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1 Generalized least squares

One of the assumptions we’ve made up to now is that

εt ∼ IID(0,σ2),

or occasionally

εt ∼ IIN(0,σ2).

Now we’ll investigate the consequences of nonidentically and/or dependently dis-

tributed errors. The model is

y = Xβ+ ε

E(ε) = 0

V (ε) = Σ

E(X ′ε) = 0

where Σ is a general symmetric positive definite matrix (we’ll write β in place of β0 to

simplify the typing of these notes).

• The case where Σ is a diagonal matrix gives uncorrelated, nonidentically dis-

tributed errors. This is known as heteroscedasticity.

• The case where Σ has the same number on the main diagonal but nonzero el-

ements off the main diagonal gives identically (assuming higher moments are

also the same) dependently distributed errors. This is known as autocorrelation.

• The general case combines heteroscedasticity and autocorrelation. This is known

as “nonspherical” disturbances, though why this term is used, I have no idea.
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Perhaps it’s because under the classical assumptions, a joint confidence region

for ε would be an n− dimensional hypersphere.

1.1 Effects of nonspherical disturbances on the OLS estimator

The least square estimator is

β̂ = (X ′X)−1X ′y

= β+(X ′X)−1X ′ε

• Conditional on X , or supposing that X is independent of ε, we have unbiased-

ness, as before.

• The variance of β̂, supposing X is nonstochastic, is

E
[
(β̂−β)(β̂−β)′

]
= E

[
(X ′X)−1X ′εε′X(X ′X)−1]

= (X ′X)−1X ′ΣX(X ′X)−1

Due to this, any test statistic that is based upon σ̂2 or the probability limit σ̂2 of

is invalid. In particular, the formulas for the t, F,χ2 based tests given above do

not lead to statistics with these distributions.

• β̂ is still consistent, following exactly the same argument given before.

• If ε is normally distributed, then, conditional on X

β̂ ∼ N
(
β,(X ′X)−1X ′ΣX(X ′X)−1)

The problem is that Σ is unknown in general, so this distribution won’t be useful

4



for testing hypotheses.

Summary: OLS with heteroscedasticity and/or autocorrelation is:

• unbiased in the same circumstances in which the estimator is unbiased with iid

errors

• has a different variance than before, so the previous test statistics aren’t valid

• is consistent

• is asymptotically normally distributed, but with a different limiting covariance

matrix. Previous test statistics aren’t valid in this case for this reason.

• is inefficient, as is shown below.

1.2 The GLS estimator

Suppose Σ were known. Then one could form the Cholesky decomposition

PP′ = Σ−1

We have

PP′Σ = In

so

P′
(
PΣP′

)
= P′,

which implies that

P′ΣP = In

Consider the model

P′y = P′Xβ+P′ε,
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or, making the obvious definitions,

y∗ = X∗β+ ε∗.

This variance of ε∗ = P′ε is

E(P′εε′P) = P′ΣP

= In

Therefore, the model

y∗ = X∗β+ ε∗

E(ε∗) = 0

V (ε∗) = In

E(X∗′ε∗) = 0

satisfies the classical assumptions (with modifications to allow stochastic regressors

and nonnormality of ε). The GLS estimator is simply OLS applied to the transformed

model:

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X ′PP′X)−1X ′PP′y

= (X ′Σ−1X)−1X ′Σ−1y

The GLS estimator is unbiased in the same circumstances under which the OLS
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estimator is unbiased. For example, assuming X is nonstochastic

E(β̂GLS) = E
{
(X ′Σ−1X)−1X ′Σ−1y

}

= E
{
(X ′Σ−1X)−1X ′Σ−1(Xβ+ ε

}

= β.

The variance of the estimator, conditional on X can be calculated using

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X∗′X∗)−1X∗′ (X∗β+ ε∗)

= β+(X∗′X∗)−1X∗′ε∗

so

E
{(

β̂GLS −β
)(

β̂GLS −β
)′

}
= E

{
(X∗′X∗)−1X∗′ε∗ε∗′X∗(X∗′X∗)−1

}

= (X∗′X∗)−1X∗′X∗(X∗′X∗)−1

= (X∗′X∗)−1

= (X ′Σ−1X)−1

Either of these last formulas can be used.

• All the previous results regarding the desirable properties of the least squares

estimator hold, when dealing with the transformed model.

