linear dependence. However, the condition number
of the covariates inner product matrix was abnormally high (1497). This caused
numerical problems: negative eigenvalues appeared and the value of the objective
function at the optimum changed significantly when we moved the bound from
plus/minus four to five standard deviations. Hence, we decided to explore two possible
explanations: a bad performance of the integral and the computation of the Hessian
procedure. First, we decided to replace the normal specification of ¢ by a truncated
normal distribution. Doing the appropriate changes of variable (£-—° ), equation (3)

\/20

yields

“a o+
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Since & is N(0,1/2) we chose a=%. This approach allows to fix the bounds of

integration independently of the parameter 0. We also increased the number of
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quadrature evaluation points at the cost of extra computing effort. We also explored
the possible instability induced by the computation of the Hessian. We found that the
GAUSS package used a two steps hessian procedure. We replaced this with a four
steps code which was found to be very useful not only for this application but in many
other contexts (all code is available from the authors on request).

Finally, although we required more computing-time (using the SA the k=3 case
needed more than two weeks to converge) we found all these patches sufficed to get a

stable numerical procedure.

17



APPENDIX B: VARIABLE DESCRIPTION AND MODEL

ESTIMATES

Table B.1. Number of trips by household. Description of variables

Variable Mean Std. Description
Endogenous
Tottrips 4.5511 49351 Number of trips by members of the household in the 24 hrs.
period prior to the interview
OwnVeh 0.8492 0.3581 1 if household owns at least one motorized vehicle
Exogenous
WorkSchl 0.2622 0.3278 % of total trips for work vs. personal business or pleasure
Hhmem 2.9289 1.6127 number of individuals in the household
DistoChd 0.2887 0.4932 distance to the central business district in kilometers.
Divided by 30.
AreaSize 0.3761 0.4848 1 if area bigger than 2,5 million population
FullTime 0.9792 0.8475 number of full time workers in the household
DistoNod 2.0272 3.1378 distance from home to the nearest transit node in blocks.
Divided by 5.
Reallnc 0.8042 0.9197 household income divided by median income of census tract
in which household resides. Divided by 3.
Weekend 0.2236 0.4170 1 if 24 hours survey period is Saturday or Sunday
Adults 2.0797 0.8978 number of adults in the household 16 years or older
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Table B.2. Number of trips by households. Model estimates.

Variables NLS TSM NWLS K=0 K=1 K=2 K=3 K=4
Count variable equation (X,d)

Constant -0.6006 -1.4458 -1.0055 -1.3867 -1.3418 -2.4997 -2.4112 -2.6385
0.2251  0.5289 0.1818  0.2170 0.2239 0.3878 0.4046 0.5224
Workschl -0.56273 -0.56543  -0.3633  -0.3407 -0.3515 -0.4101 -0.4168 -0.4353
0.1438 0.1474 0.1288  0.1279 0.1310 0.1401  0.1725 0.1596
Hhmem 0.1663  0.1487 0.1349  0.1507 0.1574 0.1874 0.1949 0.1893
0.0276  0.0313 0.0287  0.0190 0.0181 0.0285  0.0299  0.0297
Distocbd -0.0049 -0.2688 -0.0573 -0.0442 -0.0419 -0.0408 -0.0396 -0.0709
0.0045 0.1722 0.0242  0.0435 0.0363 0.0821 0.6716 0.0688
Areasize -0.037 -0.0088 0.0384  0.0492 0.0618 0.0840  0.0991 0.0630
0.0976  0.1006 0.0853  0.0738 0.0837 0.1031  0.1592 0.1748
Fulltime 0.1890 0.1059 0.2207  0.2464 0.2612 0.3052 0.3138 0.3176
0.0487 0.1019 0.0736  0.0427 0.0466 0.0568  0.0814 0.0950
Distonod 0.0047 0.0216 0.0197  0.0215 0.0215 0.0291  0.0287 0.0330
0.0024 0.0128 0.0136  0.0093 0.0109 0.0112 0.0217 0.0182
Realinc 0.0139  0.0200 0.0071  0.0822 0.0676 0.1145 0.0939 0.0257
0.0162  0.0522 0.0514  0.0309 0.0258 0.0281  0.0323 0.0419
Weekend -0.1557 -0.1650  -0.0296 -0.0974 -0.0956 -0.1134 -0.1126 -0.1260
0.1122 0.1150 0.0835  0.0805 0.0788 0.0891  0.1310 0.0999
Ownveh 1.6070 2.7960 2.0792  2.0601 2.0510 2.3074 2.2826 2.2490
0.1859 0.6134 0.3121  0.2563 0.2575 0.2990 0.3252 0.3539
al -0.0272  0.0537  0.0349 -0.1885
0.0015 0.1458  0.1492 0.4225
a2 0.2316 0.2102 0.6432
0.1542  0.0200 0.6644
a3 -0.0056 -0.1022
0.0050 0.1630
a4 0.0142
0.0232

