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Introduction: What is
Statistics ?

Think of a researcher who seeks to explain some fact form the real world. For instance,
imagine Newton trying to explain why apples fall. As a closer example, imagine an
economist trying to explain why unemployment does exist.
Usually, the task of a researcher consists of three parts:

1. Observe the world in order to determine the problem to study and gather infor-
mation about it

2. Think about the problem

3. Produce an explanation orTheoryfor the problem.

Statistics become extremely important for the first of these three elements.1

It is clear that, in order to study a "real problem", the researcher must observe the
"real" world. Nevertheless, it is also clear that no researcher can observe thewhole
reality. Newton can not observer all the falling apples, neither can an economist in-
terview the whole population of a country to determine the unemployment rate. It is
hence necessary to somehow "summarize" the reality, but this task has to be done so
that such "summary" closely fits the reality. Then, and only then, conclusions drawn
from the "summary" can be reliably applied to the whole population.

Statistics (more precisely, statistical inference) is a collection of tech-
niques by means of which we can draw conclusions with regards to a
reality from the study of asummaryof such reality

Hereafter we will study in detail how this is done. Chapter one explains how the
reality is rigorouslysummarizedand what are the main features of the results obtained
in this process. Chapter two deals with the first approach on how to generate con-
clusions about somereal issues based on what we observe in thesummary. Chapters
three and four introduce more sophisticated techniques to make inferences about the
reality using some of the more elemental results seen in Chapter two. Finally, Chapter
five introduces the linear regression analysis, a technique widely used in the economic

1Very often the researcher does not start up by gathering information using statistical techniques. On the
contrary, in many cases his initial activity consists of detecting general patterns of behavior for a given fact.
From here, researchers are able to build up an abstract theory in order to explain the phenomenon at study.
This is, for example, Newton’s way, and also the way Economic Theory works. Once this "abstract theory"
is logically constructed, statistical techniques are often used to check whether such theory fits the reality, as
we will see in Chapter 5.
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analysis (and other sciences) to study the relationship between variables. It is worth
saying that a clear understanding of the topics in Chapter one are important in order to
easily understand what other chapters deal with, and also to get an global idea of the
whole process of statistical inference.



Chapter 1

Sampling Theory

This chapter formally intoduces how thesummarymentioned above is done and which
are the main features of the conclusions drawn from it.

At this point, it is important to understand that statistics is based onprobabilistic
techniques. Hence, any statistical conclusion drawn from this kind ofsummarywill not
be true for surewhen applied to the wholereality, but only with a certain probability.
For instance, when an electoral survey is conducted it is clear that its results do not
exactly coincide with the results in the final election. Nevertheless, if the survey is
"well done", that is, if thesummaryof the reality (which in this case is the set of
people interviewed) closely represents the wholereality (which in this case is the whole
population that has the right to vote), then the survey result will be close to the final
results with a high probability

In the sections below we will see which are the basic ingredients of any statistical
analysis and its probabilistic features

1.1 Population, Sample, Parameter, Statistic, and Sta-
tistical Inference

Statistical inference is mainly built upon four main concepts, which will be defined
and described below. These concepts are closely related to each other and it is very
important to clearly understand each of them and not to mistake one by the other.

Population Is the set of elements that are the object of study1. The goal will be to
draw some conclusion regarding some specific feature of this population.

Example 1.1.1 All the apples in the world. The feature at study is whether
an apple falls down or not.

Example 1.1.2 Labor force in the European Union. The feature at study
is whether a worker is unemployed or not.

Example 1.1.3 Production of Pentium IV chips in a given day. The feature
at study is whether a chip is faulty or not.

1In this sense, thePopulation is what we have calledreality in the Introductory chapter

7
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Sample Subset of thePopulation used to draw conclusions about the population

Example 1.1.4 50 apples in Newton’s garden.

Example 1.1.5 Unemployment statistics at the European Union.

Example 1.1.6 25 Pentium IV chips manufactured in a given day.

Parameter Is the feature of the population that we want to know something about.
This feature has to be a numerical one2 and, obviously, its true value must be
unknown3

Example 1.1.7 What is the proportion of falling apples.

Example 1.1.8 What is the unemployment rate at the European Union

Example 1.1.9 What is the proportion of faulty chips among those pro-
duced in a given day.

Statistic Computation made using the elements in thesampleand used to get an ap-
proximation to the true value of theparameter. It is important to notice that
this value will be known (since we will compute it) and will be used to draw
conclusions on the true value of theparameter, which is unknown and is what
is of interest to us.

Example 1.1.10Proportion of falling apples among the 50 sampled ap-
ples in Newton’s garden.

Example 1.1.11Unemployment rate among the workers interviewed in
the unemployment statistics in the European Union.

Example 1.1.12Proportion of faulty chips among the 25 selected chips
produced in a given day.

From this four main concepts, the process of statistical inference works as follows:

1. Using sampling techniques that will be explained below, asample is selected
from thepopulation that is going to be studied.

2. From thissample, the proper computations are done in order to obtain astatistic.

3. From thisstatistic, using some statistical inference technique that we will see in
other chapters, some conclusions are drawn regarding the unknown population
parameter that represents the feature of the population that is to be studied.

This process can be represented as in Figure 1.1
We can now provide a definition for Statistics (or Statistical Inference, to be more

precise) which is more formal than the one offered in the introduction.

Definition 1.1.13 Statistical Inference is a subject whose main objective is to draw
conclusions regarding apopulation thru the study of onesampleby means of proba-
bilistic techniques.

2Although non numerical features can be studied as well, the techniques used in such cases are different
from those that we will see here. Nevertheless, Chapter four will introduce some of these analysis.

3For otherwise it will not be necessary to do any statistical analysis at all !
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   Population
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(unkonwn)
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(known)

Statistical
Inference Sampling

Figure 1.1: The process of Statistical Inference

1.2 Sampling types

We will see what asampleis, that is, how asamplecan be selected out of apopulation.
Since we want to study this sample to produce conclusions about thepopulation, it
can not be selected arbitrarily. In this sense, there exist rigorous techniques specially
tailored for this purpose. In what follows, the more basic techniques will be introduced,
while more sophisticated analysis are out of the scope of these notes. The following
definition approaches the idea ofsampling

Definition 1.2.1 Samplingis a systematic technique to select a sample out of a popu-
lation in such a way that it is representative of the population

Here, the keyword isrepresentative. Indeed, if we want our sample to be used
in order to produce "reliable" conclusions regarding the original population, we would
better have a sample that closely resembles (in its structure) the original population. For
instance, if we want to conduct an electoral survey and we only interview people living
in a "rich" neighborhood, then it is clear that their answers will not be representative of
the whole population.

There are different types of sampling techniques, depending on the specific features
of the study at hand. The more important are:

1.2.1 Probabilistic Sampling.

Consist of all the sampling techniques that are based on random methods to select the
sample from the population. There are different kinds of random samplings:

1.2.1.1 Simple Random Sampling (SRS).

This is the "most random" of all the probabilistic sampling methods, and throughout
this notes we will normally assume that samples are obtained using this technique. Its
main feature is thatall elements in the population have the same probability of being
selected to be incorporated to the sample. In other words, the sample is constructed
completelyat random. If we think for a moment of all the possible different samples
that can be selected from a given population, simple random sampling means that each
of these samples has the same probability of been selected as "the sample", i.e., they
are equally likely
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Example 1.2.2 Consider a population consisting of only 4 elements

Population= {A,B, C,D}
If, for instance, we want to draw a sample of size 2, there are 6 possible samples

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6
{A,B} {A,C} {A,D} {B, C} {B,D} {C, D}

Table 1.1: Possibles Samples

Hence, in a Simple Random Sampling, each of this samples has the same proba-
bility of being selected,16 in this case. Analogously, we may also say that each of the
four elements in the Population has the same probability of being drawn to enter the
selected sample. Indeed, since each of the elements belongs to exactly 3 of the possible
sample and each possible sample has probability1

6 of being the selected sample, then
the probability for any of the elements in the Population of entering the selected sam-
ple is 1

6 + 1
6 + 1

6 = 1
2 . This probability (12 ) can also be understood as each element

in the Population having probability14 of being the first element to enter the sample
and probability1

4 of being the second element in the sample, which yields a total of1
2

probability of being one of the two elements in the sample.

1.2.1.2 Systematic Sampling.

The Systematic Sampling consist of a variant of a SRS. It is useful when the popula-
tion to sample is not "static", but changes often. The following example shows how
this method works.

Example 1.2.3 Consider a factory that manufactures Pentium "chips". The managers
want to study how many of these chips turn out to be faulty every day. The factory has a
"chain" process so that once the "chip" has been assembled, it automatically enters in
the packaging process and then moves into warehouse. Let us suppose that the factory
produces 100 "chips" a day, and that a sample of size 5 is going to be selected. It is
clear that the managers can not wait until the end of the day, then stop all processes,
randomly select 5 chips, and start all processes over again. This would be very costly.
What is needed is a way to randomly select "chips" but without having to stop the
manufacturing chain process. Here is what can be done in cases like this.

1. Select "a priori" which "chips" will be systematically taken out from the chain
process to enter the sample. In this example, if 100 chips are produced daily and
only 5 need to go to the sample, then we must select one chip out of every 20
produced chips.

2. Randomly pick a number between 1 and 20 (here is were "randomness" play a
role). Let us suppose that the selected number is 6.

3. Following what resulted in the previous items, we must then select chips num-
bered 6, 26, 46, 66 i 86. That is, starting from chip number 6 (in order of pro-
duction), we count every 20 chips to construct the sample.
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4. We can "program" the machines in the chain production so that the selected chips
are automatically "deviated" out of the process. Other chips continue their way
to packaging without any interference.

The method just described allows us to obtain a random sample without having to dis-
rupt the production process.

1.2.1.3 Stratified Sampling.

This sampling is another variant of the SRS that makes sense when there is some infor-
mation regarding the structure of the population. Using this information, it is possible
to construct samples which are more representative that those obtained directly with a
SRS. The following example shows who this sampling technique works.

Example 1.2.4 An electoral survey is to be conducted in the city of Barcelona. It is
known that voting is very correlated with the district of residence. In other words, a
person living in Pedralbes has a higher probability of voting to he right than a person
living in the Poble Sec. In order to avoid that a SRS selects too many people from the
same district, the sample (of sizen) can be splitted in several "subsamples" (one for
each district in the city) so that the union of these samples isn Then, each of these
subsamples is obtained by means of a SRS in each district.

The results from this type of sampling are usually more representative, the only
problem being we need to know the relative weight of each district with respect to the
total of the city. Once this is known, the relative weight of each subsample with respect
to the whole sample must be adjusted to mimic the true weights in the city.

1.2.1.4 Step by step sampling.

This is another variant of the SRS that makes sense when, given the structure of the
population to study, the realization of a SRS would be very costly. The following ex-
ample shows how this sampling technique works.

Example 1.2.5 We want to conduct a survey to know the situation of the public schools
in Catalonia. Since this is a very delicate topic, we must travel to each of the schools
that have been picked to belong to the sample and interview the Director. In this con-
text, a SRS might very well select a sample composed of schools disseminated all over
the territory, which would imply a high level of travel expenditure. To avoid this, we
can do the following:

1. Perform a SRS within all the "comarques" in Catalonia, so that 10 "comarques"
are selected to visit.

2. Within each of the 10 selected "comarques", perform another SRS to select 20
towns to visit. Hence, we will have a total of 200 cities to visit.

3. Finally, within each of the selected cities perform one SRS more to select one
public school to visit.
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In this way, we have selected 200 public schools to visit in Catalonia with travel costs
lower than using a SRS. The problem, though, is that the sample obtained will be less
representative.

Each of this sample techniques has its own pros and cons.
In what follows, we will always assume (implicitly) that the sample at hand has
been obtained by means of a SRS.

1.2.2 Non Probabilistic Sampling

In some cases the sample is obtained without any randomness at all. For instance, if
we want to test a new drug against malaria, we can not just randomly select "subjects"
and force them to take the drug. In cases like this, a call for volunteers is made. This
techniques are usually much less representatives that a random technique. Furthermore,
since there are no random components in the sample, we can not use probabilistic tools
to study the sample and, therefore, statistical inference techniques can not be correctly
applied.

1.3 Sample Statistics Distributions

Once the sample is obtained (we will always assume that using a SRS), the process of
working with it and draw conclusions starts.

In this sense, the main task is now to obtain astatistic, one of the main elements
in statistical inference. We will use it to produce conclusions regarding the unknown
populationparameter that is of interest to us.

The definition that follows will remind us what astatistic is (as introduced in the
previous section). Then, the concept ofestimateis defined. Although these two con-
cepts are very similar and closely related, it is very important to notice that they are not
the same thing.

Definition 1.3.1 A statistic (or estimator)4 is a formula that uses the values in the
sample at hand (observations) in order to produce an approximation to the true value
of an unknown population parameter.

Definition 1.3.2 An estimate(or estimation) is the particular value of an estimator
that is obtained from a particular sample of data and normally used to indicate the
value of an unknown population parameter.

Hence, astatistic is not a number but a formula while anestimate is the number
that is obtained when the formula (the estimator) is applied to the observations of the
specific sample that we have at hand.

At this point, it becomes crucial to understand that, given that the sample is obtained
by means of a random technique, thestatistic will produce differentestimateswith
different probabilities (depending on the specific sample that is finally "selected" at

4The fact that the the same "object" can have two names must no lead to confussion. Depending on the
kind of analysis that we want to perform, the same "formula" is referred to with one name or the other. In
Chapter 2 we will use the termestimator, while in the chapters that follow we will rather use the name
statistic. It is always the same idea, but used purposes for different .
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random). To put it more formally, astatistic is aRandom Variable, that is, a variable
that takes different values with different probabilities In this sense, anestimate is a
specific realization of this random variable. The following example aims to clarify this
idea.

