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We study the possibilities of constructing strategy-proof rules that choose sets of
alternatives as a function of agents' preferences over such sets. We consider two
restrictions on the domain of individual preferences over sets. Assuming that all
singletons are in the range of the rule, we show that only dictatorial rules can be
strategy-proof on the larger domain. The smaller domain also allows for rules
which select the set of best elements of two fixed agents. Journal of Economic
Literature Classification Number: D71. � 2001 Academic Press

1. INTRODUCTION

Social choice processes which result in the selection of sets of alternatives
can be modelled as social choice correspondences. Sets of alternatives admits
a very wide range of interpretations. For instance, they can stand for collec-
tions of mutually compatible decisions, as in Barbera� , Sonnenschein and
Zhou [5], or in Miyagawa [17]. Alternatively, these sets can represent
collections of incompatible decisions, all of which have passed a first
screening but are pending final resolution. Whatever the interpretation
given to these sets of alternatives, social choice correspondences give rise to
incentive problems, analogous to those which arise when the choice process
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results in the selection of a single object. Our specific concern is the
possibility of constructing choice procedures which choose sets of alter-
natives and are strategy-proof.

Following the Gibbard�Satterthwaite theorem (Gibbard [13], Satterthwaite
[19]), the possibility of constructing strategy-proof social choice corre-
spondences was explored by several authors.2 The common framework
adopted in these papers has been to consider aggregation rules whose
domain consists of n-tuples of individual preference orderings over the basic
set of alternatives, with nonempty subsets of alternatives as typical elements
in the range. Unfortunately, while the definition of strategy-proofness for
choice procedures which always select a single object is unambiguous, its
extension to rules which may choose sets of alternatives becomes con-
troversial. This is because the definition of strategy-proofness must now
depend upon how individuals rank sets of alternatives given the ranking of
the alternatives themselves. To appreciate this point, suppose that an
individual can obtain the set [a2] by telling the truth and the set [a1 , a3]
by lying. Assume that the individual prefers a1 to a2 and a2 to a3 . Clearly,
this information is not enough to pin down the individual's ranking over
the sets [a2] and [a1 , a3]. It is largely this ambiguity which has given rise
to different papers, with different authors adopting different extensions of
the individual preferences on alternatives to their power set.

The main purpose of this paper is to propose an alternative formulation
of the question, one that eliminates any ambiguity of this sort. Suppose, for
instance, that the set of feasible alternatives is the set A=[a1 , a2 , a3]. We
consider the aggregation rules whose domain is the set of all possible
profiles of individual rankings over the set of seven possible non-empty
subsets of A. The range of the aggregation rule is the set of seven possible
non-empty subsets of A. Thus, the crucial difference between our frame-
work and that of the papers referred to earlier is that the latter set con-
sidered aggregation rules whose domain consisted of n-tuples of preference
rankings, each ranking being an ordering over the set A.

In other words, the domain of our aggregation rules includes that
postulated in the earlier set of papers, while the range is identical. This
implies that our domain permits the construction of new aggregation
rules��the social choice rules can now utilise information about individuals'
rankings over sets in a more meaningful manner. In contrast, the previous
papers impose a strong invariance requirement on the social choice rule:
the social outcome is not allowed to change even if the rankings of
individuals over sets of alternatives change, so long as their rankings over
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singleton sets remain the same. Of course, we do not impose any such
invariance requirement.

Notice also that our framework is formally identical to that of Gibbard
or Satterthwaite��one can simply identify feasible ``outcomes'' to be non-
empty subsets of A rather than elements of A. The only difference is that we
do not insist on rules that operate for a universal domain. Obviously, the
Gibbard�Satterthwaite impossibility result would have applied directly in
the absence of some domain restriction.

In this paper we consider two natural domain restrictions, which are
associated with specific interpretations of what it means for a society to
choose a set of alternatives. In our first interpretation, we view social out-
comes as sets of alternatives which have passed an initial test, the final
decision (of a unique alternative among those which have passed) to be
made in a second and later stage. Individuals may not be aware of how the
second-stage decision is to be made. Alternatively, they may believe that
the final outcome will be chosen on the basis of a lottery. In either case, we
assume that each agent subjectively assesses one probability distribution
over the set of feasible alternatives and then associates conditional
probabilities to each subset. We also assume that individuals have von
Neumann�Morgenstern preferences over lotteries and that each agent
ranks sets according to the expected utilities associated with each set.

In the second scenario, the ``final'' outcome itself may be a set of out-
comes. For instance, different candidates competing in a popularity contest
may tie for first place and thus have to share the first prize. An interesting
example of this phenomenon occurred when Barbara Streisand and
Katherine Hepburn shared the 1968 Oscar for Best Actress.3 It then makes
sense to assume that individuals rank sets on the basis of the ``equal-
weighted average'' utility associated to each set. Of course, this is formally
equivalent to saying that agents associate each set with an even chance
lottery over all its alternatives and then rank sets according to expected
utilities. In this sense, our second domain restriction is also consistent with
the first interpretation described earlier.

We concentrate on social choice functions whose domains are restricted
to orderings of sets compatible with the above interpretations. We charac-
terize the sets of strategy proof social choice functions respecting unanimity
on each one of the two domains. For the larger one, associated with our
first scenario of conditional expected utility maximizers, the only unani-
mous and strategy-proof social choice functions are dictatorial. We also
show that drastically reducing the domain, as we do by assuming even-
chance lotteries, does not expand the menu by very much: only dictatorial
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or bi-dictatorial4 rules are strategy-proof. We interpret our results to
demonstrate the remarkable robustness of the Gibbard�Satterthwaite
result.

This conclusion is similar to those drawn in the papers that we have
cited earlier.5 However, as we have pointed out earlier, our results are
derived in a considerably more general framework. It is also clear that any
strategy-proof rule which only utilises information about individual
rankings over singleton sets is strategy-proof in our more general
framework. Hence, any impossibility result in our framework translates
into a corresponding impossibility result in the framework used earlier.
Since the converse is not true, the results in this paper are more general
than many of those proved earlier about the existence of strategy-proof
social choice correspondences.6

Before concluding, we should mention another related line of research.
Some authors have considered social choice rules whose images are
lotteries over alternatives. Early work on these probabilistic ``decision
schemes'' characterized strategy-proof rules defined on preferences over
alternatives (Gibbard [14], Barbera� [2]). Extending these rules by allow-
ing agents to declare preferences over lotteries opens the door to a plethora
of new rules (Barbera� , Bogomolnaia, van der Stel (BBS) [3]).

