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Introduction: What is
Statistics ?

Think of a researcher who seeks to explain some fact form the real world. For instance,
imagine Newton trying to explain why apples fall. As a closer example, imagine an
economist trying to explain why unemployment does exist.

Usually, the task of a researcher consists of three parts:

1. Observe the world in order to determine the problem to study and gather infor-
mation about it

2. Think about the problem

3. Produce an explanation ®heoryfor the problem.

Statistics become extremely important for the first of these three elements.

Itis clear that, in order to study a "real problem", the researcher must observe the
"real" world. Nevertheless, it is also clear that no researcher can obserwhthe
reality. Newton can not observer all the falling apples, neither can an economist in-
terview the whole population of a country to determine the unemployment rate. It is
hence necessary to somehow "summarize" the reality, but this task has to be done so
that such "summary" closely fits the reality. Then, and only then, conclusions drawn
from the "summary" can be reliably applied to the whole population.

Statistics (more precisely, statistical inference) is a collection of tech-
nigues by means of which we can draw conclusions with regards to a
reality from the study of aummaryof such reality

Hereafter we will study in detail how this is done. Chapter one explains how the
reality is rigorouslysummarizednd what are the main features of the results obtained
in this process. Chapter two deals with the first approach on how to generate con-
clusions about someeal issues based on what we observe ingbhenmary Chapters
three and four introduce more sophisticated techniques to make inferences about the
reality using some of the more elemental results seen in Chapter two. Finally, Chapter
five introduces the linear regression analysis, a technique widely used in the economic

lvery often the researcher does not start up by gathering information using statistical techniques. On the
contrary, in many cases his initial activity consists of detecting general patterns of behavior for a given fact.
From here, researchers are able to build up an abstract theory in order to explain the phenomenon at study.
This is, for example, Newton’s way, and also the way Economic Theory works. Once this "abstract theory"
is logically constructed, statistical techniques are often used to check whether such theory fits the reality, as
we will see in Chapter 5.
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analysis (and other sciences) to study the relationship between variables. It is worth
saying that a clear understanding of the topics in Chapter one are important in order to
easily understand what other chapters deal with, and also to get an global idea of the
whole process of statistical inference.



Chapter 1

Sampling Theory

This chapter formally intoduces how teemmarymentioned above is done and which
are the main features of the conclusions drawn from it.

At this point, it is important to understand that statistics is basegrobabilistic
techniques. Hence, any statistical conclusion drawn from this kisdrmmarywill not
betrue for surewhen applied to the wholeeality, but only with a certain probability.

For instance, when an electoral survey is conducted it is clear that its results do not
exactly coincide with the results in the final election. Nevertheless, if the survey is
"well done", that is, if thesummaryof the reality (which in this case is the set of
people interviewed) closely represents the wheldity (which in this case is the whole
population that has the right to vote), then the survey result will be close to the final
results with a high probability

In the sections below we will see which are the basic ingredients of any statistical
analysis and its probabilistic features

1.1 Population, Sample, Parameter, Statistic, and Sta-
tistical Inference
Statistical inference is mainly built upon four main concepts, which will be defined

and described below. These concepts are closely related to each other and it is very
important to clearly understand each of them and not to mistake one by the other.

Population Is the set of elements that are the object of studjhe goal will be to
draw some conclusion regarding some specific feature of this population.

Example 1.1.1 All the apples in the world. The feature at study is whether
an apple falls down or not.

Example 1.1.2 Labor force in the European Union. The feature at study
is whether a worker is unemployed or not.

Example 1.1.3 Production of Pentium IV chips in a given day. The feature
at study is whether a chip is faulty or not.

1In this sense, thBopulation is what we have calletkality in the Introductory chapter

7
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Sample Subset of théopulation used to draw conclusions about the population

Example 1.1.450 apples in Newton'’s garden.
Example 1.1.5 Unemployment statistics at the European Union.
Example 1.1.6 25 Pentium 1V chips manufactured in a given day.

Parameter Is the feature of the population that we want to know something about.
This feature has to be a numerical éraad, obviously, its true value must be
unknowr?

Example 1.1.7 What is the proportion of falling apples.
Example 1.1.8 What is the unemployment rate at the European Union

Example 1.1.9 What is the proportion of faulty chips among those pro-
duced in a given day.

Statistic Computation made using the elements in shenpleand used to get an ap-
proximation to the true value of thearameter. It is important to notice that
this value will be known (since we will compute it) and will be used to draw
conclusions on the true value of tharameter, which is unknown and is what
is of interest to us.

Example 1.1.10Proportion of falling apples among the 50 sampled ap-
ples in Newton'’s garden.

Example 1.1.11 Unemployment rate among the workers interviewed in
the unemployment statistics in the European Union.

Example 1.1.12 Proportion of faulty chips among the 25 selected chips
produced in a given day.

From this four main concepts, the process of statistical inference works as follows:

1. Using sampling techniques that will be explained belowampleis selected
from thepopulation that is going to be studied.

2. From thissample the proper computations are done in order to obtatagstic.

3. From thisstatistic, using some statistical inference technigue that we will see in
other chapters, some conclusions are drawn regarding the unknown population
parameter that represents the feature of the population that is to be studied.

This process can be represented as in Figure 1.1
We can now provide a definition for Statistics (or Statistical Inference, to be more
precise) which is more formal than the one offered in the introduction.

Definition 1.1.13 Statistical Inference is a subject whose main objective is to draw
conclusions regarding aopulationthru the study of oneampleby means of proba-
bilistic techniques.

2Although non numerical features can be studied as well, the techniques used in such cases are different
from those that we will see here. Nevertheless, Chapter four will introduce some of these analysis.
3For otherwise it will not be necessary to do any statistical analysis at all !
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Population | _ Paraneter

(unkonwn)
Statistical
Sanpl i ng I nference
Sanpl e , Statistic
(known)

Figure 1.1: The process of Statistical Inference

1.2 Sampling types

We will see what &ampleis, that is, how &amplecan be selected out ofepulation.

Since we want to study this sample to produce conclusions abouytojndation, it

can not be selected arbitrarily. In this sense, there exist rigorous techniques specially
tailored for this purpose. In what follows, the more basic techniques will be introduced,
while more sophisticated analysis are out of the scope of these notes. The following
definition approaches the ideas#Empling

Definition 1.2.1 Samplingis a systematic technique to select a sample out of a popu-
lation in such a way that it is representative of the population

Here, the keyword isepresentative Indeed, if we want our sample to be used
in order to produce "reliable" conclusions regarding the original population, we would
better have a sample that closely resembles (in its structure) the original population. For
instance, if we want to conduct an electoral survey and we only interview people living
in a "rich" neighborhood, then it is clear that their answers will not be representative of
the whole population.

There are different types of sampling techniques, depending on the specific features
of the study at hand. The more important are:

1.2.1 Probabilistic Sampling.

Consist of all the sampling techniques that are based on random methods to select the
sample from the population. There are different kinds of random samplings:

1.2.1.1 Simple Random Sampling (SRS).

This is the "most random" of all the probabilistic sampling methods, and throughout
this notes we will normally assume that samples are obtained using this technique. Its
main feature is thaall elements in the population have the same probability of being
selected to be incorporated to the sample other words, the sample is constructed
completelyat random. If we think for a moment of all the possible different samples
that can be selected from a given population, simple random sampling means that each
of these samples has the same probability of been selected as "the sample", i.e., they
are equally likely
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Example 1.2.2 Consider a population consisting of only 4 elements

Population= {4, B,C, D}

If, for instance, we want to draw a sample of size 2, there are 6 possible samples

Samplel Sample2 Sample3 Sample4 Sample5 Sample 6
{A4,By {40 {4 D} {BC} (B D} {CD}

Table 1.1: Possibles Samples

Hence, in a Simple Random Sampling, each of this samples has the same proba-
bility of being selected% in this case. Analogously, we may also say that each of the
four elements in the Population has the same probability of being drawn to enter the
selected sample. Indeed, since each of the elements belongs to exactly 3 of the possible
sample and each possible sample has probat%lit;f being the selected sample, then
the probability for any of the elements in the Population of entering the selected sam-
ple is% + % + é = % This probability %) can also be understood as each element
in the Population having probabilit% of being the first element to enter the sample
and probabilityi of being the second element in the sample, which yields a to@l of
probability of being one of the two elements in the sample.

1.2.1.2 Systematic Sampling.

The Systematic Sampling consist of a variant of a SRS. It is useful when the popula-
tion to sample is not "static", but changes often. The following example shows how
this method works.

Example 1.2.3 Consider a factory that manufactures Pentium "chips". The managers
want to study how many of these chips turn out to be faulty every day. The factory has a
“chain" process so that once the "chip" has been assembled, it automatically enters in
the packaging process and then moves into warehouse. Let us suppose that the factory
produces 100 "chips" a day, and that a sample of size 5 is going to be selected. It is
clear that the managers can not wait until the end of the day, then stop all processes,
randomly select 5 chips, and start all processes over again. This would be very costly.
What is needed is a way to randomly select "chips" but without having to stop the
manufacturing chain process. Here is what can be done in cases like this.

1. Select "a priori" which "chips" will be systematically taken out from the chain
process to enter the sample. In this example, if 100 chips are produced daily and
only 5 need to go to the sample, then we must select one chip out of every 20
produced chips.

2. Randomly pick a number between 1 and 20 (here is were "randomness" play a
role). Let us suppose that the selected number is 6.

3. Following what resulted in the previous items, we must then select chips num-
bered 6, 26, 46, 66 i 86. That is, starting from chip number 6 (in order of pro-
duction), we count every 20 chips to construct the sample.
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4. We can "program" the machines in the chain production so that the selected chips
are automatically "deviated" out of the process. Other chips continue their way
to packaging without any interference.

The method just described allows us to obtain a random sample without having to dis-
rupt the production process.

1.2.1.3 Stratified Sampling.

This sampling is another variant of the SRS that makes sense when there is some infor-
mation regarding the structure of the population. Using this information, it is possible
to construct samples which are more representative that those obtained directly with a
SRS. The following example shows who this sampling technique works.

Example 1.2.4 An electoral survey is to be conducted in the city of Barcelona. It is
known that voting is very correlated with the district of residence. In other words, a
person living in Pedralbes has a higher probability of voting to he right than a person
living in the Poble Sec. In order to avoid that a SRS selects too many people from the
same district, the sample (of sizg can be splitted in several "subsamples" (one for
each district in the city) so that the union of these samples T$en, each of these
subsamples is obtained by means of a SRS in each district.

The results from this type of sampling are usually more representative, the only
problem being we need to know the relative weight of each district with respect to the
total of the city. Once this is known, the relative weight of each subsample with respect
to the whole sample must be adjusted to mimic the true weights in the city.

1.2.1.4 Step by step sampling.

This is another variant of the SRS that makes sense when, given the structure of the
population to study, the realization of a SRS would be very costly. The following ex-
ample shows how this sampling technique works.

Example 1.2.5We want to conduct a survey to know the situation of the public schools

in Catalonia. Since this is a very delicate topic, we must travel to each of the schools
that have been picked to belong to the sample and interview the Director. In this con-
text, a SRS might very well select a sample composed of schools disseminated all over
the territory, which would imply a high level of travel expenditure. To avoid this, we
can do the following:

1. Perform a SRS within all the "comarques" in Catalonia, so that 10 "comarques"
are selected to visit.

2. Within each of the 10 selected "comarques”, perform another SRS to select 20
towns to visit. Hence, we will have a total of 200 cities to visit.

3. Finally, within each of the selected cities perform one SRS more to select one
public school to visit.
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In this way, we have selected 200 public schools to visit in Catalonia with travel costs
lower than using a SRS. The problem, though, is that the sample obtained will be less
representative.

Each of this sample techniques has its own pros and cons.
In what follows, we will always assume (implicitly) that the sample at hand has
been obtained by means of a SRS.

1.2.2 Non Probabilistic Sampling

In some cases the sample is obtained without any randomness at all. For instance, if
we want to test a new drug against malaria, we can not just randomly select "subjects"
and force them to take the drug. In cases like this, a call for volunteers is made. This
techniques are usually much less representatives that a random technique. Furthermore,
since there are no random components in the sample, we can not use probabilistic tools
to study the sample and, therefore, statistical inference technigues can not be correctly
applied.

1.3 Sample Statistics Distributions

Once the sample is obtained (we will always assume that using a SRS), the process of
working with it and draw conclusions starts.

