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General Information
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Web page

There is a class web page which will serve as the distribution point for the class

notes and materials for the problem sets. To access it, point your favorite browser at

pareto.uab.es/mfarell/econometria. The Facultat has a computer room

in Aules 21-22-23 where you can find plenty of computers connected to the internet.
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1 Economic and econometric models

Economic theory postulates a mathematical relashionship between some economic

variables

y � f � X ���

say x is a kx1vector (k � 2 for the two variable model) . It is a parametric relation-

ship which describes the economic agents’ behaviour, and when applying economic

analysis to policy questions one can get estimations of the parameters of interest using

econometric technics. For example, we can be interested on:

� the input elasticities of substitution in a production or a cost function

� the direct eleasticity quantity-price in a demand function

� the returns to scale a technology exhibits in a production or a cost function

� the marginal propensity to consume in a consumtion function, among others.

Economic theory tells us some characteristics that f should have.

Economic theory tells us which are the vaiables in x.

The econometrician will try to ”guess” f and, the parameters of the function from

the data gathered of y and x.

The econometric model will be the representation of the economic model. We will

consider first that this relation is linear (or that we can make it linear).

y � f � X � β � � ε

� y is a � nx1 � vector

� x is � nxk � vector

� β is a � kx1 � vector

4



� ε is a � nx1 � vector. It is the error term and is interpreted as the sum of several

independent effects (variables ) not controled by the econometrician.

For the economist the most interesting cases will be the ones where y and X are highly

quality data and y � f � X � has a solid theoretical base. Examples can come from two

big pieces in the economic theory literature:

a) the theory of the consumer

b) the theory of the firm

a) From utility maximization we obtain the demand functions x � j
� � p � M � , the demand

function should satisfy some regularity conditions, such as homogeneity of degree zero

on p and M, symetry effects etc.

b) From cost minimization we obtain the indirect cost function Ci
� f � p � Q � , it is a

representation of the technology, from duality theory it recovers all the parameters of

the production function. The cost function also should satisfy some conditions, such as

homogeneity of degree one on input prices, p, non-decreasing on p, continuous with

respect to p etc.

When doing econometric modelling: y � f � X � β � � ε the econometrician needs to

specify:

� Which variables X belong to the model

economic theory

common sense

� Which is the functional form f

economic theory gives us the regularity conditions but there are a lot of func-

tional forms that satisfy those conditions

� Which is the error specification ε �

analysis of the context
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Origin of the word regression

The linear model presented nowadays, what is understood by the Gauss linear

model or the linear regression model has its main contributions on the work of Hal-

ley (1656-1742), De Moivre (1667-1754), Bernoulli (1700-1782), Bayes (1702-1761),

Lagrange (1736-1813), Laplace (1749-1827), Legendre (1752-1833), Gauss (1789-

1857). Afterwards, with Galton (1822-1911), Edgeworth (1845-1926), Pearson (1857-

1936) and Yule (1871-1951) the convergence of descriptuve statistics and the calculus

of probabilities in the context of the Gauss linear model was a reality (Spanos 1986;

Statistical foundations of Econometric Modelling. A brief historical overview. Cam-

bridge University Press).

But the use of the word regression in this context has its origins in the experiments

of Galton, when trying to see the relationship between height of parents and height

of their children. It was clear that tall parents had tall children and short parents had

short children. Nevertheless, he discovered that the height of children from unusually

tall or unusually short parents would have the tendency to go to the average of the

polpulation height. He did the experiment fitting the line through the data points that

would minimize the sum of the squared of the distances between the points and the

line. He called the phenomenon explained above ”regression to the mean” in his words

”regression to mediocrity” (1886) that is the unconditional mean.

2 The classical linear model

The econometric model is a representation of the economic model.

y � f � X � β � � ε

� the variable under study is the left-hand side, the dependent variable y.
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� this variable is explained by (related to) several other variables, the right-hand

side, the independent, explanatory, variables, the regressors X.