Example 1.3.3 We want to know the average number of cars per family in a given
population. To keep the example simple, we will assume that the population is very
small, only 4 families,Population = {A,B, C,D}

Let us now assume that familyA owns one car, familiesB andC have 2 cars each,
and familyD has 4.5

For the study, we want to obtain a random sample of size 2. We can then compute
the average number of cars in the sample and use it to infer some conclusion regarding
the true average in the population. Hence, the sample mean (or just mean, for short)
will play the role ofstatisticin this example, and we can use it to draw conclusions on
the true populationparameterthat is of interest to us: the average number of cars per
family in the whole population, that is, thepopulation mean.

Table 1.3 summarizes:

1. The 6 possible samples than can be the result of a sampling process on this
population,

2. for each of the possible samples, the probability of being selected (all of them
will have the same probability as we are assuming SRS)

3. theestimatevalue that would result from applying the sample average formula
to the corresponding sample

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6
Elements {A,B} {A,C} {A, D} {B, C} {B, D} {C,D}
Probability 1

6
1
6

1
6

1
6

1
6

1
6

Estimate 1.5 1.5 2.5 2 3 3

Table 1.3: Possible samples, probability for each sample, andestimatevalue in each
case.

In this example we can see how thestatisticat use (sample mean) can take 4 differ-
ent values, depending on which of the six possible samples is selected by the SRS. From
here, it is easy to see that the value 1.5 corresponds to two possible samples (Sample
1 and Sample 2). Hence, since each sample has the same probability of being selected
( 1
6 ), the probability that thestatistictakes the value 1.5 is:

P (statistic= 1.5) = P (Sample1) + P (Sample2) =
1
6

+
1
6

=
1
3

Next, we summarize what are the possible values thestatisticcan take an what is
the probability associated to each of them:

5Obviously, we are supposed not to know that for otherwise there will be no need for any kind of statistical
analysis !!
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statistic value=





1.5 p = 1
3

2 p = 1
6

2.5 p = 1
6

3 p = 1
3

In this example, we have seen how thestatisticcan take different values (4 in this
case) with different probabilities. Hence, thestatisticis a random variable

Hence, given thatstatisticsare random variables, it will be necessary to know their
main properties and, specially, the probability distributions of the ones that are more
frequently used. In this sense, the mainstatistics (or estimators) that are studied are
thesample mean, thesample variance, and thesample proportion.

In all cases, we will assume that a sample of sizen has been obtained by means of
a SRS. The elements of the sample will be denoted by

{x1, x2, · · · xn}
Also, we will assume that the sample has been selected form a population that

follows a given distribution. To know this distribution is very important as it will
influence the sampling result and, hence, the possible values of thestatistic as we
have seen in the previous example. Indeed, in this example we have seen that the
population is distributed so that there is 1 element with 1 car, 2 elements with 2 cars,
and 1 element with 4 cars. Therefore, if we pick the sample elementxi at random from
this population, we will have that:

p(xi = a) =





1
4 if a = 1
1
2 if a = 2
1
4 if a = 4
0 otherwise

This is, in this case, thedistributionof the population. Figure 1.2 shows it.

In general6, we will assume that theSAMPLE has been obtained
by means of a SRS from a population distributed according to aNOR-
MAL DISTRIBUTION with somePOPULATION M EAN µ and somePOP-
ULATION VARIANCE σ2.

What does it mean ? Easy, it means that for any two numbersa andb, we have that
for any element in our samplexi,

p(a ≤ xi ≤ b) = p(a− µ ≤ xi − µ ≤ b− µ) =

= p(
a− µ

σ
≤ xi − µ

σ
≤ b− µ

σ
) = p(

a− µ

σ
≤ Z ≤ b− µ

σ
)

whereZ represents the Standard Normaldistribution, usually denoted byN(0, 1),
whose associated probabilities are found in tables. Graphically, Figure 1.3 shows it

We turn next to the study of the distributions of the three mainstatistics. These, as
we have discussed above, will depend on the distribution of the population from which
we obtain the sample. For each case, we will also be interested in knowing what is the
expectationand thevarianceof these statistics.

6There are special cases that we will discuss in due time
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Figure 1.2: Population distribution in example 1.3.3

1.3.1 Sample Mean

Sample mean, denoted byX̄, is thestatistic that is obtained from the sample using the
formula:

X̄ =
n∑

i=1

xi

n

It is normally used to infer conclusions regarding the true value of thePopulation mean
µ. Its distribution depends on the characteristics of both the population and the sample

1. If the population isNormal, that is,Xi ∼ N(µ, σ2)∀i, then we have that

X̄ ∼ N(µ,
σ2

n
)

because of thesample meanbeing alinear combinationof Normalrandom vari-
ables

2. If the population is notNormalbut the sample is big enough, then:

X̄ − µ√
σ2

n

∼ N(0, 1) (approx.)

because of the Central Limit Theorem

3. If the population is notNormaland the sample is small, then the distribution of
thesample meanX̄ is unknown in general.

4. If the population varianceσ2 is unknown and the population isNormal, then

X̄ − µ√
S2

n

∼ tn−1
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µa b

p(a<x<b)

Figure 1.3: Normal Distribution

whereS2 is the Sample variance(that we will see next) andtn−1 is the t −
student distribution withn− 1 degrees of freedom, which is very similar to the
N(0, 1) distribution and whose values can also be found in tables.

We turn next to the study of theexpectationandvarianceof this statistic. To do so,
we will use the mathematical properties of the expectation and variance of a random
variable.7 As usual, we will assume that the sample has been obtained from a popu-
lation with population meanµ andpopulation varianceσ2. That is,E(xi) = µ and
V (xi) = σ2 for any elementxi in the sample. Then,

E(X̄) = E(
n∑

i=1

xi

n
) =

n∑

i=1

E(
xi

n
) =

n∑

i=1

1
n

E(xi) =
n∑

i=1

µ

n
= µ

and

V (X̄) = V (
n∑

i=1

xi

n
) =

n∑

i=1

V (
xi

n
) =

n∑

i=1

1
n2

V (xi) =
n∑

i=1

σ2

n2
=

σ2

n

Therefore, for the case of thesample mean̄X we have that

E(X̄) = µ, V (X̄) =
σ2

n

1.3.2 Sample Variance

Sample variance, denoted byS2, is thestatistic that is obtained from the sample using
the formula:

S2 =
1

n− 1

∑
(xi − X̄)2

7For instance, the expectation of the sum of random variables is the sum of expectations, and so.
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It is normally used to infer conclusions regarding the true value of thePopulation vari-
anceσ2. Its distribution depends on the characteristics of the population.

1. If the population isNormal, (Xi ∼ N(µ, σ2)∀i), then:

(n− 1)S2

σ2
∼ χ2

n−1

whereχ2
n−1 is thechi-square distribution withn− 1 degrees of freedom, whose

values are also in tables. (This distribution corresponds to the sum ofn − 1
squared standardNormals)

2. If the population is notNormal, then the distribution of thesample varianceis
unknown in general, even for large samples.

Since we only know the distribution of thesample variancewhen the population
is Normal, we will use the fact that in that case its distribution isχ2

n−1 to find the
expectation and variance easily. In this sense, we know that for anyχ2 variable we
have thatE(χ2

n−1) = n− 1 andV (χ2
n−1) = 2(n− 1). Hence, we will assume the the

sample has been obtained from aNormalpopulation withsample meanµ andsample
variancel σ2. That is,xi ∼ N(µσ2) for any elementxi in the sample. Hence:

(n− 1)S2

σ2
∼ χ2

n−1

and therefore

E(
(n− 1)S2

σ2
) = n− 1 ⇒ (n− 1)

σ2
E(S2) = n− 1 ⇒ E(S2) = σ2

V (
(n− 1)S2

σ2
) = 2(n− 1) ⇒ (n− 1)2

(σ2)2
V (S2) = 2(n− 1) ⇒ V (S2) =

2σ4

n− 1

1.3.3 Sample Proportion

Sample proportionis a special case. It is used when we are interested in knowing which
is the trueproportionof elements in a population that have a given characteristic. For
instance, it might be of interest to know what is the proportion of smokers among the
second year students in this school (in this case, thecharacteristicthat is of interest
is "whether a student smokes or not"), or what is the proportion of faulty Pentium IV
chips in a day (in this case, thecharacteristicof interest is "whether a chip is faulty or
not")
Sample proportion, denoted bŷπ, is thestatistic that is obtained from the sample using
the formula:

π̂ =
∑ xi

n

wherexi = 1 if the i-th element in the sample has the characteristic that we are study-
ing andxi = 0 if it does not.
Sample proportionis normally used to infer conclusions regarding the truepopulation
sampleπ. In this case, the population is neverNormalsince each observationxi comes
from a Bernoulli random variable. Indeed, let us assume that we are looking at a
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population of 100 individuals out of which 45 are smokers. That is, the truepopulation
proportion is 45% orπ = 0.45. Imagine that from this population we want to obtain a
sample of size 10. It is clear that for any elementxi of the sample we will have that:

p(xi = 1) =
45
100

= 0.45

p(xi = 0) =
55
100

= 0.55

Hence, we see that each elementxi in the sample follows aBernoullidistribution with
parameterπ (whereπ is the true and unknownpopulation proportion
It can be shown then that̂π =

∑
xi/n is a Binomial random variable. Also, given

that when samples are large aBinomialdistribution can be approximated by aNormal
distribution, we can conclude that, in general:

1. If the sample is large enough, then (approx.):

π̂ ∼ N(π,
π(1− π)

n
)

This approximation is better the closer to0, 5 is π and the larger is the sample

2. If the sample is not large, then the approximation is very bad.

With regards to the expectation and variance of thesample proportion, we have:

E(π̂) = π

V (π̂) =
π(1− π)

n

1.4 Exercises

1. In each of the sentences below, identify the population, the parameter and the
estimate

(a) A survey conducted with 1000 youngsters between 15 and 17 years old
reveals that 432 are regular smokers

(b) According to a survey conducted by the Ajuntament de Barcelona, one out
of three people has received a traffic sanction during 2003.

(c) A media recording factory produces 50.000 CD ROMs a day, being 25 the
average number of faulty units.

2. Let x1, x2, . . . , xn be a random sample drawn from a population distributed ac-
cording to a Normal with expectationµand varianceσ2. In the formulae below,
which ones correspond to an estimator ?

(a)
∑

xi − µ

(b) σx1 + σx2

(c) xi, i = 1, 2, . . . , n
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(d) x2
1 + x2

2 − ex3

(e) xi−µ
σ , i = 1, 2, . . . , n

(f)
∑

(xi − X̄)2

3. Based on past cases, we know that the average score in a given quiz is 100, being
125 the standard deviation. Compute the probabilities below for the case when
100 people take the same quiz.

(a) P (98.5 < X̄ < 101.5)

(b) P (96 < X̄ < 104)

(c) P (X̄ > 102)

(d) P (X̄ < 97.5)

4. A professional electrician wonders about buying a large quantity of light bulbs
to a manufacturer. The later claims that, in average, his bulbs last for 1000 hours,
with a standard deviation of 80 hours. The electrician decides that he will buy
the bulbs only if in a random sample of 64 bulbs the average live is at least 1000
hours. What is the probability that the electrician does finally buy the bulbs ?

5. A TV sets producer wants to estimate how long does it take (in average) for one
of his appliances to malfunction. He wants to do it so that the probability of the
difference between the estimate and the true value being more that 10 hours is
0.05. Assuming that the standard deviation is 100, how large should the sample
be ?

6. Using theχ2 table, find the values forχ2
1 andχ2

2 such thatP (χ2 > χ2
1) = 0.95

andP (χ2 > χ2
2) = 0.05 when the degrees of freedom are 5, 10, 20, 60 and 100.

7. The manager of a manufacturing plant wants to know the variation in the thick-
ness of a plastic element that they produce. It is known by engineering analysis
that the distribution of the thickness in that kind of manufacturing processes is
Normal with a standard deviation of 0.01 cm. A random sample consisting of
25 such pieces yields a sample standard deviation of 0.015 cm. The manager is
surprised, if the population variance is(0.010)2, what is the probability that the
sample variance is larger or equal that(0.015)2 ?

8. Having a random sample of sizen = 16 drawn from a Normal distribution with
unknown mean and variance, findP (S2/σ2 ≤ 2.041).
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Chapter 2

Estimation

2.1 General Criteria for Estimation

We have seen in the previous chapter the main statistics used in statistical inference. In
Definition 1.3.1 we have stressed that the concept of "statistic" can have different names
depending of its use. In this sense, in this chapter we will use the termestimator as we
will be using different statistics to obtain approximations (i.e. estimations) to the true
value of the population parameter that is of interest. Later, in other chapters, we will
return to the termstatistic since we will not use the statistics to do estimations but as a
part of a more complex analysis.

2.2 Properties of Estimators

Once the main statistics and their probabilistic features (i.e. probability distribution,
expectation and variance) are known, we focus in this chapter on the "good" properties
that we would like estimators to have in order for them to provide good approximations
to the parameter. In this sense, an estimator might, among others, satisfy the proper-
ties of beingunbiassed, efficient, andconsistentthat we will see next. After that, we
will learn how this estimators can be used to produce conclusions (very preliminary at
this point) regarding the true population parameters. Point estimation and confidence
intervals will be the techniques that we will use. Finally, more advanced topics will be
introduced.Maximum likelyhoodestimation will allow us to design good estimators
for the case we do not know which one to use. TheCramer-Rao boundwill help us to
know if one specific estimator is efficient.