In this sense, the main task is now to obtaistatistic, one of the main elements
in statistical inference. We will use it to produce conclusions regarding the unknown
populationparameter that is of interest to us.

The definition that follows will remind us whatstatistic is (as introduced in the
previous section). Then, the conceptestimateis defined. Although these two con-
cepts are very similar and closely related, it is very important to notice that they are not
the same thing.

Definition 1.3.1 A statistic (or estimato)* is a formula that uses the values in the
sample at hand (observations) in order to produce an approximation to the true value
of an unknown population parameter.

Definition 1.3.2 An estimate(or estimatior) is the particular value of an estimator
that is obtained from a particular sample of data and normally used to indicate the
value of an unknown population parameter.

Hence, astatistic is not a number but a formula while @stimateis the number
that is obtained when the formula (the estimator) is applied to the observations of the
specific sample that we have at hand.

At this point, it becomes crucial to understand that, given that the sample is obtained
by means of a random technique, ttatistic will produce differentestimateswith
different probabilities (depending on the specific sample that is finally "selected" at

4The fact that the the same "object" can have two names must no lead to confussion. Depending on the
kind of analysis that we want to perform, the same "formula" is referred to with one name or the other. In
Chapter 2 we will use the termstimator, while in the chapters that follow we will rather use the name
statistic. It is always the same idea, but used purposes for different .



Universitat Autonoma de Barcelona 13

random). To put it more formally, statistic is aRandom Variablgethat is, a variable
that takes different values with different probabilities In this sensegsdimateis a
specific realization of this random variable. The following example aims to clarify this
idea.

Example 1.3.3We want to know the average number of cars per family in a given
population. To keep the example simple, we will assume that the population is very
small, only 4 familiesPopulation = {A, B,C, D}

Let us now assume that famiyowns one car, familie® andC have 2 cars each,
and familyD has 4.5

For the study, we want to obtain a random sample of size 2. We can then compute
the average number of cars in the sample and use it to infer some conclusion regarding
the true average in the population. Hence, the sample mean (or just mean, for short)
will play the role ofstatisticin this example, and we can use it to draw conclusions on
the true populatiorparameterthat is of interest to us: the average number of cars per
family in the whole population, that is, ti@pulation mean

Table 1.3 summarizes:

1. The 6 possible samples than can be the result of a sampling process on this
population,

2. for each of the possible samples, the probability of being selected (all of them
will have the same probability as we are assuming SRS)

3. the estimatevalue that would result from applying the sample average formula
to the corresponding sample

Sample 1| Sample 2| Sample 3| Sample 4| Sample 5| Sample 6
Elements | {4, B} {A,C} {A, D} {B,C} {B,D} {C,D}
Probability e 2 = L

Estimate 15 15 25

6

3

NI
wpliH

Table 1.3: Possible samples, probability for each samplegatichatevalue in each
case.

In this example we can see how 8tatisticat use §ample meajhcan take 4 differ-
ent values, depending on which of the six possible samples is selected by the SRS. From
here, it is easy to see that the value 1.5 corresponds to two possible samples (Sample
1 and Sample 2). Hence, since each sample has the same probability of being selected
(%), the probability that thestatistictakes the value 1.5 is:

1

P(statistic= 1.5) = P(Samplel) + P(Sample2) = 3

+

S| =
S| =

Next, we summarize what are the possible valuesthigsticcan take an what is
the probability associated to each of them:

5Obviously, we are supposed not to know that for otherwise there will be no need for any kind of statistical
analysis !!
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1.5 p=

p:
25 p=
3 p=

statistic value=

W=D | O 0o =

In this example, we have seen how #tatisticcan take different values (4 in this
case) with different probabilities. Hence, thgatisticis a random variable

Hence, given thadtatisticsare random variables, it will be necessary to know their
main properties and, specially, the probability distributions of the ones that are more
frequently used. In this sense, the matatistics (or estimators) that are studied are
the sample mean thesample variance and thesample proportion.

In all cases, we will assume that a sample of sizeas been obtained by means of
a SRS. The elements of the sample will be denoted by

{xl,l'Q,' o xn}

Also, we will assume that the sample has been selected form a population that
follows a given distribution. To know this distribution is very important as it will
influence the sampling result and, hence, the possible values afdtistic as we
have seen in the previous example. Indeed, in this example we have seen that the
population is distributed so that there is 1 element with 1 car, 2 elements with 2 cars,
and 1 element with 4 cars. Therefore, if we pick the sample elemeattrandom from
this population, we will have that:

1 ifa =1

(@ = a) = % if a =2
P=@9=11 ifa=4
0 otherwise

This is, in this case, thdistributionof the population. Figure 1.2 shows it.

In general®, we will assume that theSAMPLE has been obtained
by means of a SRS from a population distributed according to &NOR-
MAL DISTRIBUTION with somePOPULATION MEAN pand somePoP-
ULATION VARIANCE o2.

What does it mean ? Easy, it means that for any two numbarslb, we have that
for any element in our sample,

pla<z; <b)=pla—p<zi—p<b—p) =

Sp(E g TR L g g 2o
g g g g g
whereZ represents the Standard Norndatribution, usually denoted by (0, 1),
whose associated probabilities are found in tables. Graphically, Figure 1.3 shows it
We turn next to the study of the distributions of the three nséattistics. These, as
we have discussed above, will depend on the distribution of the population from which
we obtain the sample. For each case, we will also be interested in knowing what is the

expectatiorand thevarianceof these statistics.

5There are special cases that we will discuss in due time
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0.5

0.25

Figure 1.2: Population distribution in example 1.3.3

1.3.1 Sample Mean

Sample meardenoted byX, is thestatistic that is obtained from the sample using the
formula:

P gkl
. n
=1
Itis normally used to infer conclusions regarding the true value oPtpilation mean
. Its distribution depends on the characteristics of both the population and the sample
1. If the population isNormal that is,X; ~ N(u,0?) Vi, then we have that
2
= o
X ~ N(/ia 7)
n

because of theample meabeing alinear combinatiorof Normalrandom vari-
ables

2. If the population is noNormalbut the sample is big enough, then:
X-—np

a2
n

~ N(0,1) (approx)

because of the Central Limit Theorem

3. If the population is noNormaland the sample is small, then the distribution of
thesample meanX is unknown in general.

4. If the population variance? is unknown and the population Mormal then

X—p
S2

n

~tp_1
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p(a<x<b)

a b o

Figure 1.3: Normal Distribution

where S? is the Sample variancdthat we will see next) and,,_; is thet —
student distribution withn — 1 degrees of freedommvhich is very similar to the
N(0, 1) distribution and whose values can also be found in tables.

We turn next to the study of thexpectatiorandvarianceof this statistic. To do so,
we will use the mathematical properties of the expectation and variance of a random
variable.” As usual, we will assume that the sample has been obtained from a popu-
lation with population mean: andpopulation variancer®. That is, E(x;) = p and
V(x;) = o? for any element; in the sample. Then,

n n n n

> £ T I
BE(X)=EQ ) =Y BE(-) =3 —E@)=) ~=u
=1 =1 1= =1
and
v — T 1 N
X) = =)= 2y = —V(x;) = - -2
V(X) w; ) ;wn) ;ngvm gjn -
Therefore, for the case of tlsample mearX we have that
— — 0‘2
B(X)=p, V(X) ="

1.3.2 Sample Variance

Sample variancadenoted bys?, is thestatistic that is obtained from the sample using
the formula:

g2 - 1 D (zi - X)?

n—1

“For instance, the expectation of the sum of random variables is the sum of expectations, and so.
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Itis normally used to infer conclusions regarding the true value oPtilation vari-
anceo?. Its distribution depends on the characteristics of the population.

1. If the population ifNormal (X; ~ N(u,o?) Vi), then:

(n—1)82
Tz X1

wherey? _, is thechi-square distribution wittn — 1 degrees of freedoywhose
values are also in tables. (This distribution corresponds to the sum-oft
squared standafdormalg

2. If the population is noiNormal then the distribution of theample variancés
unknown in general, even for large samples.

Since we only know the distribution of treample variancevhen the population
is Normal we will use the fact that in that case its distributionyi$_, to find the
expectation and variance easily. In this sense, we know that foxamariable we
have thatF'(x2_,) =n —1andV(x2_,) = 2(n — 1). Hence, we will assume the the
sample has been obtained frofNarmal population withsample meamp andsample
variancé o2. That is,z; ~ N(uo?) for any element:; in the sample. Hence:

(n—1)52

o2 ~ X?Lq
and therefore
E((n;ii)Sz) —n-1= (n;gl)E(SQ) =n—1=E(S%) =0’
v((”;i?% —2(n—1) = %7_2;2)‘452) =20 —1) = V(87 =

1.3.3 Sample Proportion

Sample proportiotis a special case. Itis used when we are interested in knowing which
is the trueproportion of elements in a population that have a given characteristic. For
instance, it might be of interest to know what is the proportion of smokers among the
second year students in this school (in this casechaacteristicthat is of interest
is "whether a student smokes or not"), or what is the proportion of faulty Pentium IV
chips in a day (in this case, tlvharacteristicof interest is "whether a chip is faulty or
not")
Sample proportiondenoted byf, is thestatistic that is obtained from the sample using
the formula:

. T

P i

n

wherezx; = 1 if the i-th element in the sample has the characteristic that we are study-
ing andx; = 0 if it does not.
Sample proportioris normally used to infer conclusions regarding the papulation
sampler. In this case, the population is newormalsince each observatian comes
from a Bernoulli random variable. Indeed, let us assume that we are looking at a



18 Notes on Statistics Il

population of 100 individuals out of which 45 are smokers. That is, thepipelation
proportionis 45% orr = 0.45. Imagine that from this population we want to obtain a
sample of size 10. It is clear that for any elemenbf the sample we will have that:

45

i=1)= — =045
p(z ) 100
55

i=0)= — —0.55

Hence, we see that each elemenin the sample follows 8ernoulli distribution with
parameterr (wherer is the true and unknowpopulation proportion

It can be shown then thét = > x;/n is a Binomial random variable. Also, given
that when samples are largd&amomial distribution can be approximated byNermal
distribution, we can conclude that, in general:

1. If the sample is large enough, then (approx.):

m(l—m)

7~ N(m,
n

)

This approximation is better the closertdh is = and the larger is the sample

2. If the sample is not large, then the approximation is very bad.
With regards to the expectation and variance ofshmple proportionwe have:

E#) ==

m(l—m)

V(E) = T

1.4 Exercises

1. In each of the sentences below, identify the population, the parameter and the
estimate

(a) A survey conducted with 1000 youngsters between 15 and 17 years old
reveals that 432 are regular smokers

(b) According to a survey conducted by the Ajuntament de Barcelona, one out
of three people has received a traffic sanction during 2003.

(c) A media recording factory produces 50.000 CD ROMs a day, being 25 the
average number of faulty units.

2. Letxy, xo,...,x, be a random sample drawn from a population distributed ac-
cording to a Normal with expectatigrand variancer2. In the formulae below,
which ones correspond to an estimator ?

@ >z —p
(b) ox1 + oxs
(C) i, t=1,2,....n
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(d) 2} + a3 — e
(e) =+£,i=1,2,...,n
() Yo(z: — X)?
3. Based on past cases, we know that the average score in a given quiz is 100, being

125 the standard deviation. Compute the probabilities below for the case when
100 people take the same quiz.

(& P
(b) P
() P
(d) P

98.5 < X < 101.5)
96 < X < 104)

X > 102)

X < 97.5)

~—~ o~ ~~

4. A professional electrician wonders about buying a large quantity of light bulbs
to a manufacturer. The later claims that, in average, his bulbs last for 1000 hours,
with a standard deviation of 80 hours. The electrician decides that he will buy
the bulbs only if in a random sample of 64 bulbs the average live is at least 1000
hours. What is the probability that the electrician does finally buy the bulbs ?

5. ATV sets producer wants to estimate how long does it take (in average) for one
of his appliances to malfunction. He wants to do it so that the probability of the
difference between the estimate and the true value being more that 10 hours is
0.05. Assuming that the standard deviation is 100, how large should the sample
be ?

6. Using they? table, find the values fog? andy2 such thatP(x? > x3) = 0.95
andP(x? > x3) = 0.05 when the degrees of freedom are 5, 10, 20, 60 and 100.

7. The manager of a manufacturing plant wants to know the variation in the thick-
ness of a plastic element that they produce. It is known by engineering analysis
that the distribution of the thickness in that kind of manufacturing processes is
Normal with a standard deviation of 0.01 cm. A random sample consisting of
25 such pieces yields a sample standard deviation of 0.015 cm. The manager is
surprised, if the population variance(i&010)2, what is the probability that the
sample variance is larger or equal than15)? ?