• Tests are valid, using the previous formulas, as long as we substitute X ∗ in place

of X . Furthermore, any test that involves σ2 can set it to 1. This is preferable to

re-deriving the appropriate formulas.
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• The GLS estimator is more efficient than the OLS estimator. This is a conse-

quence of the Gauss-Markov theorem, since the GLS estimator is based on a

model that satisfies the classical assumptions but the OLS estimator is not. To

see this directly, not that

Var(β̂)−Var(β̂GLS) = (X ′X)−1X ′ΣX(X ′X)−1 − (X ′Σ−1X)−1

=

• As one can verify by calculating fonc, the GLS estimator is the solution to the

minimization problem

β̂GLS = argmin(y−Xβ)′Σ−1(y−Xβ)

so the metric Σ−1 is used to weight the residuals.

1.3 Feasible GLS estimation

The problem is that Σ isn’t known usually, so this estimator isn’t available.

• Consider the dimension of Σ : it’s an n×n matrix with
(
n2 −n

)
/2+n =

(
n2 +n

)
/2

unique elements.

• The number of parameters to estimate is larger than n and increases faster than

n. There’s no way to devise an estimator that satisfies a LLN without adding

restrictions.

• The feasible GLS estimator is based upon making sufficient assumptions regard-

ing the form of Σ so that a consistent estimator can be devised.

8



Suppose that we parameterize Σ as a function of X and θ, where θ may include β as

well as other parameters, so that

Σ = Σ(X ,θ)

where θ is of fixed dimension. If we can consistently estimate θ, we can consistently

estimate Σ, as long as Σ(X ,θ) is a continuous function of θ (by the Slutsky theorem).

In this case,

Σ̂ = Σ(X , θ̂)
p
→ Σ(X ,θ)

If we replace Σ in the formulas for the GLS estimator with Σ̂, we obtain the FGLS

estimator. The FGLS estimator shares the same asymptotic properties as GLS.

These are

1. Consistency

2. Asymptotic normality

3. Asymptotic efficiency if the errors are normally distributed. (Cramer-Rao).

4. Test procedures are asymptotically valid.

In practice, the usual way to proceed is

1. Define a consistent estimator of θ. This is a case-by-case proposition, depending

on the parameterization Σ(θ). We’ll see examples below.

2. Form Σ̂ = Σ(X , θ̂)

3. Calculate the Cholesky factorization P̂ = Chol(Σ̂−1).
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4. Transform the model using

P̂′y = P̂′Xβ+ P̂′ε

5. Estimate using OLS on the transformed model.

1.4 Heteroscedasticity

Heteroscedasticity is the case where

E(εε′) = Σ

is a diagonal matrix, so that the errors are uncorrelated, but have different variances.

Heteroscedasticity is usually thought of as associated with cross sectional data, though

there is absolutely no reason why time series data cannot also be heteroscedastic (topic

for a more advanced course).

Consider a supply function

qi = β1 +βpPi +βsSi + εi

where Pi is price and Si is some measure of size of the ith firm. One might suppose

that unobservable factors (e.g., talent of managers, degree of coordination between

production units, etc.) account for the error term εi. If there is more variability in these

factors for large firms than for small firms, then εi may have a higher variance when Si

is high than when it is low.

Another example, individual demand.

qi = β1 +βpPi +βmMi + εi
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where P is price and M is income. In this case, εi can reflect variations in preferences.

There are more possibilities for expression of preferences when one is rich, so it is

possible that the variance of εi could be higher when M is high.

Add example of group means.

1.4.1 Detection

There exist many tests for the presence of heteroscedasticity. We’ll discuss three meth-

ods.

Goldfeld-Quandt The sample is divided in to three parts, with n1,n2 and n3 obser-

vations, where n1 +n2 +n3 = n. The model is estimated using the first and third parts

of the sample, separately, so that β̂1 and β̂3 will be independent. Then we have

ε̂1′ε̂1

σ2 =
ε1′M1ε1

σ2
d
→ χ2(n1 −K)

and

ε̂3′ε̂3

σ2 =
ε3′M3ε3

σ2
d
→ χ2(n3 −K)

so
ε̂1′ε̂1/(n1 −K)

ε̂3′ε̂3/(n3 −K)
d
→ F(n1−K,n3 −K).

The distributional result is exact if the errors are normally distributed. This test is a

two-tailed test. Alternatively, and probably more conventionally, if one has prior ideas

about the possible magnitudes of the variances of the observations, one could order

the observations accordingly, from largest to smallest. In this case, one would use a

conventional one-tailed F-test. Draw picture.
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• Ordering the observations is an important step if the test is to have any power.