21
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2.2.1 Bias

Definition 2.2.1 Let θ̂ be an estimator of the population parameterθ. Thebiasof θ̂ is
defined as the difference between the expected value of the estimator and the true value
of the population parameter

B(θ̂) = E(θ̂)− θ

Definition 2.2.2 An estimator̂θ is said to be an unbiassed estimator of the population
parameterθ if it has zero bias.

B(θ̂) = 0 or E(θ̂) = θ

Example 2.2.3

E(X̄) = µ ⇒ X̄ is an unbiassed estimator ofµ

Example 2.2.4

E(S2) = σ2 ⇒ S2 is an unbiassed estimator ofσ2

Example 2.2.5

E(π̂) = π ⇒ π̂ is an unbiassed estimator ofπ

The interpretation of the unbias property is simple. For what we have seen in the
previous chapter, we know that an estimator is a random variable, that is, takes different
values with different probabilities. Hence, it is clear that it is highly unlikely that the
specific value (estimate) that we get once we apply the sample to the estimator exactly
coincides with the true parameter value. What the unbias property means is that the
above is true "in the sense of expectation". In other words, although when we apply
the specific sample we have to the estimator the estimate will not coincide (in general)
with the true value of the parameter, if we had 100 different samples to apply to the
estimator then theaverageof the 100 different estimates produced would be very close
to the true parameter value. This kind of approximation would be more precise the
larger is the number of samples to use.

We can compare an estimator with a "shooter" whose target is the true value of
the parameter. A good "shooter" (unbiassed) always aims at the center of the target,
although there is always a small probability that the shot slightly deviates from the
center. On the contrary, a bad "shooter" (biassed) never aims at the center of the target.

2.2.2 Efficiency

The efficiency criterion for an estimator, that we will see next , has two different ver-
sions depending on whether the estimator is biassed or unbiassed.
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2.2.2.1 Unbiassed Estimators

Definition 2.2.6 Let θ̂1 and θ̂2 be two unbiassed estimators ofθ. Then, the more effi-
cient estimator is that of the lesser variance.

2.2.2.2 Biassed Estimators

Definition 2.2.7 Let θ̂1 and θ̂2 be any two estimators ofθ. Then, the more efficient
estimator is that of the lesser Mean Quadratic Error(MQE) where:

MQE(θ̂) = E(θ̂ − θ)2 = V (θ̂) + B(θ)2

It is easy to see that, in fact, the second "version" contains the first one as a special
case. Indeed, it an estimator has zero bias’s then itsMQE and Variance are equal.

Example 2.2.8 Let us consider the following alternative estimators of the population
meanµ which will be applied to a sample obtained from a population with population
meanµ and population varianceσ2

µ̂1 =
x1 + x2 + x3

3

µ̂2 =
x1 + x2

2
Let us check first the bias’s of each of these estimators:

B(µ̂1) = E(µ̂1)−µ = E(
x1 + x2 + x3

3
)−µ =

1
3
(E(x1)+E(x2)+E(x3))−µ =

1
3
3µ−µ = µ−µ = 0

B(µ̂2) = E(µ̂2)−µ = E(
x1 + x2

2
)−µ =

1
2
(E(x1)+E(x2))−µ =

1
2
2µ−µ = µ−µ = 0

Hence, both estimators and unbiassed. Let us now check which one has less vari-
ance:

V (µ̂1) = V (
x1 + x2 + x3

3
) =

1
9
(V (x1) + V (x2) + V (x3)) =

1
9
3σ2 =

σ2

3

V (µ̂2) = V (
x1 + x2

2
) =

1
4
(V (x1) + V (x2)) =

1
4
2σ2 =

σ2

2

Therefore,̂µ1 is more efficient as it has less variance (σ2

3 < σ2

2 )

The intuition behind the efficiency of an estimator is also clear. If we compare an
unbiassed estimator with a "good shooter" (as we have done before) that always aims
at the center of the target, then an estimator is moreefficient than another one if it
"trembles" less. In other words, the more efficient estimator is the one whose values
are more concentrated around the mean.

2.2.3 Consistency

Very often it becomes very difficult to find efficient estimators for a specific parameter.
In this case we look at the so calledasymptotic properties, that consist of the properties
that the estimators have when the sample is as large as needed. In this sense, we will
introduce theasymptotic bias’sand theasymptotic efficiencyor consistency.



24 Notes on Statistics II

2.2.3.1 Asymptotically unbiassed estimators

Definition 2.2.9 An estimator̂θ of the population parameterθ is said to be asymptoti-
cally unbiassed if its bias vanishes as the sample size goes to infinity. Formally,θ̂ is an
unbiassed estimator ofθ if

lim
n→∞

B(θ̂) = 0

Example 2.2.10Let us consider the following estimator of the population variance
(σ2)

S̃2 =
∑n

i=1(xi − X̄)2

n

It is easy to check that if

S2 =
∑n

i=1(xi − X̄)2

n− 1

then

S̃2 =
n− 1

n
S2

and hence

E(S̃2) = E(
n− 1

n
S2) =

n− 1
n

E(S2) =
n− 1

n
σ2

Therefore

B(S̃2) = E(S̃2)− σ2 =
n− 1

n
σ2 − σ2 = −σ2

n

That is,S̃2is a biassed estimator ofσ2 sinceE(S̃2) 6= σ2. Nevertheless,̃S2 is an
asymptotically unbiassedestimator ofσ2, for its bias vanishes as the sample grows.
Indeed,

lim
n→∞

B(S̃2) = lim
n→∞

−σ2

n
= 0

2.2.3.2 Consistent Estimators

The property of consistency not only considers the behavior of the bias as the sample
grows large, but also looks at the variance. That is,consistencyrefers to the behavior
of theMQE of the estimator as the sample size goes to infinity.

Definition 2.2.11 An estimator̂θ of the population parameterθ is said to be consistent
it its Mean Quadratic Error vanishes as the size of the sample goes to infinity. Formally,
θ̂ is a consistent estimator ofθ if

lim
n→∞

EQM(θ̂) = 0

Example 2.2.12Let us consider the estimator ofσ2 that we have seen before,S̃2. We
already know that it it a biassed estimator forσ2 and that its bias isB(S̃2) = −σ2

n .
We will compute now its variance in order to study the behavior of itsEQM as the
sample size goes to infinity

V (S̃2) = V (
n− 1

n
S2) = (

n− 1
n

)2V (S2) =
(n− 1)2

n2

2(σ2)2

n− 1
=

2(n− 1)σ4

n2
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Hence

EQM(S̃2) = V (S̃2) + B(S̃2)2 =
2(n− 1)σ4

n2
+ (−σ2

n
)2 =

(2n− 1)σ4

n2

and then

lim
n→∞

EQM(S̃2) = lim
n→∞

(2n− 1)σ4

n2
= 0

Therefore,S̃2is a consistent estimator ofσ2

2.3 Point Estimation

A point estimationis the simplest method to produce estimations for a population pa-
rameter, that is, an approximation to its true value. To obtain a point estimation or
estimatewe just need to apply ourestimatorto the specific sample at hand.

Example 2.3.1 Imagine that we want to obtain an approximation to the true value of
the population meanµ of a given population. For what we have seen before, we know
that the sample mean̄X is a good estimator ofµ for it is unbiassed1. Hence, this will
be the estimator we use. Imagine that the sample we have is

Sample= {1, 2, 3, 4}
Then

X̄ =
1 + 2 + 3 + 4

4
= 2.5

Hence, in this case thepoint estimation(or estimate) we get forµ is 2.5

This method of estimation has the good property that is quick and simple. The main
drawback, though, is that gives very little information and, moreover, with very little
precision. In the previous example, we know that the sample mean is an unbiassed
estimator of the population mean. Hence, the true value ofµ will be "around" 2.5, but
we do not have any further information (above 2.5 ? below 2,5 ? close to 2.5 ? far from
2.5 ? ...). In other words, we do not know anything about the accuracy of this estimate.
This can be solved, in some sense, using a different estimation method.

2.4 Confidence Intervals

We will use now the knowledge we have about the probability distribution of the sample
statistics to supplement the point estimation with additional information. In this way,
we will produce aninterval that will contain, with some probability, the true value of
the unknown population parameter.

That is, we will be able now to "measure" the accuracy of our estimation. In this
sense, the outcome of anestimation by confidence intervalswill be something similar
to (for the case of the mean):

µ ∈ [2.25 , 2.75] with probability95%

The intervals obtained using this method are calledconfidence intervals, and the
probability that the population parameter lies within this interval is theconfidence
level, usually denoted by1− α.

1We will see later that, moreover, it is the most efficient estimator of the population mean
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2.4.1 Confidence Interval for the mean

We will see next how to build the confidence interval for the case when we need to
produce an estimation for the population meanµ

2.4.1.1 Case I:Normal Population or large sample (σ2 known)

We know that in this case,

X̄ − µ√
σ2

n

∼ N(0, 1)

hence

p(−z1−α
2
≤ X̄ − µ√

σ2

n

≤ z1−α
2
) = 1− α

wherez1−α
2

is the value that corresponds to aN(0, 1) whose left tail contains an
area of1− α

2 . That is,

P (Z ≤ z1−α
2
) = 1− α

2

whereZ represents aN(0, 1) and this value can be found in tables.
Doing some algebra inside the inequalities we get,

p(−X̄ − z1−α
2

√
σ2

n
≤ −µ ≤ −X̄ + z1−α

2

√
σ2

n
) = 1− α

multiplying by−1 we reverse the "direction" of the inequalities, and hence

p(X̄ + z1−α
2

√
σ2

n
≥ µ ≥ X̄ − z1−α

2

√
σ2

n
) = 1− α

at the end we get the interval we were looking for,

µ ∈ [X̄ − z1−α
2

√
σ2

n
, X̄ + z1−α

2

√
σ2

n
] with probability1− α

2.4.1.2 Case II:Normal Population or large sample (σ2 unknown)

In the previous case we need to know the true value of the population varianceσ2 in
order to compute the interval. This is highly unusual. To overcome this problem we
can replaceσ2 by its unbiassed estimatorS2. The only difference is that now we can
not use theN(0, 1), but thet− student with n− 1 degrees of freedom.

µ ∈ [X̄ − t1−α
2

√
S2

n
, X̄ + t1−α

2

√
S2

n
] with probability1− α

wheret1−α
2

is the value that corresponds to at− student whose left tail contains
an area of1− α

2 and that can be found in tables as well.
(whenn is large, thent1−α

2
is approximately equal to az1−α

2
)
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2.4.1.3 Confidence Interval for the variance

In a similar manner, we can also construct aconfidence intervalfor the case of the
population variance. We must remember, though, that in this case the population must
follow a Normaldistribution for otherwise the distribution of the sample varianceS2

would be unknown. We know the that

(n− 1)S2

σ2
∼ χ2

n−1

and hence

p(χα
2
≤ (n− 1)S2

σ2
≤ χ1−α

2
) = 1− α

whereχα
2

is the value of aχ2
n−1 whose left tail contains an area ofα

2 and that can
be found in tables. Similarly,χ1−α

2
is the value of aχ2

n−1 whose left tail contains an
area of1− α

2 .
As before, we can work the inequalities out to obtain

p(
1

χα
2

≥ σ2

(n− 1)S2
≥ 1

χ1−α
2

) = 1− α

p(
(n− 1)S2

χα
2

≥ σ2 ≥ (n− 1)S2

χ1−α
2

) = 1− α

that is,

σ2 ∈ [
(n− 1)S2

χ1−α
2

,
(n− 1)S2

χα
2

] with probability1− α

2.4.1.4 Confidence Interval for the proportion

The case of theproportion is special for, as said before, the approximation to theNor-
mal requires a large sample and that the true population proportionπ is close to1

2 .
Therefore, to have a good approximation to the Normal, the confidence interval for the
proportion will be different depending on the sample proportion (π̂) being close to0.5
or not.

If π̂ ≈ 1
2

π ∈ [π̂ − z1−α
2

√
π̂(1− π̂)

n
, π̂ + z1−α

2

√
π̂(1− π̂)

n
]

If π̂ 6= 1
2

π ∈ [π̂ − z1−α
2

√
0.5(1− 0.5)

n
, π̂ + z1−α

2

√
0.5(1− 0.5)

n
]

2.5 Maximum Likelihood estimation

So far we have seen that when we need to produce estimations for population param-
eters that are "standard", (µ σ2, π), there aregood estimatorsat hand: (̄X,S2, π̂). We
have studied the main features and properties of these estimators.

The problem arises when we need to estimate a different population parameter (for
instance the median or the kurtosis) for which do not have a "candidate" for estimator.
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The Maximum Likelihood methodprovides a technique to build good estimators of a
given population parameter.