This has to be contrasted to our results which show that no gain is
obtained by allowing for rules that take preferences over sets into account.
In order to gain some insight into the differences between the two
frameworks, consider the analogue of the ``random dictatorship'' rule in
our framework. Suppose there are three individuals [1, 2, 3] and A=[a1 ,
a2 , a3]. Suppose the aggregation rule is to choose the union of the top-
ranked alternatives of the individuals.7 Let the most preferred sets of the
three individuals be [a1], [a1] and [a3] respectively. If individuals declare
their preferences correctly, then [a1 , a3] will be the outcome since this is
the union of the most-preferred sets. Now, suppose individual 2 declares
[a2] to be his or her most-preferred set. Then, the outcome will be
[a1 , a2 , a3]. However, [a1] P2[a2 , a1] P2[a2] P2[a1 , a2 , a3] P2[a1 , a3]
P2[a3] is a feasible preference ordering for individual 2. Hence, this
example shows that the rule of selecting the union of top-ranked sets can
be manipulated.
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However, the random dictatorship rule cannot be manipulated in the
Gibbard or BBS framework. This is because in their framework, the chosen
lottery itself depends on the preferences announced by individuals. So, in
the example given above (and assuming that the weights attached to all
individuals are equal), if individuals announce their preferences correctly,
then the probability associated with a1 is 2

3 and that to a3 is 1
3 . If individual

2 announces that a2 is his or her most-preferred alternative, then the out-
come would be the equal-probability lottery on A. The reader can check
that given that individual 2 prefers a1 to a2 to a3 , he or she will not have
any incentive to manipulate the random dictatorship rule.

The plan of this paper is the following. In Section 2, we describe the
basic frame-work. Section 3 contains our results. In the concluding section,
we discuss how our results are related to the existing literature.

2. THE FRAMEWORK

Consider a society of N individuals, with N�2. Let A be a finite set of
outcomes, with |A|�3. Elements of A will be denoted as a1 , a2 , ak , etc.
Let A denote the set of all non-empty subsets of A. We will use Ar ,
r=1, ..., |A| to denote the set of all subsets of A which have exactly r
elements. For example, A1=[[a1], ..., [ak], ...[a |A|]], while A2 is the set of
all sets of the type [aj , ak] where aj , ak # A.

Each individual i has a preference ordering over the set A. Let R be the
set of all orderings over A. Individual orderings will be denoted by Ri , R$i ,
etc. As we have mentioned earlier, we are particularly interested in those
individual orderings over A that can be obtained from the hypothesis that
individual preferences over A satisfy the postulate of expected utility maxi-
mization. We specify this more formally.

Definition 2.1. A utility function for individual i is a mapping vi : A� R.

Assumption 2.2. For all i # N, for all distinct elements aj , ak # A, vi (aj){
vi (ak).

Assumption 2.2, which rules out indifference between any pair of alter-
natives, will be maintained throughout the paper.

Definition 2.3. An assessment * is a function *: A � [0, 1] such that
*(aj)>0 for all aj # A and �aj # A *(aj)=1.

Definition 2.4. An ordering Ri over A is conditionally expected utility
consistent (CEUC) if there exists a utility function vi and an assessment *i

such that:
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\X, Y # A,

XRiY � :
aj # X

vi (a j) \ * i (a j)
�ak # X *i (ak)+� :

aj # Y

vi (aj) \ *i (aj)
�ak # Y *i (ak)+ .

Let DU be the set of all CEUC orderings.

Definition 2.5. The ordering Ri is conditionally expected utility con-
sistent with equal probabilities (CEUCEP) if there exists a utility function
vi such that:

for all X, Y # A, XRi Y � :
aj # X

vi (aj) \ 1
|X|+� :

aj # Y

vi (a j) \ 1
|Y|+ .

Let DE be the set of all CEUCEP orderings.

Definition 2.4 says the following. Suppose vi is individual i 's utility func-
tion over A. The assessment *i represents individual i's (subjective) beliefs
about the probabilities with which any element ak can be selected out of A.
So, if individual i has to rank two sets X and Y, he or she assesses the con-
ditional probabilities associated to the different elements when the final
choice is to be out of the sets X and Y. Individual i prefers the set X over
the set Y if the conditional expected utility associated with X is higher than
the conditional expected utility associated with Y.

Definition 2.5 is in the same spirit but much more restrictive, since it
assumes that the individual assessments *i assign an equal probability to
every element in A.

Remark 2.6. Clearly DE /DU /R.

We will henceforth represent the asymmetric components of Ri , R$i by
Pi , P$i , and so on. A profile of individual preferences, (R1 , ..., RN) will be
represented by R. Similarly, R$=(R$1 , ..., R$N), and so on.

The object of interest in this paper is an aggregation procedure or rule,
which for each admissible profile of individual preferences over A selects
a single element of A. Notice that though the elements of A are sets of
outcomes, the aggregation rule (or social choice function in more familiar
terminology) is formally identical to the aggregation procedure used in the
traditional Gibbard�Satterthwaite framework, except for the domain
restriction. Since DU and hence DE are strict subsets of R, the domains of
our aggregation procedure are smaller.

From now on, D will stand for either DU or DE .
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Definition 2.7. An N-person Social Choice Function (SCF) on D�R

is a mapping f : DN � A.8

Definition 2.8. The SCF f is dictatorial over the domain D if there
exists i # N such that:

for all R # DN, f (R) # max(Ri , A).

Definition 2.9. The SCF f : DN � A is bi-dictatorial if there exist indi-
viduals i, j # N such that for all R # DN, f (R)=max(R i , A) _ max(R j , A).

Definition 2.10. The SCF f : DN � A is manipulable if there exist
R # DN, i # N and R$i # D such that f (R$i , R&i) Pi f (Ri , R&i).

A SCF is strategy-proof if it is not manipulable.