8. Having a random sample of size= 16 drawn from a Normal distribution with
unknown mean and variance, fifit{S?/o? < 2.041).
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Chapter 2

Estimation

2.1 General Criteria for Estimation

We have seen in the previous chapter the main statistics used in statistical inference. In
Definition 1.3.1 we have stressed that the concept of "statistic" can have different names
depending of its use. In this sense, in this chapter we will use thedstimator as we

will be using different statistics to obtain approximations (i.e. estimations) to the true
value of the population parameter that is of interest. Later, in other chapters, we will
return to the ternstatistic since we will not use the statistics to do estimations but as a
part of a more complex analysis.

2.2 Properties of Estimators

Once the main statistics and their probabilistic features (i.e. probability distribution,
expectation and variance) are known, we focus in this chapter on the "good" properties
that we would like estimators to have in order for them to provide good approximations
to the parameter. In this sense, an estimator might, among others, satisfy the proper-
ties of beingunbiassed, efficienandconsistenthat we will see next. After that, we

will learn how this estimators can be used to produce conclusions (very preliminary at
this point) regarding the true population parameters. Point estimation and confidence
intervals will be the techniques that we will use. Finally, more advanced topics will be
introduced. Maximum likelyhoodestimation will allow us to design good estimators

for the case we do not know which one to use. Tramer-Rao boundavill help us to

know if one specific estimator is efficient.

21
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2.2.1 Bias

Definition 2.2.1 Letd be an estimator of the population parameferThebiasof 4 is
defined as the difference between the expected value of the estimator and the true value
of the population parameter

B(6) = E@) -6

Definition 2.2.2 An estimatod is said to be an unbiassed estimator of the population
parameter if it has zero bias.

B(6) =0orE(f) =6

Example 2.2.3

E(X) = p = Xis an unbiassed estimator pf

Example 2.2.4

E(S?%) = 0% = S%is an unbiassed estimator of

Example 2.2.5

E(#) = = = 7is an unbiassed estimator of

The interpretation of the unbias property is simple. For what we have seen in the
previous chapter, we know that an estimator is a random variable, that is, takes different
values with different probabilities. Hence, it is clear that it is highly unlikely that the
specific value (estimate) that we get once we apply the sample to the estimator exactly
coincides with the true parameter value. What the unbias property means is that the
above is true "in the sense of expectation”. In other words, although when we apply
the specific sample we have to the estimator the estimate will not coincide (in general)
with the true value of the parameter, if we had 100 different samples to apply to the
estimator then thaverageof the 100 different estimates produced would be very close
to the true parameter value. This kind of approximation would be more precise the
larger is the number of samples to use.

We can compare an estimator with a "shooter" whose target is the true value of
the parameter. A good "shooter" (unbiassed) always aims at the center of the target,
although there is always a small probability that the shot slightly deviates from the
center. On the contrary, a bad "shooter" (biassed) never aims at the center of the target.

2.2.2 Efficiency

The efficiency criterion for an estimator, that we will see next , has two different ver-
sions depending on whether the estimator is biassed or unbiassed.
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2.2.2.1 Unbiassed Estimators

Definition 2.2.6 Let#; andé, be two unbiassed estimatorsf Then, the more effi-
cient estimator is that of the lesser variance.

2.2.2.2 Biassed Estimators

Definition 2.2.7 Let §; and 6, be any two estimators @f. Then, the more efficient
estimator is that of the lesser Mean Quadratic Er(df Q E) where:

MQE(®) = E(f — 0)> = V() + B()*
It is easy to see that, in fact, the second "version" contains the first one as a special

case. Indeed, it an estimator has zero bias’s theWitsE' and Variance are equal.

Example 2.2.8 Let us consider the following alternative estimators of the population
meany which will be applied to a sample obtained from a population with population
meany and population variance?

. r1+ T+ T3
1=

3
LT+ T2
M2 = B)
Let us check first the bias’s of each of these estimators:
R . 1+ x9 + - 1 1
Bl(jun) = B(jun)—p = B(*——5—")—p = 5(B(en)+B(e2)+ E(as))—p = 30— = p—p =0

B(fi2) = E(jiz)—p = B(™* ;“ )= = §<E<x1)+E<x2>>—u = §2u—u = p—p =0

Hence, both estimators and unbiassed. Let us now check which one has less vari-
ance:

Vi) = V(W) = %(V(:cl) + V(x2) + V(as)) = %3(;2 - %2
V(pz) = V(xl ;IQ) = i(v(xl) +V(ze)) = 3202 = %

. oy . . 2 2
Therefore,i; is more efficient as it has less variancg- (< %)

The intuition behind the efficiency of an estimator is also clear. If we compare an
unbiassed estimator with a "good shooter" (as we have done before) that always aims
at the center of the target, then an estimator is neffieientthan another one if it
"trembles" less. In other words, the more efficient estimator is the one whose values
are more concentrated around the mean.

2.2.3 Consistency

Very often it becomes very difficult to find efficient estimators for a specific parameter.

In this case we look at the so calladymptotic propertieghat consist of the properties

that the estimators have when the sample is as large as needed. In this sense, we will
introduce theasymptotic bias's&nd theasymptotic efficiencgr consistency
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2.2.3.1 Asymptotically unbiassed estimators

Definition 2.2.9 An estimatol of the population parametetis said to be asymptoti-
cally unbiassed if its bias vanishes as the sample size goes to infinity. Forfrialbn
unbiassed estimator dfif

lim B(f) =0

Example 2.2.10Let us consider the following estimator of the population variance
(0?) )
G2 — Z?:l(:cl - X)?

n
It is easy to check that if

52 —_ Z?:l(xi — X)2

n—1
then
~2:”_152
n
and hence
~ -1 n—1 n—1
E(S2 7E" 2y _ E(S2) — 2
(8%) = B(*—=8%) = —B($*) = “—0
Therefore
- - _ 2
B(§) =B -2 =1 2 T
n n

That is,S%is a biassed estimator of* since £(5?) # 2. Nevertheless$? is an
asymptotically unbiassegistimator ofs2, for its bias vanishes as the sample grows.

Indeed,
2

lim B(S?) = lim —— =0

n—oo n—oo n

2.2.3.2 Consistent Estimators

The property of consistency not only considers the behavior of the bias as the sample
grows large, but also looks at the variance. Thatsistencyefers to the behavior
of the M QFE of the estimator as the sample size goes to infinity.

Definition 2.2.11 An estimato# of the population parametekis said to be consistent
itits Mean Quadratic Error vanishes as the size of the sample goes to infinity. Formally,
6 is a consistent estimator éfif

lim EQM () =0

n—oo

Example 2.2.12 Let us consider the estimator of that we have seen befor§2. We
already know that it it a biassed estimator fof and that its bias isB(5?) = —,

We will compute now its variance in order to study the behavior oFi(sM as the
sample size goes to infinity

n—1_5 2 a2y (m—1)22(c?)?  2(n—1)0!
n 57 = n V(5T = n2 n-—1 n2

V(8%) = V( nol
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Hence
S S S 2(n — 1)o* 2 2 — 1)o
EQM(3) = V(3% + B2 = 2=V oy @nor
n n n
and then \
lim BQM(3%) = tim D7

n— o0 n— o0 n

Therefore S2is a consistent estimator of

2.3 Point Estimation

A point estimatioris the simplest method to produce estimations for a population pa-
rameter, that is, an approximation to its true value. To obtain a point estimation or
estimatewe just need to apply owgstimatorto the specific sample at hand.

Example 2.3.1 Imagine that we want to obtain an approximation to the true value of
the population meap of a given population. For what we have seen before, we know
that the sample meal is a good estimator of, for it is unbiassedl Hence, this will

be the estimator we use. Imagine that the sample we have is

Sample= {1,2,3,4}

Then 1494344
X:%:2_5

Hence, in this case thgoint estimation(or estimate) we get fau is 2.5

This method of estimation has the good property that is quick and simple. The main
drawback, though, is that gives very little information and, moreover, with very little
precision. In the previous example, we know that the sample mean is an unbiassed
estimator of the population mean. Hence, the true valyewiil be "around" 2.5, but
we do not have any further information (above 2.5 ? below 2,5 ? close to 2.5 ? far from
2.5 7? ...). In other words, we do not know anything about the accuracy of this estimate.
This can be solved, in some sense, using a different estimation method.

2.4 Confidence Intervals

We will use now the knowledge we have about the probability distribution of the sample
statistics to supplement the point estimation with additional information. In this way,
we will produce arinterval that will contain, with some probability, the true value of
the unknown population parameter.

That is, we will be able now to "measure" the accuracy of our estimation. In this
sense, the outcome of astimation by confidence intervaisll be something similar
to (for the case of the mean):

w € [2.25, 2.75] with probability 95%

The intervals obtained using this method are catledfidence intervals and the
probability that the population parameter lies within this interval is ¢befidence
level, usually denoted by — «.

Iwe will see later that, moreover, it is the most efficient estimator of the population mean
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2.4.1 Confidence Interval for the mean

We will see next how to build the confidence interval for the case when we need to
produce an estimation for the population mean

2.4.1.1 Case INormal Population or large sample ¢2 known)

We know that in this case,

hence

Wherezl,, is the value that corresponds ta\§0, 1) whose left tail contains an
areaofl — 2. Thati is,

P(Zgzl_%):l—

e

whereZ represents & (0, 1) and this value can be found in tables.
Doing some algebra inside the inequalities we get,

2
- 721_,\/ w< — +Zl_% %):1704

multiplying by —1 we reverse the "direction” of the inequalities, and hence

2
g
p(X + 21— \/ Z1-g ?):1*0

at the end we get the interval we were Iooking for,
pe[X —z_ \/ \/ ] with probabilityl — «

2.4.1.2 Case Il:Normal Population or large sample ¢ unknown)

In the previous case we need to know the true value of the population varidrine
order to compute the interval. This is highly unusual. To overcome this problem we
can replacer? by its unbiassed estimatéf. The only difference is that now we can
not use theV (0, 1), but thet — student with n — 1 degrees of freedom.

- tl_,\/ X + tl_,\/ ] with probability1 — «

Wheretl_% is the value that corresponds te a student whose left tail contains
an area ofl — 5 and that can be found in tables as well.
(whenn is large, thert; ¢ is approximately equal toa — ¢
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2.4.1.3 Confidence Interval for the variance

In a similar manner, we can also construatanfidence intervafor the case of the
population variance. We must remember, though, that in this case the population must
follow a Normal distribution for otherwise the distribution of the sample variaSée
would be unknown. We know the that

(n—1)8?

T2 Xo1
and hence

(n—1)52

pixg < 3 <xi-g)=1-a

wherey qis the value of a;_, whose left tail contains an area g§fand that can
be found in tables. Similarlyy; ¢ is the value of a2 _, whose left tail contains an

area ofl — %.
As before, we can work the inequalities out to obtain

1> o? - 1
Xg  (—-1)85 7 xi-g

(

Ns)

_ 2
M202>7)=1—a

(
X4 X1-¢

that is,
o2 e [(n - 1)8%? (n—1)82

, | with probabilityl — «
X1-¢ X%

2.4.1.4 Confidence Interval for the proportion

The case of theroportionis special for, as said before, the approximation toNbe-
mal requires a large sample and that the true population proportisnclose to%.
Therefore, to have a good approximation to the Normal, the confidence interval for the
proportion will be different depending on the sample proportiohkieing close t@.5

or not.
Ifﬁ'z%
. a(l—7)
TE[T—21-¢g T,w—i—zl,;
If 7 # &

a 7}(17_7%)}
ﬁe[ﬁ—zlg\/@’ﬁ_’_zlg\/@]

2.5 Maximum Likelihood estimation

So far we have seen that when we need to produce estimations for population param-
eters that are "standard’y 2, 7), there aregood estimatorst hand: §, 52, #). We
have studied the main features and properties of these estimators.

The problem arises when we need to estimate a different population parameter (for
instance the median or the kurtosis) for which do not have a "candidate" for estimator.
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The Maximum Likelihood methogrovides a technique to build good estimators of a
given population parameter.