Binary dependent variable equation (Z)
Constant -0.6335 -0.5476 -0.5500 -0.5057 -0.5042 -0.5186
0.2378 0.3626 0.3613 0.3471  0.7786  0.3869
Workschl 0.1525 0.3160 0.3118 0.3177 0.3154 0.3241
0.2652 0.3522 0.3175 0.3137 0.4776 0.3495
Hhmem 0.0036 0.0511 0.0487 0.05621  0.0484 0.0513
0.0687 0.0860 0.0691 0.0739  0.0798 0.1144
Distocbd 0.6929 0.6652 0.6691 0.6497 0.6520 0.6653
0.3998 0.3676 0.3979 0.3734  0.8659 0.4355
Areasize -0.2065 -0.2492 -0.2533 -0.2576 -0.2620 -0.2481

-1.2423 0.1528 0.1559 0.1568  0.1650 0.1836



Fulltime 0.8718 1.0080 1.0045 0.9949 0.9931 0.9875
0.1559 0.1879 0.1821 0.1764 0.1933 0.1918

Adults 0.3815 0.2678 0.2707 0.2516 0.2530 0.2470
0.1456 0.1762 0.1835 0.1796 0.3137 0.1831

Distonod 0.0484 0.0520 0.0524 0.0496 0.0501 0.0472
0.0332 0.0315 0.0327 0.0317 0.0347 0.0318

Realine 0.4724 0.3378 0.3510 0.3312 0.3434 0.3730
0.1774 0.2276 0.2349 0.2321 0.3160 0.2310

Variance-Covariance Parameters

p -1.1193  -0.6974 -0.6769 -0.6715 -0.6596 -0.6814
0.0325 0.0306 0.0732 0.0634 0.0942

o 0.7287 0.7330 0.9342 0.9261 0.8936
0.1393 0.1416 0.1693 0.1654 0.1944

NOTE: Asymptotic standard error in the bottom row of each cell

20



Table B.3. Number of physician office visits. Description of variables

Variable Mean Std. Description
Endogenous
OFP 6.3590 6.9293 Number of physician office visits
PRIVINS 0.7780 0.4153 =1 if the person is covered by private health insurance
Exogenous

EXCLHLTH 0.1150 0.3193 =1 of self-perceived health is excellent

POORHLTH 0.1087 0.3115 =1 if self-perceived health is poor

NUMCHRON 0.1503 0.1318 Number of chronic conditions (cancer, heart attack, gall
bladder problems, emphysema, arthritis, diabetes, other
heart disease) Divided by 10.

ADLDIFF 0.2162 0.4119 =1 if the person has a condition that limits activities of daily
living

AGE 0.7411 0.0651 age in years. Divided by 100

BLACK 0.0544 0.2269 =1 if the person is African American

MALE 0.4083 0.4918 =1 if the person is male

MARRIED 0.5740 0.4948 =1 if the person is married

SCHOOL 0.5755 0.1902 Number of years of education. Divided by 20.

FAMINC 0.0629 0.0663 Family income in $10.000.Divided by 50.

EMPLOYED 0.1188 0.3238 =1 if the person is employed

MEDICAID 0.1201 0.3253 =1 if the person is covered by Medicaid
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Table B.4. Number of physician office visits. Model estimates