The intuition of the method is as follows: After performing a totally random sam-
pling (SRS) we obtain a specific sample, and there must be a reason for it (since we
could have obtained a different one). Well, probably we have obtained this specific
sample because the parameter value we want to estimate is such that the sample we
have obtained is the one with the highest probability of been selected. In this sense,
the maximum likelihood methodfinds the value of the parameter that maximizes the
probability of obtaining the sample at hand. The process takes three steps, starting
with the sample we have,{x1, x2, · · · xn} and the probability density function of the
population that contains the parameter(θ) we want to estimate,f(x; θ). We will first
introduce the general method, and later we offer an example to clarify it. Imagine that
we want to estimate the parameterθ of a population with a distribution given byf(x; θ)
using the sample that we have obtained{x1, x2, · · · xn}. These are the 3 steps:

Step 1 BUILD THE L IKELIHOOD FUNCTION

The Likelihood function is the "formula" that computes the probability of having ob-
tained the sample we have conditional on the population parameter we want to estimate.
In other words, is a function (denoted byL) that depends on both thesampleobtained
and theparameterwe want to estimate:

L(x1, x2, · · · xn; θ) = P (X1 = x1, X2 = x2, · · · Xn = xn; θ)

Since the sample has been obtained from a population with a probability distribu-
tion given byf(x; θ) and that the elements in the sample are independent from each
other, the joint probabilityP (X1 = x1, X2 = x2, · · · Xn = xn; θ) can be computed
as

P (X1 = x1, X2 = x2, · · · Xn = xn; θ) = f(x1; θ) · f(x2; θ) · . . . · f(xn; θ)

hence,

L(x1, x2, · · · xn; θ) = f(x1; θ) · f(x2; θ) · . . . · f(xn; θ) =
n∏

i=1

f(xi; θ)

Step 2 Apply logarithms

The functional form of the likelihood function is often involved (the product of func-
tions), and working directly with it is rather difficult. Hence, using logarithms we can
simplify the function so that it becomes easier to deal with. Therefore, in this step we
simply apply “ln” and then use the properties of logarithms in order to simplify the
form of the likelihood function

ln L(x1, x2, · · · xn) = ln
n∏

i=1

f(xi; θ) =
n∑

i=1

ln f(xi; θ)

Step 3 MAXIMIZE

The last step is to maximize the likelihood function, that is, to find the value ofθ that
maximizes the functionL (the probability of having obtained the sample we have).
Thus, we must compute the derivative of the likelihood functionL with respect to
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the parameterθ and make it equal to zero to find the value ofθ that maximizes it.
Usually this is complicated, that is why we have applied logarithms in Step 2. Indeed,
since the function "logarithm" is strictly increasing, the value ofθ that maximizesln L
maximizesL as well. Hence, in practice, what we do is:

∂ ln L(x1, · · · xn; θ)
∂θ

= 0

and from here we find the value ofθ solves the above equation. The solution will
be themaximum likelihood estimatorof θ, usually denoted bŷθMV

Example 2.5.1 LET {x1, x2, · · · xn} BE A SAMPLE (INDEPENDENT) OBTAINED FROM

A NORMAL POPULATION WITH POPULATION MEANµ AND POPULATION VARIANCE

σ2. FIND THE MAXIMUM LIKELIHOOD ESTIMATOR OF µ.
First, let us remember what is the probability density function corresponding to a

N(0, σ2):

f(x; µσ2) =
1√
2πσ

e−
1
2 ( x−µ

σ )2

Step 1 L IKELIHOOD FUNCTION

L(x1, x2, · · · xn) =
n∏

i=1

1√
2πσ

e−
1
2 (

xi−µ

σ )2 =

=
(

1√
2πσ

)n

· e− 1
2

∑n

i=1(
xi−µ

σ )2

This would be hard to work with !. That’s why we need to use logarithms.

Step 2 LOGARITHMS

ln L(x1, · · · xn) = ln
((

1√
2πσ

)n

· e− 1
2

∑n

i=1(
xi−µ

σ )2
)

It still looks hard, but after using some of the properties of logarithms2 the simplifica-
tion will be important

ln
((

1√
2πσ

)n

· e− 1
2

∑n

i=1(
xi−µ

σ )2
)

= ln
(

1√
2πσ

)n

+ ln e−
1
2

∑n

i=1(
xi−µ

σ )2

=

= ln
(

1√
2πσ

)n

− 1
2

n∑

i=1

(
xi − µ

σ

)2

ln e

Hence

ln L(x1, · · · xn) = ln
(

1√
2πσ

)n

− 1
2

n∑

i=1

(
xi − µ

σ

)2

Pas 3 MAXIMIZE

2The logarithm of the product is the sum of logarithms, etc.
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We have to compute the derivative ofL(x1, · · · , xn) with respect toµ and equate it to
zero.

∂L(x1, · · · xn)
∂µ

=
∂

∂µ

(
ln

(
1√
2πσ

)n

− 1
2

n∑

i=1

(
xi − µ

σ

)2
)

=

=
∂

∂µ
ln

(
1√
2πσ

)n

− ∂

∂µ

1
2

n∑

i=1

(
xi − µ

σ

)2

=

= 0− 1
2

n∑

i=1

∂

∂µ

(
xi − µ

σ

)2

= −1
2

n∑

i=1

2
(

xi − µ

σ

)
(− 1

σ
) =

n∑

i=1

(
xi − µ

σ2

)

Hence,

∂L(x1, · · · xn)
∂µ

= 0 ⇒
n∑

i=1

(
xi − µ

σ2

)
= 0 ⇒ 1

σ2
(

n∑

i=1

xi −
n∑

i=1

µ) = 0

and finally,

n∑

i=1

xi =
n∑

i=1

µ ⇒
n∑

i=1

xi = nµ ⇒ µ =
∑n

i=1 xi

n

That is, the maximum likelihood estimator of the population meanµ is the sample
meanX̄

µ̂MV =
∑n

i=1 xi

n
= X̄

2.6 The Cramer-Rao lower bound

In section 1.2.2 we have seen that one of the "good" properties of an estimator is that
of efficiency, that is, having a variance as low as possible (and accuracy as high as
possible). Nevertheless, we have seen that this is a "relative" property in the sense
that we are not able to tell whether one estimator is the "most" efficient3 but only to
compare a few of them and then say which one has the lower variance.

TheCRAMER-RAO LOWER BOUND that we will see next, allows us to know which
is theminimum variancethat any unbiassed estimator of a given parameter can have.
Hence, if we find an unbiassed estimator and find that its variance reaches this bound,
then we can be sure that it is, at least, as efficient as any other unbiassed estimator.

We define next what this lower bound is,

Definition 2.6.1 Given a population parameterθ of a population with probability den-
sity function given byf(x; θ), theCRAMER-RAO LOWER BOUND establishes which is
the lowest variance of any unbiassed estimatorθ̂ of this parameter. It is computed as

C −R =
1

nE

[(
∂ ln f(x;θ)

∂θ

)2
]

3That would imply being able to compare any estimator with "all" other possible estimators !
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Hence, for any unbiassed estimatorθ̂ of the population parameterθ we have that
V (θ̂) ≤ C − R. Therefore, if we find an unbiassed estimator whose variance equals
C −R, then we can say that it is the "most" efficient, no other unbiassed estimator can
have a lower variance.

To obtain this boundC − R,, we must perform every computation in the formula
that defines the Cramer-Rao lower bound:

1. Do ln f(x; θ) and apply the properties of logarithms to simplify as much as pos-
sible

2. Compute the derivative∂ ln f(x;θ)
∂θ

3. Square the previous result
(

∂ ln f(x;θ)
∂θ

)2

4. Compute the expectation of the previous resultE

[(
∂ ln f(x;θ)

∂θ

)2
]

(usually, this

is the most difficult step)

5. Multiply by n, nE

[(
∂ ln f(x;θ)

∂θ

)2
]

6. Finally, invert the result above

1

nE

[(
∂ ln f(x;θ)

∂θ

)2
]

Example 2.6.2 FIND THE CRAMER-RAO LOWER BOUND FOR ANY UNBIASSED ES-
TIMATOR OF THE POPULATION MEANµ OF A NORMAL POPULATION WITH POPU-
LATION VARIANCE σ2

Remember the density function of aN(µ, σ2):

f(x; µσ2) =
1√
2πσ

e−
1
2 ( x−µ

σ )2

From here, we follow the 6 steps described above to obtain theC −R lower bound
in this case.

1. Logarithms

ln f(x;µσ2) = ln
((

1√
2πσ

)
· e− 1

2 ( x−µ
σ )2

)
= ln

(
1√
2πσ

)
− 1

2

(
x− µ

σ

)2

2. Derivative

∂ ln f(x; µσ2)
∂µ

=
∂

∂µ

(
ln

(
1√
2πσ

)
− 1

2

(
x− µ

σ

)2
)

=
x− µ

σ2

3. Square it (
∂ ln f(x; θ)

∂θ

)2

=
(

x− µ

σ2

)2
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4. Expectation (the trickiest step !)

E

[(
∂ ln f(x; θ)

∂θ

)2
]

= E

[(
x− µ

σ2

)2
]

=
1
σ4

E(x− µ)2 =

1
σ4

E(x− E(x))2 =
1
σ4

V (x) =
1
σ4

σ2 =
1
σ2

5. Multiply byn

nE

[(
∂ ln f(x; θ)

∂θ

)2
]

=
n

σ2

6. Finally, invert
1

nE

[(
∂ ln f(x;θ)

∂θ

)2
] =

σ2

n

Therefore, the Cramer-Rao lower bound,C −R, in this case is

C −R =
σ2

n

Hence, any unbiassed estimator of the population meanµ will, necessarily, have
a variance greater or equal toσ

2

n . Remenber now thatV (X̄) = σ2

n , and hence the
SAMPLE MEAN X̄ IS THE MOST EFFICIENT UNBIASSED ESTIMATOR OFµ.

2.7 Exercicis

1. TheMean Square Errorof an estimator̂θ is defined asMSE(θ̂) = E(θ̂ − θ)2.
Prove thatEQM(θ̂) = V (θ̂) + B(θ̂)2

2. Assuming thatXi ∼ N(µ, σ2), which of the statistics below are unbiased esti-
mators ofµ ?

(a) µ̂1 = X1+X2+X3+X4
4

(b) µ̂2 = 2(X1+X2)
6 + X3+X4

6

(c) µ̂3 = X1−X2+X3−X4
4

Among all the unbiased estimators, which one is the most efficient ? Which one
is the most efficient among all three estimators ?

3. Imagine that we have a random sample of sizen drawn from a populationN(µ, σ2)
and we want an estimate forµ. Among all the estimators forµ that are of the
form:

µ̂ = λx1 + θx2

find the values forλ andθ so that the estimator in unbiased and has the minimum
variance.
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4. A random sample of hourly wages for nine mechanics yields the following data:

10.5, 11, 9.5, 12, 10, 11.5, 13, 9, 8.5

Assuming that the sample is obtained from a Normal population, find the con-
fidence intervals for the average hourly wage (both, whenα = 0.05 andα =
0.0.1) when:

(a) It is known thatσ2 = 1.5

(b) σ2 is unknown

5. The thickness of the metal pieces that a machine produces is expected to present
some fluctuation. A random sample of 12 pieces i selected and the thickness of
each of them is recorded, which yields

12.6, 11.9, 12.3, 12.8, 11.8, 11.7, 12.4, 12.1, 12.3, 12.0, 12.5, 12.9

Assuming that thickness is a Normal random variable, obtain a 95% confidence
interval for the variance of thickness.

6. A manufacturer claims that the percentage of faulty items in any lot of the articles
he produces is 1%. A random sample of 200 articles is selected and 8 are found
to be faulty. Find 95% and 99% confidence intervals for the true proportion of
faulty items. Based on these results, what can you say about the manufacturer’s
claim ?

7. A physician is interested in the proportion of men that smoke and develop lung
cancer. The physician wants to select a sample of smokers and observe whether
they develop cancer or not. What has to be the sample size so that with a 95 %
probability the difference between the sample proportion and the true proportion
is less than 0.02 ?

8. Let x1, x2, . . . , xn a random sample drawn from a Poisson distribution with true
parameterλ. Compute the maximum likelihood estimator ofλ.

9. Let x1, x2, . . . , xn a random sample drawn from a Exponential distribution with
true parameterλ. Compute the maximum likelihood estimator ofλ.

10. By means of the Cramer-Rao lower bound, find the variance of the most efficient
unbiased estimator ofλwhen the sample is drawn from a population distributed
according to an exponential:

f(x, λ) =
1
λ

e
−x
λ , x > 0

Prove that the sample mean is an efficient estimator ofλ.
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Chapter 3

Hypothesis Testing

3.1 Hypothesis Testing

So far we have learned how to approximate the value of a population parameter by
means of some estimation technique. In many cases, though, what is of interest is
not knowing what is the value of the parameter but rather some question regarding the
parameter. For instance: Is the average wage in Cerdanyola this year greater than in the
previous year ? Does this Pentium Chip works at 3Ghz ? Is the proportion of smokers
in the UAB smaller than in the UPF ?

In all these cases, we are interested intestingwhether a belief, idea, or conjecture
regarding the population parameter seems true or not. To do so, totest our hypothesys,
we must base our analysis upon the data we have,the sample, because this is the only
information we have regarding the population. We can now be more precise in the
definition of "hypothesis testing"

Definition 3.1.1 Hypothesis testing is a statistical technique by means of which we can
verify whether the data in the sample backs up, or not, a specific hypothesis stablished
on some population parameter.

In general, the "structure" of the hypothesis testing technique can be decomposed
into 6 steps. To understand how the procedure works, let’s imagine that we want to test
whether the population parameterθ equalsθ0 or not. In this case, the 6 steps we have
mentioned above are:

1. To specify theNull Hypothesis. This is the hypothesis that we believe is true and
that we want to test if the data supports it.

H0 : θ = θ0

2. To specify anAlternative Hypothesis, which represents what is true when the
Null Hypothesis is false. This Alternative Hypothesis may have four different
specifications, depending on the information we have on the poulation parameter
we are studying.

H1 : θ 6= θ0

ó H1 : θ < θ0

35
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ó H1 : θ > θ0

ó H1 : θ = θ1

The first kind of Alternative Hypothesis is the more general. It corresponds to
the case when there is no information at all regarding the population parameter.
In this sense, if the parameter is not what we believe (θ0,the Null Hypothesis),
then we simply specify than it is different from what we think.