The intuition of the method is as follows: After performing a totally random sam-
pling (SRS) we obtain a specific sample, and there must be a reason for it (since we
could have obtained a different one). Well, probably we have obtained this specific
sample because the parameter value we want to estimate is such that the sample we
have obtained is the one with the highest probability of been selected. In this sense,
the maximum likelihood methofinds the value of the parameter that maximizes the
probability of obtaining the sample at hand. The process takes three steps, starting
with the sample we havdx;, zo, - - - x,,} and the probability density function of the
population that contains the paramef@y we want to estimatef (x; ¢). We will first
introduce the general method, and later we offer an example to clarify it. Imagine that
we want to estimate the paramefiesf a population with a distribution given b(z; 0)
using the sample that we have obtaifed, z2, - - - z,,}. These are the 3 steps:

Step 1 BUILD THE LIKELIHOOD FUNCTION

The Likelihood function is the "formula” that computes the probability of having ob-
tained the sample we have conditional on the population parameter we want to estimate.
In other words, is a function (denoted thy that depends on both tlsampleobtained

and theparametemwe want to estimate:

L(z1, 22, - 2p;0) = P(X1 =21, X9 = X2, -+ Xp, = 3 0)

Since the sample has been obtained from a population with a probability distribu-
tion given by f(z;6) and that the elements in the sample are independent from each
other, the joint probability?(X; = z1, X5 = @9, -+ X,, = x,;6) can be computed
as

P(Xi=21,Xo =29, Xp =p;0) = f(x150) - f(22;0) - ... f(zn;0)

hence,

n

L(xy, @9, 203 0) = f(21:0) - f(22:0) - ...« f(2n:0) = [ f(2i30)

=1
Step 2 Apply logarithms

The functional form of the likelihood function is often involved (the product of func-
tions), and working directly with it is rather difficult. Hence, using logarithms we can
simplify the function so that it becomes easier to deal with. Therefore, in this step we
simply apply ‘In” and then use the properties of logarithms in order to simplify the
form of the likelihood function

In L(xy, 29, - Tp) = 1an(xi;9) = Zlnf(xi;ﬁ)
i=1 i=1

Step 3 MAXIMIZE

The last step is to maximize the likelihood function, that is, to find the valuetioht
maximizes the functiorl (the probability of having obtained the sample we have).
Thus, we must compute the derivative of the likelihood functiomvith respect to
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the parametef and make it equal to zero to find the valuefthat maximizes it.
Usually this is complicated, that is why we have applied logarithms in Step 2. Indeed,
since the function "logarithm" is strictly increasing, the valué tfiat maximizedn L
maximizesL as well. Hence, in practice, what we do is:

Oln L(xy, - xy;0)

20 =0

and from here we find the value 6fsolves the above equation. The solution will
be themaximum likelihood estimataf ¢, usually denoted b§ v

Example 2.5.1 LET {21, 22, - =, } BEA SAMPLE (INDEPENDENT) OBTAINED FROM
A NORMAL POPULATION WITH POPULATION MEAN ;t AND POPULATION VARIANCE
o2. FIND THE MAXIMUM LIKELIHOOD ESTIMATOR OF /1.
First, let us remember what is the probability density function corresponding to a
N(0,02):
flwipo?) = ——e
V2mo

Step 1 LIKELIHOOD FUNCTION

(=51)*

Nl=

n 1% — 12
L($1,$2,~~- wn):H 675( o ) —
Pl V2o
_ (1) ()
2ro

This would be hard to work with !. That's why we need to use logarithms.

Step 2 LOGARITHMS

L(z1, - z,) = In ((1> o Z:l(wf)

2mo

It still looks hard, but after using some of the properties of logariththe simplifica-
tion will be important

1 n I xon wi—pn\2 1 " 1\ (2i—e)?
| ,22““))1( > e F i (BT
n(< 271'0) ¢ " V210 e 1

1 < ! )n 12”:(1:,;_#)21
= In — = ne
2mo 2= o

1 n 1 n Ti— [ 2
lnL(xl,---xn):ln< ) —2ZZ:< lJ )

Pas 3 MAXIMIZE

Hence

2The logarithm of the product is the sum of logarithms, etc.
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We have to compute the derivativeldfr, - - -, z,,) with respect tq: and equate it to

Zero.
OL(z1, -+ xy) O 1 \" 1 (zi—p\’
_—_—m 1 —_— — = —
o ou (n ( 27ra> 2 ; < o

0 1 TN (i —p\
=—In{— )] —=—= =
i (75) “am s ()

=1 H i=1 i=1
Hence,
OL(x1,- - x,) L - 1 < -
I fo;s; g :Oé?(;x,f;u)—o
and finally,

n

n n n Z A
Z“”FZM:‘Z@:W:»M:%%
=1 i=1 i=1

That is, the maximum likelihood estimator of the population meanthe sample
meanX
D i T

n

vy = =X

2.6 The Cramer-Rao lower bound

In section 1.2.2 we have seen that one of the "good" properties of an estimator is that
of efficiency that is, having a variance as low as possible (and accuracy as high as
possible). Nevertheless, we have seen that this is a "relative" property in the sense
that we are not able to tell whether one estimator is the "most" efficaritonly to
compare a few of them and then say which one has the lower variance.
The CRAMER-RAO LOWER BOUNDthat we will see next, allows us to know which
is theminimum variancehat any unbiassed estimator of a given parameter can have.
Hence, if we find an unbiassed estimator and find that its variance reaches this bound,
then we can be sure that it is, at least, as efficient as any other unbiassed estimator.
We define next what this lower bound is,

Definition 2.6.1 Given a population parametérof a population with probability den-
sity function given by (x; #), the CRAMER-RAO LOWER BOUND establishes which is
the lowest variance of any unbiassed estimatof this parameter. It is computed as

1

- nE |:(61ngéx;0)>2:|

3That would imply being able to compare any estimator with "all" other possible estimators !
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Hence, for any unbiassed estimatoof the population parametér we have that

V(8) < C — R. Therefore, if we find an unbiassed estimator whose variance equals
C — R, then we can say that it is the "most" efficient, no other unbiassed estimator can
have a lower variance.

To obtain this bound” — R,, we must perform every computation in the formula
that defines the Cramer-Rao lower bound:

1. Doln f(z;6) and apply the properties of logarithms to simplify as much as pos-
sible

2. Compute the derivativgw

2
3. Square the previous re&(lfW)

2
4. Compute the expectation of the previous re@l&(W) } (usually, this
is the most difficult step)

2
5. Multiply by n, nE {(W) ]

6. Finally, invert the result above

1
2
dln f(x;0)
nE [( ) ]

Example 2.6.2 FIND THE CRAMER-RAO LOWER BOUND FOR ANY UNBIASSED ES
TIMATOR OF THE POPULATION MEAN 1 OF A NORMAL POPULATION WITH POPU
LATION VARIANCE o2

Remember the density function oNg ., o2):

L -desey

o?) =

From here, we follow the 6 steps described above to obtait'theR lower bound
in this case.

1. Logarithms

In F(et10®) = In (( 21W) .e;@:“f) 1n<\/2170) ! <xau)2

2. Derivative

8lnf(x;,u02)_£ In 1 1l fz—p 2 T
8u _8u 210 2 g o o2

3. Square it
Oln f(x;0) 27 z—p\’
00 o\ o2
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4. Expectation (the trickiest step !)

oln f(z;0)\> B z—p\’ 1 2
E ( 00 =E o? N J4E(I n” =
1 1 1 1
5. Multiply by n
ln f(x;0)\> n
nk ( 00 ) o2
6. Finally, invert
1 o?

WE |:(61n£ém;9)>2:| T n

Therefore, the Cramer-Rao lower bourtd— R, in this case is

c-r=2

n

Hence, any unbiassed estimator of the population meavill, necessarily, have
. 2 — 2
a variance greater or equal t§-. Remenber now that (X) = 2-, and hence the
SAMPLE MEAN X IS THE MOST EFFICIENT UNBIASSED ESTIMATOR OF.

2.7 Exercicis

1. TheMean Square Erroof an estimato# is defined as\/ SE(0) = E(0 — 0)2.
Prove thattQM () = V (0) + B(6)?

2. Assuming thatX; ~ N(u,o?), which of the statistics below are unbiased esti-
mators ofy ?

N CED. CED, R, ¢
(@) fi = SEetat X

(b) fip = 22 4 Xap

X1 —Xo+X3—Xy
4

(©) fi3

Among all the unbiased estimators, which one is the most efficient ? Which one
is the most efficient among all three estimators ?

3. Imagine that we have a random sample of sizizawn from a populatiotV (x1, o-2)
and we want an estimate for. Among all the estimators fqu that are of the
form:

= Ary + 0z

find the values foi and#f so that the estimator in unbiased and has the minimum
variance.
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4. A random sample of hourly wages for nine mechanics yields the following data:
10.5,11,9.5,12,10,11.5,13,9,8.5

Assuming that the sample is obtained from a Normal population, find the con-
fidence intervals for the average hourly wage (both, wher 0.05 anda =
0.0.1) when:

(@) Itis known thato? = 1.5
(b) o2 is unknown

5. The thickness of the metal pieces that a machine produces is expected to present
some fluctuation. A random sample of 12 pieces i selected and the thickness of
each of them is recorded, which yields

12.6,11.9,12.3,12.8,11.8,11.7,12.4, 12.1,12.3,12.0, 12.5, 12.9

Assuming that thickness is a Normal random variable, obtain a 95% confidence
interval for the variance of thickness.

6. A manufacturer claims that the percentage of faulty items in any lot of the articles
he produces is 1%. A random sample of 200 articles is selected and 8 are found
to be faulty. Find 95% and 99% confidence intervals for the true proportion of
faulty items. Based on these results, what can you say about the manufacturer’s
claim ?

7. A physician is interested in the proportion of men that smoke and develop lung
cancer. The physician wants to select a sample of smokers and observe whether
they develop cancer or not. What has to be the sample size so that with a 95 %
probability the difference between the sample proportion and the true proportion
is less than 0.02 ?

8. Letxy,xo,...,x, arandom sample drawn from a Poisson distribution with true
parametepn. Compute the maximum likelihood estimatorof

9. Letxy, o, ..., x, arandom sample drawn from a Exponential distribution with
true parameteyv. Compute the maximum likelihood estimatorof

10. By means of the Cramer-Rao lower bound, find the variance of the most efficient
unbiased estimator agfwhen the sample is drawn from a population distributed
according to an exponential:

1 -
flz, ) = XeT, x>0

Prove that the sample mean is an efficient estimator. of
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Chapter 3

Hypothesis Testing

3.1 Hypothesis Testing

So far we have learned how to approximate the value of a population parameter by
means of some estimation technique. In many cases, though, what is of interest is
not knowing what is the value of the parameter but rather some question regarding the
parameter. For instance: Is the average wage in Cerdanyola this year greater than in the
previous year ? Does this Pentium Chip works at 3Ghz ? Is the proportion of smokers
in the UAB smaller than in the UPF ?

In all these cases, we are interestedkistingwhether a belief, idea, or conjecture
regarding the population parameter seems true or not. To do wsttour hypothesys
we must base our analysis upon the data we hheesamplebecause this is the only
information we have regarding the population. We can now be more precise in the
definition of "hypothesis testing"

Definition 3.1.1 Hypothesis testing is a statistical technique by means of which we can
verify whether the data in the sample backs up, or not, a specific hypothesis stablished
on some population parameter.

In general, the "structure” of the hypothesis testing technique can be decomposed
into 6 steps. To understand how the procedure works, let's imagine that we want to test
whether the population parameteequalsdy or not. In this case, the 6 steps we have
mentioned above are:

1. To specify theNull Hypothesis This is the hypothesis that we believe is true and
that we want to test if the data supports it.

Ho 0= 00
2. To specify anAlternative Hypothesjswhich represents what is true when the
Null Hypothesis is false. This Alternative Hypothesis may have four different

specifications, depending on the information we have on the poulation parameter
we are studying.

Hy : 6+ 6,
6 H;: 0 <0

35
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(5 H129>90
(5 H119:91

The first kind of Alternative Hypothesis is the more general. It corresponds to
the case when there is no information at all regarding the population parameter.
In this sense, if the parameter is not what we beligygtlie Null Hypothesis),

then we simply specify than it is different from what we think.

The second kind corresponds to the case when there is some information regard-
ing the parameter we are studying. In this specific case such information points
out that if the parameter is not what we think, then it must be smaller (for some
reason it is known that it can not be larger).

The third kind of Alternative Hypothesis is the opposite to the previous case. We
use this specification when the information says that if the parameter is not what
we think then it must have a larger value.