Definition 2.11. The SCF f : DN � A satisfies unanimity if for all R #
DN such that max(R i , A)=B for all i # N, f (R)=B.

3. CHARACTERIZATION RESULTS

In this section, we explore the possibilities of constructing strategy-proof
SCFs on DU and DE which satisfy unanimity. This is equivalent to restrict-
ing attention to SCFs whose range includes all singleton sets due to the
following remark.

Remark 3.1. Although Assumption 2.2 rules out indifference between
elements of A1 , it is obvious that there can be X, Y # A such that XRiY
and YRi X. Yet, the best and the worst elements of any preferences in DU

and DE will be unique. Therefore, in all unanimous profiles of DU and DE ,
agents will agree that some singleton set is the best, and hence
A1 �range f 9 for any f satisfying unanimity on these domains.

We show that on the domain DU , the only strategy-proof social choice
function satisfying unanimity is the dictatorial one. Since DU is a strict sub-
set of the set of all possible orderings over A, this result again
demonstrates the remarkable robustness of the Gibbard�Satterthwaite
results. Our second result shows that the range of possibilities is not
widened in any essential way if the domain is restricted further to DE . On
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this domain, only dictatorial and bi-dictatorial social choice functions can
satisfy unanimity and strategy-proofness.

The two theorems are stated formally.

Theorem 3.2. Let f : [DU]N � A. Then f is strategy-proof and satisfies
unanimity iff f is dictatorial.

Theorem 3.3. Let f : [DE]N � A. Then f is strategy-proof and satisfies
unanimity iff f is dictatorial or bi-dictatorial.

Before we prove these results, we want to make an important remark.

Remark 3.4. The two theorems are not valid in the case where |A|=2.
Notice that even when |A|=2, |A|=3. Hence, if the domain of preferences
is unrestricted, then the Gibbard�Satterthwaite result will apply. However,
if the domain is [DU]N, then the dictatorship result no longer holds. For,
suppose A=[a1 , a2], and consider the SCF which selects the majority
winner if one exists, and A itself if a1 and a2 tie. The reader can check that
this rule is strategy-proof.

Obviously, a dictatorial SCF is strategy-proof on DU and hence on DE .
It is also relatively straightforward to check that a bi-dictatorial SCF is
strategy-proof on DE . So, we only prove the ``only if '' part of both
theorems.

We begin with a lemma on the existence of various admissible preference
orderings.

Lemma 3.5. (i) For all aj , ak # A and for all Ri # DU , [a j] Pi[ak] O
[aj] Pi[a j , ak] Pi[ak].

(ii) For all distinct elements aj , ak , b1 , ..., bL # A and for all R i # DE ,
[aj , bj , b2 , ..., bL] P i[ak , b1 , b2 , ..., bL] � [a j] Pi[ak].

(iii) For all aj , ak , al # A, there exists Ri # DU such that [a j] Pi[ak]
Pi[al] and [ak , al] Pi[aj , al].

(iv) For all aj , ak # A, there exists R i # DE such that max(Ri , A)=
[aj], and [aj] Pi[aj , ak] Pi[ak] PiX for all X # A&[[aj], [ak], [aj , ak]].

(v) For any set X=[b1 , b2 , ..., bL] # A with L�3 and Y # A which
is distinct from X, there exists Ri # DE with max(Ri , A)=[b1], min(Ri , X)=
[bL] such that XPi[b1 , bL] Pi Y if either |Y|�L or Y=[ak , bL] where
ak # A"[b1].

Proof. Parts (i) and (ii) follow immediately from the definitions.
In order to prove (iii), let vi (aj)=1, vi (ak)=1&=, vi (al)=0, *i (aj)=

*i (al)=: and *i (ak)=1&2:&$. Then, the expected utility of [ak , al] is
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1&2:&$
1&:&$ (1&=), and that of [a j , al] is 1

2 . By choosing : and = sufficiently
small, it is clear that one can get the desired result.

In order to prove (iv), take sufficiently small =>0, and let vi (aj)=1,
vi (ak)=1&=, and v i (al)<= for all a l # A"[aj , ak]. Routine calculation
yields the desired result.

We now prove (v). Construct the following utility function.

vi (b1)=1 (1)

:
L&1

k=2

vi (bk)=(L&2)(1&=) (2)

vi (bL)=$ # \L&2
L

, 1&2=+ (3)

vi (a)<#<$ for all a � X. (4)

Note that there is =>0 such that 1&2=> L&2
L . Assume that vi satisfies (1)

to (4) with such an =. Now, the conditional expected utility10 associated
with X is 1+(L&2)(1&=)+$

L , while that of [b1 , bL] is 1+$
2 . Since $<1&2=, we

get XPi[b1 , bL].
Suppose |Y|=2 and bL # Y. Then, [b1 , bL] Pi Y from Lemma 3.5(ii).

Suppose now that Y{X, and |Y|=L. The highest conditional expected
utility from such Y is obtained when Y contains [b1 , ..., bL&1] and bL+1

where vi (bL+1)=maxbk � X vi (bk). Then, [b1 , bL] PiY if

1+$
2

>
1+(L&2)(1&=)

L
+

1
L

#. (5)

Since $> L&2
L , (5) will hold for sufficiently small values of = and #.

The proof that [b1 , b2] PiY when |Y|>L is similar and omitted. K

We adopt the following strategy in proving Theorems 3.2 and 3.3. We
first present a series of lemmas which prove Theorem 3.3 for the case N=2.
An extension of these lemmas prove Theorem 3.2 for N=2. Induction
arguments are then used to prove Theorems 3.2 and 3.3 in the general case.

Let f : D2 � A be a 2-person SCF. The option set11 of individual 2, given
R1 # D, is the set O2(R1)=[ f (R1 , R2) | R2 # DE]. For all R2 # D, O1(R2) is
defined analogously. We note the following without proof.
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Fact 3.7. If f is strategy-proof, then for all R1 , R2 # D, f (R1 , R2) #
max(R2 , O2(R1))=max(R1 , O1(R2)).