� yi is the i � th value of the dependent variable.

� xi
� � xi1 � xi2 � is the i � th observation of the k regressors. Where xi1

� 1 �

Data in economics is not experimental so, y and x can be both treated as random

variables or y is random and x are fixed values.

� the model is a linear function of the parameter vector β :

yi
� β1xi1

� β2xi2
� εi �

i � 1 � 2 � ����� � n

� β1xi1
� β2xi2 is the regression line, the β

�

s are the regression coefficients

� β j
� ∂yi

∂xi j
; j � 1 � 2 because of linearity the marginal effect does not depend on

the level of the regressors.

� the error term is the part unexplained by the regressors. It is the sum of the

variables not under the control of the econometrician.

Example : The consumption function

coni
� β1

� β2DIi
� εi

consumption is a linear function of disposable income. In the general notation we used

xi1
� 1for every i. Question: why is it important to introduce a column of ones?

Example 2: A semi-log or log-linear wage equation
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wagei
� eβ1eβ2Sieεi

� wagei is the wage rate for individual i

� Si education in years for individual i

Taking logs in both sides leads to the semi-log model:

log � wagei � � β1
� β2Si

� εi

the coefficients in this model are percentatge changes, in a general two variable case

we have:

log � yi � � β1
� β2xi2

� εi

β2
� ∂log

�
yi �

∂xi2

� 1
yi

=
∂yi
yi

∂xi2

� relative change in yi / absolute change in xi2

Example 3: A Cobb-Douglas cost function

By duality a cost function is a dual of a production function and it represents the

technology. The indirect cost function gives us, for every level of output and a set of

prices, the minimum cost you can produce that output with the represented technology.

c � f � pk � pl � Q �

the Cobb-Douglas econometric model representation is:

c � A � pβk
k

� pβl
l

� QβQ � eε

for a set of firms i � 1 � 2 ����� � n and taking logarithms in both sides we obtain the follow-
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ing log. model

log � ci � � logA
� βklog � pik � � βllog � pil � � βQlog � Qi � � εi

in a general two varaible case model

log � yi � � β1
� β2log � xi2 � � εi

β2
� ∂log

�
yi �

∂log
�
xi2 �

�
∂yi
yi

∂xi2
xi2

� ∂yi
∂xi2

� xi2
yi

� ξ an elasticity.

2.1 The model in Matrix Notation:

y � Xβ � ε;

y �

���������������
�

y1

y2

�

�

�

yn

����������������
�

; X �

���������������
�

1 x12

1 x22

� �

� �

� �

1 xn2

����������������
�

; β �

��
� β1

β2

���
� ; ε �

���������������
�

ε1

ε2

�

�

�

εn

����������������
�

;

Assumptions:

1. εi is normally distributed

2. E � εi � � 0; (zero mean)

3. V � εi � � σ2; 	 i; (homoscedasticity)

4. E � εiε j � � 0; (no-correlation)

5. X is fixed, non random
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In matrix notation:

1. ε � N

2. E � ε � �

���������������
�

E � ε1 �
E � ε2 �

�

�

�

E � εn �

����������������
�

�

���������������
�

0

0

�

�

�

0

����������������
�

;

3. and 4. E � εε
� � � σ2In;
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εε
�

� � ε1 ε2 � � εn �

������������
�

ε1

ε2

�

�

ε
n

�������������
�

�

�����������
�

ε2
1 ε1ε2 � � ε1εn

ε2ε1 ε2
2 � � ε2εn

� � � � �

� � � � �

εnε1 εnε2 � � ε2
n

������������
�

E � εε
� � �

�����������
�

σ2 0 � � 0

0 σ2 0 � 0

� � � � �

� � � � �

0 0 0 0 σ2

� ����������
�

� σ2In;

therefore in matrix notation we can write:

y � Xβ � ε;

ε � N � 0 � σ2In � ;
X non-stochastic;