Finally, the last specification, which is rather rare, corresponds to the case in
which there is a lot of information regarding the parameter. In this case, we
know that either the parameter takes the value we beligyect it takes an-

other specifi®; value (Finalment, el quart tipus de hipotesi alternativa es dona
rarament i correspon al cas en que es té molta informacié sobre el parametre que
s'estudia de forma que se sap que si no pren el valor alashores I'inica possibilitat
és que sigui igual a un altre valéy.

Later we will see that the first kind of Alternative Hypothesis producésa
tailed test whereas the second a the third correspondedtdail testand aright-
tail testrespectively. Finally, the last kind of hypothesis producésftatail test
or aright-tail testdepending on whethé; < 6, or 8, > 6, respectively.

. To specify atest statistic(TE) and to compute thebserved value of the test

statisti (OVTE) using the data in the sample.

In practice, what distinguishes one hypothesis test from anotherisghstatis-
tic used. Hence, we will see thegst statisticsn detail when we introduce each
specific test.

. To determine what is thprobability distributionof the test statistic in the pre-

vious step under the assumptittre the Null Hypothesis is true. This, as in the
previous step, depends on what kind of test we are conducting. Hence, we will
see the details later.

. To define aRejection Area(RA) of size « (level of significance). This is the

place where the test actually takes place. For this, we need to use the tables
that correspond to the distribution determined in step 4 to find a region with
the property that if thewull hypothesiss true then the probability that thest
statisticlies within thisRAIs .

p(TE € RA) = «

In general, this Rejection area consists of only one tail (left- or right-tailed tests)
of sizea or can be splitted into two symetric tails of siZeeach.

. Finally, the last step consists of, simply, verify whether @lgserved Value of

the Test StatistiqOVTE lies, or not, iside th&ejection AreaTherefore,
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(a) Ifthe OVTSis inside the(RA=- THE NULL HYPOTHESIS IS REJECTED

(b) If the OVTSis NOT inside theRA=- THE NULL HYPOTHESIS IS NOT
REJECTED

Notice that the final conclusion is always of the form "REJECT" or "DON'T
REJECT" theNull Hypothesis The term "ACCEPT" is never used. The reason

is as follows: If the output of the test is that thelll Hypothesiss REJECTED,

then we interpret this as not having "enough empirical evidence" to support the
hypothesis. In the same sense, if the test results in the Null Hypothesis being re-
jected, then the interpretation is that we do not have "enough empirical evidence"
against the hypohtesis.

3.2 Hypothesis Testing Types

We will see next what the three basic types of hypothesis testing are:

1. Hypothesis test on theopulation mearn
2. Hypothesis test on thgopulation variancer>
3. Hypothesis test on theopulation proportionr

We will learn that all three cases share a common structure, the "six steps” we have
learned above. The difference is, mainly, tlest statisticthat will be used in each
case. Also, in each case the test can be of one or two tails, depending on the form of
the correspondinglternative hypothesis

3.2.1 Hypothesis Test for the Population Mean()

1. NULL HYPOTHESIS
Is the value of the population mean we want to {est = value to test

Ho: p=po

2. ALTERNATIVE HYPOTHESIS
Corresponds to what would be true if the null hypothesis is false. Depends on
what information we have regarding the population mean. There are 4 cases
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INFORMATION REGARDING 1 TEST TYPE

Hy: pn+#puo General case. No information re-Two Tails test
gardingu. Hence, if it is not equal
to o we can only say that it is dif-

ferent
Hy:p>pp We have some information right-tail test
regarding. This information
states that if it is not equal oy the
it is larger

H;: p<py We have some information regardeft-tail test
ing . This information states that if
it is not equal tquo then itis smaller
Hy: p=p Wehave alotofinformation regard-right-tail test if u; > g or
ing 1. We know that if itis notequal left-tail test if 1 < g
to uo then it must be equal to the
value iy

3. TEST STATISTIC

The Test StatisticTE) to use in this case depends on whether we know the pop-
ulation variancer? or not.

02 KNOWN 02 UNKNOWN

TE=X—te TE:X;\/&
N 52
In any of these cases, tlobserved value of the test statistic (OVT&pbtained
by pluging the values into the corresponding formula, where

X Sample Mean

1o Null Hypothesis value

o Population Variance (if known)

S?  Sample Variance (i is unknown)
n  Sample size

. DISTRIBUTION OF THETEST STATISTIC when the Null Hypothesis is true

As we have learned in previous chapters, we have that if the null hypothesis is
true, that is, ifu = uo then

o2 KNOWN o2 UNKNOWN

ke o NOL) et

Ve Ve

. REJECTIONAREA of sizea

The way to determine the Rejection Area will different depending on whether
the test is of one or two tails.

(a) Two TAILS TEST. Corresponds to the case when the Alternative hypothe-
sisislikeHy : u # g
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al2 al2

~Ziap 0 Zyap

“Ti-ar2 tiar

Figure 3.1: Rejection Area in a two tails test

The limit values of the rejection ared; s andtl_% can be found using
the tables of theV(0,1) or t — student with n — 1 degrees of freedom
respectively depending on whether we knewor not. (See Figure 3.1)

(b) RIGHT-TAIL TEST. Corresponds to the case when we have an alternative
hypothesis of the typél; : u > uo (or the typeH; : pu = pyip1 > o)

ta
Figure 3.2: Rejection Area in one right-tail test

The limit values of the rejection are&,; ., i t1_, can be found in the
tables of theV (0, 1) or ¢ — student with n — 1 degrees of freedom respec-
tively depending on whether we knaw# or not. (See Figure 3.2)

(c) LEFT-TAIL TEST. Corresponds to the case when we have an alternative
hypothesis of the typél; : p < pg (Or Hy : = pyip1 < o)

The limit values of the rejection are&,; ., i t1_, can be found in the
tables of theV (0, 1) or ¢ — student with n — 1 degrees of freedom respec-
tively, depending on whether we knaw or not. (See Figure 3.3)
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Figure 3.3: Rejection Area in one left-tail test

6. TESTCONCLUSION
Finally, we have to check if th©BSEVED VALUE OF THE TEST STATISTIC
(OVTS)falls, or not, inside thé&ReJECTIONAREA. If it does, we then say that
the test rejects thdluLL HypPOTHESIS If it does not belong to the rejection
area, then we say that the t€bES NOT REJECT THENULL HYPOTHESIS

3.2.2 Hypothesis Test for the Population Varianced«?)

1. NULL HYPOTHESIS
Is the value of the population variance that we want to tegt.= value to test

L2 2
Hy: 0° =0

2. ALTERNATIVE HYPOTHESIS
Corresponds to what would be true if the null hypothesis is false. Depends on
what information we have regarding the population mean. There are 4 cases

INFORMATION REGARDING 02 TESTTYPE

H,: 0? # 02 General case. There is no informaTwo Tails Test
tion abouts?. Therefore, if it does
not equalo? the only think we can
say is that it will be different
Hy: 0%> 0} Wehavesomeinformationabotit Right-Tail Test
indicating that if it is not equal te?
then it must be greater
Hi: 0% <o} Wehavesomeinformationabotit Left-Tail Test
indicating that if it is not equal te?
then it must be smaller
Hy: 0? =02 Wehave some information abogit Right-Tail Test ifo > o2
indicating that if it is not equal to and Left-Tail Test ifo <
o2 then it must be equal to anothero3
valueo?
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3. TEST STATISTIC
The Test Statistic (TE) to use in this case is:

o 2
g - (=08

90
The Observed Value of the Test Statistic (OVTS) is obtained by subtituting the
corresponding values in the formula, where

o3 Null Hypothesis Value
52 Sample Variance
n  Sample Size

4. DISTRIBUTION OF THETEST STATISTIC when the Null Hypothesis is true
From what we know from the previous chapter, if the Null Hypothesis is true,
thatis, ifo® = o3 then
(n—1)52

2
2 ~ Xn—l
o)

5. REJECTIONAREA of size«
The way to determine the Rejection Area depends on the test being of one or two
tails, that is, depending on what is the Alternative Hypothesis.

(a) Two-TAIL TEST. Corresponds to the case when the Alternative Hypothe-
sis is of the type; : o2 # o}

a/2

al2

Xarz Xi-ar2

Figure 3.4: Rejection Area in a Two-Tails Test

Le limit values in the Rejection Areaﬁfg andx%%, can be found using
the tables of a? with n — 1 degrees of freedom. (See Figure 3.4)
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a

Xia

Figure 3.5: Rejection Area in a Right-Tail Test

(b) RIGHT-TAIL TEST. Corresponds to the case when the Alternative Hypoth-
esis is of the typd1; : 02 > o2 (also of the typeH; : 0% = 0?0} > 0?)

The limit value in the Rejection Area;? __,, can be found in the tables of
ax? with n — 1 degrees of freedom. (See Figure 3.5)

(c) LEFT-TAIL TEST. Corresponds to the case when the Alternative Hypothe-
sis is of the typeH; : 02 < o3 (also of the type; : 0% = o}io? < 03)

The limit value in the Rejection Area;?, can be found in the tables of a
x? with n — 1 degrees of freedom. (See Figure 3.6)

6. TESTCONCLUSION
Finally, we have to check if th©BSEVED VALUE OF THE TEST STATISTIC
(OVTS)falls, or not, inside théREJECTIONAREA. If it does, we then say that
the test rejects th&luLL HYPOTHESIS If it does not belong to the rejection
area, then we say that the t€8bES NOT REJECT THENULL HYPOTHESIS

3.2.3 Hypothesis Test for the Population Proportion £)

1. NULL HYPOTHESIS
Is the value of the Population Proportion that we want to {est.—= valor a contrastar

Hy: m=m

2. ALTERNATIVE HYPOTHESIS
Corresponds to what would be true if the null hypothesis is false. Depends on
what information we have regarding the population proportion. There are 4 cases
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XC(

Figure 3.6: Rejection Area in a Left-Tail Test

INFORMATION REGARDING T TESTTYPE

H,: m#m General case. There is no informa-Two Tails Test
tion regardingr. Hence, if it is not
equal tom, the only thing we can
say is that it is different
H,: m™>m We have some information regard-Right-Tail Test
ing 7 indicating that if itis not equal
to mg, then it must be greater
H,: m<m We have some information regard-Left-Tail Test
ing 7 indicating that if itis not equal
to 7o, then it must be smaller
H,: m=m We have some information regard-This is a Right-Tail Test if
ing 7 indicating that if itis not equal m; > 7y and a Left-Tail Test
to g, then it must be equal to an-if 7; < mg
other valuer;

3. TEST STATISTIC
The Test Statistic (TE) to use in this case is.

The Ovserved Value of the Test Statistic (OVTS) is obtained when the elements
in the formula are replaced by their corresponding values from the sample, where

7 Sample Proportion
mo  Null Hypothesis Value
n  Sample Size
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4. DISTRIBUTION OF THE TEST STATISTIC when the Null Hypothesis is true
As we have seen in previous chapters, if it is true that m thernt

7AT—7T0

/ mo(1—mo)

5. REJECTIONAREA of sizex
As in the other tests, the determination of the Rejection Area depends on the test

type

~ N(0,1)

(a) Two TAILs TEST. Corresponds to the case when the Alternative Hypoth-
esis is of the typé?, : 7 # 7

al2 al2

~Zyap 0 Zy a2

Figure 3.7: Rejection Area in a Two Tails Test

The limit values of the Rejection Ared; o and—Zl,%, can be found
in the table of theV (0, 1). (See Figure 3.7)

(b) RIGHT-TAIL TEST. Corresponds to the case when the Alternative Hypoth-
esisisofthetypdd; : @ > mp (Or Hy : w = myim > mp)

The limit value of the Rejection Are&;_,, can be found in the tables of
the N(0,1). (See Figure 3.8)

(c) LEFT-TAIL TEST. Corresponds to the case when the Alternative Hypothe-
sisis of the typed, : m < mg (Or Hy : m = myim < 7o)

The limit value in the Rejection Are&;_,,, can be found in the tables of
the N(0,1). (See Figure 3.9)

6. TESTCONCLUSION
Finally, we have to check if th©BSEVED VALUE OF THE TEST STATISTIC
(OVTS)falls, or not, inside thé&kREJECTIONAREA. If it does, we then say that
the test rejects th&luLL HYPOTHESIS If it does not belong to the rejection
area, then we say that the t€sbES NOT REJECT THENULL HYPOTHESIS

IRemember that this is an approximation, which is better the larger is the sarapkkthe closer to, 5
is 7
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0 Ziq

Figure 3.8: Rejection Area in a Right-Tail Test

~Zia 0

Figure 3.9: Rejection Area in a Left-Tail Test

3.3 Two Samples Tests

In many cases what is of interest is not some question regarding some population pa-
rameter (as in the previous section), but rather to compare one parameter in one pop-
ulation with the corresponding parameter in other population. For instance, we might
want totest whether the average income in Cerdanyola this year is equal or greater that
in the previous year, or if the average income in Cerdanyola is equal to that in Sant
Cugat. Thatis, now we are interestedCioMPARING POPULATION PARAMETERS BE

TWEEN TWO POPULATIONS eihter two different populations (as when comparing the
average income in Cerdanyola and Sant Cugat) or the same population at two different
dates or after some action (as when comparing the average income in Cerdanyola this
year whith that of the previous year).