In what follows, it will be interesting to study the structure of option
sets. In particular, we will need to distinguish what singletons belong to an
option set, what doubletons, etc. By slightly abusing language, we will
denote, for R1 # D and Z/A, O2(R1 , Z)=O2(R1) & Z. Hence, for
example, O2(R1 , A1) will stand for the elements of the option set O2(R1)
that are singletons. To keep notation consistent, we'll write O2(R1)=
O2(R1 ,A). Lemmas 3.8 to 3.12 refer to 2-person SCF's f : [DE]2 � A

satisfying unanimity and strategy-proofness.

Lemma 3.8. Let R1 , R$1 # DE and a j # A be such that max(R1 , A)=
max(R$1 , A)=[aj]. Then O2(R1 , A1)=O2(R$1 , A1).

Proof. Suppose not. Assume w.l.o.g. that [ak] # O2(R1 , A1)&O2(R$1 ,
A1). It follows from unanimity that [ak]{[aj]. Using Lemma 3.5(iv), we
can pick R2 # DE such that max(R2 , A)=[ak] and [ak] P2[aj , ak] P2[a j]
P2X for all X # A&[[a j], [ak], [aj , ak]]. Since [ak] # O2(R1 , A1), an
application of Fact 3.7 yields f (R1 , R2)=[ak]. Since [aj] # O2(R$1 , A1)
and [ak]{O2(R$1 , A1), strategy-proofness implies that f (R$1 , R2) is either
[aj , ak] or [a j]. According to Lemma 3.5(i), [aj] P1[aj , ak] P1[ak].
Therefore, in either case, player 1 will manipulate at (R1 , R2). K

Next, we show that the option set of an agent, given the preference of the
other, must either contain one singleton or all of them.

Lemma 3.9. For all R1 # DE , either O2(R1 , A1)=A1 or O2(R1 , A1)=
max(R1 , A).

Proof. Suppose not. Let R1 # DE be such that [aj]=max(R1 , A), and
let ak , al # A"[a j] be such that [ak] # O2(R1 , A1) and [al] � O2(R1 , A1).
Since Lemma 3.8 implies that O2(R1 , A1) depends only on the maximal
element of R1 , we may assume w.l.o.g. that [al] P1[ak].12 Using Lemma
3.5(iv), pick R2 # DE such that max(R2 , A)=[a l] and [a l] P2[ak , al]
P2[ak] P2X for all X # A&[[ak], [al], [ak , a l]]. Since 2 does not
manipulate at (R1 , R2), either f (R1 , R2)=[ak , a l] or [ak]. But, from
Lemma 3.5(i), we have [al] P1[ak , al] P1[ak]. Since [al] is R2 -maximal
for player 2, player 1 can force the outcome to be [al] by announcing R$1
where [al] is R$1 -maximal. This follows from unanimity. Therefore player 1
manipulates at (R1 , R2). K

10 BARBERA� , DUTTA, AND SEN
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Now, we show that if the option set of an agent contains all singletons
for some preference of the other agent, then all singleton are always in his
or her option set.

Lemma 3.10. If O2(R1 , A1)=A1 for some R1 # DE , then O2(R$1 , A1)=
A1 for all R$1 # DE .

Proof. Suppose not. In view of Lemma 3.9, we must have O2(R1 , A1)=
A1 and O2(R$1 , A1)=[aj] for some R1 , R$1 # DE where max(R$1 , A)=[aj].
Suppose max(R1 , A)=[ak]. We must have [aj]{[ak] in order not to
contradict Lemma 3.8. Pick al distinct from aj and ak and assume w.l.o.g.
(using Lemma 3.8) that [ak] P1[aj] P1[al]. Let R2 # DE be such that
max(R2 , A)=[al] and a lP2[al , aj] P2[a j] P2X for all X # A&[[aj],
[al], [aj , al]]. Then, f (R1 , R2)=[al] and f (R$1 , R2) is either [aj , al] or
[aj]. Since [aj] P1[a j , al] P1[al] from Lemma 3.5(i), player 1 manipulates
at (R1 , R2). K

Observe that if O2(R1 , A1)=A1 for all R1 # DE is true, then player 2 is
a dictator since his or her maximal element in A1 must also be his or her
maximal element in A. Symmetrically, O1(R2 , A1)=A1 for all R2 # DE

would also imply that 1 is a dictator. So, we are left with only one
possibility, namely that the only singleton in the option set of one agent is
the maximal element of the other agent. That is,

(*) For all R1 , R2 # DE we have O2(R1 , A1)=max(R1 , A) and
O1(R2 , A1)=max(R2 , A).

In this case, we show by the following lemma that the two-element sets
containing the best element for an agent must be options for the other
agent, and that they are the only two-element options.

Lemma 3.11. Suppose (*) holds. Then, for all R1 # DE and aj # A such
that max(R1 , A)=[aj], we must have O2(R1 , A2)=[[aj , ak] | ak # A].

Proof. We first show that [[aj , ak] | ak # A]�O2(R1 , A2). Suppose
that there exists ak # A such that [aj , ak] � O2(R1 , A2). Let R2 # DE be
such that max(R2 , A)=[ak] and [ak] P2[aj , ak] P2[aj] P2X for all
X # A&[[aj], [ak], [aj , ak]]. Since (*) holds, observe that f (R1 , R2)
cannot be either [aj] or [ak]. Furthermore, [aj , ak] � O2(R1 , A2). So,
f (R1 , R2){[aj , ak]. Hence f (R1 , R2)=X for some X where [aj] P2X. But
then player 2 can manipulate at (R1 , R2) by announcing R$2 where [aj] is
R$2 -maximal and thereby obtain [aj]. Note that the last conclusion follows
from unanimity.
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We now show that O2(R1 , A2)�[[aj , ak] | ak # A]. Suppose not. Let
[ak , al] # O2(R1 , A2) where aj , ak and al are all distinct. Let R2 # DE be
such that max(R2 , A)=[ak] and [ak] P2[ak , al] P2[al] P2X for all
X # A&[[ak], [ak , al], [al]]. Since [ak] � O2(R1 , A1) by hypothesis
(since case (*) holds), it must be the case that f (R1 , R2)=[ak , a l]. By
applying the arguments in the previous paragraph to O1(R2 , A2), we know
that [aj , ak] # O1(R2 , A2). But [aj , ak] P1[ak , al] from Lemma 3.5(iii). So,
1 can manipulate at (R1 , R2). K

Lemma 3.12. Suppose (*) holds. Then, for all R1 # DE , we have
O2(R1 , A)=O2(R1 , A1) _ O2(R1 , A2).