Variable NLS TSM WNLS K=0 K=1 K=2 K=3
Count Variable Equation

Constant 1.6694 1.8968 1.4729 0.6506 0.7521 -0.0679  0.0629
0.5070 0.6525 0.7069 0.4680 0.4756 0.5612 0.5473
Exclhlth -0.5103 -0.5289 -0.5275 -0.5522 -0.5491 -0.6500 -0.6349
0.1292 0.1342 0.1443 0.1231 0.1175 0.1426 0.1323
Poorhlth 0.0640 0.0352 0.1193 0.1384 0.1463 0.1686 0.1761
0.1198 0.1310 0.1515 0.1201 0.1079 0.1421 0.1233
Numchron 1.3850 1.4079 1.5620 1.8261 1.9029 2.1441 2.1783
0.2741 0.2802 0.2938 0.2648 0.2635 0.3217 0.2918
Adldiff 0.1190 0.0829 0.1745 0.1732 0.1188 0.2031 0.1493
0.1243 0.1399 0.1422 0.1116 0.1091 0.1246 0.1285
Age -0.7473 -0.7344 -0.9740 -0.8244 -0.7007 -0.9850 -0.8429
0.6462 0.6444 0.6370 0.6049 0.6055 0.7070  0.7058
Black -0.0828 -0.2309 -0.0513 -0.0898 -0.1782 -0.1045 -0.1786
0.1771 0.2861 0.4112 0.1813 0.1877 0.2152 0.2188
Male -0.0117 -0.0120 0.0039 -0.0103 -0.0334 -0.0137 -0.0360
0.0922 0.0916 0.0825 0.0807 0.0805 0.0931 0.0917
Married -0.1063 -0.1064 -0.1387 -0.0999 -0.0901 -0.1167 -0.1028
0.0941 0.0944 0.0903 0.0850 0.0824 0.0993 0.0953
School 0.4602 0.6276 0.5925 0.6515 0.7601 0.8017 0.8815
0.2189 0.3591 0.5048 0.2598 0.2326 0.3213  0.2687
Famine -0.1880 -0.0296 0.0165 -0.4799 -0.0959 -0.5861 -0.1917
0.4753 0.7815 0.8663 0.6057 0.6037 0.6741 0.6793
Employed 0.0409 0.0165 -0.1004 -0.1447 -0.1743 -0.1848 -0.2067
0.1730 0.1743 0.1551 0.1030 0.1047 0.1213  0.1205
Medicaid 0.4189 0.4088 0.4020 0.4753 0.5082 0.5614 0.5846
0.1288 0.1318 0.1536 0.1293 0.1372 0.1539 0.1528
Privins 0.3416 -0.0546 0.6641 1.0061 0.7387 1.1671  0.9015
0.1117 0.6980 0.9701 0.2031 0.1769 0.2314 0.2114
Al -0.0292 0.0195 -0.0055
0.0007 0.0873 0.0793
A2 0.1911 0.1672
0.0892  0.0093
A3 -0.0049
0.0001

Binary Dependent Variable Equation
Exclhlth -0.2374 -0.2374 -0.2191 -0.2339 -0.2191 -0.2315
0.1688 0.1688 0.1609 0.1644 0.1613 0.1639
Poorhlth -0.2395 -0.2395 -0.2040 -0.2255 -0.2039 -0.2220
0.1679 0.1679 0.1612 0.1658 0.1618 0.1653
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Adldiff -0.3545 -0.3545 -0.3455 -0.3498 -0.3459 -0.3491
0.1320 0.1320 0.1252 0.1282 0.1255 0.1279

Black -1.0987 -1.0987 -1.0780 -1.0971 -1.0821 -1.0972
0.2082 0.2082 0.2018 0.2070 0.2021 0.2065

School 1.5843 1.5843 1.5140 1.5640 1.5123  1.5547
0.1543 0.1543 0.1532 0.1559 0.1544 0.1556

Famine 3.4645 3.4645 3.3878 3.4382 3.4049 3.4312
1.1158 1.1158 1.1696 1.2255 1.1725 1.2171

Employed -0.3017 -0.3017 -0.2750 -0.2880 -0.2755 -0.2858
0.1739 0.1739 0.1739 0.1773 0.1742 0.1769

Variance-Covariance Parameters

Rho 0.3379 -0.4478 -0.2616 -0.4235 -0.2813
0.1221 0.1303 0.1352 0.1488

Sigma 1.0835 1.0518 1.3234 1.2792
0.1049 0.0684 0.1163 0.0696

NOTE: Asymptotic standard error in the bottom row of each cell

23



Bibliography

Andrews, D.W.K. (1988a), "Chi-Square Diagnostic Tests for Econometric Models: Theory", Econometrica,
56, 1419-1453.

------- (1988b), "Chi-Square Diagnostic Tests for Econometric Models. Introduction and Applications”,
Journal of Econometrics, 37, 135-156.

Besley, T. J. (1988), "Optimal Reimbursement Health Insurance and the Theory of Ramsey Taxation",
Journal of Health Economics, 7, 321-336.

Cameron, A.C. and Trivedi, P.K. (1986), "Econometric Models Based on Count Data: Comparisons and
Applications of some Estimators and Tests", Journal of Applied Economeirics, 1, 29-53.