The second kind corresponds to the case when there is some information regard-
ing the parameter we are studying. In this specific case such information points
out that if the parameter is not what we think, then it must be smaller (for some
reason it is known that it can not be larger).

The third kind of Alternative Hypothesis is the opposite to the previous case. We
use this specification when the information says that if the parameter is not what
we think then it must have a larger value.

Finally, the last specification, which is rather rare, corresponds to the case in
which there is a lot of information regarding the parameter. In this case, we
know that either the parameter takes the value we believe (θ0) or it takes an-
other specificθ1value (Finalment, el quart tipus de hipòtesi alternativa es dona
rarament i correspon al cas en que es té molta informació sobre el paràmetre que
s’estudia de forma que se sap que si no pren el valor alashores l’única possibilitat
és que sigui igual a un altre valorθ1.

Later we will see that the first kind of Alternative Hypothesis produces atwo-
tailed test, whereas the second a the third correspond to aleft-tail testand aright-
tail test respectively. Finally, the last kind of hypothesis produces aleft-tail test
or aright-tail testdepending on whetherθ1 < θ0 or θ1 > θ0 respectively.

3. To specify atest statistic(TE) and to compute theobserved value of the test
statistic, (OVTE) using the data in the sample.

In practice, what distinguishes one hypothesis test from another is thetest statis-
tic used. Hence, we will see thesetest statisticsin detail when we introduce each
specific test.

4. To determine what is theprobability distributionof the test statistic in the pre-
vious step under the assumptionthe the Null Hypothesis is true. This, as in the
previous step, depends on what kind of test we are conducting. Hence, we will
see the details later.

5. To define aRejection Area, (RA) of sizeα (level of significance). This is the
place where the test actually takes place. For this, we need to use the tables
that correspond to the distribution determined in step 4 to find a region with
the property that if thenull hypothesisis true then the probability that thetest
statisticlies within thisRA is α.

p(TE ∈ RA) = α

In general, this Rejection area consists of only one tail (left- or right-tailed tests)
of sizeα or can be splitted into two symetric tails of sizeα

2 each.

6. Finally, the last step consists of, simply, verify whether theObserved Value of
the Test Statistic, (OVTE) lies, or not, iside theRejection Area. Therefore,
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(a) If the OVTSis inside theRA⇒ THE NULL HYPOTHESIS IS REJECTED

(b) If the OVTSis NOT inside theRA⇒ THE NULL HYPOTHESIS IS NOT
REJECTED

Notice that the final conclusion is always of the form "REJECT" or "DON’T
REJECT" theNull Hypothesis. The term "ACCEPT" is never used. The reason
is as follows: If the output of the test is that theNull Hypothesisis REJECTED,
then we interpret this as not having "enough empirical evidence" to support the
hypothesis. In the same sense, if the test results in the Null Hypothesis being re-
jected, then the interpretation is that we do not have "enough empirical evidence"
against the hypohtesis.

3.2 Hypothesis Testing Types

We will see next what the three basic types of hypothesis testing are:

1. Hypothesis test on thepopulation meanµ

2. Hypothesis test on thepopulation varianceσ2

3. Hypothesis test on thepopulation proportionπ

We will learn that all three cases share a common structure, the "six steps" we have
learned above. The difference is, mainly, thetest statisticthat will be used in each
case. Also, in each case the test can be of one or two tails, depending on the form of
the correspondingalternative hypothesis.

3.2.1 Hypothesis Test for the Population Mean (µ)

1. NULL HYPOTHESIS

Is the value of the population mean we want to test(µ0 = value to test)

H0 : µ = µ0

2. ALTERNATIVE HYPOTHESIS

Corresponds to what would be true if the null hypothesis is false. Depends on
what information we have regarding the population mean. There are 4 cases
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INFORMATION REGARDINGµ TEST TYPE

H1 : µ 6= µ0 General case. No information re-
gardingµ. Hence, if it is not equal
to µ0 we can only say that it is dif-
ferent

Two Tails test

H1 : µ > µ0 We have some information
regardingµ. This information
states that if it is not equal toµ0 the
it is larger

right-tail test

H1 : µ < µ0 We have some information regard-
ingµ. This information states that if
it is not equal toµ0 then it is smaller

left-tail test

H1 : µ = µ1 We have a lot of information regard-
ingµ. We know that if it is not equal
to µ0 then it must be equal to the
valueµ1

right-tail test if µ1 > µ0 or
left-tail test ifµ1 < µ0

3. TEST STATISTIC

The Test Statistic (TE) to use in this case depends on whether we know the pop-
ulation varianceσ2 or not.

σ2 KNOWN σ2 UNKNOWN

TE=X̄−µo√
σ2
n

TE=X̄−µo√
S2
n

In any of these cases, theobserved value of the test statistic (OVTE)is obtained
by pluging the values into the corresponding formula, where

X̄ Sample Mean
µ0 Null Hypothesis value
σ2 Population Variance (if known)
S2 Sample Variance (ifσ2 is unknown)
n Sample size

4. DISTRIBUTION OF THETEST STATISTIC when the Null Hypothesis is true
As we have learned in previous chapters, we have that if the null hypothesis is
true, that is, ifµ = µ0 then

σ2 KNOWN σ2 UNKNOWN

X̄−µo√
σ2
n

∼ N(0, 1) X̄−µo√
S2
n

∼ tn−1

5. REJECTIONAREA of sizeα
The way to determine the Rejection Area will different depending on whether
the test is of one or two tails.

(a) TWO TAILS TEST. Corresponds to the case when the Alternative hypothe-
sis is likeH1 : µ 6= µ0
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α/2α/2

−Z1−α/2

−τ1−α/2

0 Z1−α/2 �
t1−α/2 

Figure 3.1: Rejection Area in a two tails test

The limit values of the rejection area,Z1−α
2

andt1−α
2

can be found using
the tables of theN(0, 1) or t − student with n − 1 degrees of freedom
respectively depending on whether we knowσ2 or not. (See Figure 3.1)

(b) RIGHT-TAIL TEST. Corresponds to the case when we have an alternative
hypothesis of the typeH1 : µ > µ0 (or the typeH1 : µ = µ1 i µ1 > µ0)

α

0 Z1−α �
t1−α 

Figure 3.2: Rejection Area in one right-tail test

The limit values of the rejection area,Z1−α i t1−α can be found in the
tables of theN(0, 1) or t− student with n− 1 degrees of freedom respec-
tively depending on whether we knowσ2 or not. (See Figure 3.2)

(c) LEFT-TAIL TEST. Corresponds to the case when we have an alternative
hypothesis of the typeH1 : µ < µ0 (or H1 : µ = µ1 i µ1 < µ0)

The limit values of the rejection area,Z1−α i t1−α can be found in the
tables of theN(0, 1) or t− student with n− 1 degrees of freedom respec-
tively, depending on whether we knowσ2 or not. (See Figure 3.3)
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α

−Z1−α

−τ1−α

0

Figure 3.3: Rejection Area in one left-tail test

6. TEST CONCLUSION

Finally, we have to check if theOBSEVED VALUE OF THE TEST STATISTIC

(OVTS) falls, or not, inside theREJECTIONAREA. If it does, we then say that
the test rejects theNULL HYPOTHESIS. If it does not belong to the rejection
area, then we say that the testDOES NOT REJECT THENULL HYPOTHESIS.

3.2.2 Hypothesis Test for the Population Variance (σ2)

1. NULL HYPOTHESIS

Is the value of the population variance that we want to test.(σ2
0 = value to test)

H0 : σ2 = σ2
0

2. ALTERNATIVE HYPOTHESIS

Corresponds to what would be true if the null hypothesis is false. Depends on
what information we have regarding the population mean. There are 4 cases

INFORMATION REGARDINGσ2 TEST TYPE

H1 : σ2 6= σ2
0 General case. There is no informa-

tion aboutσ2. Therefore, if it does
not equalσ2

0 the only think we can
say is that it will be different

Two Tails Test

H1 : σ2 > σ2
0 We have some information aboutσ2

indicating that if it is not equal toσ2
0

then it must be greater

Right-Tail Test

H1 : σ2 < σ2
0 We have some information aboutσ2

indicating that if it is not equal toσ2
0

then it must be smaller

Left-Tail Test

H1 : σ2 = σ2
1 We have some information aboutσ2

indicating that if it is not equal to
σ2

0 then it must be equal to another
valueσ2

1

Right-Tail Test ifσ2
1 > σ2

0

and Left-Tail Test ifσ2
1 <

σ2
0



Universitat Autònoma de Barcelona 41

3. TEST STATISTIC

The Test Statistic (TE) to use in this case is:

T.E. =
(n− 1)S2

σ2
0

The Observed Value of the Test Statistic (OVTS) is obtained by subtituting the
corresponding values in the formula, where

σ2
0 Null Hypothesis Value

S2 Sample Variance
n Sample Size

4. DISTRIBUTION OF THETEST STATISTIC when the Null Hypothesis is true
From what we know from the previous chapter, if the Null Hypothesis is true,
that is, ifσ2 = σ2

0 then

(n− 1)S2

σ2
0

∼ χ2
n−1

5. REJECTIONAREA of sizeα
The way to determine the Rejection Area depends on the test being of one or two
tails, that is, depending on what is the Alternative Hypothesis.

(a) TWO-TAIL TEST. Corresponds to the case when the Alternative Hypothe-
sis is of the typeH1 : σ2 6= σ2

0

α/2

α/2

χ1−α/2χα/2

Figure 3.4: Rejection Area in a Two-Tails Test

Le limit values in the Rejection Area,χ2
1−α

2
andχ2

α
2

, can be found using

the tables of aχ2 with n− 1 degrees of freedom. (See Figure 3.4)
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α

χ1−α

Figure 3.5: Rejection Area in a Right-Tail Test

(b) RIGHT-TAIL TEST. Corresponds to the case when the Alternative Hypoth-
esis is of the typeH1 : σ2 > σ2

0 (also of the typeH1 : σ2 = σ2
1 i σ2

1 > σ2
0)

The limit value in the Rejection Area,χ2
1−α, can be found in the tables of

aχ2 with n− 1 degrees of freedom. (See Figure 3.5)

(c) LEFT-TAIL TEST. Corresponds to the case when the Alternative Hypothe-
sis is of the typeH1 : σ2 < σ2

0 (also of the typeH1 : σ2 = σ2
1 i σ2

1 < σ2
0)

The limit value in the Rejection Area,χ2
α, can be found in the tables of a

χ2 with n− 1 degrees of freedom. (See Figure 3.6)

6. TEST CONCLUSION

Finally, we have to check if theOBSEVED VALUE OF THE TEST STATISTIC

(OVTS) falls, or not, inside theREJECTIONAREA. If it does, we then say that
the test rejects theNULL HYPOTHESIS. If it does not belong to the rejection
area, then we say that the testDOES NOT REJECT THENULL HYPOTHESIS.

3.2.3 Hypothesis Test for the Population Proportion (π)

1. NULL HYPOTHESIS

Is the value of the Population Proportion that we want to test.(π0 = valor a contrastar)

H0 : π = π0

2. ALTERNATIVE HYPOTHESIS

Corresponds to what would be true if the null hypothesis is false. Depends on
what information we have regarding the population proportion. There are 4 cases
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α

χα

Figure 3.6: Rejection Area in a Left-Tail Test

INFORMATION REGARDINGπ TEST TYPE

H1 : π 6= π0 General case. There is no informa-
tion regardingπ. Hence, if it is not
equal toπ0 the only thing we can
say is that it is different

Two Tails Test

H1 : π > π0 We have some information regard-
ingπ indicating that if it is not equal
to π0, then it must be greater

Right-Tail Test

H1 : π < π0 We have some information regard-
ingπ indicating that if it is not equal
to π0, then it must be smaller

Left-Tail Test

H1 : π = π1 We have some information regard-
ingπ indicating that if it is not equal
to π0, then it must be equal to an-
other valueπ1

This is a Right-Tail Test if
π1 > π0 and a Left-Tail Test
if π1 < π0

3. TEST STATISTIC

The Test Statistic (TE) to use in this case is.

TE =
π̂ − π0√
π0(1−π0)

n

The Ovserved Value of the Test Statistic (OVTS) is obtained when the elements
in the formula are replaced by their corresponding values from the sample, where

π̂ Sample Proportion
π0 Null Hypothesis Value
n Sample Size
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4. DISTRIBUTION OF THETEST STATISTIC when the Null Hypothesis is true
As we have seen in previous chapters, if it is true thatπ = π0 then1

π̂ − π0√
π0(1−π0)

n

∼ N(0, 1)

5. REJECTIONAREA of sizeα
As in the other tests, the determination of the Rejection Area depends on the test
type

(a) TWO TAILS TEST. Corresponds to the case when the Alternative Hypoth-
esis is of the typeH1 : π 6= π0

α/2α/2

−Z1−α/2 0 Z1−α/2 �
 

Figure 3.7: Rejection Area in a Two Tails Test

The limit values of the Rejection Area,Z1−α
2

and−Z1−α
2

, can be found
in the table of theN(0, 1). (See Figure 3.7)

(b) RIGHT-TAIL TEST. Corresponds to the case when the Alternative Hypoth-
esis is of the typeH1 : π > π0 (or H1 : π = π1 i π1 > π0)

The limit value of the Rejection Area,Z1−α, can be found in the tables of
theN(0, 1). (See Figure 3.8)

(c) LEFT-TAIL TEST. Corresponds to the case when the Alternative Hypothe-
sis is of the typeH1 : π < π0 (or H1 : π = π1 i π1 < π0)

The limit value in the Rejection Area,Z1−α, can be found in the tables of
theN(0, 1). (See Figure 3.9)

6. TEST CONCLUSION

Finally, we have to check if theOBSEVED VALUE OF THE TEST STATISTIC

(OVTS) falls, or not, inside theREJECTIONAREA. If it does, we then say that
the test rejects theNULL HYPOTHESIS. If it does not belong to the rejection
area, then we say that the testDOES NOT REJECT THENULL HYPOTHESIS.