Proof. Suppose not. Assume without loss of generality that X=
[b1 , ..., bL] is the set of smallest cardinality greater than 2 such that
X # O2(R1 , A) for some R1 # DE . If more than one such set exists, select
one arbitrarily.

Let max(R1 , A)=[aj]. We first show that aj # X. Suppose not. Let X

represent the set of all non-empty subsets of X, and let [b1]=max(R1 , X).
Pick R2 # DE such that [b1]=max(R2 , A), [aj]=min(R2 , A), and [b1]
P2[b2] } } } P2[bL] P2[ak] for all ak � X. Moreover, for all Y, Z # A, if
aj � Y and aj # Z, then YP2Z. Note that such an ordering can be con-
structed by choosing a utility function v2 such that v2(aj)=0 and
v2(ak)�1&= for all ak {aj , where =>0 is sufficiently small. From
Lemma 3.11, O2(R1 , A2)=[[a j , ak] | ak # A]. Since XP2[aj , b1], we must
have XP2 Y for all Y # O2(R1 , A2). In addition, XP2Y for all Y such that
|Y |�L. Since X is the set of smallest cardinality greater than 2 in
O2(R1 , A), this ensures that f (R1 , R2)=X. But, since [b1] P1X and
f (R$1 , R2)=[b1] if max(R$1 , A)=[b1], 1 can manipulate by announcing
R$1 . Therefore, max(R1 , A) # X.

From now on, we assume that X=[b1 , ..., bL] # O2(R1 , A), where
max(R1 , A)=[b1] and max(R1 , X"[b1])=[b2]. Note that this implies
that [b1 , b2] P1 X.

We claim that for all R$1 # DE such that max(R$1 , A)=[b1], it must be
true that X # O2(R$1 , A). Suppose not. Pick R2 # DE such that

(a) max(R2 , A)=[b2] and [bk] P2[bk+1] for all k # [2, ..., L&1].

(b) min(R2 , X)=[b1] and [b1] P2[a] for all a � X.

(c) XP2[b1 , b2] P2 Y if |Y|�L or both b1 # Y and |Y|=2, but
Y{[b1 , b2].

Note that Lemma 3.5(v) ensures the existence of such an ordering. The
following must be true.
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(i) [b2] � O2(R1 , A) from (*).

(ii) [b1 , b2] # O2(R1 , A) from Lemma 3.11.

These, together with (c) above, ensure that f (R1 , R2)=X. Otherwise, 2
will manipulate at (R1 , R2).

Now, consider f (R$1 , R2). Lemma 3.11 ensures that [b1 , b2] # O2(R$1 ,
A). Again, (*) and (c), together with the supposition that X � O2(R$1 , A)
ensure that f (R$1 , R2)=[b1 , b2]. But then 1 manipulates at (R1 , R2) since
[b1 , b2] P1X.

Finally, we show that X � O2(R1 , A). Let R"1 # DE be such that [b1]=
max(R"1 , A) and [b1] P"1[b1 , b2] P"1[b2] P"1 Z for all Z # A&[[b1],
[b1 , b2], [b2]]. By our earlier argument, f (R"1 , R2)=X. But, 1 can
manipulate by announcing R� 1 such that max(R� 1 , A)=[b2], because
Fact 3.7 yields f (R� 1 , R2)=[b2] and [b2] P"1 X. K

Remark 3.13. Lemmas 3.11 and 3.12 ensure that if (*) holds, then f is
bi-dictatorial. Since f is either dictatorial or (*) holds, we have proved
Theorem 3.3 for the case N=2. We now prove Theorem 3.2.

Proof of Theorem 3.2. We first prove the theorem for the case N=2.
Let f : [DU]2 � A be a 2-person strategy-proof SCF satisfying unanim-

ity. Since DE /DU , we claim that Lemmas 3.8, 3.9 and 3.10 remain valid
for the corresponding option sets.13 Therefore, we have once again that f
must be dictatorial or (*) must hold.

Step 1. We claim that (*) cannot hold. Note first that the first step in
the proof of Lemma 3.11 remains valid, i.e. for all R1 # DU and aj # A such
that max(R1 , A)=[aj], we must have [[aj , ak] | ak # A]�O2(R1 , A).
Now pick aj , ak , al # A and R1 # DU such that [aj] P1[ak] P1[al] and
[ak , al] P1[aj , al] (using Lemma 3.5(iii)). Let R2 # DE be such that
[al] P2[a j , al] P2[aj] P2X for all X # A&[[aj], [al], [aj , al]]. Since (*)
holds, f (R1 , R2) cannot be a singleton. From our earlier remark
[aj , al] # O2(R1 , A) so that f (R1 , R2)=[aj , al]. Let R$1 # DE be such that
max(R$1 , A)=[ak]. Since R$1 , R2 # DE , we know from our N=2 version of
Theorem 3.3 that f (R$1 , R2)=[al , ak]. Since [al , ak] P1[al , aj], individual
1 manipulates at (R1 , R2). Therefore (*) cannot hold and Theorem 3.2
holds when N=2.

We now prove Theorem 3.2 for general N.
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Step 2. Assume that the theorem is true for all k�N&1. Let
f [DU]N � A be a strategy-proof N-person SCF satisfying the range condi-
tion. Define a SCF g: [DU]N&1 � A as follows.

For all R1 , R2 , ..., RN&1 # DU ,

g(R1 , ..., RN&1)= f (R1 , ..., RN&1 , RN&1).

Note that Fact 3.7 implies that g satisfies the range condition. Also observe
that for all R&(N&1) # [DU]N&2, RN&1 , R$N&1 # DU , g(R&(N&1) , RN&1)=
f(R&(N&1) , RN&1 , RN&1) RN&1 f (R&(N&1) , R$N&1 , RN&1) RN&1 f (R&(N&1) ,
R$N&1 , R$N&1)=g(R&(N&1) , R$N&1). So, individual (N&1) cannot manipu-
late g. Clearly, i # [1, ..., N&2] cannot manipulate g because that would
directly contradict the assumption that f is strategy-proof. Therefore, g is
strategy-proof. From the induction hypothesis, either i # [1, ..., N&2] or
(N&1) is a dictator.