2.2 Estimation by least squares

Definitions:

� β the vector of unknown parameters
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���β any value for the parameters

� β̂ the OLS estimate for β

� �εi
� yi � x

�

i
�β residual for observation i

β̂ � argminSSR � �β � �
n

∑
i � 1

�
yi � x

�

i
�β � 2

s � �β � � SSR � �β � �
�
y � X �β � � �

y � X �β �
� y

�

y � 2y
�

X �β � β
�

X
�

X �β
To minimize the criterion SSR � �β � � take the f.o.n.c. and set them to zero:

D �βs � β̂ � � ∂SSR � β̂ �
∂ �β �

� 2X
�

y
�

2X
�

X β̂ � 0

properties used

i � ∂a
�

x
∂x

� a

ii � ∂x
�

Ax
∂x

� 2Ax;

if A symetric,

so

β̂ � � X �

X ��� 1X
�

y �

To verify that this is a minimum, check the s.o.s.c.:

D2�βs �	�β � �
∂2�βSSR �	�β �

∂ �β∂ �β �

� 2X
�

X
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Since ρ � X � � k � this matrix is positive definite, since it’s a quadratic form in a p.d.

matrix (identity matrix of order n � , so β̂ is in fact a minimizer.

� The fitted values are in the vector ŷ � X β̂ �

� The residuals are in the vector ε̂ � y � X β̂

Note that

y � Xβ � ε

� X β̂ � ε̂

2.3 Properties of the OLS estimator in small samples:

2.3.1 Unbiasedness

Under assumptions 1-5:

β̂ � � X �

X ��� 1X
�

y

� � X �

X � � 1X
� � Xβ � ε �

� β � � X �

X � � 1X
�

ε

E � β̂ � � β �

2.3.2 Efficiency (Gauss-Markov theorem)

The variance-covariance matrix of the OLS estimator

V �	�β � � E � �	�β � β � � �β � β � � �
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V �	�β � � E � �	�β � β � �	�β � β � � �
� E � � X �

X � � 1X
�

ε � � X �

X � � 1X
�

ε � � �
� E � � X �

X ��� 1X
�

εε
�

X � X �

X � � 1 �
� � X �

X � � 1X
�

E � εε
� � X � X �

X � � 1

� � X �

X ��� 1X
�

σ2InX � X �

X � � 1

� σ2 � X �

X ��� 1

therefore the distribution of �β is N � β � σ2 � X �

X � � 1 � �
Asside: A usufull way to derive the distributions of vectors of random variables

which are linear combinations of a normaly distributed random vector is aplying the

following proposition:

If x is a nx1random vector where

x � N � µ � Σ �

θ � a
�

Ax � N � a �
Aµ � AΣA

� �

Definition:

We say that β̂ is efficient for β if β̂ is unbiassed for β and

V
�
β̂ � β̃ �

where β̃ is any other unbiassed estimator of β.

The Gauss-Markov Theorem:

The OLS estimator is a linear estimator, which means that it is a linear function of
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the dependent variable, y �

β̂ � � � X �

X � � 1X
���

y

� Cy

It is also unbiased, as we proved above. One could consider other weights W in place

of the OLS weights. We’ll still insist upon unbiasedness. Consider β̃ � Wy � If the

estimator is unbiased

E � Wy � � E � WXβ �
Wε �

� WXβ

� β

�

WX � IK

The variance of β̃ is

V � β̃ � � WW
�

σ2
�

Define

D � W � � X �

X ��� 1X
�

so

W � D
� � X �

X ��� 1X
�

Since W X � IK � DX � 0 � so

V � β̃ � ��� D � � X �

X � � 1X
��� � D � � X �

X � � 1X
��� �

σ2

�
�
DD

� � � X �

X � � 1 � σ2
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So

V � β̃ ��� V � β̂ � �

This is a proof of the Gauss-Markov Theorem.