1Remember that this is an approximation, which is better the larger is the samplen and the closer to0, 5
is π̂
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α

0 Z1−α  

Figure 3.8: Rejection Area in a Right-Tail Test

α

−Z1−α 0

Figure 3.9: Rejection Area in a Left-Tail Test

3.3 Two Samples Tests

In many cases what is of interest is not some question regarding some population pa-
rameter (as in the previous section), but rather to compare one parameter in one pop-
ulation with the corresponding parameter in other population. For instance, we might
want totest whether the average income in Cerdanyola this year is equal or greater that
in the previous year, or if the average income in Cerdanyola is equal to that in Sant
Cugat. That is, now we are interested inCOMPARING POPULATION PARAMETERS BE-
TWEEN TWO POPULATIONS, eihter two different populations (as when comparing the
average income in Cerdanyola and Sant Cugat) or the same population at two different
dates or after some action (as when comparing the average income in Cerdanyola this
year whith that of the previous year).

In any of these cases, what we do is aTWO SAMPLES TEST. Now we have two
populations (Population 1 and Population 2) each one with its corresponding popula-
tion parameters (µ1, σ2

1 andπ1 for the first population andµ2, σ2
2 i π2 for the second

population). We then draw two independent samples from each of these populations
(Sample 1 and Sample 2) which might have different sizes (n1 andn2). From these
samples we compute the corresponding Sample Statistics that will be used to perform
the tests (̄X1, S2

1 andπ̂1 for the first sample and̄X2, S2
2 i π̂2 for the second sample)
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Summarized, the information we can gather is:

Population 1 Population 2
µ1, σ2

1 andπ1 µ2, σ2
2 andπ2

Sample 1 Sample 2
x11 x12

x21 x22

...
...

xn11 xn22

X̄1, S2
1 andπ̂1 X̄2, S2

2 andπ̂2

From here, we can do tests regarding:

1. The difference between themeansof the two populations:µ1 − µ2

2. The difference between thevariancesof the two populationsσ2
1 − σ2

2

3. The difference between theproportionsof the two populationsπ1 − π2

3.3.1 Test for the Difference of Means

We want to test if the difference between the means of two populations equals some
specific valueδ0 or not (δ0 = 0 if we want to test if the means are equal to each other).
For instance, we could test if the average income in Cerdanyola and Sant Cugat are
equal to each other (µ1 − µ2 = 0). Another example would be to test whether the
average sleeping time after taking a new pill equals (or, alternativelly, is larger) than
without taking any pill.

For this thest the six corresponding steps are:

1. NULL HYPOTHESIS

Is the value for the difference that we want to test(δ0 = difference value to test)

H0 : µ1 − µ2 = δ0

2. ALTERNATIVE HYPOTHESIS

Corresponds to what would be true if the null hypothesis is false. Depends on
what information we have regarding the population proportion. There are 4 cases
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INFORMATION REGARDING

µ1 AND µ2

TEST TYPE

H1 : µ1 − µ2 6= δ0 General case. We have no infor-
mation for the population means.
Hence, if the difference is not equal
to δ0 the only thing we can say is
that it is different

Two Tails Test

H1 : µ1 − µ2 > δ0 We have some information about
the means indicating that if the dif-
ference is not equal toδ0 then it
must be greater

Right-Tail Test

H1 : µ1 − µ2 < δ0 We have some information about
the means indicating that if the dif-
ference is not equal toδ0 then it
must be smaller

Left-Tail Test

H1 : µ1 − µ2 = δ1 We have some information about
the means indicating that if the dif-
ference is not equal toδ0 then it
must be equal to a known alterna-
tive valueδ1

Right-Tail Test if δ1 > δ0

and Left-Tail Test ifδ1 < δ0

3. TEST STATISTIC

The Test Statistic (TS) to use in this case depends on whether the population
variancesσ2

1 i σ2
2 are both known or not.

σ2
1 andσ2

2 KNOWN σ2
1 orσ2

2 UNKNOWN

TS=(X̄1−X̄2)−δo√
σ2
1

n1
+

σ2
2

n2

TS=(X̄1−X̄2)−δo√
S2
n1

+ S2
n2

In any of these cases, the Ovserved Value of the Test Statistic (OVTS) is ob-
tained by replacing the correspondig values in the formula, where

X̄1 i X̄2 Sample Means
δ0 Null Hypothesis Value

σ2
1 i σ2

2 Population variances (if known)
S2 Common Sample Variance (ifσ2

1 orσ2
2 are not known)

n1 i n2 Sample sizes

In the formulae above the common value for the Sample Variance,S2( that we
use if we do NOT know eitherσ2

1 órσ2
2) (or any of them) is computed as

S2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

whereS2
1 i S2

2 are the Sample Variances of the first and the second sample re-
spectively. The rason for using thiscommon estimation of the sample varianceis
that for the test to make sense the two populations must be somehow "homoge-
neous". Tecnichally, this is equivalent to requiring that the two populations have
a similar population variance.
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4. DISTRIBUTION OF THE TEST STATISTIC WHEN THE NULL HYPOTHESIS IS

TRUE

If it is true thatµ1 − µ2 = δ0 then

σ2
1 andσ2

2 KNOWN σ2
1 orσ2

2 UNKNOWN

(X̄1−X̄2)−δo√
σ2
1

n1
+

σ2
2

n2

∼ N(0, 1) (X̄1−X̄2)−δo√
S2
n1

+ S2
n2

∼ tn1+n2−2

5. REJECTIONAREA of sizeα
The Rejection Area depends on whether we have a Two Tails Test, a Right-Tail
Test, or a Left-Tail Test. This, in turn, depends on what is the specification of the
Alternative Hypothesis.

(a) TWO TAILS TEST. Corresponds to the case when the Alternative Hypoth-
esis is of the typeH1 : µ1 − µ2 6= δ0

α/2α/2

−Z1−α/2

−τ1−α/2

0 Z1−α/2 �
t1−α/2 

Figure 3.10: Rejection Area in a Two Tails Test

The limit values of the Rejection Area,Z1−α
2

andt1−α
2

can be found in the
tables of aN(0, 1) or at− student with n1 + n2 − 2 degrees of freedom
respectively, depending on whether we know the two population variances
or not as explained above (See Figure 3.10)

(b) RIGHT-TAIL TEST. Corresponds to the case when the Alternative Hypoth-
esis is of the typeH1 : µ1 − µ2 > δ0 (or H1 : µ1 − µ2 = δ1 andδ1 > δ0)

The limit value of the Rejection Area,Z1−α or t1−α can be found in the
tables of theN(0, 1) or thet−student with n1+n2−2 degrees of freedom
respectively depending on whether we know the two population variances
or not as explained before. (See Figure 3.11)

(c) LEFT-TAIL TEST. Corresponds to the case when the Alternative Hypothe-
sis is of the typeH1 : µ1 − µ2 < δ0 (or H1 : µ1 − µ2 = δ1 andδ1 < δ0)

The limit value of the Rejection Area,Z1−α or t1−α can be found in the
tables of theN(0, 1) or t− student with n1 − n2 − 2 degrees of freedom
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α

0 Z1−α �
t1−α 

Figure 3.11: Rejection Area in a Right-Tail Test

α

−Z1−α

−τ1−α

0

Figure 3.12: Rejection Area in a Left-Tail Test

respectively depending on whether we know the two population variances
or not. (See Figure 3.12)

6. TEST CONCLUSION

Finally, we have to check if theOBSEVED VALUE OF THE TEST STATISTIC

(OVTS) falls, or not, inside theREJECTIONAREA. If it does, we then say that
the test rejects theNULL HYPOTHESIS. If it does not belong to the rejection
area, then we say that the testDOES NOT REJECT THENULL HYPOTHESIS.

3.3.2 Test for the Difference of Variances

In this case we only test if the two populations have the samevariance or not. This is
special test for three reasons:

1. We can only test if the two variances are equal or not, that is, the Null Hypothesis
is alwaysthe same

H0 : σ2
1 = σ2

2
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2. The test must be conducted following a strict order, that must be stablished in a
"extra" step before starting the usual 6 steps

3. This test is important because it allows to check if two different populations seem
to have the same variance. This, as we have seen before, is important for other
tests. Indeed, the test for the difference of means only makes sense if the two
populations are "homogeneous", that is, have a similar variance.

Hence, this "special" test will begin with an extra step (Step 0) where we stablish
the order of the elements of the test.

0. EXTRA STEP

We change the "denomination" of our two samples so thatALWAYS the sample with
the highest Sample Variance is the Sample 1, being the Sample 2 the one with the
lowest variance. This way, once we have followed this rule, we will always have:

S2
1 > S2

2

1. NULL HYOPTHESIS

Is always the same and, as said before, it consists of testing whether the two
variences are the same or not. Beacuse of the special structure of this test, the
correct way to specify this hypothesis is:

H0 :
σ2

1

σ2
2

= 1

2. ALTERNATIVE HYPOTHESIS

As usual, it represents what is true when the Null Hypothesis is false. I this
specific case, there are only two possible specifications for this hypothesis (once
more, this is so because of the special structure of this test)

INFORMATION REGARDING

σ2
1 AND σ2

2

TEST TYPE

H1 : σ2
1

σ2
2
6= 1 General Case. We have no informa-

tion onσ2
1 nor aboutσ2

2 . Hence, if
they are not equal, the only thing we
can say is that they are different

Two Tails Test

H1 : σ2
1

σ2
2

> 1 We have some information aboutσ2
1

andσ2
2 indicating that if they are not

equal then one of them is greater.
Because of the “denomination“ in
Step 0, the greater will always beσ2

1

Right-Tail Test

3. TEST STATISTIC

In this case, the Test Statistic (TC) to use is:

textrmTE =
S2

1

S2
2
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The observed value of the Test Statistic (OVTS) is easily obtained replacing the
corresponding sample variances in the formula, where

S2
1 Sample Variance of Sample 1

S2
2 Sample Variance of Sample 2

Notice that, because of Step 0 whe have thatS2
1 > S2

2 , and hence we will always
find that VOEC> 1

4. DISTRIBUTION OF THETEST STATISTIC when the Null Hypothesis is true
In this case, the Test Statistic follows a distribution that is known as aF of
Snedecor. This distribution, the same as thet − student or theχ2 is also char-
acterized by its "degrees of freedom". Unlike those cases, though, theF −
snedecor has a "pair" of degrees of freedom, those corresponding to the nu-
merator and those corresponding to the denominator. Hence, the notation:

S2
1

S2
2

∼ F(n1−1,n2−1)

indicates that the Test StatisticS
2
1

S2
2

follows a F − snedecor distribution with
n1 − 1 degrees of freedom in the numerator (that is, the size of the sample that
corresponds toS2

1 in the numerator minus 1) andn2 − 1 degrees of freedom
in the denominator (that is, the size of the sample that corresponds toS2

2 in the
denominator minus 1).
Remember that it is very important to keep the order stablished in Step 0, that is,
sample 1 corresponds to to the sample that has the highest sample variance. In
this sense, the "degrees of freedom in the numerator" is the size of such sample
minus 1: n1 − 1. This is important whem looking at the tables of theF −
snedecor in order to determine the Rejection Area.

5. REJECTIONAREA of sizeα
The Rejection Area depends on whether the test has one or two tails, as given by
the Alternative Hypothesis. In this special test, the tail that "matters" will always
be the Right-Tail, even if the test is a "Two Tails Test".

(a) TWO TAILS TEST. Corresponds to thec case when we have an Alternative

Hypothesis of the typeH1 : σ2
1

σ2
2
6= 1

For the limit values of the Rejection Area,F1−α
2

andFα
2

, we only need
to find F1−α

2
in the tables of theF with n1 − 1 degrees of freedom in the

numerator andn2 − 1 degrees of freedom in the denominator. The other
value,Fα

2
, is not needed in any case since the OVTS is always> 1, Hence,

if it falls into the Rejection Area, it will be on the Right-Tail.BECAUSE OF

WHAT IS DONE IN STEP 0 (THE “ DENOMINATION” OF THE SAMPLES),
THE OBSERVED VALUE OF THE TEST STATISTIC WILL NEVER BE IN

THE LEFT-TAIL . (See Figure 3.13)

(b) RIGHT-TAIL TEST. Corresponds to the case when the Alternative Hypoth-

esis is of the typeH1 : σ2
1

σ2
2

> 1

The limit value of the Rejection Area,F1−α, can be foundin the tables of a
F with n1 − 1 degrees of freedom in the numerator andn2 − 1 degrees of
freedom in the denominator. (See Figure 3.14)
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α/2

α/2

F1−α/2(no cal buscar-lo)

Figure 3.13: Rejection Area in a Two Tails Test

6. TEST CONCLUSION

Finally, we have to check if theOBSEVED VALUE OF THE TEST STATISTIC

(OVTS) falls, or not, inside theREJECTIONAREA. If it does, we then say that
the test rejects theNULL HYPOTHESIS. If it does not belong to the rejection
area, then we say that the testDOES NOT REJECT THENULL HYPOTHESIS.