In any of these cases, what we do iF@&0 SAMPLES TEST. Now we have two
populations (Population 1 and Population 2) each one with its corresponding popula-
tion parametersy(;, o7 andm; for the first population ang,, o3 i 7, for the second
population). We then draw two independent samples from each of these populations
(Sample 1 and Sample 2) which might have different sizgsafhdn,). From these
samples we compute the corresponding Sample Statistics that will be used to perform
the tests K, S? and#; for the first sample and,, S2 i 7 for the second sample)
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Summarized, the information we can gather is:

Population 1 | Population 2
w1, o andmy | g, o5 andm,
Sample 1 Sample 2
T11 T12
T21 T22
Tyl Tno2
X1, S7 and7; | X, S7 and#,

From here, we can do tests regarding:

1. The difference between theean<of the two populationsi;; — po

2. The difference between thariancesof the two populations? — o2

3. The difference between thoportionsof the two populations; — 72

3.3.1 Test for the Difference of Means

We want to test if the difference between the means of two populations equals some
specific valuel, or not (§, = 0 if we want to test if the means are equal to each other).
For instance, we could test if the average income in Cerdanyola and Sant Cugat are
equal to each othep — ue = 0). Another example would be to test whether the
average sleeping time after taking a new pill equals (or, alternativelly, is larger) than
without taking any pill.

For this thest the six corresponding steps are:

1. NULL HYPOTHESIS
Is the value for the difference that we want to test= difference value to tept

Ho: pa —pa = do

2. ALTERNATIVE HYPOTHESIS
Corresponds to what would be true if the null hypothesis is false. Depends on
what information we have regarding the population proportion. There are 4 cases
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INFORMATION REGARDING TESTTYPE
1 AND Lo

Hy: pup—pus #6y General case. We have no infor-Two Tails Test
mation for the population means.
Hence, if the difference is not equal
to dy the only thing we can say is
that it is different
Hy: pup—pue >3 We have some information aboutRight-Tail Test
the means indicating that if the dif-
ference is not equal té, then it
must be greater
Hy: pp—pe < We have some information aboutlLeft-Tail Test
the means indicating that if the dif-
ference is not equal té, then it
must be smaller
Hy: pp—pe =6 We have some information aboutRight-Tail Test if5; > dg
the means indicating that if the dif- and Left-Tail Test if5; < dg
ference is not equal té, then it
must be equal to a known alterna-
tive valued;

3. TEST STATISTIC
The Test Statistic (TS) to use in this case depends on whether the population
variancesr? i o2 are both known or not.

o?ando2 KNOWN o2 0ros UNKNOWN

TS:(Xl—XQ)—(SO TS:(Xl—XQ)—[SU
In any of these cases, the Ovserved Value of the Test Statistic (OVTS) is ob-
tained by replacing the correspondig values in the formula, where

X,iX, Sample Means

do Null Hypothesis Value
o?i03  Population variances (if known)

52 Common Sample Variance (@f; or o3 are not known)
niing  Sample sizes

In the formulae above the common value for the Sample Variasttgthat we
use if we do NOT know either? dro3) (or any of them) is computed as

ny — 1)512 + (TLQ — ].)S%
n1+no—2

S2:(

whereS? i S3 are the Sample Variances of the first and the second sample re-
spectively. The rason for using thiemmon estimation of the sample variaice

that for the test to make sense the two populations must be somehow "homoge-
neous". Tecnichally, this is equivalent to requiring that the two populations have
a similar population variance.



48

Notes on Statistics Il

4. DISTRIBUTION OF THE TEST STATISTIC WHEN THE NULL HYPOTHESIS IS

TRUE
If it is true thatp; — pus = g then

o2 ando? KNOWN o2 0ro3 UNKNOWN

(X1—X2)—6, (X1-X2)—6,
= N(0,1) =t gy 2
21,7 52 4 52
1 T g ny T ng

. REJECTIONAREA of sizea

The Rejection Area depends on whether we have a Two Tails Test, a Right-Tail
Test, or a Left-Tail Test. This, in turn, depends on what is the specification of the
Alternative Hypothesis.

(a) Two TAILs TEST. Corresponds to the case when the Alternative Hypoth-
esis is of the typéd; : 1 — p2 # dg

al2 al2

~Zi-ap 0 Ziarz

“Uiear2 tian

Figure 3.10: Rejection Area in a Two Tails Test

The limit values of the Rejection Area; _ « andt; o can be found in the
tables of aV (0, 1) or at — student with n; + ny — 2 degrees of freedom
respectively, depending on whether we know the two population variances
or not as explained above (See Figure 3.10)

(b) RIGHT-TAIL TEST. Corresponds to the case when the Alternative Hypoth-
esisis of the typddy : p1 — o > dg (Or Hy : 1 — po = 61 anddy > dp)

The limit value of the Rejection Are&/; _, or ¢t;_, can be found in the
tables of theV (0, 1) or thet — student with ny +no —2 degrees of freedom
respectively depending on whether we know the two population variances
or not as explained before. (See Figure 3.11)

(c) LEFT-TAIL TEST. Corresponds to the case when the Alternative Hypothe-
sisis of the typed; : p1 — p2 < dp (Or Hy : g — po = 91 andd; < dop)

The limit value of the Rejection Are&;, _,, or ¢t;_, can be found in the
tables of theV (0, 1) ort — student with n; — ny — 2 degrees of freedom



Universitat Autonoma de Barcelona 49

tia

Figure 3.11: Rejection Area in a Right-Tail Test

Figure 3.12: Rejection Area in a Left-Tail Test

respectively depending on whether we know the two population variances
or not. (See Figure 3.12)

6. TEST CONCLUSION
Finally, we have to check if th©BSEVED VALUE OF THE TEST STATISTIC
(OVTS)falls, or not, inside th&REJECTIONAREA. If it does, we then say that
the test rejects th&luLL HYPOTHESIS If it does not belong to the rejection
area, then we say that the t€8bES NOT REJECT THENULL HYPOTHESIS

3.3.2 Test for the Difference of Variances

In this case we only test if the two populations have the samn@nce or not. This is
special test for three reasons:

1. We can only test if the two variances are equal or not, that is, the Null Hypothesis

is alwaysthe same

L2 2
Hy:07] =05
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2. The test must be conducted following a strict ordbat must be stablished in a
"extra" step before starting the usual 6 steps

3. Thistestisimportant because it allows to check if two different populations seem
to have the same variance. This, as we have seen before, is important for other
tests. Indeed, the test for the difference of means only makes sense if the two
populations are "homogeneous", that is, have a similar variance.

Hence, this "special” test will begin with an extra step (Step 0) where we stablish
the order of the elements of the test.

0. EXTRA STEP

We change the "denomination” of our two samples so M&VAYS the sample with
the highest Sample Variance is the Sample 1, being the Sample 2 the one with the
lowest variance. This way, once we have followed this rule, we will always have:

5% > 52

1. NULL HYOPTHESIS
Is always the same and, as said before, it consists of testing whether the two
variences are the same or not. Beacuse of the special structure of this test, the
correct way to specify this hypothesis is:

2. ALTERNATIVE HYPOTHESIS
As usual, it represents what is true when the Null Hypothesis is false. | this
specific case, there are only two possible specifications for this hypothesis (once
more, this is so because of the special structure of this test)

INFORMATION REGARDING TESTTYPE
o2 AND 03

H, : —j #1 General Case. We have no informaTwo Tails Test
tion onof nor abouts3. Hence, if

they are not equal, the only thing we

can say is that they are different

H; : Z—z >1 We have some information abatif  Right-Tail Test
: ando? indicating that if they are not
equal then one of them is greater.
Because of the “denomination” in
Step 0, the greater will always bé

3. TEST STATISTIC

In this case, the Test Statistic (TC) to use is:

St

textrmTE = S—S
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The observed value of the Test Statistic (OVTS) is easily obtained replacing the
corresponding sample variances in the formula, where

S?  Sample Variance of Sample 1

S2  Sample Variance of Sample 2
Notice that, because of Step 0 whe have Sfat- 53, and hence we will always
find that VOEC> 1

4. DISTRIBUTION OF THE TEST STATISTIC when the Null Hypothesis is true
In this case, the Test Statistic follows a distribution that is known &3 @&
Snedecor. This distribution, the same astthestudent or thex? is also char-
acterized by its "degrees of freedom". Unlike those cases, thought' the
snedecor has a "pair" of degrees of freedom, those corresponding to the nu-
merator and those corresponding to the denominator. Hence, the notation:
S2
572 ~ F(nl—l,nz—l)

2
indicates that the Test Statistﬁ% follows a ' — snedecor distribution with

ni — 1 degrees of freedom in the numerator (that is, the size of the sample that
corresponds t&? in the numerator minus 1) and, — 1 degrees of freedom

in the denominator (that is, the size of the sample that corresportgfsitothe
denominator minus 1).

Remember that it is very important to keep the order stablished in Step 0, that is,
sample 1 corresponds to to the sample that has the highest sample variance. In
this sense, the "degrees of freedom in the numerator" is the size of such sample
minus 1: n; — 1. This is important whem looking at the tables of the—
snedecor in order to determine the Rejection Area.

5. REJECTIONAREA of sizea
The Rejection Area depends on whether the test has one or two tails, as given by
the Alternative Hypothesis. In this special test, the tail that "matters” will always
be the Right-Tail, even if the test is a "Two Tails Test".

(a) Two TaiLs TEsST. Corresponds to thec case when we have an Alternative
2
Hypothesis of the typél; : 7 # 1
2

For the limit values of the Rejection Are&; o and F'y, we only need

to find Fiq in the tables of thé” with n; — 1 degrees of freedom in the
numerator anch, — 1 degrees of freedom in the denominator. The other
value,F's, is not needed in any case since the OVTS is always Hence,

if it falls into the Rejection Area, it will be on the Right-TalBECAUSE OF
WHAT IS DONE IN STEP O (THE “DENOMINATION” OF THE SAMPLES,
THE OBSERVED VALUE OF THE TEST STATISTIC WILL NEVER BE IN
THE LEFT-TAIL. (See Figure 3.13)

(b) RIGHT-TAIL TEST. Corresponds to the case when the Alternative Hypoth-
2
esis is of the typé; : 7 > 1
2

The limit value of the Rejection Ared;; _,, can be foundin the tables of a
F with n; — 1 degrees of freedom in the numerator and— 1 degrees of
freedom in the denominator. (See Figure 3.14)
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Figure 3.13: Rejection Area in a Two Tails Test

6. TEST CONCLUSION
Finally, we have to check if th©BSEVED VALUE OF THE TEST STATISTIC
(OVTS)falls, or not, inside th&REJECTIONAREA. If it does, we then say that
the test rejects thdluLL HYPOTHESIS If it does not belong to the rejection
area, then we say that the t&0ES NOT REJECT THENULL HYPOTHESIS

3.3.3 Test for the Difference of Proportions

We now test what is the difference between the proportion of elements that have a
given characterisic in two populations. For instance, we can test if the proporion of
voters of the PP in Cerdanyola equals the proportion of voters of the PP in Sant Cugat
(m1 — mo = 0). Another example would be to test if the proportion of people that
recovers from a given illness is bigger if they take a specific medicine than if they don’t
(in order to test the goodness of such medicine)

Te six steps for this test are as follows:

1. NuLL HYPOTHESIS
Itis the value for the difference between the population proportions that we want
to test.(dy = difference to test

H(): 7T1—7T2=60

2. ALTERNATIVE HYPOTHESIS
Represents what is true when the Null Hypothesis is false. As usual, its specifi-
cation depends on the information we have about the populations
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a

Fl—a

Figure 3.14: Rejection Area in a Right-Tail Test

INFORMATION REGARDING TESTTYPE
T 1T

Hy: m —m # 3§ General Case. We have no informaTwo Tails Test
tion about the population propor-
tions. Hence, we can only say that
if the difference is not then it is
different
H,: m —m >0y We have some information indicat- Right-Tail Test
ing that if the difference is nodg
then it must be bigger
Hi: m —m <8y We have some information indicat-Left-Tail Test
ing that if the difference is nod,
then it must be smaller
Hy:m —m =46 We have very specific informa- Right-Tail Test if5; > &g
tion about the proportions indicat-and Left-Tail Test if§; < dq
ing that if the difference is not equal
to §o then it must be equal to a spe-
cific alternative valué;

3. TEST STATISTIC
The Test Statistic (TE) to use in this case is always the same.

(f1 — #2) — do

*(=7) | 7(0-7)
ny no

TS =

The Observed Value of the Test Statitic (OVTS) is obtained by replacing in the
formula the corresponding values, where
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7 andry  Sample Proportions
0o Null Hypothesis Value

r Common Sample Proportion
nying Sample Sizes

The value of the Common Sample Proportiénis obtained from

N1 + Nty
77,1+TLQ

7/'\(:

which is equivalent to computing the proportion of elements in the two samples
(jointly) that have the characteristic that is of interest.