Step 3. We claim that if i # [1, ..., N&2] is a dictator in g, then i is also
a dictator in f. Suppose, for instance, that1 is a dictator in g. Select any R1 ,
R2 , ..., RN # DU . Let max(R1 , A)=[aj]. Choose R$N&1 # DU such that
min(R$N&1 , A)=[a j]. Then, f (R1 , ..., RN&2 , R$N&1 , R$N&1)=g(R1 , ...,
RN&2 , R$N&1)=[aj] since 1 is a dictator in g. Since f is strategy-proof,
f (R1 , ..., RN&2 , R$N&1 , R$N&1) R$N&1 f (R1 , ..., RN&2 , R$N&1 , RN) R$N&1 f (R1 ,
..., RN&1 , RN). Since min(R$N&1 , A)=[aj], this implies that f (R1 , ..., RN)
=[aj]. Hence,1 is a dictator in f.

Step 4. Suppose individual (N&1) is a dictator in g. Choose any
arbitrary profile R # [DU]N&2 for an (N&2) society. Consider the two-
person society [N&1, N], and define a two-person SCF h: [DU]2 � A as
follows. For all (RN&1 , RN) # D2

U , h(RN&1 , RN)=f (R, RN&1 , RN). Since
(N&1) dictates in g, it follows that h satisfies the range condition. Since f
is strategy-proof, it follows immediately that h is strategy-proof. Therefore,
h is dictatorial. Without loss of generality, let N be the dictator in h.

Now choose any other profile R� # [DU]N&2, and consider the two-per-
son SCF h� : [DU]2 � A such that for all (RN&1 , RN) # D2

U , h� (RN&1 , RN)=
f (R� , RN&1 , RN). Again, h� must have a dictator. We want to show that N
continues to be the dictator in h� . Since R� is chosen arbitrarily, this will
establish that N is a dictator in f.

Suppose instead that (N&1) is a dictator in h� . Consider a sequence of
profiles [R0, ..., RN&2], each in [DU]N&2, such that

(i) R0=R, RN&2=R� .

(ii) For each k=1, ..., N&2, Rk
j =Rk&1

j for all j{k and Rk
k=R� k .
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Thus, the sequence describes a movement from R to R� such that one
individual at a time switches from Ri to R� i .

Let hk be the two-person SCF ``corresponding'' to Rk. That is, for each
(RN&1 , RN), let hk(RN&1 , RN)= f (Rk, RN&1 , RN). Let j be the smallest
integer such that N is the dictator in h j&1 and N&1 is the dictator in h j.
Clearly, such j must exist since the dictators in h and h� are different.

Without loss of generality, let [ak] Pj[a l]. Pick RN&1 and RN such that
max(RN&1 , A)=[a l] and max(RN , A)=[ak]. Then, we must have
h j&1(RN&1 , RN)=[ak] and h j (RN&1 , RN)=[al]. The definitions of h j&1

and h j now imply that j manipulates f at (R� j , RN&1 , RN) via Rj .
This completes the proof of Step 4. K

We now complete the proof of Theorem 3.3.

Proof of Theorem 3.3. We prove the theorem by induction on N. We
have proved the theorem for N=2. Assuming that it is true for all
K�N&1, we show that it is true for all SCFs f : [DE]N � A.

Let f : [DE]N � A be an N person SCF. Pick i, j # [1, ..., N] and con-
sider the N&1 society N&[ j]. A typical profile for this society will be
denoted by (R&ij , R i) # [DE]N&1. For any such profile, let (R&ij , R i , Rj) #
[DE]N denote its extension to a profile for an N society. The N&1 person
SCF gij : [DE]N&1 � A is defined as follows: for all (R&ij , Ri) # [DE]N&1,
gij (R&ij , R i)=f (R&ij , Ri , R j) where Ri=R j .

It follows from Step 2 in the proof of Theorem 3.2 that if f is strategy-
proof and satisfies the range condition, then gij satisfies the same proper-
ties. Applying the induction hypothesis, we conclude that gij is either dic-
tatorial or bi-dictatorial. Therefore, one of the four cases below must apply.

Case 1. _k # N&[i, j] such that k is the dictator in gij .

Case 2. _k, l # N&[i, j] such that k, l are bi-dictators in gij .

Case 3. i is a dictator in gij .

Case 4. _k # N&[i, j] such that k, i are bi-dictators in gij .

We will show that Theorem 3.3 is valid in each case.

Case 1. Arguments in Step 3 in the proof of Theorem 3.2 establish that
if k # N"[i, j] is a dictator in gij , then k is a dictator in f.

Case 2. Let k, l # N&[i, j] be bi-dictators in gij . We will show that k,
l are bi-dictators in f, i.e. for an arbitrary profile (R&ij , Ri , Rj), f (R&ij , Ri ,
Rj)=[ak , al] where max(Rk , A)=[ak] and max(Rl , A)=[al]. We
assume al {ak ; otherwise the argument for Case 1 suffices. Choose R� i # DE

such that XP� i[ak] P� i[ak , al] P� i[al] for all X # A&[[ak], [al], [ak , al]].
Let R� i=R� j . We have f (R&ij , R� i , R� j)=g ij (R&ij , R� i)=[ak , al]. Observe
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that f (Rij , Ri , R� j) is either [ak , al] or [al]; otherwise i will manipulate at
(R&ij , R� i , R� j). By an identical argument f (R&ij , Ri , Rj) is either [ak , al]
or [al]. Let R$i # DE be such that XP$i[al] P$i[ak , a l] P$i[ak] for all
X # A&[[ak], [al], [ak , al]]. Let R$i=R$j and observe that f (R&ij , R$i ,
R$j)=[ak , al]. By applying the previous argument, it follows that f (R&ij ,
Ri , Rj) is either [ak , al] or [ak]. Clearly f (R&ij , Ri , Rj)=[ak , a l].

