
The wild goose chase

At some moment time . . . in 2004

Hope this few pages help you to figure out somehow what this ”staggering and
gripping” stuff is about and, hopefully, to avoid fussing at Montse when it’s
too late. Suggestions & comments are welcome at marti.mestieri@campus.uab.es.
By the way, I haven’t managed to lighten up the subject (I tried it, though).

Preface

The aim of doing this tedious work is to fill the gap between the notes of the
first semester and the notes on GLS Montse hanged on her webpage.
I’d like to think this notes are going to be a blessing in disguise for passing
your exam.
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Graphic representation of PM

1 Multicollinearity

Multicollinearity is the existence of linear relationship amongst the regressors.
One can distinct between two different cases:

Perfect or Exact Multicollinearity: Regressors are linearly dependant.
This is, given a sample space of regressors ~x1, . . . , ~xk,

∃λi ∈ R ∀i = 1, . . . , k |
k∑

i=1

λi ~xi = 0 where ∃λi 6= 0

Near Multicollinearity: This is a more general case. Given a sample space
of regressors ~x1, . . . , ~xk and ~v ∈ Rn

∃λi ∈ R ∀i = 1, . . . , k |
k∑

i=1

λi ~xi = ~v

If E(~v) = 0 ∧ V (~v) ≡ σ2 = 0, then NM turns out to be PM.

It is worth noting that ~xi are (nx1) vectors and that ~v is interpreted as a
(nx1) random vector.

1.1 Consequences of Multicollinearity

If we are dealing with perfect multicollinearity (PM), (X ′X)−1 is not defined.
This is to say that there is not any privileged point to minimize the sum of
squares.

On the other hand, if there is not multicollinearity, the shape of the SSR
would be likely as shown.
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Graphic representation of no multicollinearity

Things become harsher when near multicollinearity (NM) arises. Should
this happen, the shape of the SSR would be an ellipsoid. In this case, (X ′X)−1

is large, thereby, so is V̂ (β̂). (Recall:V̂ (β̂) = σ̂2(X ′X)−1). Taking this result
into account implies one expects t-statistics closer to zero (ie, not significant).
This low power of the significance hypothesis testing may lead easily to type
II errors (not rejecting a false hypothesis). It is straightforward NM problem
distorts (and somehow disrupts) the coefficients’ interpretation. Nevertheless,
R2 and global significance tests may be very good.

1.2 Detection of NM

The list below points out a few outcomes which should warn us of NM

1. det(X ′X) is ”close” to zero

2. High correlation amongst pairs of regressors is a sufficient condition for
NM (pairwise relationship).

3. Coefficient instability: by dropping some observations, estimated coef-
ficients do vary much.

4. High goodness of fit (R2), but insignificant coefficients (low t-tests)

5. A mighty tool in order to detect NM is based upon its definition: the
auxiliary regressions, this is, regress one regressor on the other ones.
Mathematically, things go this way:

xi =
λ1

λi

x1 + . . . +
λi−1

λi

xi−1 +
λi+1

λi

xi+1 + . . . +
λk

λi

xk +
v

λi
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This regressions, sometimes, allow us to find out whether exists or not
NM. For instance, if the regression is globally significant.

1.3 Corrective Measures

If we are only interested in prediction, regarding the high R2, we should
consider doing nothing as our best choice. Nevertheless, errors may arise.
Alternatively, some recipes exist to lower the effects of NM.

A priori information: setting extra restrictions on the model based upon
previous experience or data and common sense.

Mixing cross series data and time series data:one can consider time
series observations to predict current behaviours and, so restrict the
cross section model.

Ruling out some variables: If we drop one variable, even though the im-
provement in the coefficients’ significance, there is no way to maintain
the estimation unbiased and specification errors arise. Further details
in the next section.

Transformation of the variables:It does exist several transformations in
order to reduce NM. Arguably, the most common are the first difference
transformation for time series and the ”rate transformation” (check it
out).

Adding new or extra data: As long as NM is a problem of the data set,
modifying it should improve the set’s quality. Spreading the width of
our data set is sometimes enough. If not, we shall consider obtaining a
new one.

2 Specification Errors

As we introduced it above, specification errors come up whether relevant
variables are omitted or irrelevant variables are included in the econometric
model. I am going to deal with these two problems separately. Firstly, I will
focus on omitting relevant variables.
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2.1 Omission of relevant variables

To begin with, in this subsection it is assumed a true classical model such
that:

Y = X︸︷︷︸
nxk

· β︸︷︷︸
kx1

+ ω︸︷︷︸
nxs

· γ︸︷︷︸
sx1

+ ε

However, a short-sighted econometrician hasn’t heeded the reality and sets
the model to estimate as follows:

Y = X · β + u where u stands for the error term

It is assumed all the classical assumptions are satisfied.
One can estimate the true model via least squares (as we have been doing so
far), thus,

β̂OLS = (X ′X)−1(X ′Y ) = (X ′X)−1(X ′(Xβ + ωγ + ε))

β̂OLS = β + (X ′X)−1X ′ωγ + (X ′X)−1X ′ε

Hence, the expectation of β̂OLS is:

E(β̂OLS) = β + E((X ′X)−1X ′ωγ) + 0 since E(ε) = 0

Taking this result into account, it is immediate that the econometrician is
going to obtain a biased estimation of β unless E((X ′X)−1X ′ωγ), which is
nearly impossible (this would happen if X’s and ω were independent, this is,
no correlated at all).
Similarly, this happens as well to the variance, the econometrician is going
to estimate a biased σ̂2. Actually,

E(σ̂2) = σ2 + A

And A being positive or negative depends on the correlation between X’s an
ω’s
It is worth noting that in this cases neither the β′s nor the σ2 will be dis-
tributed as usually (t-statistic, etcetera). It is true even if X’s and ω are
independent, because hypothesis tests are not true.

2.2 Inclusion of irrelevant variables

On the contrary, the econometrician could set a model

Y = Xβ + Ωγ + u u ∼ (~0, σ2Id)
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when the true model is (γ = 0)

Y = Xβ + ε ε ∼ (~0, ζ2Id)

This is to say, irrelevant variables have been included in the econometric
model.

Defining Z ≡ (X| Ω) and θ ≡
(

β
γ

)
the econometric model to estimate

becomes:
Y = Zθ + u

Hence, applying the OLS estimation

θ̂ =

(
β̂
γ̂

)
= (Z ′Z)−1Z ′Y

E(θ̂) =

(
E(β̂)
E(γ̂)

)
=

(
β
γ

)
=

(
β
0

)

So, θ̂ is unbiased. Furthermore, the estimation of variance is unbiased:

E(σ̂2) = σ2

Nevertheless, it can be proven that variance of θ̂ is not efficient

V ar(θ̂) ≥ V ar(β̂)

Summing up,

Omission of relevant variables Inclusion of irrelevant variables

β̂ biased β̂ unbiased but inefficient
σ̂2 biased σ̂2 unbiased

Tests not invalid Tests valid (but less power)