• The motive for dropping the middle observations is to increase the difference

between the average variance in the subsamples, supposing that there exists het-

eroscedasticity. This can increase the power of the test. On the other hand,

dropping too many observations will substantially increase the variance of the

statistics ε̂1′ε̂1 and ε̂3′ε̂3. A rule of thumb, based on Monte Carlo experiments is

to drop around 25% of the observations.

• If one doesn’t have any ideas about the form of the het. the test will probably

have low power since a sensible data ordering isn’t available.

White’s test When one has little idea if there exists heteroscedasticity, and no idea

of its potential form, the White test is a possibility. The idea is that if there is ho-

moscedasticity, then

E(ε2
t ) = σ2,∀t

so that xt or functions of xt shouldn’t help to explain E(ε2
t ). The test works as follows:

1. Since εt isn’t available, use the consistent estimator ε̂t instead.

2. Regress

ε̂2
t = z′γ+ vt

where zt is a P -vector. zt may include some or all of the variables in xt , as well

as other variables. White’s original suggestion was the set of all unique squares

and cross products of variables in xt .

3. Test the hypothesis that γ = 0. Note that this is the R2 or the artificial regression

used to test for heteroscedasticity, not the R2 of the original model.
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An asymptotically equivalent statistic, under the null of no heteroscedasticity (so that

R2 should tend to zero), is

nR2 a
∼ χ2(P−1).

This doesn’t require normality of the errors, though it does assume that the fourth

moment of εt is constant, under the null. Question: why is this necessary?

• The White test has the disadvantage that it may not be very powerful unless the

zt vector is chosen well, and this is hard to do without knowledge of the form of

heteroscedasticity.

• It also has the problem that specification errors other than heteroscedasticity may

lead to rejection.

• Note: the null hypothesis of this test may be interpreted as θ = 0 for the variance

model V (ε2
t ) = h(α+ z′tθ), where h(·) is an arbitrary function of unknown form.

The test is more general than is may appear from the regression that is used.

Plotting the residuals A very simple method is to simply plot the residuals (or their

squares). Draw pictures here. Like the Goldfeld-Quandt test, this will be more in-

formative if the observations are ordered according to the suspected form of the het-

eroscedasticity.

1.4.2 Correction

Correcting for heteroscedasticity requires that a parametric form for Σ(θ) be supplied,

and that a means for estimating θ consistently be determined. The estimation method

will be specific to the for supplied for Σ(θ). We’ll consider two examples. Before this,

let’s consider the general nature of GLS when there is heteroscedasticity.
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Multiplicative heteroscedasticity Suppose the model is

yt = x′tβ+ εt

σ2
t = E(ε2

t ) = (z′tγ)
δ

but the other classical assumptions hold. In this case

ε2
t =

(
z′tγ

)δ
+ vt

and vt has mean zero. Nonlinear least squares could be used to estimate γ and δ con-

sistently, were εt observable. The solution is to substitute the squared OLS residuals

ε̂2
t in place of ε2

t , since it is consistent by the Slutsky theorem. Once we have γ̂ and δ̂,

we can estimate σ2
t consistently using

σ̂2
t =

(
z′t γ̂

)δ̂
p

→ σ2
t .

In the second step, we transform the model by dividing by the standard deviation:

yt

σ̂t
=

x′tβ
σ̂t

+
εt

σ̂t

or

y∗t = x∗′t β+ ε∗t .

Asymptotically, this model satisfies the classical assumptions.

• This model is a bit complex in that NLS is required to estimate the model of the
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variance. A simpler version would be

yt = x′tβ+ εt

σ2
t = E(ε2

t ) = σ2zδ
t

where zt is a single variable. There are still two parameters to be estimated,

and the model of the variance is still nonlinear in the parameters. However,

the search method can be used in this case to reduce the estimation problem to

repeated applications of OLS.

• First, we define an interval of reasonable values for δ, e.g., δ ∈ [0,3].

• Partition this interval into M equally spaced values, e.g., {0, .1, .2, ...,2.9,3}.

• For each of these values, calculate the variable zδm
t .

• The regression

ε̂2
t = σ2zδm

t + vt

is linear in the parameters, conditional on δm, so one can estimate σ2 by OLS.

• Save the pairs (σ2
m,δm), and the corresponding ESSm. Choose the pair with the

minimum ESSm as the estimate.

• Next, divide the model by the estimated standard deviations.

• Can refine. Draw picture.