Cameron, C. and Johansson, P. (1997), "Count Data Regression using Series Expansions: with
Applications", Journal of Applied Econometrics, 12, 203-233.

Cameron, A.C., Trivedi, P.K. (1998), Regression Analysis of Count Data, Econometric Society
Monograph 30. New York: Cambridge University Press.

Chiappori, P.A., Durand, F. and Geoffard, P.Y, (1998), "Moral Hazard and the Demand for Physician
Services: First Lessons from a French Natural Experiment”, European Economic Review, 42, 499-511.

Coulson, N.E., Terza, J., Neslulan, C.A. and Stuart, C.B. (1995), "Estimating the Moral Hazard Effect
of Supplemental Medical Insurance in the Demand for Prescription Drugs by the Elderly”, American
Economic Review Papers and Proceedings, 85, 122-126.

Creel, M. (1999), "A Flexible and Parsimonious Density for Count Data", unpublished manuscript,
Universitat Autonoma de Barcelona.

Deb, P. and Trivedi, P.K. (1997), "Demand for Medical Care by the Elderly: A Finite Mixture
Approach”, Journal of Applied Econometrics, 12, 313-336.

Gabler, S., Laisney, F. and Lechner, M. (1993), "Seminonparametric Estimation of Binary-Choice
Models With an Application to Labor-Force Participation”, Journal of Business and Economic

Statistics, 11, 61-80.

Gallant, A.R. and Nychka, D. (1987), "Semi-Nonparametric Maximum Likelihood Estimation",
Econometrica, 55, 363-390.

Goffe, W.L., Ferrier, G.D. and Rogers, J. (1994), "Global Optimization of Statistical Functions with
Simulated Annealing", Journal of Economeirics, 60, 65-99.

Grogger, J. (1990), "A Simple Test for Exogeneity in Probit, Logit and Poisson Regression Models",
Economic Letters, 33, 329-332.

Gurmu, S. and Trivedi, P.K. (1996), "Excess Zeros in Count Models for Recreational Trips", Journal of
Business and Economic Statistics, 14, 469-477.

Gurmu, S., Rilstone, P. and Stern, S. (1999), "Semiparametric Estimation of Count Regression
Models", Journal of Economeirics, 88,123-150.

Gurmu, S. (1997), "Semi-Parametric Estimation of Hurdle Regression Models with an Application to

24



Medicaid Utilization", Journal of Applied Econometrics, 12, 225-242.,

Hausman, J.A., Hall B. H. and Griliches, Z (1984), "Econometric Models for Count Data with
Applications to the Patents-R&D relationship”, Econometrica,52, 909-38.

Heckman, J., (1978), "Dummy Endogenous Variables in a Simultaneous Equation System".
Econometrica, 46, 931-959.

Holly, a., Gardiol, 1., Domenighetti, g. and Bisig, b. (1998), "An Econometric Model of Health Care
Utilization and Health Insurance in Switzerland", European Economic Review, 42, 513-522.

Kenkel, D.S., Terza, J.V. (1999), "The Effect of Physician Advice on Alecohol Consumption: Count
Regression with an Endogenous Treatment Effect”, unpublished manuscript, Penn State University.

Manning, w.g., Newhouse, j.p., Duan, n., Keeler, e.b., Leibowitz, a. and Marquis, M.S., (1987), "Health
Insurance and the Demand for Medical Care: Evidence from a Randomized Experiment", The
American Economic Review, 77, 251-2717.

Mullahy, J. (1998), "Much Ado about Two: Reconsidering Retransformation and the Two-Part Model
in Health Econometrics”, 17, 247-281.

Mullahy, J. (1997), "Instrumental-Variable Estimation of Count Data Models: Applications to Models
of Cigarette Smoking Behavior", Review of Economic and Statistics, 79, 586-593.

Pohlmeier, W. and Ulrich, V. (1995), "An Econometric Model of the Two-Part Decisionmaking Process
in the Demand for Health Care", The Journal of Human Resources, 30, 339-61.

Street, A. Jones, A. and Furuta, A (1999), "Cost-sharing and Pharmaceutical Utilisation and
Expenditure in Russia", Journal of Health Economics, 18, 459-472,

Terza, J.V., Wilson, P.W. (1990), "Analyzing Frequencies of Several Types of Events: a Mixed
Multinomial-Poisson Approach”, Review of Economic and Statistics 72,108-115.

Terza, J. V. (1998), "Estimating Count Data Models with Endogenous switching: Sample selection and
endogenous Treatment Effects”, Journal of Econometrics, 84, 129-154.