Theorem 1 (Gauss-Markov) Under the classical assumptions, the variance of any

linear unbiased estimator minus the variance of the OLS estimator is a positive semidef-

inite matrix.

� It is worth noting that we have not used the normality assumption in any way

to prove the Gauss-Markov theorem, so it is valid if the errors are not normally

distributed, as long as the other assumptions hold.

Estimation of σ2 :

For σ̂2 we have
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�

σ2 � 1
n � K

ε̂
�

ε̂

ε̂ � y � X β̂

� y � X � X �

X ��� 1X
�

y

� MX y

� MX � Xβ � ε �
� MX ε

E �
�

σ2 � � 1
n � K

E � ε �

Mε �
� 1

n � K
E � TrMεε

� �
� 1

n � K
TrE � Mεε

� �
� 1

n � K
σ2TrMIn

� 1
n � K

σ2 � n � TrX � X �

X � � 1X
� �

� 1
n � K

σ2 � n � Tr � X �

X ��� 1X
�

X
�

� σ2

σ̂2 is an unbiassed estimator for σ2
�

2.4 Goodness of fit

We are trying to find an statistic that would measure how the estimated regression line

fits the data.
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From the first order conditions we have that

x
�

x�β � x
�

y

x
�

y � x
�

x�β � �

�

0

x
� � y � x

� �β � � �

�

0

x
� �ε � �

�

0

from this we obtain:

Σ �εi
� �

�

0

Σxi2 �εi
� �

�

0

we will write the model in deviations from the mean:

y �i
� yi � y

x �i2
� xi2 � x2

the model can be written as:

y �i
� �β2xi2

� �εi

we square the equation and we sum over i:

y � 2
i

� � �β2x �i2
� �εi � 2

y � 2
i

� �β2
2
x � 2

i2
� �εi

2 �
2 �β2x �i2 �εi

Σy � 2
i

� Σ �β2
2
x � 2

i2
� Σ �εi

2 � Σ2 �β2x �i2 �εi

18



last term is iqual to zero from f.o.c.:

Σ � xi2 � x2 � �εi
� Σxi2 �εi � Σx2 �εi

� 0

the decomposition of the variability of y is then:

Σ � yi � y � 2 � Σ � �yi � y � 2 � Σ � yi � �yi � 2

T SS � ESS
�

RSS

1 � ESS
T SS

� RSS
T SS

the equivalence Σ �β2
2
x � 2

i2
� Σ � �yi � y � 2is easy to see graphically. See notes from class.

R2 � ESS
T SS

or

� 1 �

RSS
T SS

� 1 �
�ε � �ε

y �
�

y �

we have then a measure for the goodness of fit R2,

0
�

R2 �
1

3 Restrictions

Restrictions are statements about the values of the parameters of our model or functions

of them. In this course we will only consider statements about the values of our pa-
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rameters or linear functions of them. We will be interested on testing those statements

or imposing them in our model. Therefore, we will be talking about the unrestricted

model (that is, the model before any restriction is considered) and the restricted model

(the model that satisfies the restriction)

3.1 Linear Hypothesis testing under normality

We have now, one or more linear equations on the parameters of the model. These

equations are often motivated by the same economic theory on which the model is

based or they are based on statements about the explanatory capacity of the variables

in the model.

� the restriction to be tested is called the null hypothesis, H0 �

� the model is ”the mantained hypothesis”, a set of assumptions.

� the model together with the null produces some test-statistic with a known dis-

tribution.

� too large of a value of the test statistic is interpreted as a failure of the null. This

interpretation is only valid if the model is correctly specified.

� the test statistic may not have the supposed distribution when the null is true but

the model is false.

3.1.1 Exact linear restrictions

In many cases, economic theory suggests restrictions on the parameters of a model.