• Works well when the parameter to be searched over is low dimensional, as in

this case.
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Groupwise heteroscedasticity A common case is where we have repeated observa-

tions on each of a number of economic agents: e.g., 10 years of macroeconomic data

on each of a set of countries or regions, or daily observations of transactions of 200

banks. This sort of data is a pooled cross-section time-series model. It may be reason-

able to presume that the variance is constant over time within the cross-sectional units,

but that it differs across them (e.g., firms or countries of different sizes...). The model

is

yit = x′itβ+ εit

E(ε2
it) = σ2

i ,∀t

where i = 1,2, ...,G are the agents, and t = 1,2, ...,n are the observations on each agent.

• The other classical assumptions are presumed to hold.

• In this case, the variance σ2
i is specific to each agent, but constant over the n

observations for that agent.

• In this model, we assume that E(εitεis) = 0. This is a strong assumption that

we’ll relax later.

To correct for heteroscedasticity, just estimate each σ2
i using the natural estimator:

σ̂2
i =

1
n

n

∑
t=1

ε̂2
it

• Note that we use 1/n here since it’s possible that there are more than n regressors,

so n−K could be negative. Asymptotically the difference is unimportant.
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• With each of these, transform the model as usual:

yit

σ̂i
=

x′itβ
σ̂i

+
εit

σ̂i

Do this for each cross-sectional group. This transformed model satisfies the

classical assumptions, asymptotically.

1.5 Autocorrelation

Autocorrelation, which is the serial correlation of the error term, is a problem that is

usually associated with time series data, but also can affect cross-sectional data. For

example, a shock to oil prices will simultaneously affect all countries, so one could

expect contemporaneous correlation of macroeconomic variables across countries.

1.5.1 Causes

Autocorrelation is the existence of correlation across the error term:

E(εtεs) 6= 0, t 6= s.

Why might this occur? Plausible explanations include

1. Lags in adjustment to shocks. In a model such as

yt = x′tβ+ εt,

one could interpret x′tβ as the equilibrium value. Suppose xt is constant over

a number of observations. One can interpret εt as a shock that moves the sys-

tem away from equilibrium. If the time needed to return to equilibrium is long
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with respect to the observation frequency, one could expect εt+1 to be positive,

conditional on εt positive, which induces a correlation.

2. Unobserved factors that are correlated over time. The error term is often as-

sumed to correspond to unobservable factors. If these factors are correlated,

there will be autocorrelation.

3. Misspecification of the model. Suppose that the DGP is

yt = β0 +β1xt +β2x2
t + εt

but we estimate

yt = β0 +β1xt + εt

Draw a picture here.

1.5.2 AR(1)

There are many types of autocorrelation. We’ll consider two examples. The first is the

most commonly encountered case: autoregressive order 1 (AR(1) errors. The model is

yt = x′tβ+ εt

εt = ρεt−1 +ut

ut ∼ iid(0,σ2
u)

E(εtus) = 0, t < s

We assume that the model satisfies the other classical assumptions.

• We need a stationarity assumption: |ρ| < 1. Otherwise the variance of εt ex-

plodes as t increases, so standard asymptotics will not apply.
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• By recursive substitution we obtain

εt = ρεt−1 +ut

= ρ(ρεt−2 +ut−1)+ut

= ρ2εt−2 +ρut−1 +ut

= ρ2 (ρεt−3 +ut−2)+ρut−1 +ut

In the limit the lagged ε drops out, since ρm → 0 as m → ∞, so we obtain

εt =
∞

∑
m=0

ρmut−m

With this, the variance of εt is found as

E(ε2
t ) = σ2

u ∑∞
m=0 ρ2m

=
σ2

u
1−ρ2

• If we had directly assumed that εt were covariance stationary, we could obtain

this using

V (εt) = ρ2E(ε2
t−1)+2ρE(εt−1ut)+ E(u2

t )

= ρ2V (εt)+σ2
u,

so

V (εt) =
σ2

u

1−ρ2

• The variance is the 0th order autocovariance: γ0 = V (εt)

• Note that the variance does not depend on t
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Likewise, the first order autocovariance γ1 is

Cov(εt,εt−1) = γs = E((ρεt−1 +ut)εt−1)

= ρV (εt)

=
ρσ2

u
1−ρ2

• Using the same method, we find that for s < t

Cov(εt,εt−s) = γs =
ρsσ2

u

1−ρ2

• The autocovariances don’t depend on t: the process {εt} is covariance stationary

The correlation (in general, for r.v.’s x and y) is defined as

corr(x,y) =
cov(x,y)

se(x)se(y)

but in this case, the two standard errors are the same, so the s-order autocorrelation ρs

is

ρs = ρs

• All this means that the overall matrix Σ has the form

Σ =
σ2

u

1−ρ2
︸ ︷︷ ︸

this is the variance




1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
. . .