Vera-Hernandez, A.M. (1999), "Duplicate Coverage and Demand for Health Care. The Case of
Catalonia", Health Economics, 8, 579-598.

Windmeijer, F.A.G. and Santos-Silva, J.M.C. (1997), "Endogeneity in Count Data Models: An
Application to Demand for Health Care" , Journal of Applied Econometrics, 12, 281-294.

Winkelmann, R., Zimmermann, K.F., (1995), "Recent Developments in Count Data Modelling: Theory
and Application", Journal of Economic Surveys, 9, 1-24.

25



TABLES

Table 1. Number of trips by households. Descriptive statistics

Number of observations 577.00
Mean 4.55
Variance 24.35
Variance to Mean 5.35
Empirical to expected Kurtosis 3.91
Proportion of zeros to sample size 0.18
Poisson predicted frequency of zeros 0.01
Ratio real/predicted 17.65

NOTE: Poisson predictions were computed using sample mean
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Table 2. Number of trips by household. Fitted vs. Empirical

Count Empirical Fitted
K=0 K=1 K=2 K=3 K=4
0 0.185 0.155 0.155 0.184 0.184 0.187
1 0.119 0.157 0.157 0.124 0.125 0.1166
2 0.109 0.133 0.133 0.113 0.112 0.124
3 0.124 0.108 0.108 0.105 0.104 0.114
4 0.091 0.086 0.086 0.096 0.098 0.083
5 0.053 0.068 0.068 0.07 0.076 0.076
6 0.062 0.054 0.054 0.066 0.067 0.055
7 0.053 0.042 0.043 0.041 0.045 0.048
8 0.045 0.033 0.034 0.032 0.037 0.033
9 0.024 0.026 0.027 0.027 0.022 0.033
10 0.024 0.021 0.021 0.023 0.028 0.024
=11 0.105 0.109 0.109 0.104 0.105 0.108
Sum of differences (x107) 2.9 2.8 1.2 1.31 1.4
Goodness of Fit (Andrews) 23.59 22.36 9.34 9.07 9.55
P-Value 0.01 0.02 0.59 0.61 0.57
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Table 3. Number of trips by households. Goodness of fit measures and likelihood ratio tests

Specifications

K=0 K=1 K=2 K=3 K=4
Num. Param 21 22 23 24 25
Sample Size 577 577 577 577 577
(1/N)*In(L) -2.668 -2.665 -2.655 -2.654 -2.6522
Cons. Akaike 3233.991 3237.925 3233.815 3239.374 3245.186
Schwarz BIC 3212.991 3215.925 3210.815 3215.374 3220.186

P-Values

K=0 0.0639 0.0005 0.0008 0.00113
K=1 0.0007 0.0013 0.00198
K=2 0.1796 0.18769
K=3 0.21367

NOTE: The second part of the table shows the P-values of likelihood ratio tests. Null hypothesis
models are in rows and alternative in columns.
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Table 4. Number of trips by Households. Sensitivity Analysis to OWNVEH

X,Z) Point K=0 K=2
Upper Extreme Ownveh 31.9 27.9
Covariates® 8.2 34.5
Not Ownveh 18.0 22.5

7.9 11.2

% Change 77.5 24.5

46.0 210.7

Lower Extreme Ownveh 1.2 1.2
Covariates® 0.4 0.8
Not Ownveh 1.3 2.6

0.6 1.9

% Change -111 -52.2

22.9 13.8

Mean Covariates® Ownveh 4.6 4.7
0.1 0.1

Not Ownveh 1.6 2.0

0.2 0.3

% Change 179.3 136.8

47.5 40.7

NOTE: Each rows represents the estimate of the expectation of dep. variable conditional on
OWNVEH=1, OWNVEH=0 and the percentage change from first to second at three different covariates
points. Standard estimates appear below entries.