4. DISTRIBUTION OF THETEST STATISTIC when the Null Hypothesis is true
As seen in other cases, when is true that- m, = dg then

(71 — 72) — do

~ N(0,1)

5. REJECTIONAREA of sizea
The Rejection Area will be different depending on the type of test.

(a) Two TAILs TEST. Corresponds to the case when we have an Alternative
Hypothesis of the typél; : m; — mo # dg

al2 al2

~Zian 0 Ziar

Figure 3.15: Rejection Area in a Two Tails Test

The limit values of the Rejection Ared; o and—Zl,%, can be found
in the table of av(0, 1). (See Figure 3.15)

(b) RIGHT-TAIL TEST. Corresponds to the case when we have an Alternative
Hypothesis of the typél; : w1 —my > dg (Or Hy : m — w9 = 6 andd; >
do)

The limit value of the Rejection Ared&; ., can be found in the table of a
N(0,1). (See Figure 3.16)
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0 Ziq

Figure 3.16: Rejection Area in a Right-Tail Test

(c) LEFT-TAIL TEST. Corresponds to the case when the Alternative Hypothe-
sisis of the type; : my — my < dg (Or Hy : 1 — o = &7 @andd; < dg)

~Zia 0
Figure 3.17: Rejection Area in a Left-Tail Test

The limit value of the Rejection Ared&; _,, can be found in the table of a
N(0,1). (See Figure 3.17)

6. TESTCONCLUSION
Finally, we have to check if th©BSEVED VALUE OF THE TEST STATISTIC
(OVTS)falls, or not, inside th&REJECTIONAREA. If it does, we then say that
the test rejects th&luLL HYPOTHESIS If it does not belong to the rejection
area, then we say that the t€sbES NOT REJECT THENULL HYPOTHESIS

3.4 Analysis of Variance

The ANalysis Of VAriance (ANOVA) between groups is a statistical technique that al-
lows to simultaneously compare more than two populations. For instance we can com-
pare the productivity of different types of wheat, the performance of several makes of
cars, etc. For each of these cases we focus on one specific numerical feature: the weight
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of wheat, the gas consumption of cars. What we test with the ANOVA is whether there
exists a relationship among the averages of the different populations: have all the va-

rieties of wheat the same weight ? do all the car makes have the same consumption
?

3.4.1 Basic Framework

What we test now is if the means of all the populations are the samek hetthe
number of populations. We will assume that each of the populafiossl, ..., k) is
distributed according to a Normal distribution with the same variartce

z1 ~ N(p1,0%) @3~ N(p2,0%) -+ xp~ N(uy, o)
From each of the populations sample of size, is obtained.
Notation
Tij Observarion*” from Samplei, (i = 1,...,k;j = 1,...,n;).

N Numero total d’observacions
k
=1

X; Mitjana mostral de la mostra de la poblacio

Uz

S 1
J

1

X Mitjana total 0 mitjana de totes les observacions

3.4.2 Estadistics

\medskip
e Variacié entre mostres: VEM = SCE (variaci6 explicada)
k
VEM = ni(x; — X)?
i=1

VEM 9
= Xk—1

o2

e Variaci6 dins les mostres: VDM = SCR(variacié no explicada o resudual)

k  n;

i=1j=1
VDM
2 = XN—-k
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e Variaci6 total: VT = STC=VEM+VDM

k

VT = Zi(.ﬁm — ):()2

=1 j=1
vr o,
5 T XN-1
g
3.4.3 Contrast
El test a realitzar és de la forma
Ho: pi=pa=--=pg

H, : No totes lesu; soniguals

Cal tenir present que: \medskip

1. Sempre, per qualsevdlS} = 15 >"" (;; — X;)? és un estimaddnes-
biaixatde o
2. Sota la hipotesi nda, 5% = 9€E ¢s un estimaddnesbiaixatde o2

3. En considerar totes les variancies com igusifs,= 2L és un estimador

inesbiaixatde o2

Per tant:
SCE Xh_1
o2(k—1) kE—1
SCR _ "~ 32
2(N—k) N7

Es a dir, I'estadistic de contrast és

52
F*="£~F(k-1,N—k)
SR

3.5 Non-Parametric Tests

In the previous sections we have seen the main tests of the so called "parametric tests",
that is, we test hypothesis regarding one specific "parameter” of the population (or
comparing the parameters of two populations).

In this section we will see one specific test of the kind named "non-parametric
tests"”, that is, we do not perform tests regarding a specific parameter but we test more
general hypothesis. More specifically, we will see how to test if the date in our sample
seems to come from a given theoretical distribution.
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3.5.1 The Kolmogorov-Smirnov Test for the Goodness of Fit

This test checks whether a given set of data (the sample) seems to "fit" (and how "good"
is this "fit") a specific probability distribution. For instance, whe can test whether the
distribution of the income per capita in a sample collected in Cerdanyola seem to fit
what would be a Normal distributon with the same mean and variance (this is some-
times referred to as the "normality test”). The idea is to test if the "frequencies” ob-
served in the sample coincide with the "frequencies" (probabilities) that we can com-
pute using a Normal distribution with the same mean and variance.

Hence, the procedure focuses on looking at the differences between the "observed
frequency" (in the sample) and the "theoretical frequency" (according to a Normal
distribution) to determine if these differences are small enough as to conclude that,
indeed, the data in the sample seems to follow a distribution close to that of a Normal.

The procedure is as follows when we want to test if the data "fits" a Normal distri-
bution with mearn- 1 and variance: o2, that is,N (i, o)

1. The Null Hypothesis for this test is always the same:
HO : Fo = FT

WhereFy is the "observed cummulative frequency" in the sampleands the
"theoretical cummulative probability (frequency)” according to a Normal distri-
butior?. How these "frequencies” are computed would be explained later.

2. The Alternative Hypothesis also is always the same:
HA . FO 74 FT
That is, if the "frequencies" are not equal, then they are just different.

3. Test Statistic

For this test, the computation of the Test Statistic is rather involved and takes a
lot of work.

First, for the "observed frequencie8y, we must compute for each element in
the sample what is the proportion (or frequency) of elements that are "smaller or
equal” to that value

Number of elements in the sample smaller or equal than z;
FO (xl) =

Total number of elemnts in the sample

Now we must compute (using th®¥(0, 1) tables) what are the corresponding
"theoretical frequencies" according to the "Normal( ., o2) we are testing for:

Fr(zi) = P(X < zi) = P(Xﬁﬂ = xj/}zu) =P(Z< xj/}g“)

whereZ ~ N(0,1)

Finally, we compute the differences between each of the "observed frequencies"
Fo(x;) and the corresponding "theoretical frequenciBs’(x;) and then select

2The test could also be done to check if the data behaves according to another distribution, like an expo-
nentical, a Poisson, a Binomial, etc. Here we focus only on the "normality test", that is, to check if the data
in the sample behaves according to a Normal distribution.
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the "maximum” (in absolute value) of these differences. This value will be the
Observed value of the Test Statistic. That is, the Test Statistic for this test, that
we denote by — S is given by:

K — S5 = max ‘Fo(l‘i) — FT(l‘l)|

and the corresponding Observed Value of the Test Statistic follows from the com-
putation of the differences and the selection of the "maximum" difference as
explained above.

4. Distribution of the Test Statistic when the Null Hypothesis is true

For this test, the distribution to use is a special one named the Kolmogorov-
Smirnov distribution, whose values are also in tables

5. Rejection Area of sizer

This test is always a Right-Tail Test (only a tail on the right). In the Kolmogorov-
Smirnov tables we find the limit value for this rejection area depending on both
the size of the rejectin areaand the size of the sampte

6. Test conlcusion

Given the special features of this test, we only need to check if the Observed
Value of the Test Statistic K-S is bigger or not that the value found in the Kolmogorov-
Smirnov tables. If it is bigger, then we reject the Null Hypothesis that says that
the sample follows the distribution of a Normal. If it is smaller then we do not
reject that hypothesis

3.6 Exercises
1. Among the following sentences, which are true and which are false:

(a) The larger the significance level, the more likely is to rejHgtvhen it is
true.

(b) The larger the confidence level, the more likely is to rejgtvhen it is
true.

(c) The larger the significance level, the higher the power of the test.

(d) The higher the power of the test, the more likely is to rejggtwhen it is
false.

2. In the Penedés area, the average grape crop in a normal year is of 100 Tons/Ha.
This year that the weather has been specially good 12 selected lots produced 106
Tons/Ha. in average. If the crop per Ha. is a random variable with variance 64, is
there any reason to think that this year’s crop is better than normak2{.01).

Find thep_value in this case.

3. A manager orders a large quantity of steel girders with an average length of 5
meters. It is known that the length of such girders is a random vannevtaally
distributed with 0.02tandard deviationOnce the order is received, the manager
randomly selects 16 girders and measures their lengths. If the average length in
the sample is less than expected, the manager will return the order.
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(a) If the probability of rejecting a “good” order is 0.04, what has to be the
value of the average length in the sample that makes the manager return the
order ?

4. A specific task in a factory takes 5 minutes in average to be completed. The

factory manager believes that one of the workers spends more time in this oper-
ation. The manager selects a sample of 11 timings for this worker and collects
the following data (in minutes): 4.8, 5.6, 5.3, 5.2,4.9,4.7,5.7,4.9,5.7, 4.9, 4.6.
Assuming that operation time is a Normal random variable,

(a) Does the data supports the manager’s betie£(0.02).
(b) How much is the_value in this case ?

. A washing machines producer claims that only a 5 % of the whole production

need service whithin the first year of normal operation. A consumers organiza-
tion asks 20 families with the same number of members that have bought this
washers to report about any malfunctioning in the first year. At the end, only 3
families reported some kind of problem.

Test whether the manufacturer’s hypothesis that the proportion of “bad” units is
0.05 can be rejected against the consumers organization belief that such propor-
tion is more than 0.05 withy = 0.1

. The manager of the election campaign of candidate A believes that his candidate

is in the same position as his opponent, candidate B. Nevertheles, hi is afraid
that some recent scandals might have harmed his candidate. Hence, he decides
to interview 1500 citizens and 720 show a clear preference for candidate A. Does

it exist any reason to think that the scandal has affected the image of candidate
A? (o= 0.05)

. The person in charge of a workshop thinks that the number of items that a par-

ticular worker produces oscillates more than normal. He decides to monitor the
worker activity during 10 randomly selected days. The number of items pro-
duced each of these days was 15, 12, 8, 13, 12, 15, 16, 9, 8, and 14. It is known
that the standard deviation of other workers in the workshop is of 2 units, and that
the number of produced items per day is distributed according to a Normal. Does
this data support the manager’s suspicion?<0.05). What is thep_value in

this case ?

. A manufacturer wants to compare the average stress of the linens he produces

against that of his competitors. One hundred threads of each brand were selected
and their corresponding stress recorded. The results were:

X, =110.8 Xy =108.2

513 =10.2 59 =124

Assuming that the sampling took place on two normal, independent populations,
is there any reason to think that the difference between the average stress of the
two brands is significant (= 0.02)
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9.

10.

11.

12.