Case 3. Choose R # [DE]N&2 and construct h: [DE]2 � A such that
h(Ri , Rj)=f (R, Ri , Rj) for all Ri , Rj # DE . As in Step 4 of Theorem 3.2,
h is strategy-proof and satisfies the range condition since i is a dictator
in gij . So, h is either dictatorial or bi-dictatorial. We need to show that
(i) if k # [i, j] is a dictator in h, then k is a dictator in f; (ii) if i and j are
bi-dictators in h, then they are bi-dictators in f.

The proof of (i) is almost identical to that of Step 4, but is given for
completeness.

Without loss of generality, suppose j is a dictator in h. Consider the
profile R� in [DE]N&2, where Rl=R� l for all l{k and R� k {Rk . Assume that
[ak] Pk[al]. Define the two-person SCF h� such that h� (Ri , Rj)=f (R� , Ri , Rj)
for all (Ri , Rj) # [DE]2. Choose Ri , Rj such that max(Ri , A)=[al] and
max(Rj , A)=[ak]. Now, h� is dictatorial or bi-dictatorial. If j is not the
dictator in h� , then h� (Ri , Rj)=[ak] or [al , ak]. Hence, f (R&k , R� k , Ri , Rj)=
[ak] or [al , ak], while f (R&k , Rk , Ri , Rj)=[al]. But, then k manipulates at
(R&k , R� k , Ri , Rj). Repeated application of this argument yields that j must be
a dictator in f.

The proof of (ii) is very similar to that of (i) and is omitted.

Case 4. Suppose k # N"[i, j] and i are bi-dictators in gij . We will show
that either the pair (k, i) or the pair ( j, k) are bi-dictators in f.

Consider the (N&1) person SCF gki . We know that one of Cases 1�4 must
hold with respect to gki . However, given that k and i are bi-dictators in gij , there
cannot be any dictator in gki . The only possible candidate for a dictator is j. But
suppose j is the dictator in gki . Choose R # [DE]N such that Rk=Ri with
max(Ri , A)=[ai] and max(Rj , A)=[aj]. Then, f (R&ki , Ri , Rk)=[aj].
But, then since i and k are bi-dictators in gij , f (R&ijk , Rj , Rk , Ri*)=[ai , aj] if
Ri*=Rj . Since [ai , aj] Pi[aj], i can manipulate at (R&ki , Ri , Rk).

So, only one of the following cases can occur:

(i) k dictates in gki

(ii) _l # N"[k, i] such that l and k are bi-dictators in gki .

Suppose (i) holds. We know from Case 3 for gij that either k or i dictates
in f or k and i are bi-dictators in f. Since we have assumed that k and i are bi-
dictators in gij , it follows that k and i must be bi-dictators in f.
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Suppose (ii) holds. Since k and i are bi-dictators in gij , we must have
l= j. That is, j and k are bi-dictators in f.

Now consider the (N&1) SCF gjk . By considering analogous arguments
to that for gki , it follows that the only possible dictator for gjk is j. But,
then j and k would be bi-dictators in f.

So, the only other possibility is the following:

(**) k and i are bi-dictators in gij , k and j are bi-dictators in gki , and
i and j are bi-dictators in gjk .

The final step of the proof is to show that (**) cannot hold.
Suppose (**) holds. Pick aj , ak , al # A and Rj , R� j # DE satisfying the

following for all X # A"[[aj], [ak], [al], [ak , aj], [ak , al], [aj , al], [aj ,
ak , al]].

(i) [ak] Pj[ak , al] Pj[a l] Pj[a j , ak] Pj[aj , al] P j[aj , ak , al] Pj[a j]
Pj X.

(ii) [al] P� j[ak , a l] P� j[ak] P� j[a j , al] P� j[aj , ak] P� j[aj , ak , al] P� j[a j]
P� j X.

The reader can check that these are permissible orderings in DE . Let
(Rk , Ri) # [DE]2 be such that max(Rk , A)=[a j] and max(Ri , A)=[ak].
Let R&ijk # [DE]N&3 be an arbitrary profile for an (N&3) society. Since k
and i are bi-dictators in gij , we have f (R&ijk , R i , Rj , Rk)=[aj , ak]. We
claim that f (R&ijk , Ri , R� j , Rk) must either be [aj , al] or [aj , ak]. To see
this, observe that if this outcome is in the set [[ak], [ak , al], [al]], then
j will manipulate at (R&ijk , Ri , Rj , Rk) via R� j . If it is not in that set nor
in [[aj , ak], [aj , al]], then j will manipulate at (R&ijk , Ri , R� j , Rk) via Rj .

Case A. f (R&ijk , Ri , R� j , Rk)=[aj , al].
Let R� k=R� j and R$k # DE be such that [al] P$k[aj , al] P$k[aj] P$kX for

all X # A"[[aj], [al], [aj , al]]. Since i and j are bi-dictators in gjk , we
must have f (R&ijk , Ri , R� j , R� k)=[ak , al]. We claim that f (R&ijk , Ri , R� j , R$k)
=[ak , al]. Suppose not. Since j can force the outcome to be [ak , al] by
announcing R$j=R$k , we must have f(R&ijk , Ri , R� j , R$k)=[al]. But then k will
manipulate at (R&ijk , Ri , R� j , R� k) via R$k . Therefore, f (R&ijk , Ri , R� j , R$k)=
[ak , al]. Since [aj , al] P$k[ak , al], k will manipulate at (R&ijk , Ri , R� j , R$k) via
Rk . Thus, f would not be strategy-proof if Case A were to hold.

Case B. f (R&ijk , Ri , R� j , Rk)=[aj , ak].
Let R� k=Ri and let Rk* # DE be such that [ak] Pk*[a j , ak] Pk*[aj] Pk*X

for all X # A"[[ak], [aj], [aj , ak]]. Since k and j are bi-dictators in gki ,
we have f (R&ijk , Ri , R� j , R� k)=[ak , al]. By replicating the appropriate
arguments in Case A, it follows that f (R&ijk , Ri , R� j , Rk*)=[ak , a l]. But
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[aj , ak] Pk*[ak , al]. Therefore k will manipulate at (R&ijk , R i , R� j , Rk*) via
Rk . So, f would not be strategy-proof if Case B were to hold.