3.3.3 Test for the Difference of Proportions

We now test what is the difference between the proportion of elements that have a
given characterisic in two populations. For instance, we can test if the proporion of
voters of the PP in Cerdanyola equals the proportion of voters of the PP in Sant Cugat
(π1 − π2 = 0). Another example would be to test if the proportion of people that
recovers from a given illness is bigger if they take a specific medicine than if they don’t
(in order to test the goodness of such medicine)

Te six steps for this test are as follows:

1. NULL HYPOTHESIS

It is the value for the difference between the population proportions that we want
to test.(δ0 = difference to test)

H0 : π1 − π2 = δ0

2. ALTERNATIVE HYPOTHESIS

Represents what is true when the Null Hypothesis is false. As usual, its specifi-
cation depends on the information we have about the populations
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α

F1−α

Figure 3.14: Rejection Area in a Right-Tail Test

INFORMATION REGARDING

π1 I π2

TEST TYPE

H1 : π1 − π2 6= δ0 General Case. We have no informa-
tion about the population propor-
tions. Hence, we can only say that
if the difference is notδ0 then it is
different

Two Tails Test

H1 : π1 − π2 > δ0 We have some information indicat-
ing that if the difference is notδ0

then it must be bigger

Right-Tail Test

H1 : π1 − π2 < δ0 We have some information indicat-
ing that if the difference is notδ0

then it must be smaller

Left-Tail Test

H1 : π1 − π2 = δ1 We have very specific informa-
tion about the proportions indicat-
ing that if the difference is not equal
to δ0 then it must be equal to a spe-
cific alternative valueδ1

Right-Tail Test if δ1 > δ0

and Left-Tail Test ifδ1 < δ0

3. TEST STATISTIC

The Test Statistic (TE) to use in this case is always the same.

T.S. =
(π̂1 − π̂2)− δ0√
π̂(1−π̂)

n1
+ π̂(1−π̂)

n2

The Observed Value of the Test Statitic (OVTS) is obtained by replacing in the
formula the corresponding values, where
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π̂1 andπ̂2 Sample Proportions
δ0 Null Hypothesis Value
π̂ Common Sample Proportion

n1 i n2 Sample Sizes

The value of the Common Sample Proportion,π̂, is obtained from

π̂ =
n1π̂1 + n2π̂2

n1 + n2

which is equivalent to computing the proportion of elements in the two samples
(jointly) that have the characteristic that is of interest.

4. DISTRIBUTION OF THETEST STATISTIC when the Null Hypothesis is true
As seen in other cases, when is true thatπ1 − π2 = δ0 then

(π̂1 − π̂2)− δ0√
π̂(1−π̂)

n1
+ π̂(1−π̂)

n2

∼ N(0, 1)

5. REJECTIONAREA of sizeα
The Rejection Area will be different depending on the type of test.

(a) TWO TAILS TEST. Corresponds to the case when we have an Alternative
Hypothesis of the typeH1 : π1 − π2 6= δ0

α/2α/2

−Z1−α/2 0 Z1−α/2 �
 

Figure 3.15: Rejection Area in a Two Tails Test

The limit values of the Rejection Area,Z1−α
2

and−Z1−α
2

, can be found
in the table of aN(0, 1). (See Figure 3.15)

(b) RIGHT-TAIL TEST. Corresponds to the case when we have an Alternative
Hypothesis of the typeH1 : π1−π2 > δ0 (or H1 : π1−π2 = δ1 andδ1 >
δ0)

The limit value of the Rejection Area,Z1−α, can be found in the table of a
N(0, 1). (See Figure 3.16)
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α

0 Z1−α  

Figure 3.16: Rejection Area in a Right-Tail Test

(c) LEFT-TAIL TEST. Corresponds to the case when the Alternative Hypothe-
sis is of the typeH1 : π1 − π2 < δ0 (or H1 : π1 − π2 = δ1 andδ1 < δ0)

α

−Z1−α 0

Figure 3.17: Rejection Area in a Left-Tail Test

The limit value of the Rejection Area,Z1−α, can be found in the table of a
N(0, 1). (See Figure 3.17)

6. TEST CONCLUSION

Finally, we have to check if theOBSEVED VALUE OF THE TEST STATISTIC

(OVTS) falls, or not, inside theREJECTIONAREA. If it does, we then say that
the test rejects theNULL HYPOTHESIS. If it does not belong to the rejection
area, then we say that the testDOES NOT REJECT THENULL HYPOTHESIS.

3.4 Analysis of Variance

The ANalysis Of VAriance (ANOVA) between groups is a statistical technique that al-
lows to simultaneously compare more than two populations. For instance we can com-
pare the productivity of different types of wheat, the performance of several makes of
cars, etc. For each of these cases we focus on one specific numerical feature: the weight
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of wheat, the gas consumption of cars. What we test with the ANOVA is whether there
exists a relationship among the averages of the different populations: have all the va-
rieties of wheat the same weight ? do all the car makes have the same consumption
?

3.4.1 Basic Framework

What we test now is if the means of all the populations are the same. Letk be the
number of populations. We will assume that each of the populations(i = 1, . . . , k) is
distributed according to a Normal distribution with the same varianceσ2:

x1 ∼ N(µ1, σ
2) x2 ∼ N(µ2, σ

2) · · · xk ∼ N(µk, σ2)

From each of the populationsi a sample of sizeni is obtained.
Notation
xij Observarionjth from Samplei, (i = 1, . . . , k; j = 1, . . . , ni).
N Número total d’observacions

N =
k∑

i=1

ni

X̄i Mitjana mostral de la mostra de la poblaciói.

X̄i =
1
ni

ni∑

j=1

xij

¯̄X Mitjana total o mitjana de totes les observacions

¯̄X =
1
N

k∑

i=1

ni∑

j=1

xij =
1
k

(X̄1 + · · ·+ X̄k)

3.4.2 Estadístics

\medskip
• Variació entre mostres: VEM = SCE (variació explicada)

V EM =
k∑

i=1

ni(xi − ¯̄X)2

V EM

σ2
= χ2

k−1

• Variació dins les mostres: VDM = SCR(variació no explicada o resudual)

V DM =
k∑

i=1

ni∑

j=1

(xij − X̄i)2

V DM

σ2
= χ2

N−k
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• Variació total: VT = STC=VEM+VDM

V T =
k∑

i=1

ni∑

j=1

(xij − ¯̄X)2

V T

σ2
= χ2

N−1

3.4.3 Contrast

El test a realitzar és de la forma

H0 : µ1 = µ2 = · · · = µk

H1 : No totes lesµi soniguals

Cal tenir present que: \medskip
1. Sempre, per qualsevoli, S2

i = 1
ni−1

∑ni

j=1(xij − X̄i)2 és un estimadorines-
biaixatdeσ2

2. Sota la hipòtesi nul·la, S2
E = SCE

k−1 és un estimadorinesbiaixatdeσ2

3. En considerar totes les variàncies com iguals,S2
R = SCR

N−k és un estimador
inesbiaixatdeσ2

Per tant:

SCE
σ2(k−1)

SCR
σ2(N−k)

∼
χ2

k−1
k−1

χ2
N−k

N−k

És a dir, l’estadístic de contrast és

F ∗ =
S2

E

S2
R

∼ F (k − 1, N − k)

3.5 Non-Parametric Tests

In the previous sections we have seen the main tests of the so called "parametric tests",
that is, we test hypothesis regarding one specific "parameter" of the population (or
comparing the parameters of two populations).

In this section we will see one specific test of the kind named "non-parametric
tests", that is, we do not perform tests regarding a specific parameter but we test more
general hypothesis. More specifically, we will see how to test if the date in our sample
seems to come from a given theoretical distribution.
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3.5.1 The Kolmogorov-Smirnov Test for the Goodness of Fit

This test checks whether a given set of data (the sample) seems to "fit" (and how "good"
is this "fit") a specific probability distribution. For instance, whe can test whether the
distribution of the income per capita in a sample collected in Cerdanyola seem to fit
what would be a Normal distributon with the same mean and variance (this is some-
times referred to as the "normality test"). The idea is to test if the "frequencies" ob-
served in the sample coincide with the "frequencies" (probabilities) that we can com-
pute using a Normal distribution with the same mean and variance.

Hence, the procedure focuses on looking at the differences between the "observed
frequency" (in the sample) and the "theoretical frequency" (according to a Normal
distribution) to determine if these differences are small enough as to conclude that,
indeed, the data in the sample seems to follow a distribution close to that of a Normal.

The procedure is as follows when we want to test if the data "fits" a Normal distri-
bution with mean= µ and variance= σ2, that is,N(µ, σ2)

1. The Null Hypothesis for this test is always the same:

H0 : FO = FT

WhereFO is the "observed cummulative frequency" in the sample andFT is the
"theoretical cummulative probability (frequency)" according to a Normal distri-
bution2. How these "frequencies" are computed would be explained later.

2. The Alternative Hypothesis also is always the same:

HA : F0 6= FT

That is, if the "frequencies" are not equal, then they are just different.

3. Test Statistic

For this test, the computation of the Test Statistic is rather involved and takes a
lot of work.

First, for the "observed frequencies"FO, we must compute for each element in
the sample what is the proportion (or frequency) of elements that are "smaller or
equal" to that value

FO(xi) =
Number of elements in the sample smaller or equal than xi

Total number of elemnts in the sample

Now we must compute (using theN(0, 1) tables) what are the corresponding
"theoretical frequencies" according to the "Normal"N(µ, σ2) we are testing for:

FT (xi) = P (X ≤ xi) = P (
X − µ√

σ2
≤ xi − µ√

σ2
) = P (Z ≤ xi − µ√

σ2
)

whereZ ∼ N(0, 1)

Finally, we compute the differences between each of the "observed frequencies"
FO(xi) and the corresponding "theoretical frequencies"FT (xi) and then select

2The test could also be done to check if the data behaves according to another distribution, like an expo-
nentical, a Poisson, a Binomial, etc. Here we focus only on the "normality test", that is, to check if the data
in the sample behaves according to a Normal distribution.
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the "maximum" (in absolute value) of these differences. This value will be the
Observed value of the Test Statistic. That is, the Test Statistic for this test, that
we denote byK − S is given by:

K − S = max |FO(xi)− FT (xi)|

and the corresponding Observed Value of the Test Statistic follows from the com-
putation of the differences and the selection of the "maximum" difference as
explained above.

4. Distribution of the Test Statistic when the Null Hypothesis is true

For this test, the distribution to use is a special one named the Kolmogorov-
Smirnov distribution, whose values are also in tables

5. Rejection Area of sizeα

This test is always a Right-Tail Test (only a tail on the right). In the Kolmogorov-
Smirnov tables we find the limit value for this rejection area depending on both
the size of the rejectin areaα and the size of the samplen

6. Test conlcusion

Given the special features of this test, we only need to check if the Observed
Value of the Test Statistic K-S is bigger or not that the value found in the Kolmogorov-
Smirnov tables. If it is bigger, then we reject the Null Hypothesis that says that
the sample follows the distribution of a Normal. If it is smaller then we do not
reject that hypothesis

3.6 Exercises

1. Among the following sentences, which are true and which are false:

(a) The larger the significance level, the more likely is to rejectH0when it is
true.

(b) The larger the confidence level, the more likely is to rejectH0when it is
true.

(c) The larger the significance level, the higher the power of the test.

(d) The higher the power of the test, the more likely is to rejectH0 when it is
false.

2. In the Penedés area, the average grape crop in a normal year is of 100 Tons/Ha.
This year that the weather has been specially good 12 selected lots produced 106
Tons/Ha. in average. If the crop per Ha. is a random variable with variance 64, is
there any reason to think that this year’s crop is better than normal ? (α = 0.01).
Find thep_value in this case.

3. A manager orders a large quantity of steel girders with an average length of 5
meters. It is known that the length of such girders is a random variablenormally
distributed with 0.02standard deviation. Once the order is received, the manager
randomly selects 16 girders and measures their lengths. If the average length in
the sample is less than expected, the manager will return the order.
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(a) If the probability of rejecting a “good” order is 0.04, what has to be the
value of the average length in the sample that makes the manager return the
order ?

4. A specific task in a factory takes 5 minutes in average to be completed. The
factory manager believes that one of the workers spends more time in this oper-
ation. The manager selects a sample of 11 timings for this worker and collects
the following data (in minutes): 4.8, 5.6, 5.3, 5.2, 4.9, 4.7, 5.7, 4.9, 5.7, 4.9, 4.6.
Assuming that operation time is a Normal random variable,

(a) Does the data supports the manager’s belief (α = 0.02).

(b) How much is thep_value in this case ?

5. A washing machines producer claims that only a 5 % of the whole production
need service whithin the first year of normal operation. A consumers organiza-
tion asks 20 families with the same number of members that have bought this
washers to report about any malfunctioning in the first year. At the end, only 3
families reported some kind of problem.
Test whether the manufacturer’s hypothesis that the proportion of “bad” units is
0.05 can be rejected against the consumers organization belief that such propor-
tion is more than 0.05 withα = 0.1

6. The manager of the election campaign of candidate A believes that his candidate
is in the same position as his opponent, candidate B. Nevertheles, hi is afraid
that some recent scandals might have harmed his candidate. Hence, he decides
to interview 1500 citizens and 720 show a clear preference for candidate A. Does
it exist any reason to think that the scandal has affected the image of candidate
A ? (α = 0.05)

7. The person in charge of a workshop thinks that the number of items that a par-
ticular worker produces oscillates more than normal. He decides to monitor the
worker activity during 10 randomly selected days. The number of items pro-
duced each of these days was 15, 12, 8, 13, 12, 15, 16, 9, 8, and 14. It is known
that the standard deviation of other workers in the workshop is of 2 units, and that
the number of produced items per day is distributed according to a Normal. Does
this data support the manager’s suspicion? (α = 0.05). What is thep_value in
this case ?