For example, a demand function is supposed to be homogeneous of degree zero in
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prices and income. If we have a Cobb-Douglas (log-linear) model,

lnq � β0
� β1 ln p1

� β2 ln p2
� β3 lnm

� ε �

then we need that

k0 lnq � β0
� β1 lnkp1

� β2 lnkp2
� β3 lnkm

� ε �

so

β1 ln p1
� β2 ln p2

� β3 lnm � β1 lnkp1
� β2 lnkp2

� β3 lnkm

� � lnk � � β1
� β2

� β3 � � β1 ln p1
� β2 ln p2

� β3 lnm �

The only way to guarantee this for arbitrary k is to set

β1
� β2

� β3
� 0 �

which is a parameter restriction. In particular, this is a linear equality restriction,

which is probably the most commonly encountered case.

3.1.2 Imposition

The general formulation of linear equality restrictions is the model

y � Xβ � ε

Rβ � r

where R is a Q � K matrix, Q � K and r is a Q � 1 vector of constants.
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� We assume R is of rank Q � so that there are no redundant restrictions.

� We also assume that � β that satisfies the restrictions: they aren’t infeasible.

Draw a picture for two var. model with β � 1 as a restriction to motivate the

relevant distances for an statistic to test the restrictions.

Let’s consider how to estimate β subject to the restrictions Rβ � r� The most obvious

approach is to set up the Lagrangean

min�β s � �β � �
�
y � X �β � � �

y � X �β � �
2λ

� � R �β � r � �

The Lagrange multipliers are scaled by 2, which makes thing less messy. The f.o.n.c.

are

D�βs � β̂ � λ̂ � �
� 2X

�

y
�

2X
�

X β̂R
�

2R
�

λ̂ � 0

Dλs � β̂ � λ̂ � � Rβ̂R � r � 0 �

which can be written as ��
� X

�

X R
�

R 0

� �
�

��
� β̂R

λ̂

� �
� �

��
� X

�

y

r

� �
� �

We get ��
� β̂R

λ̂

���
� �

��
� X

�

X R
�

R 0

���
� �

1 ��
� X

�

y

r

���
� �

The next section is not for the undergaraduate course but it is left here to show

how we would solve this problem. After all the math, we have the restricted estimates

from the unrestricted ones, which means that we only have to estimate the unrestricted

model to calculate the restricted estimates afterwards.

22



Aside:Partition inverse matrices

Consider the following partitioned matrix:

�����
�

a b c

d e f

g h i

� ����
�

Let’s define pivot elements the elements in the main diagonal:

i) Construct the first tableau, pivot element is 1,1 (a):

- element a becomes a � 1

- in pivot row do: � pivot � element � � 1 � � pivot � row � element � : � a � 1 a � 1b a � 1c �
-in pivot column: � � pivot � column � element � � � pivot � element � � 1 :�����
�

a � 1 a � 1b a � 1c

� da � 1

� ga � 1

������
�

-off elements: � o f f � elements � ��� � element � in � same � pivot � row � � � pivot �

element � � 1

� � element � same � pivot � col ��� :�����
�

a � 1 a � 1b a � 1c

� da � 1 e � da � 1b f � da � 1c

� ga � 1 h � ga � 1b i � ga � 1c

� ����
�

ii) Construct the next tableau with element 2,2 (e) as the pivot element.

iii) Construct the last tableau with element 3,3 (i) as the pivot element. This will be

the final partitioned inverse.

Another way to do it is the following:

Stepwise Inversion:

note that

23



��
� � X �

X � � 1 0

� R � X �

X � � 1 IQ

���
�

��
� X

�

X R
�

R 0

���
� � AB

�

��
� IK � X �

X � � 1 R
�

0 � R � X �

X � � 1 R
�

� �
�

�

��
� IK � X �

X � � 1 R
�

0 � P

���
�

� C �

and ��
� IK � X �

X � � 1R
�

P � 1

0 � P � 1

� �
�

��
� IK � X �

X � � 1 R
�

0 � P

� �
� � DC

� IK � Q �

so

DAB � IK � Q

DA � B � 1

B � 1 �

��
� IK � X �

X � � 1R
�

P � 1

0 � P � 1

���
�

��
� � X �

X � � 1 0

� R � X �

X � � 1 IQ

���
�

�

��
� � X �

X � � 1
� � X �

X � � 1R
�

P � 1R � X �

X � � 1 � X �

X � � 1R
�

P � 1

P � 1R � X �

X � � 1
� P � 1

���
� �
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so ��
� β̂R

λ̂

���
� �

��
� � X �

X � � 1
� � X �

X � � 1R
�

P � 1R � X �

X � � 1 � X �

X � � 1R
�

P � 1

P � 1R � X �

X � � 1
� P � 1

���
�

��
� X

�

y

r

���
�

�

��
� β̂ � � X �

X � � 1R
�

P � 1
�
Rβ̂ � r �

P � 1
�
Rβ̂ � r �

� �
�

�

��
� � IK � � X �

X � � 1R
�

P � 1R
�

P � 1R

���
� β̂ �

��
� � X �

X � � 1R
�

P � 1r

� P � 1r

���
�

The fact that β̂R and λ̂ are linear functions of β̂ makes it easy to determine their dis-

tributions, since the distribution of β̂ is already known. Recall that for x a random

vector, and for A and b a matrix and vector of constants, respectively, Var � Ax
�

b � �

AVar � x � A �

�

3.2 Testing

In many cases, one wishes to test economic theories. If theory suggests parameter

restrictions, as in the above homogeneity example, one can test theory by testing pa-

rameter restrictions. A number of tests are available.

3.2.1 t-test

Suppose one has the model

y � Xβ � ε
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and one wishes to test the single restriction H0 :Rβ � r vs. HA :Rβ
�� r . Under H0 �

with normality of the errors,

Rβ̂ � r � N � 0 � R � X �

X � � 1R
�

σ2 �

so
Rβ̂ � r�

R � X �

X � � 1R
�

σ2
� Rβ̂ � r

σ2
�

R � X �

X � � 1R
� � N � 0 � 1 � �

The problem is that σ2 is unknown. One could use the consistent estimator
�

σ2 in place

of σ2 � but the test would only be valid asymptotically in this case.

Consider the random variable

ε̂
�

ε̂
σ2

� ε
�

MX ε
σ2

�
� ε

σ
� �

MX

� ε
σ
�

� χ2 � n � K �

Now consider (remember that we have only one restriction in this case)

Rβ̂ � r

σ � R
�
X � X ��� 1R ��

ε̂ � ε̂�
n � K � σ2

� Rβ̂ � r

�σ �
R � X �

X � � 1R
�

This will have the t � n � K � distribution.

so
Rβ̂ � r

�σ �
R � X �

X � � 1R
�

� Rβ̂ � r
σ̂Rβ̂

� t � n � K �

In particular, for the commonly encountered test of significance of an individual coef-
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ficient, for which H0 : β j
� 0 vs. H0 : β j

�� 0 , the test statistic is

β̂ j

σ̂β̂ j

� t � n � K �

3.2.2 p-value (as a decision rule)

Instead of finding the t-statistic you can calculate

p � value � Pr � t � �� t j
�� � � 2

Pr � � �� t j
�� � t �

�� t j
�� � � 1 � p

3.2.3 F test

The F test allows testing multiple restrictions jointly.

Now that we have a menu of test statistics, we need to know how to use them.

Proposition 2 If x � χ2 � r � and y � χ2 � s � � then

x � r
y � s

� F � r� s � (1)

provided that x and y are independent.