AWORKSCHL=0, HHMEM=13, DISTOCBD=0, AREASIZE=1, FULLTIME=4, DISTONOD=10,
REALINC=10, WEEKEND=0

BWORKSCHL=1, HHMEM=1, DISTOCBD=10, AREASIZE=0, FULLTIME=0, DISTONOD=0.2,
REALINC=0.02, WEEKEND=1

‘WORKSCHL=0.26, HHMEM=2.92, DISTOCBD=0.28, AREASIZE=0.37, FULLTIME=0.97,
DISTONOD=2.02, REALINC=0.8, WEEKEND=0.22
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Table 5. Number of physician office visits. Descriptive statistics

Number of observations 791.0
Mean 6.3
Variance 48.0
Variance to Mean 7.5
Empirical to expected Kurtosis 4.3
Proportion of zeros to sample size 0.13
Poisson predicted frequency of zeros 0.001
Ratio real/predicted 75.2

NOTE: Poisson predictions were computed using the sample mean.
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Table 6. Number of physician office visits. Goodness of fit measures and likelihood ratio tests

Specifications

K=0 K=1 K=2 K=3
Num. Param 23 24 25 26
Sample Size 791 791 791 791
(1/N)*In(L) -3.3097 -3.3039 -3.2966 -3.2922
Cons. Akaike 5412.46 5410.95 5407.11 5407.76
Schwarz BIC 5389.46 5386.95 5382.11 5381.76

P-Values

K=0 0.00243 0.0000 0.0000
K=1 0.0006 0.0000
K=2 0.0080

NOTE: The second part of the table shows the P-values of likelihood ratio tests. Null hypothesis
models are in rows and alternative in columns.
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Table 7. Number of physician office visits. Predicted vs. Empirical

Count Empirical Fitted
K=0 K=1 K=2 K=3
0 0.1302 0.0985 0.0983 0.1263 0.1257
1 0.0961 0.1290 0.1291 0.1024 0.1045
2 0.1062 0.1207 0.1209 0.0968 0.0970
3 0.0910 0.1022 0.1026 0.0938 0.0929
4 0.0860 0.0841 0.0845 0.0864 0.0856
5 0.0746 0.0688 0.0693 0.0758 0.0754
6 0.0657 0.0565 0.0571 0.0642 0.0643
=7 0.3502 0.3401 0.3383 0.3543 0.3546
Sum of differences(x10™) 1.48 1.49 0.37 0.39
Goodness of fit (Andrews) 21.21 21.784 2.39 2.52
P-Value 0.0034 0.0027 0.9347 0.9254
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Table 8. Number of physician office visits. Sensitivity analysis to PRIVINS

(X,Z) Point K=0 K=2
Upper Extreme Privins 30.6 28.8
Covariates 1.4 0.9
Not Privins 30.9 28.1

2.6 2.1

% Change -0.9 2.5

6.6 5.9

Lower Extreme Privins 0.8 0.8
Covariates 0.3 0.3
Not Privins 0.5 04

0.2 0.2

% Change 53.2 68.4

18.4 24.7

Mean Covariates Privins 6.8 6.6
0.2 0.2

Not Privins 4.4 4.5

0.4 0.4

% Change 52.0 45.7

16.9 15.7

NOTE: Each rows represents the estimate of the expectation of dep. variable conditional on
PRIVINS=1, on PRIVINS=0 and the percentage change from first to second at three different
covariates points. Standard estimates appear below entries.

AEXCLHLTH=0, POORHLTH=1, NUMCHRON=0.7, ADLDIFF=1, AGE=0.66, BLACK=0, MALE=0,
MARRIED=0, SCHOOL=0.9, FAMINC=0.0001, EMPLOYED=0, MEDICAID=1

BEXCLHLTH=1, POORHLTH=0, NUMCHRON=0, ADLDIFF=0, AGE=0.96, BLACK=1, MALE=1,
MARRIED=1, SCHOOL=0, FAMINC=0.48, EMPLOYED=1, MEDICAID=0

°EXCLHLTH=0.11, POORHLTH=0.1, NUMCHRON=0.15, ADLDIFF=0.21, AGE=0.74, BLACK=0.05,
MALE=0.4, MARRIED=0.57, SCHOOL=0.57, FAMINC=0.06, EMPLOYED=0.11, MEDICAID=0.12
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FIGURES
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Figure 1. Number of trips. The figure plots the empirical frequency ( — ) of the
counts in the horizontal axis and the predicted probabilities for the K=0 model
(---) and the K=2 model (--).
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Figure 2. Number of physician office visits. The figure plots the empirical
frequency (— ) of the counts in the horizontal axis and the predicted
probabilities for the K=0 model (---) and the K=2 model (--).
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Figure 3. Number of trips by household. The figure shows the distribution
of the percentage change in the mean effect due to vehicle ownership (see
section 3) for K=0 (— ) and K=2 (---).
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Figure 4. Number of physician office visits. The figure shows the distribution
of the percentage change in the mean effect due to insurance status (see
section 3) for K=0 ( — ) and K=3 (---).
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