...

. . . ρ

ρn−1 · · · 1




︸ ︷︷ ︸
this is the correlation matrix
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So we have homoscedasticity, but elements off the main diagonal are not zero.

All of this depends only on two parameters, ρ and σ2
u. If we can estimate these

consistently, we can apply FGLS.

It turns out that it’s easy to estimate these consistently. The steps are

1. Estimate the model yt = x′tβ + εt by OLS. This is consistent as long as 1
nX ′ΣX

converges to a finite limiting matrix. It turns out that this requires that the re-

gressors X satisfy the previous stationarity conditions and that |ρ|< 1, which we

have assumed.

2. Take the residuals, and estimate the model

ε̂t = ρε̂t−1 +u∗t

Since ε̂t
p
→ εt , this regression is asymptotically equivalent to the regression

εt = ρεt−1 +ut

which satisfies the classical assumptions. Therefore, ρ̂ obtained by applying

OLS to ε̂t = ρε̂t−1 +u∗t is consistent. Also, since u∗t
p
→ ut , the estimator

σ̂2
u =

1
n

n

∑
t=2

(û∗t )
2 p
→ σ2

u

3. With the consistent estimators σ̂2
u and ρ̂, form Σ̂ = Σ(σ̂2

u, ρ̂) using the previous

structure of Σ, and estimate by FGLS. Actually, one can omit the factor σ̂2
u/(1−

ρ2), since it cancels out in the formula

β̂FGLS =
(
X ′Σ̂−1X

)−1
(X ′Σ̂−1y).
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• One can iterate the process, by taking the first FGLS estimator of β, re-estimating

ρ and σ2
u, etc. If one iterates to convergences it’s equivalent to MLE (supposing

normal errors).

• An asymptotically equivalent approach is to simply estimate the transformed

model

yt − ρ̂yt−1 = (xt − ρ̂xt−1)
′β+u∗t

using n− 1 observations (since y0 and x0 aren’t available). This is the method

of Cochrane and Orcutt. Dropping the first observation is asymptotically irrele-

vant, but it can be very important in small samples. One can recuperate the first

observation by putting

y∗1 =
√

1− ρ̂2y1

x∗1 =
√

1− ρ̂2x1

This somewhat odd result is related to the Cholesky factorization of Σ−1. See

Davidson and MacKinnon, pg. 348-49 for more discussion. Note that the vari-

ance of y∗1 is σ2
u, asymptotically, so we see that the transformed model will be

homoscedastic (and nonautocorrelated, since the u′s are uncorrelated with the

y′s, in different time periods.
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1.5.3 MA(1)

The linear regression model with moving average order 1 errors is

yt = x′tβ+ εt

εt = ut +φut−1

ut ∼ iid(0,σ2
u)

E(εtus) = 0, t < s

In this case,

V (εt) = γ0 = E
[
(ut +φut−1)

2
]

= σ2
u +φ2σ2

u

= σ2
u(1+φ2)

Similarly

γ1 = E [(ut +φut−1)(ut−1 +φut−2)]

= φσ2
u

and

γ2 = [(ut +φut−1)(ut−2 +φut−3)]

= 0
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so in this case

Σ = σ2
u




1+φ2 φ 0 · · · 0

φ 1+φ2 φ

0 φ . . .
...

...
. . . φ

0 · · · φ 1+φ2




Note that the first order autocorrelation is

ρ1 =
φσ2

u
σ2

u(1+φ2)
=

γ1

γ0

= φ
(1+φ2)

• This achieves a maximum at φ = 1 and a minimum at φ = −1, and the maximal

and minimal autocorrelations are 1/2 and -1/2. Therefore, series that are more

strongly autocorrelated can’t be MA(1) processes.

Again the covariance matrix has a simple structure that depends on only two parame-

ters. The problem in this case is that one can’t estimate φ using OLS on

ε̂t = ut +φut−1

because the ut are unobservable and they can’t be estimated consistently. However,

there is a simple way to estimate the parameters.