Proposition 3 If the random vector (of dimension n) x � N � 0 � I � � then x
�

Ax and x
�

Bx

are independent if AB � 0 �

Using these results, and previous results on the χ2 distribution, it is simple to show

that the following statistic has the F distribution:

F �

�
Rβ̂ � r � � �

R � X �

X � � 1 R
� � � 1 �

Rβ̂ � r �
qσ̂2 � F � q � n � K � �
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A numerically equivalent expression is

� RSSR � RSSU � � q
RSSU � � n � K � � F � q � n � K � �

3.2.4 Confidence intervals

Confidence intervals for single coefficients are generated in the normal manner. Given

the t statistic

t � statistic � β̂ j � a
�

σβ̂ j

a 100 � 1 � α � % confidence interval for β is defined by the bounds of the set of a such

that the t � statistic does not reject H0 : β j
� a � using a α significance level:

C � α � �
�
β j : � tα � 2 � �

n � k � �
β̂ j � a

�

σβ̂ j

� tα � 2 � �
n � k ���

Pr � � tα � 2 � �
n � k � �

β̂ j � a
�

σβ̂ j

� tα � 2 � �
n � k � � � 1 � α

inside the expression of the probability, multiply by
�

σβ̂ j
, subtract β̂ j , multiply by � 1

and reorder.

The set of such β j is the interval

β̂ j � �

σβ̂ j
tα � 2

It is not the same to test two coefficients individually that to test them jointly: A

confidence ellipse for two coefficients jointly would be, analogously, the set of {β1 � β2 �
such that the F (or some other test statistic) doesn’t reject at the specified critical value.

This generates an ellipse, if the estimators are correlated. Draw a picture here.

� The region is an ellipse, since the CI for an individual coefficient defines a (in-
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finitely long) rectangle with total prob. mass 1 � α � since the other coefficient is

marginalized (e.g., can take on any value). Since the ellipse is bounded in both

dimensions but also contains mass 1 � α � it must extend beyond the bounds of

the individual CI.

� From the pictue we can see that:

– Rejection of hypotheses individually does not imply that the joint test will

reject.

– Joint rejection does not imply individal tests will reject.

Example: (Hayashi pg 45) assume k � 2 and consider:

H0 : β1
� 1

β2
� 0

this can be written as a linear hypothesis Rβ � r for R � I2 and r � � 1 � 0 ��� so the

F test should be used. It is tempting, however, to conduct the t � test separately for

each individual coefficient of the hypothesis. We might accept H0if both restrictions

β1
� 1 and β2

� 0 pass the t � test. This amounts to using the confidence region of:

CI � � β1 � β2 � : � β̂1 �

�

σβ̂1
tα � 2 � �

n � k � � β1 � � β̂1
� �

σβ̂1
tα � 2 � �

n � k � �

: � β̂2 �

�

σβ̂2
tα � 2 � �

n � k � � β2 � � β̂2
� �

σβ̂2
tα � 2 � �

n � k � ���

which is a rectangular region in the � β1 � β2 � plane.
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On the other hand, the confidence region for the F � test is

� � β1 � β2 � : � β̂1 � β1 � β̂2 � β2 � �
�

V � β̂ � � � 1

��
� β̂1 � β1

β̂2 � β2

���
� � � 2Fα

�
q � n � k �

the acceptance region is an elipse in the � β1 � β2 � plane.

3.2.5 Examples

When considering a set of restrictions we have to be careful about not stating redundant

or inconsistent equations. Let’s consider the wage equation in the example of the

introduction

log � wagei � � β1
� β2Si

� β3T ENi
� β4EXP4

� εi

We might wish to test that education and tenure have equal impact on the wage rate

and that there is no experience effect:

H0 : β2
� β3

� β2 � β3
� 0

β4
� 0

since the two rows are linearly independent the rank condition is satisfied.

Suppose now that additionally we write β2 � β3
� β4 If you construct the R matrix

you will see that is a 3x4matrix but the rank is 2. This are called redundant restrictions.

You can have also inconsistent restrictions That happen when there is no β that can

30



satisfy those restrictions example

H0 : β2 � β3
� 0

β4
� 0

β4
� 0 � 5
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