Thus (**) cannot hold. This completes the proof of Theorem 3.3. K

4. RELATED LITERATURE14

One of the early papers on strategy-proofness to which our work is
related is Feldman (1980). He considers decision schemes that map profiles
of preferences over basic alternatives (i.e. singleton sets) into even-chance
lotteries over these alternatives. He then proves a bi-dictatorship result for
decision schemes that are strategy-proof and satisfy a unanimity require-
ment. We claim that this result follows from our Theorem 3.3. Consider a
Feldman decision scheme which satisfies unanimity and is strategy-proof.
Construct a social choice function by associating, for every preference
profile (defined over basic alternatives), the support of the value of the
Feldman decision scheme (an even-chance lottery) for that profile. We now
extend the domain of preferences to CEUCEP orderings by imposing the
invariance requirement that the value of the SCF is unchanged if prefer-
ences over singleton sets is unchanged. It can be verified that if the
Feldman decision scheme is strategy-proof, then so is the SCF that we have
defined. Moreover, unanimity is satisfied as well, so that Theorem 3.3
applies. The SCF must therefore either be dictatorial or bi-dictatorial. This
is exactly what Feldman's result states. We note that the step which
allowed us to associate a lottery with its support was valid only because
the lotteries were assumed to be even-chance. Once this assumption is
relaxed as in the Gibbard (1977) model, this correspondence between a
lottery and its support fails to preserve strategy-proofness either for CEUC
or CEUCEP preferences. In the Introduction, we have given an example to
illustrate this point.

Recently there has been a revival of interest in the issue of manipulable
correspondences. Two papers of particular interest are Duggan and
Schwartz [8] and Ching and Zhou [7]. We discuss each in turn. Duggan
and Schwartz consider choice functions which map profiles of preferences
on basic alternatives into sets of these alternatives. They define a choice
function to be manipulable if there exists an individual, a ``true'' preference
profile and a ``false'' ranking such that:

For every lottery over the set obtained by lying, and for every lottery over
the set obtained from telling the truth, there is an expected utility function
consistent with the voter's true ranking of basic alternatives for which
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the expected utility of the first lottery exceeds the expected utility of the
second.

Duggan and Schwartz demonstrate the existence of such a manipulation
provided that there are at least three basic alternatives and that the choice
function satisfies Citizen Sovereignty, non-dictatorship and a condition
called Residual Resoluteness. The last named condition requires the choice
function to be singleton-valued in a special class of profiles. Is this result a
special case of Theorem 3.2? We can, of course, extend a choice function
from profiles of rankings over basic alternatives to profiles of CEUC
rankings over sets by the invariance principle described previously. It is
also easy to see that Citizen Sovereignty, Residual Resoluteness and non-
manipulability imply unanimity. Therefore, according to Theorem 3.2,
every such social choice function which is non-dictatorial must be
manipulable in our sense. Restating our original definition in this context,
it follows that there exists an individual, a ``true'' preference profile and a
``false'' ranking such that:

For some prior probability distribution over basic alternatives and for
some expected utility consistent with the individual's true preferences over
sets, the individual's expected utility conditional on the set obtained from
lying is greater than the expected utility conditional on the set obtained
from telling the truth.

It is clear from the two definitions that manipulability in our sense is not
equivalent to manipulability in the Duggan�Schwartz sense. In the latter
case, for every pair of lotteries obtained from lying and truthtelling, there
is a utility representation of preferences, such that lying is more profitable
than truthtelling in terms of expected utility. In our case, there need be
only one lottery on the set obtained by lying and one on the set obtained
by telling the truth (constrained to come from the same prior probability
distribution) that allows an increase in expected utility. Therefore the
Duggan�Schwartz result does not follow from ours. Since the Duggan�
Schwartz result does not imply ours, the two sets of results are independent.

Ching and Zhou, like Duggan and Schwartz also consider social choice
rules which associate sets of alternatives with profiles of preferences over
basic alternatives. Using the same definition of manipulability as ours, they
show that only dictatorial or constant social choice functions are strategy-
proof. Hence, their result ``almost''15 follows from ours.

A paper closely related to ours is Benoit [7]. The paper considers social
choice rules which, like our social choice functions, map profiles of
preferences over sets of basic alternatives to these sets themselves. The
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notion of strategy-proofness in this paper is therefore identical to ours.
However, Benoit does not assume that preferences over sets are consistent
with utility maximization in any way. The main assumption made about
the domain is that certain special orderings called ``top'' and ``bottom''
preferences are admissible. Roughly speaking, a ``top'' preference is one
where sets are evaluated on the basis of their maximal elements while ``bot-
tom'' preferences are those where minimal elements are critical. In addition,
certain weak assumptions are made regarding all admissible orderings (for
example, an assumption that the maximal element of an ordering is always
a singleton, and a neutrality assumption). A less innocuous assumption
made on social choice rules is that they satisfy the property of ``near una-
nimity''. This property states that if all but one individual have a common
maximal singleton, then this singleton must be the value of the social
choice rule at that profile. For instance, the rule which selects the union
(over individuals) of maximal elements violates this property. Note also
that in order for this property to be satisfied, there must be at least three
individuals.

The main result in Benoit's paper is that if there are at least three
individuals and three basic alternatives, any strategy-proof social choice
function satisfying near unanimity, must be dictatorial. Although, or con-
clusions are similar, our results are logically unrelated. While Benoit makes
no assumptions regarding expected utility maximization, we assume the
weaker unanimity condition. These different assumptions also mean that
our proof techniques are very different from each other. We build on the
two-person case (ruled out by assumption in Benoit's model) while Benoit
develops a line of reasoning first used by Geanokoplos (Geanokoplos
[15]) to give a direct proof of Arrow's Impossibility Theorem. The connec-
tion between our domain assumptions is also intriguing. It is true that
``top'' and ``bottom'' preferences can be rationalized as CEUCEP (and
therefore CEUC) preferences. However, a close reading of our proof will
reveal that they are not required in any way for our results. The only
assumptions on preferences that we require are specified completely in
Lemma 3.5 and it can be verified that they have little to do with ``top'' or
``bottom'' preferences. It is likely therefore, that the results are even ``less
related'' than they appear to be.
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