A survey was conducted to test the degree of influence of alcohol on the ability
to concentrate to perform a specific task. Ten people were selected at random to
participate in an experiment. First, each person developed the task without any
alcohol intake, and then did it again with a 0.1 % of alcohol in blood. The task
completion timings recorded before and after the alcohol intake were:

Participant| Before | After
1 28 39
2 22 45
3 55 67
4 45 61
5 32 46
6 35 58
7 40 51
8 25 34
9 37 48

10 20 30

Can we conclude, with a significance level of 5%, that the average timing “be-
fore” is lower that the average timing “after” in more than ten minutes ? (assume
that he population is normally distributed)

An investor wants to compare the risks associated to two different stock markets,
A and B. Market risk is measured using the variance of the daily changes in stock
prices. The investor believes that the risk in market A is lower than the risk in
market A. Two random samples are selected, consisting of 21 observations on
the changes i prices in market A and 16 observations on the changes of prices in
market B. The results are:

Market A \ Market B
X4=03| Xgp=04
sa=0.251] sp=0.45

Assuming that both samples come from two Normal and independent popula-
tions, does the data suport the investor’s belief 2=(0.5)

An electrician buys large amounts of electrical components mainly from two
suppliers, A and B. Because of a better pricing policy, the electrician will buy
only from supplier B is the proportion of faulty items is the same for both suppli-
ers. The electrician selects two random samples, one of size 125 from supplier
A and other of size 100 from supplier, discovering that there are exactly 7 faulty
components in each sample. Is there any reason not to buy only from supplier B
? (@ = 0.02).

Two people play “heads or tails” with a coin. After 100 tosses A, who chose
“heads”, won 62 times. Immediately, B claims that the coin is biassed and the
probability of getting heads is above 50 %. Is she right: 2<(0.05).
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13.

14.

15.

16.
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In a Hospital 7 patients were selected, observing that they slept 7, 5, 8, 8.5, 6, 7
i 8 hours respectively. All of them were given a new sleeping pill, and then 5 of
them were selected, observing 9, 8.5, 9.5, 10 i 8 sleep hours respectively. Is the
new pill effective ? (Assume normality ard= 0.05)

Random errors in two measuring tools follow Normal distributiong, o%) i
N(0,02). In a sample of size 7 the following measuring error are observed

Firsttool: 0.3,0.7,-1.1,2.0,1.7,-0.8, -0.5
Second tool: 1.6,-0.9,-2.8,3.1,4.2,-1.0,2.1

Can we tell that the first tool is more precise than the second tool ?

A testing lab is asked to compare the durability of four different brands of golf
balls. The lab randomly selects 7 balls from each brand and puts them into a
machine that hits them with constant strength. The measurement of interest is
the number times the machine hits the ball before its external cover is broken.
The following table reports the data gathered during the test:

A B C D

205 | 242 | 237 | 212
229 | 253 | 259 | 244
238 | 226 | 265 | 229
214 | 219 | 229 | 272
242 | 251 | 218 | 255
225 | 212 | 262 | 233
209 | 224 | 242 | 224
204 | 247 | 234 | 245

Is there any reason to think that the average durability is different across brands
? (o = 0.05).

In order to test if there exist differences in the average crop of three varieties
of corn, a lot is divided in three equal areas and one different variety of corn is
planted in each one. In each area a sample of size 5 is collected corresponding to
5 measurements of tons per acre. The following table is an incomplete ANOVA
table for this problem

Variation Sum Deg. of Freedom Average Sunfr
VEM 64
VDM
VT 100

Complete the ANOVA table and determine if the null hypothesis of all the aver-
ages being equal can be rejected with- 0.01



Chapter 4

Goodness of Fit and Correlation
Analysis

In the previous chapter we have seen the main tests of the so called "parametric tests"”
(we test hypothesis regarding one specific "parameter" of the population).

In this chapter we will first see one specific test of the kind named "non-parametric
tests”, that is, we do not perform tests regarding a specific parameter but we test more
general hypothesis. More specifically, we will see how to test if the date in our sample
seems to come from a given theoretical distribution.

Then, we will introduce the concept of "relationship” between data in two samples.
This will be important for the next chapter. More specifically, we will introduce the
analysis of the correlation between samples.

4.1 The Kolmogorov-Smirnov Test for the Goodness of
Fit

This test checks whether a given set of data (the sample) seems to "fit" (and how "good"
is this "fit") a specific probability distribution. For instance, we can test whether the dis-
tribution of the income per capita in a sample collected in Cerdanyola seem to fit what
would be a Normal distribution with the same mean and variance (this is sometimes
referred to as the "normality test"). The idea is to test if the "frequencies” observed in
the sample coincide with the "frequencies"” (probabilities) that we can compute using a
Normal distribution with the same mean and variance.

Hence, the procedure focuses on looking at the differences between the "observed
frequency" (in the sample) and the "theoretical frequency" (according to a Normal
distribution) to determine if these differences are small enough as to conclude that,
indeed, the data in the sample seems to follow a distribution close to that of a Normal.

The procedure is as follows when we want to test if the data "fits" a Normal distri-
bution with meas- 1 and variance: o2, that is,N (u, o)

1. The Null Hypothesis for this test is always the same:
HO : FO = FT

63
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WhereFy is the "observed cumulative frequency" in the sample Bpds the
"theoretical cumulative probability (frequency)" according to a Normal distribu-
tion'. How these "frequencies” are computed would be explained later.

2. The Alternative Hypothesis also is always the same:
Hy:Fy# Fr
That is, if the "frequencies" are not equal, then they are just different.

3. Test Statistic

For this test, the computation of the Test Statistic is rather involved and takes a
lot of work.

First, for the "observed frequencie8y, we must compute for each element in
the sample what is the proportion (or frequency) of elements that are "smaller or
equal” to that value

Number of elements in the sample smaller or equal than z;
Fo(z;) =

Total number of elements in the sample

Now we must compute (using th&¥(0, 1) tables) what are the corresponding
"theoretical frequencies" according to the "Normal(u, o) we are testing for:

X—p _zi—p
Vo2 T Vo2

Fr(z;) = P(X < ;) = P( )= P(z < Z 0

whereZ ~ N(0,1)

Finally, we compute the differences between each of the "observed frequencies
Fo(x;) and the corresponding "theoretical frequenciBs’«;) and then select

the "maximum" (in absolute value) of these differences. This value will be the
Observed value of the Test Statistic. That is, the Test Statistic for this test, that
we denote by — S is given by:

K — S =max|Fo(z;) — Fr(z;)|

and the corresponding Observed Value of the Test Statistic follows from the com-
putation of the differences and the selection of the "maximum” difference as
explained above.

4. Distribution of the Test Statistic when the Null Hypothesis is true
For this test, the distribution to use is a special one named the Kolmogorov-
Smirnov distribution, whose values are also in tables

5. Rejection Area of sizex

This test is always a Right-Tail Test (only a tail on the right). In the Kolmogorov-
Smirnov tables we find the limit value for this rejection area depending on both
the size of the rejecting areaand the size of the sample

1The test could also be done to check if the data behaves according to another distribution, like an expo-
nential, a Poisson, a Binomial, etc. Here we focus only on the "normality test", that is, to check if the data in
the sample behaves according to a Normal distribution.
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6. Test conclusion

Given the special features of this test, we only need to check if the Observed
Value of the Test Statistic K-S is bigger or not that the value found in the Kolmogorov-
Smirnov tables. If it is bigger, then we reject the Null Hypothesis that says that
the sample follows the distribution of a Normal. If it is smaller then we do not
reject that hypothesis

4.2 Relationship between samples

Consider two independent samples randomly obtained from two different populations.
For instance, we could think of one sample with data about the unemployment rate in
Cerdanyola and another sample with data about income per capita also in Cerdanyola.
Then, we might wonder if there is a "relationship” between these data, that is, if it
seems to be true that when the unemployment rate is low then the income per capita
is high and vice versa. These kind of questions is more ambitious for the economic
analysis than those addressed in previous chapters. Indeed, for the design of economic
policies it is very important to know what kind of relation exists among the different
economic variables.

In this sense, there are two types of relationships that we can observe between two
given variables:

1. Casual

We say that two variables have a "casual” relationship when changes in one of
the variables induce changes in the other one. For instance, it seems clear that
the lower is the interest rate the higher is the demand for mortgage loans.

2. Spurious

We say that two variables have a "spurious" relationship when they seem to be
related but this relation is not causal but explined from some other factor, like
a third variable that is independently related to each of these two or some other
unknown factor.

Once we now if two variables are related or not, it is very important to understand
what is the kind of relationship they have. Indeed, even if two variables are related to
each other we can not "use" this relationship trying to influence one of the variables by
means of changes in the other.

4.3 Correlation Analysis: The Correlation Coefficient

The analysis start with a set of paired data sampled from two varidbkasdY

We can represent these two pairs of data K a Y graph to obtain, generically,
one of these four kind of graphs, namedta dispersion diagram
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-

Tipus A

-

Tipus B

<<

Tipus C

Tipus D

Figure 4.1: Data dispersion types

Each of these four types of data dispersion corresponds to a specific kind of rela-
tionship between the variablé§i Y
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| Dispersion Type| Type of relationship between variablé<Comment |

A Monotone increasing The two variables change i
the same direction. Th
higher is the value of one o
them, the higher is the valu
of the other

B Monotone decreasing The two variables chang
in opposite directions. Th¢
higher is the value of one o
them, the lowest is the valu
of the other

C No relationship There is no apparent rela
tionship between the vari
ables. For some data hig
values of X correspond to
high values ofY, but for
some other data they corre-
spond to low values
D Non-monotone relationship The two variables seem tp
be related to each other, but
this relationship is somer
times increasing, sometimes
decreasing

D = 0 >

M — (O (D

=

Figure 4.2: Type of relationship between variables

With the Correlation Analysis we seek to determine:
1. Which is the type of relationship between the variables

2. Which is the "degree" of relationship between the variables
This analysis is done by means of therrelation Coefficient given by the formula

Doy Tili
TLSX SY

T =

where:

U=y —Y

. ~92

SX _ Zi:l 'Tl
n

i U3

Sy = i=1J4
Y n

It can be proved that1 < r < 1. The interpretation of this coefficient is as follows

The correlation coefficient is an estimator (that is computed using the sample of
observations of the variablés andY’) of the population correlatiopnthat measures the
true correlation between the two variables. In this sense, as we have done in previous
chapters with other sample estimators liKewe can use to do "inference" regarding
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| Value ofr | Interpretation \

—1 < r <0 | There exists a monotone decreasing rela-
tionship (Type B). The closer te-1 is r
the stronger the relationship

0<r <1 | There exists a monotone increasing rela-
tionship (Type A). The closer to 1 is the
stronger the relationship

r=0 Whenr is close to0, we do not have any
kind of monotone relationship. The prob
lem, though, is that it is not possible to de-
termine if we are in a relationship like i
Type D or we do not have any kind of rel
tion like in Type C T

=

Figure 4.3: Interpretation of

p (confidence intervals, hypothesis testing). To do so we must know the distribution of
such estimator. It can be proved that:

1 1 1 1
1) NG (D),
1—7r 2 '1—-p"'n-3

1
5 ln(
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1. Given the three sets of data below regarding variallemndY’, plot the disper-
sion diagram and compute the correlation coefficier@omment on the type of

relation in each case.

SETA

N | X
©o a| <

SETB

m.boor\n—\‘x
O‘)\II\J(DH"<

SETC

Y

16
81
256
625

(.ﬂ-bool\)l—“x

1

2. The correlation coefficient computed in a sample of size 3%4s0.35. Find the
95% confidence interval for the true correlatiprDoes the confidence interval
found imply that the null hypothesjs= 0 can not be rejected ?

3. The correlation coefficient computed in a sample of size 284s0, 8. Test the

null hypothesis =0, 8.

4. The following data correspond to the class attendance and the final grades in an

Statistics Il test.

Pass Faill Total
Attended the class regularly 40 20 | 60
Did not regularly the class| 15 25 | 40
Total 55 45| 100

Does this data set indicate that the class attendance is related to the final grade ?
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5. A compmay wants to maximize the number of people that answers to their sur-
veys. The tested three different methods of presenting the survey with a random
sample of size 2000 and the results were:

Format of the Survey | Did answer Did not answer Total
Typewriter 250 200 450
Cyclist 300 450 750
Computer Laser Printout 300 500 800
Total 850 1150 2000

Does the format of the survey influence the people’s attitude to take the survey ?

6. The number of births per month in a hospital during a given year were:

Jan Feb Mar Apr May Jun Jul Aug Set Oct Nov Dec
95 105 95 105 90 95 105 110 105 100 95 100

If « = 0.01, is there any reason to think that the number of births is not dis-
tributed uniformly during the year ?