8. A manufacturer wants to compare the average stress of the linens he produces
against that of his competitors. One hundred threads of each brand were selected
and their corresponding stress recorded. The results were:

X̄1 = 110.8 X̄2 = 108.2

s1 = 10.2 s2 = 12.4

Assuming that the sampling took place on two normal, independent populations,
is there any reason to think that the difference between the average stress of the
two brands is significant ? (α = 0.02)
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9. A survey was conducted to test the degree of influence of alcohol on the ability
to concentrate to perform a specific task. Ten people were selected at random to
participate in an experiment. First, each person developed the task without any
alcohol intake, and then did it again with a 0.1 % of alcohol in blood. The task
completion timings recorded before and after the alcohol intake were:

Participant Before After
1 28 39
2 22 45
3 55 67
4 45 61
5 32 46
6 35 58
7 40 51
8 25 34
9 37 48
10 20 30

Can we conclude, with a significance level of 5%, that the average timing “be-
fore” is lower that the average timing “after” in more than ten minutes ? (assume
that he population is normally distributed)

10. An investor wants to compare the risks associated to two different stock markets,
A and B. Market risk is measured using the variance of the daily changes in stock
prices. The investor believes that the risk in market A is lower than the risk in
market A. Two random samples are selected, consisting of 21 observations on
the changes i prices in market A and 16 observations on the changes of prices in
market B. The results are:

Market A Market B
X̄A = 0.3 X̄B = 0.4
sA = 0.25 sB = 0.45

Assuming that both samples come from two Normal and independent popula-
tions, does the data suport the investor’s belief ? (α = 0.5)

11. An electrician buys large amounts of electrical components mainly from two
suppliers, A and B. Because of a better pricing policy, the electrician will buy
only from supplier B is the proportion of faulty items is the same for both suppli-
ers. The electrician selects two random samples, one of size 125 from supplier
A and other of size 100 from supplier, discovering that there are exactly 7 faulty
components in each sample. Is there any reason not to buy only from supplier B
? (α = 0.02).

12. Two people play “heads or tails” with a coin. After 100 tosses A, who chose
“heads”, won 62 times. Immediately, B claims that the coin is biassed and the
probability of getting heads is above 50 %. Is she right ? (α = 0.05).
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13. In a Hospital 7 patients were selected, observing that they slept 7, 5, 8, 8.5, 6, 7
i 8 hours respectively. All of them were given a new sleeping pill, and then 5 of
them were selected, observing 9, 8.5, 9.5, 10 i 8 sleep hours respectively. Is the
new pill effective ? (Assume normality andα = 0.05)

14. Random errors in two measuring tools follow Normal distributionsN(0, σ2
1) i

N(0, σ2
2). In a sample of size 7 the following measuring error are observed

First tool: 0.3, 0.7, -1.1, 2.0, 1.7, -0.8, -0.5

Second tool: 1.6, -0.9, -2.8, 3.1, 4.2, -1.0, 2.1

Can we tell that the first tool is more precise than the second tool ?

15. A testing lab is asked to compare the durability of four different brands of golf
balls. The lab randomly selects 7 balls from each brand and puts them into a
machine that hits them with constant strength. The measurement of interest is
the number times the machine hits the ball before its external cover is broken.
The following table reports the data gathered during the test:

A B C D
205 242 237 212
229 253 259 244
238 226 265 229
214 219 229 272
242 251 218 255
225 212 262 233
209 224 242 224
204 247 234 245

Is there any reason to think that the average durability is different across brands
? (α = 0.05).

16. In order to test if there exist differences in the average crop of three varieties
of corn, a lot is divided in three equal areas and one different variety of corn is
planted in each one. In each area a sample of size 5 is collected corresponding to
5 measurements of tons per acre. The following table is an incomplete ANOVA
table for this problem

Variation Sum Deg. of Freedom Average SumF
VEM 64
VDM
VT 100

Complete the ANOVA table and determine if the null hypothesis of all the aver-
ages being equal can be rejected withα = 0.01



Chapter 4

Goodness of Fit and Correlation
Analysis

In the previous chapter we have seen the main tests of the so called "parametric tests"
(we test hypothesis regarding one specific "parameter" of the population).

In this chapter we will first see one specific test of the kind named "non-parametric
tests", that is, we do not perform tests regarding a specific parameter but we test more
general hypothesis. More specifically, we will see how to test if the date in our sample
seems to come from a given theoretical distribution.

Then, we will introduce the concept of "relationship" between data in two samples.
This will be important for the next chapter. More specifically, we will introduce the
analysis of the correlation between samples.

4.1 The Kolmogorov-Smirnov Test for the Goodness of
Fit

This test checks whether a given set of data (the sample) seems to "fit" (and how "good"
is this "fit") a specific probability distribution. For instance, we can test whether the dis-
tribution of the income per capita in a sample collected in Cerdanyola seem to fit what
would be a Normal distribution with the same mean and variance (this is sometimes
referred to as the "normality test"). The idea is to test if the "frequencies" observed in
the sample coincide with the "frequencies" (probabilities) that we can compute using a
Normal distribution with the same mean and variance.

Hence, the procedure focuses on looking at the differences between the "observed
frequency" (in the sample) and the "theoretical frequency" (according to a Normal
distribution) to determine if these differences are small enough as to conclude that,
indeed, the data in the sample seems to follow a distribution close to that of a Normal.

The procedure is as follows when we want to test if the data "fits" a Normal distri-
bution with mean= µ and variance= σ2, that is,N(µ, σ2)

1. The Null Hypothesis for this test is always the same:

H0 : FO = FT

63
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WhereFO is the "observed cumulative frequency" in the sample andFT is the
"theoretical cumulative probability (frequency)" according to a Normal distribu-
tion1. How these "frequencies" are computed would be explained later.

2. The Alternative Hypothesis also is always the same:

HA : F0 6= FT

That is, if the "frequencies" are not equal, then they are just different.

3. Test Statistic

For this test, the computation of the Test Statistic is rather involved and takes a
lot of work.

First, for the "observed frequencies"FO, we must compute for each element in
the sample what is the proportion (or frequency) of elements that are "smaller or
equal" to that value

FO(xi) =
Number of elements in the sample smaller or equal than xi

Total number of elements in the sample

Now we must compute (using theN(0, 1) tables) what are the corresponding
"theoretical frequencies" according to the "Normal"N(µ, σ2) we are testing for:

FT (xi) = P (X ≤ xi) = P (
X − µ√

σ2
≤ xi − µ√

σ2
) = P (Z ≤ xi − µ√

σ2
)

whereZ ∼ N(0, 1)

Finally, we compute the differences between each of the "observed frequencies"
FO(xi) and the corresponding "theoretical frequencies"FT (xi) and then select
the "maximum" (in absolute value) of these differences. This value will be the
Observed value of the Test Statistic. That is, the Test Statistic for this test, that
we denote byK − S is given by:

K − S = max |FO(xi)− FT (xi)|

and the corresponding Observed Value of the Test Statistic follows from the com-
putation of the differences and the selection of the "maximum" difference as
explained above.

4. Distribution of the Test Statistic when the Null Hypothesis is true

For this test, the distribution to use is a special one named the Kolmogorov-
Smirnov distribution, whose values are also in tables

5. Rejection Area of sizeα

This test is always a Right-Tail Test (only a tail on the right). In the Kolmogorov-
Smirnov tables we find the limit value for this rejection area depending on both
the size of the rejecting areaα and the size of the samplen

1The test could also be done to check if the data behaves according to another distribution, like an expo-
nential, a Poisson, a Binomial, etc. Here we focus only on the "normality test", that is, to check if the data in
the sample behaves according to a Normal distribution.
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6. Test conclusion

Given the special features of this test, we only need to check if the Observed
Value of the Test Statistic K-S is bigger or not that the value found in the Kolmogorov-
Smirnov tables. If it is bigger, then we reject the Null Hypothesis that says that
the sample follows the distribution of a Normal. If it is smaller then we do not
reject that hypothesis

4.2 Relationship between samples

Consider two independent samples randomly obtained from two different populations.
For instance, we could think of one sample with data about the unemployment rate in
Cerdanyola and another sample with data about income per capita also in Cerdanyola.
Then, we might wonder if there is a "relationship" between these data, that is, if it
seems to be true that when the unemployment rate is low then the income per capita
is high and vice versa. These kind of questions is more ambitious for the economic
analysis than those addressed in previous chapters. Indeed, for the design of economic
policies it is very important to know what kind of relation exists among the different
economic variables.

In this sense, there are two types of relationships that we can observe between two
given variables:

1. Casual

We say that two variables have a "casual" relationship when changes in one of
the variables induce changes in the other one. For instance, it seems clear that
the lower is the interest rate the higher is the demand for mortgage loans.

2. Spurious

We say that two variables have a "spurious" relationship when they seem to be
related but this relation is not causal but explined from some other factor, like
a third variable that is independently related to each of these two or some other
unknown factor.

Once we now if two variables are related or not, it is very important to understand
what is the kind of relationship they have. Indeed, even if two variables are related to
each other we can not "use" this relationship trying to influence one of the variables by
means of changes in the other.

4.3 Correlation Analysis: The Correlation Coefficient

The analysis start with a set of paired data sampled from two variablesX andY

X Y
x1 y1

x2 y2

...
...

xn yn

We can represent these two pairs of data in aX − Y graph to obtain, generically,
one of these four kind of graphs, namedData dispersion diagram
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Figure 4.1: Data dispersion types

Each of these four types of data dispersion corresponds to a specific kind of rela-
tionship between the variablesX i Y
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Dispersion Type Type of relationship between variablesComment

A Monotone increasing The two variables change in
the same direction. The
higher is the value of one of
them, the higher is the value
of the other

B Monotone decreasing The two variables change
in opposite directions. The
higher is the value of one of
them, the lowest is the value
of the other

C No relationship There is no apparent rela-
tionship between the vari-
ables. For some data high
values ofX correspond to
high values ofY , but for
some other data they corre-
spond to low values

D Non-monotone relationship The two variables seem to
be related to each other, but
this relationship is some-
times increasing, sometimes
decreasing

Figure 4.2: Type of relationship between variables

With the Correlation Analysis we seek to determine:

1. Which is the type of relationship between the variables

2. Which is the "degree" of relationship between the variables

This analysis is done by means of theCorrelation Coefficientr given by the formula

r =
∑n

i=1 x̃iỹi

nSXSY

where:

x̃i = xi − X̄

ỹi = yi − Ȳ

SX =

√∑n
i=1 x̃2

i

n

SY =

√∑n
i=1 ỹ2

i

n

It can be proved that−1 ≤ r ≤ 1. The interpretation of this coefficient is as follows
The correlation coefficientr is an estimator (that is computed using the sample of

observations of the variablesX andY ) of the population correlationρ that measures the
true correlation between the two variables. In this sense, as we have done in previous
chapters with other sample estimators likeX̄, we can user to do "inference" regarding



68 Notes on Statistics II

Value ofr Interpretation

−1 ≤ r < 0 There exists a monotone decreasing rela-
tionship (Type B). The closer to−1 is r
the stronger the relationship

0 < r ≤ 1 There exists a monotone increasing rela-
tionship (Type A). The closer to 1 isr, the
stronger the relationship

r ≈ 0 Whenr is close to0, we do not have any
kind of monotone relationship. The prob-
lem, though, is that it is not possible to de-
termine if we are in a relationship like in
Type D or we do not have any kind of rela-
tion like in Type C

Figure 4.3: Interpretation ofr

ρ (confidence intervals, hypothesis testing). To do so we must know the distribution of
such estimator. It can be proved that:

1
2

ln(
1 + r

1− r
) ∼ N(

1
2

ln(
1 + ρ

1− ρ
),

1
n− 3

)
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4.4 Exercises

1. Given the three sets of data below regarding variablesX andY , plot the disper-
sion diagram and compute the correlation coefficientr. Comment on the type of
relation in each case.

SET A

X Y
1 5
2 9

SET B

X Y
1 1
2 9
3 2
4 7
5 6

SET C

X Y
1 1
2 16
3 81
4 256
5 625

2. The correlation coefficient computed in a sample of size 39 isr = 0.35. Find the
95% confidence interval for the true correlationρ. Does the confidence interval
found imply that the null hypothesisρ = 0 can not be rejected ?

3. The correlation coefficient computed in a sample of size 28 isr = 0, 8. Test the
null hypothesisρ =0, 8.

4. The following data correspond to the class attendance and the final grades in an
Statistics II test.

Pass Fail Total
Attended the class regularly 40 20 60
Did not regularly the class 15 25 40

Total 55 45 100

Does this data set indicate that the class attendance is related to the final grade ?
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5. A compmay wants to maximize the number of people that answers to their sur-
veys. The tested three different methods of presenting the survey with a random
sample of size 2000 and the results were:

Format of the Survey Did answer Did not answer Total
Typewriter 250 200 450

Cyclist 300 450 750
Computer Laser Printout 300 500 800

Total 850 1150 2000

Does the format of the survey influence the people’s attitude to take the survey ?

6. The number of births per month in a hospital during a given year were:

Jan Feb Mar Apr May Jun Jul Aug Set Oct Nov Dec
95 105 95 105 90 95 105 110 105 100 95 100

If α = 0.01, is there any reason to think that the number of births is not dis-
tributed uniformly during the year ?