• Since the model is homoscedastic, we can estimate

V (εt) = σ2
ε = σ2

u(1+φ2)
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using the typical estimator:

σ̂2
ε = ̂σ2

u(1+φ2) =
1
n

n

∑
t=1

ε̂2
t

• By the Slutsky theorem, we can interpret this as defining an (unidentified) esti-

mator of both σ2
u and φ, e.g., use this as

σ̂2
u(1+ φ̂2) =

1
n

n

∑
t=1

ε̂2
t

However, this isn’t sufficient to define consistent estimators of the parameters,

since it’s unidentified.

• To solve this problem, estimate the covariance of εt and εt−1 using

Ĉov(εt ,εt−1) = φ̂σ2
u =

1
n

n

∑
t=2

ε̂t ε̂t−1

This is a consistent estimator, following a LLN (and given that the epsilon hats

are consistent for the epsilons). As above, this can be interpreted as defining an

unidentified estimator:

φ̂σ̂2
u =

1
n

n

∑
t=2

ε̂t ε̂t−1

• Now solve these two equations to obtain identified (and therefore consistent)

estimators of both φ and σ2
u. Define the consistent estimator

Σ̂ = Σ(φ̂, σ̂2
u)

following the form we’ve seen above, and transform the model using the Cholesky

decomposition. The transformed model satisfies the classical assumptions asymp-
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totically.

1.5.4 Testing for autocorrelation

Durbin-Watson test The Durbin-Watson test statistic is

DW = ∑n
t=2(ε̂t−ε̂t−1)

2

∑n
t=1 ε̂2

t

=
∑n

t=2(ε̂2
t −2ε̂t ε̂t−1+ε̂2

t−1)
∑n

t=1 ε̂2
t

• The null hypothesis is that the first order autocorrelation of the errors is zero:

H0 : ρ1 = 0. The alternative is of course HA : ρ1 6= 0. Note that the alternative

is not that the errors are AR(1), since many general patterns of autocorrelation

will have the first order autocorrelation different than zero. For this reason the

test is useful for detecting autocorrelation in general. For the same reason, one

shouldn’t just assume that an AR(1) model is appropriate when the DW test

rejects the null.

• Under the null, the middle term tends to zero, and the other two tend to one, so

DW
p
→ 2.

• .Supposing that we had an AR(1) error process with ρ = 1. In this case the

middle term tends to −2, so DW
p
→ 0

• Supposing that we had an AR(1) error process with ρ = −1. In this case the

middle term tends to 2, so DW
p
→ 4

• These are the extremes: DW always lies between 0 and 4.

• The distribution depends on the matrix of regressors, X , so tables can’t give

exact critical values. The give upper and lower bounds, which correspond to the
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extremes that are possible. Picture here. There are means of determining exact

critical values conditional on X .

• Note that DW can be used to test for nonlinearity (add discussion).

Breusch-Godfrey test This test uses an auxiliary regression, as does the White test

for heteroscedasticity. The regression is

ε̂t = x′tδ+ γ1ε̂t−1 + γ2ε̂t−2 + · · ·+ γPε̂t−P + vt

and the test statistic is the nR2 statistic, just as in the White test. There are P restric-

tions, so the test statistic is asymptotically distributed as a χ2(P).

• The intuition is that the lagged errors shouldn’t contribute to explaining the cur-

rent error if there is no autocorrelation.

• xt is included as a regressor to account for the fact that the ε̂t are not independent

even if the εt are. This is a technicality that we won’t go into here.

• The alternative is not that the model is an AR(P), following the argument above.

The alternative is simply that some or all of the first P autocorrelations are differ-

ent from zero. This is compatible with many specific forms of autocorrelation.

1.5.5 Lagged dependent variables and autocorrelation

We’ve seen that the OLS estimator is consistent under autocorrelation, as long as

plimX ′ε
n = 0. This will be the case when E(X ′ε) = 0, following a LLN. An important

exception is the case where X contains lagged y′s and the errors are autocorrelated. A

simple example is the case of a single lag of the dependent variable with AR(1) errors.
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The model is

yt = x′tβ+ yt−1γ+ εt

εt = ρεt−1 +ut

Now we can write

E(yt−1εt) = E
{
(x′t−1β+ yt−2γ+ εt−1)(ρεt−1 +ut)

}

6= 0

since one of the terms is E(ρε2
t−1) which is clearly nonzero. In this case E(X ′ε) 6= 0,

and therefore plimX ′ε
n 6= 0. Since

plimβ̂ = β+ plim
X ′ε
n

the OLS estimator is inconsistent in this case. One needs to estimate by instrumental

variables (IV), which we’ll get to later
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